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Longest Cycle: Given a graph G and integer k, decide 
whether G contains a cycle of length at least k? 



Historical notes

Sir William Rowan Hamilton  
(1805 - 1865)

Rudrata (9th century)

Al-Ádlí ar-Rúmí (9th century)



Historical notes

How dense should be a graph to be Hamiltonian?  
To contain a long cycle?



Gabriel Andrew Dirac

Dirac’s Theorem 

Theorem (Dirac, 1952)

Every n-vertex 2-connected graph G with minimum vertex degree �(G) � 2,
contains a cycle with at least min{2�(G), n} vertices.
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Abstract. We describe a novel randomized method. the method of cobm-coding for finding simple
paths and cycles of a specified length k, and other small subgraphs, within a gwen graph
G = ( 1’, E). The randomized algorithms obtained using this method can be derandomlzcd using
kmihes of petfect hash f~wtctmns. Using the color-coding method we obtain. m particular, the
following new results:

—For every fixed k, if a graph G = (V. E) contains a simple cycle of size exactly k, then such a
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Test bed for new methods

Determinant-sum 

Representative sets

Algebraic fingerprints

Cut & count

Treewidth algorithms

Polynomial differentiation

Divide-and-color

Narrow sieves



General question

Could the density of a graph be helpful in 
finding long cycles?



Algorithmic question

Theorem (Dirac, 1952)

Every n-vertex 2-connected graph G with minimum vertex degree �(G) � 2,
contains a cycle with at least min{2�(G), n} vertices.

Is there a polynomial time algorithm to decide whether a 2-connected graph G
contains a cycle of length at least min{2�(G) + 1, n}?
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Algorithmic question

Dirac bound

<latexit sha1_base64="yv2L6aAwuoVD3MPu6/Uzx7+cEOQ="></latexit>

Every n-vertex 2-connected graph with minimum
vertex degree d contains a cycle of length at least
min{2d, n}

Above Dirac bound
<latexit sha1_base64="2C6xyfLSRMNFUVXCuRCZdxA9yEk="></latexit>

Does a 2-connected graph with minimum
vertex degree d contains a cycle of length
at least min{2d, n}+ k?



G: n-vertex graph

H has a cycle of length 2d=n  
iff G is Hamiltonian

cliques of size n/2

Remark: Why 2-connectivity is important



Theorem. Longest Cycle above Dirac’s bound is FPT.

Algorithmic Extensions of Dirac’s Theorem

Fedor V. Fomin⇤
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Danil Sagunov†
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Abstract

In 1952, Dirac proved the following theorem about long cycles in graphs with large minimum
vertex degrees: Every n-vertex 2-connected graph G with minimum vertex degree � � 2 contains
a cycle with at least min{2�, n} vertices. In particular, if � � n/2, then G is Hamiltonian. The
proof of Dirac’s theorem is constructive, and it yields an algorithm computing the corresponding
cycle in polynomial time. The combinatorial bound of Dirac’s theorem is tight in the following
sense. There are 2-connected graphs that do not contain cycles of length more than 2� + 1.
Also, there are non-Hamiltonian graphs with all vertices but one of degree at least n/2. This
prompts naturally to the following algorithmic questions. For k � 1,

(A) How di�cult is to decide whether a 2-connected graph contains a cycle of length at least
min{2� + k, n}?

(B) How di�cult is to decide whether a graph G is Hamiltonian, when at least n � k vertices
of G are of degrees at least n/2� k?

The first question was asked by Fomin, Golovach, Lokshtanov, Panolan, Saurabh, and Zehavi.
The second question is due to Jansen, Kozma, and Nederlof. Even for a very special case of
k = 1, the existence of a polynomial-time algorithm deciding whether G contains a cycle of
length at least min{2� + 1, n} was open. We resolve both questions by proving the following
algorithmic generalization of Dirac’s theorem: If all but k vertices of a 2-connected graph G are
of degree at least �, then deciding whether G has a cycle of length at least min{2� + k, n} can
be done in time 2O(k)

· nO(1).
The proof of the algorithmic generalization of Dirac’s theorem builds on new graph-theoretical

results that are interesting on their own.

⇤Department of Informatics, University of Bergen, Norway.
†St. Petersburg Department of V.A. Steklov Institute of Mathematics, Russia.

1

Algorithm that in time 2O(k)nO(1) decides whether a 2-connected graph with
minimum degree d contains a cycle of length at least min{2d, n}+ k.

<latexit sha1_base64="sXFAC0bXB7OXGDEXnKyJhQSloMM="></latexit>



Theorem. Longest Cycle above Dirac’s bound is FPT.

<latexit sha1_base64="yv2L6aAwuoVD3MPu6/Uzx7+cEOQ="></latexit>

Every n-vertex 2-connected graph with minimum
vertex degree d contains a cycle of length at least
min{2d, n}

How to construct a cycle of length 2d in 
polynomial time?

Dirac:



Dirac’s Theorem (1952)

Proof:
C

<latexit sha1_base64="A6rk3WCLj4P08NCWuH1AyszaP38="></latexit>

Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d, n}

H
Take a cycle C. |C|<2d

Interesting part when 2d<n

H:



Dirac’s Theorem (1952)

Proof:

C

<latexit sha1_base64="A6rk3WCLj4P08NCWuH1AyszaP38="></latexit>

Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d, n}

|C|<2d Min-degree d

H= 



Dirac’s Theorem (1952)

Proof:

C
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Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d, n}

|C|<2d

Min-degree d

H= 



Dirac’s Theorem (1952)

Proof:
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Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d, n}

H= 
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A 2-connected graph of minimum vertex degree d contains a path of length at
least d between any given pair of vertices.

Erdős-Gallai Lemma (1959)



Dirac’s Theorem (1952)

Proof:

C

<latexit sha1_base64="A6rk3WCLj4P08NCWuH1AyszaP38="></latexit>

Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d, n}

|C|<2d

Min-degree d

H= 

Apply EG-lemma + count carefully



Dirac’s Theorem - how to proceed 
algorithmically? 

|C|=2d

H= 

Simplified question: we have a cycle C of length 2d, 
decide whether it is possible to enlarge it.

v

- v adjacent to every second vertex of C 



Dirac’s Theorem - how to proceed 
algorithmically? 

|C|=2d

H= 

Simplified question: we have a cycle C of length 2d, 
decide whether it is possible to enlarge it.

v

- v adjacent to every second vertex of C 
- every other u outside C is adjacent exactly the same vertices

u



Dirac’s Theorem - how to proceed 
algorithmically? 

|C|=2d

H= 

Simplified question: we have a cycle C of length 2d, 
decide whether it is possible to enlarge it.

v

- v adjacent to every second vertex of C 
- every other u outside C is adjacent to exactly the same vertices 
- N(v) is a vertex cover of G of size d

u

Intuition: We either could enlarge the cycle or 
construct a ``small’’ vertex cover



More generally (informally) 

C
H

H:

Small Vertex Cover

Dirac Decomposition

We try to enlarge a cycle C of length  2d+p



Dirac decomposition

P1 P2

D1

D1

D2

D0

C

Figure 9: A schematic example of a Dirac decomposition, vertices belonging to B are in light gray.
Removing the paths P1 and P2 leaves two (D1)-type components that correspond to the long arcs
P 0 and P 00 of the starting cycle C, one (D2)-type component, and a component consisting only of
vertices from B, denoted by D0. The four Dirac components are in thick blue.

• Let G0 be the graph obtained from G by applying B-refinement to every connected component
H of G�V (P1[P2), except those components H with V (H) ✓ B. Note that no edges of the
paths P1 and P2 are contracted. Then for every connected component H 0 of G0

�V (P1 [P2),
except those with V (H 0) ✓ B, holds |V (H 0)| � 3 and one of the following.

(D1) H 0 is 2-connected and the maximum size of a matching in G0 between V (H 0) and V (P1)
is one, and between V (H 0) and V (P2) is also one;

(D2) H 0 is not 2-connected, exactly one vertex of P1 has neighbors in H 0, that is, |NG0(V (H 0))\
V (P1)| = 1, and no inner vertex from a leaf-block of H 0 has a neighbor in P2;

(D3) The same as (D2), but with P1 and P2 interchanged. That is, H 0 is not 2-connected,
|NG0(V (H 0)) \ V (P2)| = 1, and no inner vertex from a leaf-block of H 0 has a neighbor
in P1.

• There is exactly one connected component H in G�V (P1[P2) with V (H)\B = V (P 0)\(B[

{s0, t0}), where s0 and t0 are the endpoints of P 0. Analogously, there is exactly one connected
component H in G � V (P1 [ P2) with V (H) \ B = V (P 00) \ (B [ {s00, t00}).

The set of Dirac components for a Dirac decomposition is defined as follows. First, for each
component H 0 of type (D1), H 0 is a Dirac component of the Dirac decomposition. Second, for each
leaf-block of each H 0 of type (D2), or of type (D3), this leaf-block is also a Dirac component of the
Dirac decomposition. For an example of a Dirac decomposition, see Figure 9.

Note that Lemma 5 holds for an arbitrary cycle C if we replace Erdős-Gallai components
and Erdős-Gallai decompositions with Dirac components and Dirac decompositions. We give the
analogue of this lemma below without proof, since it is identical to the proof of Lemma 5.

53
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Let G be a 3-connected graph and k be an integer such that 0 < k  1
24d. Then

there is an algorithm that, given a cycle C of length less than 2d + k < n, in
polynomial time either

• returns a longer cycle in G, or

• returns a vertex cover of G of size at most d+ 2k

Structure of 3-connected graphs

Does it solve the problem?
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Let G be a 3-connected graph and k be an integer such that 0 < k  1
24d. Then

there is an algorithm that, given a cycle C of length less than 2d + k < n, in
polynomial time either

• returns a longer cycle in G, or

• returns a vertex cover of G of size at most d+ 2k

Well-known: If the vertex cover of G is at 
most p then a longest cycle in G could be 
found in time 2O(p) ⋅ nO(1)

A cycle of length at least 2d+k in time 
2O(d+k) ⋅ nO(1)

Not what we shooting for!The algorithm that in a graph G with a vertex cover of size d+2k 
decides whether  G has a cycle of length at least 2d+k in time 2O(k)
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Let G be a 3-connected graph and k be an integer such that 0 < k  1
24d. Then

there is an algorithm that, given a cycle C of length less than 2d + k < n, in
polynomial time either

• returns a longer cycle in G, or

• returns a vertex cover of G of size at most d+ 2k

The algorithm that in a graph G with a vertex cover of size d+p, p<d/2, 
decides whether  G has a cycle of length at least 2d+k in time 
2O(p) ⋅ nO(1)

VC IS

It allows reducing the 
problem of finding a cycle 
to the problem of covering 
vertices in a subgraph by 
paths of total length O(p).

Idea: Every cycle of length 
at least 2d+k 
could be rerouted to make 
a new cycle with very 
specific properties. 

VC IS
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Let G be a 3-connected graph and k be an integer such that 0 < k  1
24d. Then

there is an algorithm that, given a cycle C of length less than 2d + k < n, in
polynomial time either

• returns a longer cycle in G, or

• returns a vertex cover of G of size at most d+ 2k

C
We need algorithmic EG-Lemma: an 
algorithm that for any s,t decides 
whether there is an (s,t)-path of 
length at least d+k in time 2O(k) ⋅ nO(1)

New extremal properties of cycles that 
``cannot be enlarged’’ in ``Erdős-
Gallai’’ and ``Dirac’’ way: 
Erdős-Gallai decomposition and  
Dirac decomposition An interesting interplay between 

parameterized algorithms and graph 
structure



Long (s, t)-Cycle

(Theorem 4)

Long Erdős-Gallai (s, t)-Path
(Theorem 5)

Dirac decomposition
(Theorem 16)

Long Dirac Cycle / Vertex Cover

Above Degree

(Theorem 6)

Almost Hamiltonian

Dirac Cycle

(Theorem 7)

Long Dirac Cycle

(Theorem 3)

Figure 1: The main steps and connections in the proof of Theorem 3.

is that color coding can be used only to find in the claimed running time the cycle whose length is of
order of k. However, it is quite possible that the lengths of all solutions are much larger than k; in
such situation color coding cannot be applied directly. Our approach in proving Theorem 4 builds
on ideas from [FLP+18, Zeh16], where a parameterized algorithms for finding a directed (s, t)-path
and a directed cycle of length at least k were developed. The main idea of the proof is the following.
First, we use color coding to verify whether the considered instance has a solution composed by
two (s, t)-paths of total length at most 3k. If the instance has a solution, we return it and stop.
Otherwise, we conclude that the total length of the paths of every solution is at least 3k + 1. This
allows to use structural properties of paths. Let P1 and P2 be the (s, t)-paths of a solution of
minimum total length. Then there are vertices x1 and x2 on P1 and P2, respectively, such that
(i) the total length of the (s, x1)-subpath P 0

1 of P1 and the (s, x2)-subpath P 0
2 of P2 is exactly k,

(ii) either x1 = s or the length of the (x1, t)-subpath P 00
1 of P1 is at least k, and, symmetrically,

(iii) either x2 = s or the length of the (x2, t)-subpath P 00
2 of P2 is at least k. Then P 00

1 and P 00
2 are

internally disjoint paths that are shortest disjoint paths avoiding V (P 0
1)[V (P 0

2) \ {x1, x2}. We use
the method of random separation to distinguish the following three sets: V (P 0

1)[ V (P2) \ {x1, x2},
the last min{k, |V (P1)|�2} internal vertices of P 00

1 , and the last min{k, |V (P2)|�2} internal vertices
of P 00

2 . This allows to highlight the crucial parts of the shortest solution and then find a solution.
The second problem whose solution we use in the proof of Theorem 3, comes from another

classical theorem due to Erdős and Gallai from [EG59, Theorem 1.16], see also [Loc85]. For every
pair of vertices s, t of a 2-connected graph G, there is a path of length at least minv2V (G)\{s,t} deg v.
The proof of this result is constructive, and it implies a polynomial time algorithm that finds such
a path. We define Long Erdős-Gallai (s, t)-Path as follows.

Input: Graph G with vertex set B ✓ V (G), two vertices s, t 2 V (G) and integer
k � 0.

Task: Decide whether G contains an (s, t)-path of length at least �(G�B)+k.

Long Erdős-Gallai (s, t)-Path parameterized by k + |B|

In Section 6, we prove the following theorem. This theorem plays an important role in the proof
of Theorem 16.

Theorem 5. Long Erdős-Gallai (s, t)-Path is solvable in time 2O(k+|B|)
·nO(1) on 2-connected

graphs.

8

Theorem [Longest Cycle above Dirac’s bound]

There is an algorithm deciding whether a 2-connected 
graph G with minimum degree d has a cycle of length at 
least 2d+k in time 2O(k) ⋅ nO(1)



If every vertex of an n-vertex graph G is of degree at least n/2, then G is

Hamiltonian, that is, contains a Hamiltonian cycle.

<latexit sha1_base64="BxioH5YpMSJvi896bGOTWvX2ANU="></latexit>

Dirac:

Hamiltonicity below Dirac’s condition

Bart M.P. Jansen1

Eindhoven University of Technology
b.m.p.jansen@tue.nl

http://orcid.org/0000-0001-8204-1268

László Kozma2

Freie Universität Berlin
laszlo.kozma@fu-berlin.de

Jesper Nederlof3

Eindhoven University of Technology
j.nederlof@tue.nl

Abstract

Dirac’s theorem (1952) is a classical result of graph theory, stating that an n-vertex graph (n Ø 3)
is Hamiltonian if every vertex has degree at least n/2. Both the value n/2 and the requirement
for every vertex to have high degree are necessary for the theorem to hold.

In this work we give e�cient algorithms for determining Hamiltonicity when either of the
two conditions are relaxed. More precisely, we show that the Hamiltonian cycle problem can
be solved in time ck · nO(1), for some fixed constant c, if at least n ≠ k vertices have degree at
least n/2, or if all vertices have degree at least n/2 ≠ k. The running time is, in both cases,
asymptotically optimal, under the exponential-time hypothesis (ETH).

The results extend the range of tractability of the Hamiltonian cycle problem, showing that
it is fixed-parameter tractable when parameterized below a natural bound. In addition, for the
first parameterization we show that a kernel with O(k) vertices can be found in polynomial time.

2012 ACM Subject Classification Theory of computation æ Graph algorithms analysis, Theory
of computation æ Parameterized complexity and exact algorithms

Keywords and phrases Hamiltonian cycle, fixed-parameter tractability, kernelization.

1 Introduction

The Hamiltonian Cycle problem asks whether a given undirected graph has a cycle that
visits each vertex exactly once. It is a central problem of graph theory, operations research,
and computer science, with an early history that well predates these fields (see e.g. [27]).

Several conditions that guarantee the existence of a Hamiltonian cycle in a graph are
known. Perhaps best known among these is Dirac’s theorem from 1952 [14]. It states that a
graph with n vertices (n Ø 3) is Hamiltonian if every vertex has degree at least n/2. Various
extensions and refinements of Dirac’s theorem have been obtained, often involving further
graph parameters besides minimum degree (see e.g. the book chapters [13, § 10], [29, § 11]
and survey articles [17, 28, 30] for an overview). We remark that a polynomial-time verifiable
condition for Hamiltonicity cannot be both necessary and su�cient, unless P = NP [25]. In
its stated form, Dirac’s theorem is as strong as possible. In particular, if we replace n/2 by

1
Supported by NWO Gravitation grant “Networks”.

2
Supported by ERC Consolidator Grant No 617951.

3
Supported by NWO Gravitation grant “Networks” and NWO Grant No 639.021.438.
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Theorem [Jansen, Kozma, Nederlof]



Question 2: Let v be a vertex of the minimum degree of a 2-connected graph G. Is
there a polynomial time algorithm to decide whether G contains a cycle of length at least
min{2�(G � v), n}?

(We denote by G � v the induced subgraph of G obtained by removing vertex v.) Note that
graph G � v is not necessarily 2-connected and we cannot apply Theorem 2 to it.

The incapability of existing techniques to answer Questions 1 and 2 was the primary motivation
for our work. We answer both questions a�rmatively and in a much more general way. Our result
implies that in polynomial time one can decide whether G contains a cycle of length at least
2�(G � B) + k for B ✓ V (G) and k � 0 as long as k + |B| 2 O(log n). (We denote by G � B the
induced subgraph of G obtained by removing vertices of B.) To state our result more precisely, we
define the following problem.

Input: Graph G with vertex set B ✓ V (G) and integer k � 0.
Task: Decide whether G contains a cycle of length at least min{2�(G �

B), |V (G)|� |B|}+ k.

Long Dirac Cycle parameterized by k + |B|

In the definition of Long Dirac Cycle we use the minimum of two values for the following
reason. The question whether an n-vertex graph G contains a cycle of length at least 2�(G�B)+k
is meaningful only for �(G � B)  n/2. Indeed, for �(G � B) > n/2, G does not contain a cycle
of length at least 2�(G � B) + k > n. However, even when �(G � B) > n/2, deciding whether G
is Hamiltonian, is still very intriguing. By taking the minimum of the two values, we capture both
interesting situations.

The main result of the paper is the following theorem providing an algorithmic generalization
of Dirac’s theorem.

Theorem 3 (Main Theorem). On an n-vertex 2-connected graph G, Long Dirac Cycle is
solvable in time 2O(k+|B|)

· nO(1).

In other words, Long Dirac Cycle is fixed-parameter tractable parameterized by k + |B|

and the dependence on the parameters is single-exponential. This dependence is asymptotically
optimal up to the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [IPZ01].
Solving Long Dirac Cycle in time 2o(k+|B|)

· nO(1) yields recognizing in time 2o(n) whether a
graph is Hamiltonian. A subexponential algorithm deciding Hamiltonicity will fail ETH. It is also
NP-complete to decide whether a 2-connected graph G has a cycle of length at least (2 + ")�(G)
for any " > 0 (Theorem 17).

The 2-connectivity requirement in the statement of the theorem is important—without it Long
Dirac Cycle is already NP-complete for k = |B| = 0. Indeed, for an n-vertex graph G construct a
graph H by attaching to each vertex of G a clique of size n/2. Then H has a cycle of length at least
2�(H) � n if and only if G is Hamiltonian. However, when instead of a cycle we are looking for a
long path, the 2-connectivity requirement could be omitted. More precisely, consider the following
problem.

Input: Graph G with vertex set B ✓ V (G) and integer k � 0.
Task: Decide whether G contains a path of length at least min{2�(G �

B), |V (G)|� |B|� 1}+ k.

Long Dirac Path parameterized by k + |B|

4

Long Dirac Cycle on 2-connected graphs is solvable in time 2O(k+|B|) ·nO(1).

<latexit sha1_base64="MoJ6yU3J58PFr3b2Il2rhmhvaQY="></latexit>

Theorem [FF, Golovach, Sagunov, Simonov]



How useful is Dirac decomposition 
for other problems?



Paul Erdős

Tibor Gallai

Theorem (Erdős-Gallai, 1959)

Every graph with n vertices and more than (n� 1)`/2 edges (` � 2)
contains a cycle of length at least `+ 1.

ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS 

P. ERDGS (Budapest), corresponding member of the Academy, 
and T. GALLAI (Budapest) 

Introduction 

In 1940 TURIN raised the following question: if the number of nodes, 
n, of a graph’ is prescribed and if I is an integer cs n, what is the number 
of edges which the graph has to contain in order to ensure that it necessa- 
rily contains a complete Z-graph? TURAN gave a precise answer to this ques- 
tion by determining the smallest number depending on n and I, with the 
property that a graph with n nodes and with more edges than this number 
necessarily contains a complete I-graph ([9], [lo]). More generally, the 
question can be posed, as was done by TLJRAN: given a graph with a 
prescribed number of nodes, what is the minimum number of edges which 
ensures that the graph necessarily contains a “sufficiently large” subgraph 
of a certain prescribed type? An alternative formulation of this question is as 
follows: the number of nodes being fixed, we seek the maximum value of /*, 
;LL being such that there exists a graph with ,U edges which does not contain 
a subgraph of the type in question with more than a certain given number 
of nodes. In our paper we are concerned with this problem for the case in 
which the types of graphs considered are paths, circuits and independent 
edges. (These terms are defined in $j 1.) 

Our results are not exhaustive, because, in general, we only give an 
estimate of the extremal values, only in isolated cases - for certain special 
values of the number of the nodes - do we succeed in determining the 
extreme values and the “extreme” graphs completely. Here are some of our 
results capable of simple formulation: 

Every graph with n nodes and more than (n-1)1/2 edges (I 2 2) con- 
tains a circuit with more than I edges. The value (n-l)/,;2 is exact if and 
only if n=q(f-l)+l, then there exists a graph having n nodes and 

1 The graphs considered in this paper are all finite, every edge has two distinct end- 
nodes, and any two nodes are joined by at most one edge. 

1. c. letters always denote non-negative integers, n always denotes an integer 2 1. 
A compiefe I-graph is a graph with I nodes. every pair of distinct nodes joined by an edge. 
A graph is said to contain its subgraphs. (See 5 1 of this paper and 161, pp. l-3.) 



Paul Erdős Tibor Gallai

Theorem (Erdős-Gallai, 1959)

Every graph with n vertices and more than (n� 1)`/2 edges (` � 2)
contains a cycle of length at least `+ 1.

In other words
<latexit sha1_base64="GLn5NgQ/j4U0zxKrdFPp09jtq7k="></latexit>

Every graph with n vertices and m edges contains a cycle of length at least 2m
n�1 .

2m
n − 1

− 1 ≤ D ≤
2m

n − 1

<latexit sha1_base64="3UUB45Msdq9jVhtHr1lQyZ4UT50="></latexit>

Every graph contains a cycle of length at least its average degree D = 2m
n .



Algorithmic question

Erdős-Gallai bound Above Erdős-Gallai bound
<latexit sha1_base64="Hopx0EXBKDKfYvF3TkFzIort78U="></latexit>

Does a 2-connected graph of average vertex
degree D > 2 contain a cycle of length
at least D + k?

<latexit sha1_base64="FELQmML2M46OpB8U8DqA1sEH6Y8=">AAACV3icdVBNb9NAEF27pYTwlcKRy4gEiQuRbaDABVV8SByLRNpKcRSN12NnVXvX2l0jrKh/EnHpX+EC4yRIgOBJq32aeU8z87KmUs5H0VUQ7u1fO7g+uDG8eev2nbujw3unzrRW0kyaytjzDB1VStPMK1/ReWMJ66yis+zibd8/+0zWKaM/+a6hRY2lVoWS6Lm0HOlhqo3SOWkP71nYQfJEGq1JesqhtNiswBSA3MKSAPj39AXSFHIqLRFM3r1OJsAWj0o7QJCdrKj3VKRLvwL0zNB5YOlkORpH01c9nsKWHPUkehZH8XOIp9EGY7HDyXL0Nc2NbGveT1bo3DyOGr9Yo/WKx1wO09ZRg/KCl5sz1ViTW6w3uVzCI67kUBjLj+/bVH93rLF2rqszVtboV+7vXl/8V2/e+uLlYq1003rScjuoaCvwBvqQIVeWA6w6Jiit4l1BrtAih2rdkEP4dSn8n5wm0/homnxMxsdvdnEMxAPxUDwWsXghjsUHcSJmQopv4nuwF+wHV8GP8CAcbKVhsPPcF38gPPwJclyxzA==</latexit>

Every 2-connected graph of average vertex
degree D > 2 contains a cycle of length at least D



Theorem. Longest Cycle above Erdős-Gallaic’s bound is FPT.

Longest Cycle above Erdős–Gallai Bound∗

Fedor V. Fomin†

fedor.fomin@uib.no
Petr A. Golovach†

petr.golovach@uib.no
Danil Sagunov‡§

danilka.pro@gmail.com

Kirill Simonov¶

kirillsimonov@gmail.com

Abstract

In 1959, Erdős and Gallai proved that every graph G with average vertex degree ad(G) �
2 contains a cycle of length at least ad(G). We provide an algorithm that for k � 0 in time
2O(k)

· n
O(1) decides whether a 2-connected n-vertex graph G contains a cycle of length at

least ad(G) + k. This resolves an open problem explicitly mentioned in several papers. The
main ingredients of our algorithm are new graph-theoretical results interesting on their own.

Keywords: Longest path, longest cycle, fixed-parameter tractability, above guarantee pa-
rameterization, average degree, dense graph, Erdős and Gallai theorem

1 Introduction

The circumference of a graph is the length of its longest (simple) cycle. In 1959, Erdős and
Gallai [5] gave the following, now classical, lower bound for the circumference of an undirected
graph.

Theorem 1 (Erdős and Gallai [5]). Every graph with n vertices and more than 1
2(n� 1)` edges

(` � 2) contains a cycle of length at least `+ 1.

We provide an algorithmic extension of the Erdős-Gallai theorem: A fixed-parameter tractable
(FPT) algorithm with parameter k, that decides whether the circumference of a graph is at least
`+ k. To state our result formally, we need a few definitions. For an undirected graph G with
n vertices and m edges, we define `EG(G) = 2m

n�1 . Then by the Erdős-Gallai theorem, G always
has a cycle of length at least `EG(G). The parameter `EG(G) is closely related to the average
degree of G, ad(G) = 2m

n . It is easy to see that for every graph G with at least two vertices,
`EG(G)� 1  ad(G) < `EG(G).

The maximum average degree mad(G) is the maximum value of ad(H) taken over all induced
subgraphs H of G. Note that ad(G)  mad(G) and mad(G) � ad(G) may be arbitrary large.
By Goldberg [14] (see also [12]), mad(G) can be computed in polynomial time. By Theorem 1,
we have that if ad(G) � 2, then G has a cycle of length at least ad(G) and, furthermore, if
mad(G) � 2, then there is a cycle of length at least mad(G). Based on this guarantee, we define
the following problem.

∗The research leading to these results has received funding from the Research Council of Norway via the
project BWCA (grant no. 314528), Leonhard Euler International Mathematical Institute in Saint Petersburg
(agreement no. 075-15-2019-1620), and the Austrian Science Fund (FWF) via project Y1329 (Parameterized
Analysis in Artificial Intelligence) .

†Department of Informatics, University of Bergen, Norway.
‡St. Petersburg Department of V.A. Steklov Institute of Mathematics, Russia
§JetBrains Research, Saint Petersburg, Russia
¶Algorithms and Complexity Group, TU Wien, Austria
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Algorithm that in time 2O(k)nO(1) decides whether a 2-connected graph with
average vertex degree D contains a cycle of length at least D + k.
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GOING FAR FROM DEGENERACY⇤

FEDOR V. FOMIN† , PETR A. GOLOVACH† , DANIEL LOKSHTANOV‡ , FAHAD

PANOLAN§ , SAKET SAURABH¶, AND MEIRAV ZEHAVIk

Abstract. An undirected graph G is d-degenerate if every subgraph of G has a vertex of degree
at most d. By the classical theorem of Erdős and Gallai from 1959, every graph of degeneracy d > 1
contains a cycle of length at least d + 1. The proof of Erdős and Gallai is constructive and can
be turned into a polynomial time algorithm constructing a cycle of length at least d + 1. But can
we decide in polynomial time whether a graph contains a cycle of length at least d + 2? An easy
reduction from Hamiltonian Cycle provides a negative answer to this question: Deciding whether a
graph has a cycle of length at least d+2 is NP-complete. Surprisingly, the complexity of the problem
changes drastically when the input graph is 2-connected. In this case we prove that deciding whether
G contains a cycle of length at least d + k can be done in time 2O(k) · |V (G)|O(1). In other words,
deciding whether a 2-connected n-vertex G contains a cycle of length at least d+logn can be done in
polynomial time. Similar algorithmic results hold for long paths in graphs. We observe that deciding
whether a graph has a path of length at least d+1 is NP-complete. However, we prove that if graph
G is connected, then deciding whether G contains a path of length at least d+k can be done in time
2O(k) · nO(1). We complement these results by showing that the choice of degeneracy as the “above
guarantee parameterization” is optimal in the following sense: For any " > 0 it is NP-complete to
decide whether a connected (2-connected) graph of degeneracy d has a path (cycle) of length at least
(1 + ")d.

Key words. longest path, longest cycle, fixed-parameter tractability, above guarantee parame-
terization

AMS subject classifications. 05C85, 68R10

DOI. 10.1137/19M1290577

1. Introduction. The classical theorem of Erdős and Gallai [11] says that

Theorem 1 (see Erdős and Gallai [11]). Every graph with n vertices and more

than (n� 1)`/2 edges (` � 2) contains a cycle of length at least `+ 1.

Recall that a graph G is d-degenerate if every subgraph H of G has a vertex of
degree at most d, that is, the minimum degree �(H)  d. Respectively, the degen-

eracy of graph G, is dg(G) = max{�(H) | H is a subgraph of G}. Since a graph of
degeneracy d has a subgraph H with at least d · |V (H)|/2 edges, by Theorem 1 it
contains a cycle of length at least d+ 1. Let us note that the degeneracy of a graph
can be computed in polynomial time (see, e.g., [28]), and thus, by Theorem 1 deciding
whether a graph has a cycle of length at least d+ 1 can be done in polynomial time.

⇤Received by the editors September 30, 2019; accepted for publication (in revised form) April
29, 2020; published electronically July 20, 2020. A preliminary version of this paper appeared as an
extended abstract in the proceedings of ESA 2019.
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  Cycle  of length at least average-degree(G)+k

  Cycle  of length at least maximum average-degree(G)+k

  Cycle  of length at least degeneracy(G)+k

 [FF, Golovach, Lokshtanov, Panolan, Saurabh,Zehavi, 2020]



General idea 

Identify very dense graph H

s1
t1

s2
t2 t3

t4

s3
s4

Color-coding for outside part



  How to identify a dense component?

  After some preprocessing, an old friend, Dirac’s decomposition 
comes to help

we can delete O(k) vertices in the vertex cover and select a subset of the independent set to
achieve the property that (i) each of remaining vertices in the vertex cover is adjacent to at least
ad(H) �O(k) vertices in the selected independent subset, and (ii) every vertex of the selected
subset of the independent set sees nearly all vertices of the vertex cover. This mean that the
obtained in subgraph is also “dense”, albeit in a di↵erent sense. Depending on the case, we use
di↵erent arguments to establish the routing properties of H.

Routing in H. The case (a), when |V (H)| < ad(H) + k, is easier. In this case, the degrees of
almost all vertices are close to |V (H)|. Let S = {x1y1, . . . , x`y`} an arbitrary set of O(k) pairs
of distinct vertices of H forming a linear forest (that is, the union of xiyi is a union of disjoint
paths). The intuition behind S is that xi corresponds to the vertex from where the long cycle
leaves H and yi when it enters H again. We show first how to construct a cycle in H + S (that
is, the graph obtained from H by turning the pairs of S into edges) containing every pair xiyi
from S as an edge. This is done by performing constant-length jumps: any two vertices can
be connected either by an edge, or through a common neighbor, or through a sequence of two
neighbors. Then we extend the obtained cycle to a Hamiltonian cycle in H + S—every vertex
of H that is not yet on a cycle can be inserted due to the high degrees of the vertices. The
extension of S into a Hamiltonian cycle is shown in Figure 2 (a).

A

H H

a) b) c)

Figure 2: Constructing cycles. The set of pairs S that may be both edges and nonedges of H
is shown by red lines and the extension of S into a long cycle is blue. The paths “revolving”
around H are green. The vertex cover in c) is denoted by A.

Therefore, if there is a collection of at most k internally vertex disjoint paths going outside
from H and returning back, the high density of H allows collecting all of them in a cycle
containing all the vertices of H. Together with all the additional vertices these paths visit
outside of H we construct a long cycle in G (see Figure 2 (b)). The only condition is that
these paths have to form a linear forest. Thus, if we find a collection of such paths with enough
internal vertices, we immediately obtain a long cycle “revolving” around H. The crucial part
of the proof is to show that if there is a any cycle of length at least ad(H) + k in G, then it can
be assumed to have this form.

Let us remark that a similar “rerouting” property was used by Fomin et al. [7] in their above-
degeneracy study. Actually, for case (a), we need only a minor adjustment of the arguments
from [7]. However, in the “bipartite dense” case (b) the structure of the dense subgraph H is
more elaborate and this case requires a new approach. Contrarily to case (a), the long cycle
that we construct in H+S is not Hamiltonian but visits all the vertices of the vertex cover. (See
Figure 2 (c).) In this case, the behavior of paths depends on which part of H they hit. Because
of that, while establishing the routing properties, we have to take into count the di↵erence
between paths connecting vertices from the vertex cover, independent set, and both. Pushing
the “rerouting” intuition through, in this case, turns out to be quite challenging.

Final steps. After finalizing the “rerouting” arguments above, it only remains to design an
algorithm that checks whether there exists a collection of paths in G that start and end in H

5



Conclusion



Open questions

Introduction Sketch of the proof Conclusion

Open problems

Theorem (Thomassen 1981)

Let D be a 2-connected digraph with at least 2d + 1 vertices such

that d
�
D (v) � d and d

+
D (v) � d for every d 2 V (D). Then D

contains a cycle of length at least 2d .

Given a 2-connected digraph D such that d�
D (v) � d and

d
+
D (v) � d for every d 2 V (D), and a nonnegative integer k , how

di�cult is to decide whether G has a cycle with at least 2d + k

vertices?
  Is there a polynomial-time algorithm deciding whether 
there is a cycle of length at least 2d+1?

  Is there an XP algorithm deciding whether there is a cycle 
of length at least 2d+k?

  Is there an FPT algorithm deciding whether there is a 
cycle of length at least 2d+k?



Vassily Kandinsky, Composition X, 1939


