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General theme

Geometric structure

⇒

Graph-theoretic structure

⇒

Algorithms

. . . and clearer understanding of graph structure
leads to better algorithms



I. Crystals and polyhedra



Prototypical example: Steinitz’s theorem

Purely combinatorial characterization of geometric objects:

Graphs of convex polyhedra are exactly
3-vertex-connected planar graphs [Steinitz 1922]

Image: Kluka [2006]



Algorithmic Steinitz not entirely understood

Given a 3-connected planar graph, we can find a polyhedron
representing it, with integer coordinates, in polynomial time

Best known upper bound on these coordinates (based on lifting
Tutte spring embeddings) is singly exponential

[Ribó Mor et al. 2011; Buchin and Schulz 2010]

Can we do better?



Non-convex crystal polyhedra

Some materials (here, bismuth) crystallize into
orthogonal polyhedra instead of convex polyhedra

Image: Bilovitskiy [2015]



Steinitz-like theorem for orthogonal polyhedra

The graphs of 3-regular, topologically spherical orthogonal
polyhedra are exactly 2-connected planar cubic bipartite graphs

where no 2-vertex cut separates the graph into three pieces
[Eppstein and Mumford 2014]

Hard part: Construct polyhedron from
dually-4-connected graph

Main ideas: Represent polyhedron
combinatorially as special coloring and
orientation of dual graph

Induction proof that dual coloring
always exists

Topological order of bichromatic
subgraphs ⇒ coordinates



Algorithms for realizing orthogonal polyhedra

Can find orthogonal realization
of graph in randomized O(n)
time, deterministic
O(n(log log n)2/ log log log n)

Bottleneck: Decompose
4-connected Eulerian maximal
planar graphs by

I Splitting on 4-cycles

I Suppressing pairs of
adjacent degree-4 vertices

I Contracting pairs of
opposite neighbors of
isolated degree-4 vertices



II. Bubbles and Foams



Soap bubbles and soap bubble foams

Image: woodleywonderworks [2007]

Soap molecules form double layers
separating thin films of water from
pockets of air

A familiar physical system that
produces complicated arrangements of
curved surfaces, edges, and vertices

What can we say about the
mathematics of these structures?



Planar soap bubbles

3d is too complicated, let’s restrict to two dimensions

Image: Keller [2002]

Main result: graphs of 2D soap bubble clusters
= 3-regular 2-connected planar graphs [Eppstein 2014]



Plateau’s laws

In every 3D soap bubble cluster:

I Each surface has constant mean
curvature

I Triples of surfaces meet along
curves at 120◦ angles

I These curves meet in groups of
four at equal angles

Observed in 19th c. by Joseph Plateau

Proved by Taylor [1976] Image: Unknown [1843]



Young–Laplace equation

Thomas Young

Image: Adlard [1830]

For each surface in a soap
bubble cluster:

mean curvature
= 1/pressure difference

(with surface tension as
constant of proportionality)

Formulated in 19th c., by
Thomas Young and
Pierre-Simon Laplace

Pierre-Simon Laplace

Image: Feytaud [1842]



Plateau and Young–Laplace for planar bubbles

In every planar soap bubble cluster:

I Each curve is an arc of a circle or
a line segment

I Each vertex is the endpoint of
three curves at 120◦ angles

I It is possible to assign pressures to
the bubbles so that curvature is
inversely proportional to pressure
difference

120◦ angles ⇒ must be 3-regular



Geometric reformulation of the pressure condition

C1
C2 C3

For arcs meeting at 120◦

angles, the following three
conditions are equivalent:

I We can find pressures
matching all curvatures

I Triples of circles have
collinear centers

I Triples of circles form a
“double bubble” with two
triple crossing points



Möbius transformations

Fractional linear transformations

z 7→ az + b

cz + d

in the plane of complex numbers

Take circles to circles and do not
change angles between curves

Plateau’s laws and the double bubble
reformulation of Young–Laplace only
involve circles and angles

so the Möbius transform of a bubble
cluster is another valid bubble cluster



Proof that bubbles are 2-connected

Equivalently: They do not have a bridge, an edge that has the
same face on both of its sides

Image: Unknown [1940]

Main ideas of proof:

I A bridge that is not straight violates the pressure condition

I A straight bridge can be transformed to a curved one that
again violates the pressure condition



Bridges are the only obstacle

For planar graphs with three edges per vertex and no bridges, we
can always find a valid bubble cluster realizing that graph

Main ideas of proof:

1. Handle 3-connected components separately, separately and
use Möbius transformations to glue results together

2. Use Koebe–Andreev–Thurston circle packing to find a system
of circles whose tangencies represent the dual graph

3. Construct a novel type of Möbius-invariant power diagram of
these circles, defined using 3d hyperbolic geometry

4. Use symmetry and Möbius invariance to show that cell
boundaries are circular arcs satisfying the angle and pressure
conditions that define soap bubbles



Circle packing

After separating into
components we have a
3-connected 3-regular graph

Koebe–Andreev–Thurston
circle packing theorem
guarantees the existence of a
circle for each face, so circles
of adjacent faces are tangent,
other circles are disjoint

Can be constructed by efficient
numerical algorithms

[Collins and Stephenson 2003]



Möbius-invariant Voronoi diagram

Circle packing ⇒ hemispheres in 3D ⇒
planes in upper halfplane model of hyperbolic space

Construct the hyperbolic Voronoi diagram of these planes and
restrict Voronoi cell boundaries to 2D plane

Symmetries of hyperbolic space restrict to Möbius transformations
of the plane ⇒ diagram is invariant under Möbius transformations



Step 4: By symmetry, these are soap bubbles

Möbius ⇒ transform any triple of
tangent circles to equal radii

Power diagram boundaries become
rays meeting at 120◦ ⇒ they obey
all local requirements on soap
bubble clusters

Local pressure differences at each
triple ⇒ global system of pressures
fulfilling Young–Laplace equation



Algorithmic application

Lombardi drawing: Visualize
graphs with circular-arc edges,
equally spaced angles

Soap bubble realization ⇒
all 3-regular planar graphs have
Lombardi drawings

(even when not 2-connected)

Depicted: a 46-vertex graph
from Grinberg [1968],
illustrating Wikipedia article on
Grinberg’s theorem on
Hamiltonicity of planar graphs



III. Cracks and Needles



Gilbert tessellation

Image: Rocchini [2012b]

Gilbert [1967]:

Choose random points in R2

Start growing line segments in
opposite (random) directions
and equal speeds at each point

Stop growing each segment
when it hits another one



Modeling the growth of needle-like crystals

(Gilbert’s original motivation)

Image: Lavinsky
[2010]



Cracks in dried mud

“Most mudcrack patterns in nature topologically resemble” Gilbert
tesselations [Gray et al. 1976]

Image: Grobe [2007]



Combinatorial structure of a Gilbert tessellation

Represent as a graph:

Vertex for each segment

Edges to the segments at its
endpoints



Contact graphs

Vertices = non-overlapping geometric objects of some type

Edges = pairs that touch but do not overlap

E.g. Koebe–Andreev–Thurston circle packing theorem:
Planar graphs are exactly the contact graphs of disks



Contact graphs of line segments

These graphs are:

Planar

(2, 3)-sparse

(Each k-vertex subgraph has at
most 2k − 3 edges)

I 2k because each segment
has 2 ends

I −3 because the convex
hull has ≥ 3 vertices



Recognizing (2, 3)-sparse graphs

Pebble game:

Start with all vertices, no
edges, 2 pebbles/vertex

If a missing edge has > 3
pebbles, remove one pebble
and draw edge directed away
from removed pebble

If you need more pebbles, pull
them backwards along directed
paths, reversing the path edges

If (2, 3)-sparse, draws all edges
If not: will get stuck

[Lee and Streinu 2008]



From pebbles to line segments

Theorem: Contact graphs of line segments are exactly
the planar (2,3)-sparse graphs

Proof outline:

Edge directions from pebbling indicate
which segment crashed into which other

Embed the graph using Tutte spring embedding
Straighten segments using infinitesimal weights

(2, 3)-sparsity ⇒ cannot degenerate to a line

[Thomassen 1993; de Fraysseix and Ossona de Mendez 2004]

(With planar separators, can pebble and recognize in time O(n3/2))



Gilbert tessellations with restricted angles

E.g., random points with axis-aligned pairs of motorcycles:

Mackisack and Miles [1996]; Burridge et al. [2013]
Image: Rocchini [2012a]



Cellular automata

In some simple 2D cellular automata, sparse random initial
conditions produce patterns that look like (or are provably)

orthogonal Gilbert tessellations [Eppstein 2010, 2021]



Recognizing axis-parallel contact graphs

Contact graphs of axis-parallel segments = planar bipartite graphs

[Hartman et al. 1991]



Gilbert tessellations vs contact graphs

Segment contact graphs: Fully characterized

Gilbert tessellation graphs are a special case, but. . .

All unterminated line segments must be on the outer face

Unknown extra constraints from equal growth rate of segments



Algorithms for Gilbert tessellation

Define asymmetric distance:
Time when one segment would crash into another

Repeatedly find closest pair and eliminate blocked segment

Use dynamic closest pair data structure of [Eppstein 1995]

O(n3/2+ε) [Eppstein and Erickson 1999]

Improved to O(n4/3+ε) [Vigneron and Yan 2014]

Additional log speedup using mutual nearest neighbors instead of
closest pairs [Mamano et al. 2019]



Algorithmic application: Roof design

Input: Outline of a building

Trace cross-sections of constant-slope
roofline

Line segments along ridge lines grow
inwards until they run into another part
of the roof

Can be constructed using
(non-random) Gilbert tessellations
[Cheng and Vigneron 2007; Huber and

Held 2012]

Image: Huber [2012]



IV. Crumples and Folds



Patterns in crumpled paper

Image: Pruitt [2011]

Studied experimentally [Andresen et al. 2007] (e.g. ridge lengths
appear to obey power laws) but not well-understood theoretically



Similar patterns at nanoscale

Crumpled graphene has applications including power storage
[Stoller et al. 2008] and artificial muscles [Zang et al. 2013]

Image: Duke University [2013]



A discrete model of paper folding

Fold a piece of paper arbitrarily so that it lies flat again
(without crumpling)



A discrete model of paper folding

Unfold it again and look at the creases from its folded state

= mountain fold

= valley fold



A discrete model of paper folding

It looks like a graph!



Local constraints at each vertex

Maekawa’s theorem: at interior vertices,

|# mountain folds−# valley folds| = 2

= mountain fold

= valley fold

So all vertex degrees must be even and ≥ 4

[Murata 1966; Justin 1986]



Local constraints are not enough

Some tree-structured folding
patterns are locally-foldable at
each vertex, but have no global
flat folding [Hull 1994]

At the central crossing, two
opposite creases nest tightly

The extra folds farther out on
these two creases are
incompatible with nesting



...but all even-degree trees are realizable

Given an abstract tree with even-degree internal vertices, we can
find a flat-foldable folding pattern in the shape of that tree

[Eppstein 2018]



Main idea of tree realization

Construct tree top-down from root

Maintain buffer zones to prevent creases from nearing each other

3π/7

2π/72π/7

2π/72π/7

3π/7



Alternative graph model for infinite paper

Instead of interpreting infinite rays as leaves,
add a special vertex at infinity as their shared endpoint

Image: Hossain [2015]

...so trees become series-parallel multigraphs



Some combinatorial constraints

The graphs of flat folding
patterns with a vertex at
infinity are:

I 2-vertex-connected

I 4-edge-connected

I not separable by removal
of any 3 finite vertices

Proof ideas:
convexity of subdivision
rigidity of triangles

∞ ∞

∞∞

∞ ∞
An unrealizable graph

[Eppstein 2018]



Return to finite paper sizes

On circular or square paper, every folding pattern without interior
vertices can be flat folded [Eppstein 2018]

(Not true for equilateral triangles!)

Corollary: All outerplanar graphs are realizable as folding patterns



Summary

Polyhedra
Well characterized; fast recognition and reconstruction

Planar soap bubble foams
Well characterized; fast recognition and reconstruction

What about 3d?

Contact graphs of segments:
Well characterized; fast recognition and reconstruction

Combinatorial model missing some features of Gilbert tessellations

Flat-folded surfaces:

Partial characterization
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