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Historical notes

Sir William Rowain Hamilkon
(1gos - 1%65)

AL-AdL] ar-Rami (9th «cen&ury)



Hisktorical notes

Extremal combinatorics

Visit the main page

From wikipedia, the free encyclopedia

Extremal combinatorics is a field of combinatorics, which is itself a part of mathematics. Extremal
combinatorics studies how large or how small a collection of finite objects (numbers, graphs, vectors, sets,

etc.) can be, if it has to satisfy certain restrictions.

How dense should be a graph to be Hamiltonian?
To contain a long tjﬂiﬁ?



Dirac’s Theorem

Theorem (Dirac, 1982)

Every n-vertex 2-connected graph G with minimum vertex degree 6(G) > 2,
contains a cycle with at least min{26(G), n} vertices.

SOME THEOREMS ON ABSTRACT GRAPHS

By G. A. DIRAC
[Received 4 April 1951.—Read 19 April 1951)

A GRAPH is a set # whose members are called the nodes together with a
set & of unordered pairs of unequal members of A" called the edges. In this
paper nodes will generally be denoted by small letters a, b, ete., possibly with
suffixes, and edges by (a, b), etc., where a + b and (a, b) = (b, a). Each of the
nodes a and b is called an end node of the edge (a, b) and these two nodes are
said to be joined by the edge or to be adjoint to the edge. A graph is finite if
the set of its nodes is finite, otherwise it is infinite. The order of a graph is
the (cardinal) number of the set of its nodes. A subgraphisa graph whose sets
of nodes and edges are subsets of the sets of nodes and edges of the graph.
The number of edges adjoint to a node is called the degree of the node.

A path is a graph whose nodes are a,, a,, ay,..., @,, where n = 2 and
different suffixes denote different nodes, and whose edges are (a,,a,),
(ay, @y),..., (@y_y,@,). A circuit is a graph whose nodes are a,, a,, a,,..., @,
where m > 3 and different suffixes denote different nodes, and whose
edges are (a,, @,), (@,, 3),..., (@, 1, @,,), (@,,, @,). The length of a path (circuit)
is the number of edges in the path (circuit).

CGrabriel Andrew Dirac




C.risPiM Nash-Williams William Tutlte



Parameterized Algorithms

o Monien [19%2], ki no)
represem&a&v& sels

Rurkhard Mownien

o Bodlaender [19%4]: ki 1o
Ereewidlth

o ‘P&pao&im&rmu and Yawhnnalealeis
[1996]: Is in P nfo'r k=log n? S o BO&:M”
 G%h /‘ %’w*ﬁﬁ%d y

Christos Pa FadLmLEriou Mihalis Yannalkalkeis



Color Coding [1995] o(000- n)

Color-Coding

NOGA ALON

Insntute for Advanced Study, Princeton, New Jersey and Tel-Aviv University, Tel-Avie, Israel

RAPHAEL YUSTER AND URI ZWICK

Tel-Avie Unmversity, Tel-Avwe, Isracl

Abstract. We describe a novel randomized method, the method of color-coding for finding simple
paths and cycles of a specified length &, and other small subgraphs, within a given graph
G = (I, E). The randomized algorithms obtained using this method can be derandomized using
families of perfect hash functions. Using the color-coding method we obtam. 1n particular, the
following new results:

—For every fixed k, if a graph G = (V| E)) contains a simple cycle of size exactlv k. then such a
cycle can be found 1 either O(V'®) expected time or O(V“ log }7) worst-case time, where
w < 2,376 1s the cxponent of matrix multiplication. (Here and in what follows we use V' and E
instead of |}7| and |E| whenever no confusion may arise.)

—For every fixed k., if a planar graph G = (J, E) contains a simple cycle of size exactly k, then
such a cycle can be found in either O(V) expected time or O() log V') worst-case time. The
same algorithm applies, in fact, not only to planar graphs, but to any minor closed family of
graphs which is not the family of all graphs.

—If a graph G = (V, E) contamns a subgraph isomorphic to a bounded tree-width graph H =
(Vy. £y ) where [V, | = O(log V), then such a copy of H can be found in polvnomual time. This




Test bed for new methods
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Polynomial differentiation




Creneral qu@.s&om

Could the c&emsi&j of a graph be hetpfu.t LA
finding long cycles?



Algorithmic qu@.sﬁam

Theorem (Dirac, 1982)

Every n-vertex 2-connected graph G with minimum vertex degree 6(G) > 2,
contains a cycle with at least min{26(G), n} vertices.

‘Naive’ qu@.s&om

Is there a polynomial time algorithm to decide whether a 2-connected graph G
contains a cycle of length at least min{20(G) + 1,n}?
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Algorithmic question

Dirac bound

Every n-vertex 2-connected graph with minimum

vertex degree d contains a cycle of length at least
min{2d,n}

Above Dirac bound

Does a 2-connected graph with minimum
vertex degree d contains a cycle of length
at least min{2d,n} + k7



Remarie: W!«v Zmaommm’:&&v&&v LS imgar%am&

cliques of size n/2

G: n-vertex graph

H has a cycle of length 2d=n
UL & s Hamilkonian



Theorem. Longest Cycle above Dirac’s bound is FPT.

Algorithm that in time 2°9*)n©() decides whether a 2-connected graph
minimum degree d contains a cycle of length at least min{2d,n} + k.

ALGORITHMIC EXTENSIONS OF DIRAC’S THEOREM

Fedor V. Fomin* Petr A. Golovach* Danil Sagunov’
fomin@ii.uib.no petr.golovach@ii.uib.no danilka.pro@Qgmail.com

Kirill Simonov*
kirillsimonov@gmail.com

Abstract

In 1952, Dirac proved the following theorem about long cycles in graphs with large minimum
vertex degrees: Every n-vertex 2-connected graph G with minimum vertex degree 6 > 2 contains
a cycle with at least min{20,n} vertices. In particular, if 6 > n/2, then G is Hamiltonian. The
proof of Dirac’s theorem is constructive, and it yields an algorithm computing the corresponding
cycle in polynomial time. The combinatorial bound of Dirac’s theorem is tight in the following
sense. There are 2-connected graphs that do not contain cycles of length more than 20 + 1.
Also, there are non-Hamiltonian graphs with all vertices but one of degree at least n/2. This
prompts naturally to the following algorithmic questions. For k > 1,

(A) How difficult is to decide whether a 2-connected graph contains a cycle of length at least
min{2§ + k,n}?

(B) How difficult is to decide whether a graph G is Hamiltonian, when at least n — k vertices
of G are of degrees at least n/2 — k?

The first question was asked by Fomin, Golovach, Lokshtanov, Panolan, Saurabh, and Zehavi.
The second question is due to Jansen, Kozma, and Nederlof. Even for a very special case of
k = 1, the existence of a polynomial-time algorithm deciding whether G contains a cycle of
length at least min{2d + 1,n} was open. We resolve both questions by proving the following




Theorem. Longest Cycle above Dirac’s bound is FPT.

Every n-vertex 2-connected graph with minimum

Dirac: vertex degree d contains a cycle of length at least
min{2d, n}

How to comstruct a cycle of length 24 in
polynomial time?



Dirac’s Theorem (1952)

Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d,n}

Proof:

Interesting Fmr& whei 2d<in

Take a cycle C. [Cle2d




Dirac’s Theorem (1952)

Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d,n}

Proof:

Hz= @

o Min-degree 4




Dirac’s Theorem (1952)

Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d,n}

Proof:

Hz @
|C]<2d4

Min-deqgree A




Dirac’s Theorem (1952)

Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d,n}

Prook:

Erdés—CGrallai Lemma (1959)

A 2-connected graph of minimum vertex degree d contains a path of length at
least d between any given pair of vertices.



Dirac’s Theorem (1952)

Every n-vertex 2-connected graph with minimum vertex degree d contains a cycle
of length at least min{2d,n}

Prook:

|C |24

Min-degree d

Apply EG-lemma + count ta\reﬂfuuv



Dirac’s Theorem - how ko Fsro&eec;{
algori&hmmauj?

: we have a cycle C of length 24,
decide whether it is possible to enlarge it

H= & - v adjacent to every second vertex of C




Dirac’s Theorem - how ko pro«ce_ec{
atgori&hmmauv?

: we have a cycle C of length 24,
decide whether it is possible to enlarge it

H= & - v adjacent to every second vertex of C
- every other u ocubside C is adjaaem& e.xaﬁﬁlj the same vertices




Dirac’s Theorem - how ko pro&e&d&
atgori&hmmauﬁ

: we have a cycle C of length 24,
decide whether it is possible to enlarge it

- v adjacent to every second vertex of C
- every other u oubside C is adjacen& to exac&tj the same verkices
- N(Vv) is a vertex cover of & of size 4

We either could enlarge the cycle or

conskructkt a “smwall” verktex cover




More generally (informally)

We try to enlarge a cycle C of length 2d+p

| H

Dirac Decomposition

Small Vertex Cover




Dirac c&e&ompasiﬂon




Structure of 3-connected graphs

Let G be a 3-connected graph and k be an integer such that 0 < k < 2—14d. Then
there is an algorithm that, given a cycle C' of length less than 2d + k < n, in
polynomial time either

e returns a longer cycle in G, or

o returns a vertexr cover of G of size at most d + 2k

Does ik solve bhe probtem?




Let G be a 3-connected graph and k be an integer such that 0 < k < id. Then
there 1s an algorithm that, given a cycle C of length less than 2d + k < n, in
polynomial time either

e returns a longer cycle in G, or

o returns a vertex cover of G of size at most d + 2k

i

The algorithm that in o graph &G with a vertex cover of size dr2k
decides whether & has a cycle of length at least 2d+k in time oL

1

Well-known: If the vertex cover of & is at A cycle of length at least 2d+k in time
most p then a longest cycle in & could be ~O(d+k) | ,O(1)

found in time 200 . 00




Let G be a 3-connected graph and k be an integer such that 0 < k < 2—14d. Then
there is an algorithm that, given a cycle C of length less than 2d + k < n, in

polynomzual time either

e returns a longer cycle in G, or

o returns a vertex cover of G of size at most d + 2k

The algorithm that in a graph & with o vertex cover of size d-t—g, P«i/z,

decides whether & has a cycle of length at least 2d+k in time
20(p) . ,0)

: Every cycle of length
ot least 2d+k
could be rerouted to make
a hew c:jr:i.e with very
specific properties.

It allows reducing the
problem of finding a cycle
to the problem of covering

L vertices in a subgraph by
VG 15 paths of total Length O(p). VC IS




Let G be a 3-connected graph and k be an integer such that 0 < k < 2—14d. Then
there is an algorithm that, given a cycle C of length less than 2d + k < n, in

polynomaal time either

e recturns a longer cycle in G, or

o returns a vertex cover of G of size at most d + 2k

We need algorithmic EG-Lemma: an
algorithm that for any st decides
whether there is an (s,&)-pa?:k of
length at least A+l in time VOO OL)

New extremal properties of cycles that
“cannot be enlarged” in “Erdés-
Gallal” and “Dirac” way:
Erdbs-Grallat deaompc:«si&iov\ and
Dirac d@.composi&om

An interesting ih&erpi,aj between
parameterized algorithms and graph

skructure




LoNG DIRAC CYCLE / VERTEX COVER
ABOVE DEGREE
(Theorem 6)

LoNG (s,t)-CYCLE
(Theorem 4)

LoNG ERDOs-GALLAI (s,t)-PATH
(Theorem 5)

ALMOST HAMILTONIAN
DirAac CYCLE
(Theorem 7)

Dirac decomposition

(Theorem 16)
\

LoNG DIRAC CYCL
(Theorem 3)

Theorem [Longest Cycle above Diracs bound]

There is an algorithm deciding whether a 2-connected
graph G with minimum degree d has a cycle of length at
least 2d+ke i kime 200 . 00




Dirac:

If every vertex of an m-vertex graph G is of degree at least n/2, then G is
Hamiltonian, that is, contains a Hamiltonian cycle.

Theorem [Jansen, Kozma, Nederlof]

¥

Hamiltonicity below Dirac’s"condition

Bart M.P. Jansen!

Eindhoven University of Technology
b.m.p.jansen@tue.nl
http://orcid.org/0000-0001-8204-1268

Laszlé Kozma?
Freie Universitat Berlin
laszlo.kozma@fu-berlin.de

Jesper Nederlof®
Eindhoven University of Technology
j-nederlof@tue.nl

—— Abstract sigher

Dirac’s theorem (1952) is a classical result of graph t stating that an n-vertex graph (n > 3)
is Hamiltonian if every vertex has degree at least n/2. Both the value n/2 and the requirement

In this work we give efficient algorithms for determining Hamiltonicity when either of the
two conditions are relaxed. More precisely, we show that the Hamiltonian cycle problem can
be solved in time ¢* - n©M) | for some fixed constant ¢, if at least n — k vertices have degree at
, least n/2, or if all vertices have degree at least n/2 — k. The running time is, in both cases

The results extend the range of tractability of the Hamiltonian cycle problem, showing that
it is fixed-parameter tractable when parameterized below a natural bound. In addition, for the




LoNG Dirac CYCLE parameterized by k + | B|
Input: Graph G with vertex set B C V(G) and integer k > 0.

Task: Decide whether G contains a cycle of length at least min{20(G —
B), [V(G)| = |Bl} + k.

Theorem [FF, Golovach, Sagqunov, Simonov]

LoNG DIRAC CYCLE on 2-connected graphs is solvable in time 2°(F+1B1) . ,O(1)



How useful is Dirac &e&omgos&mn
for other problems?



Theorem (Erdds—Crallai, 1959)

FEvery graph with n vertices and more than (n — 1)£/2 edges (¢ > 2)
contains a cycle of length at least ¢ + 1.

ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS

By
P. ERDOS (Budapest), corresponding member of the Academy,
and T. GALLAI (Budapest)

Tibor Grallai

Introduction

In 1940 TurAN raised the following question: if the number of nodes,
n, of a graph' is prescribed and if / is an integer = n, what is the number
of edges which the graph has to contain in order to ensure that it necessa-
rily contains a complete /-graph? TURAN gave a precise answer to this ques-
tion by determining the smallest number depending on n and [/, with the
property that a graph with n nodes and with more edges than this number
necessanly contains a complete I-graph ([9], [IO]) More generally, the




Theorem (Erdés-Grallai, 1959)

Paul Erdds Tibor Gallai

Every graph with n vertices and more than (n — 1)£/2 edges (£ > 2)
contains a cycle of length at least ¢ + 1.

in obher words

4 2m

Every graph with n vertices and m edges contains a cycle of length at least = .

FEvery graph contains a cycle of length at least its average degree D = 277”

= 1. <D
| |

VAN
VAN




Algorithmic qu@.s%wv\

Erdds-Crallai bound Above Erdés-CGrallai bound

Does a 2-connected graph of average vertex
degree D > 2 contain a cycle of length
at least D + k7

Every 2-connected graph of average vertex
degree D > 2 contains a cycle of length at least D




Theorem, Longest Q’j@i@ above Erdds—Crallaics bound is FPT.

Algorithm that in time 29%®) @M decides whether a 2-connected graph with
average vertex degree D contains a cycle of length at least D + k.

Longest Cycle above Erdos—Gallai Bound*

Fedor V. Fomin' Petr A. Golovach! Danil Sagunov?*s
fedor.fomin@uib.no petr.golovach@uib.no danilka.pro@Qgmail.com

Kirill Simonov?
kirillsimonov@gmail.com

Abstract

In 1959, Erdés and Gallai proved that every graph G with average vertex degree ad(G) >
2 contains a cycle of length at least ad(G). We provide an algorithm that for £ > 0 in time
20(k) . nOM) decides whether a 2-connected n-vertex graph G contains a cycle of length at
least ad(G) + k. This resolves an open problem explicitly mentioned in several papers. The
main ingredients of our algorithm are new graph-theoretical results interesting on their own.

Keywords: Longest path, longest cycle, fixed-parameter tractability, above guarantee pa-
rameterization, average degree, dense graph, Erdds and Gallai theorem

1 Introduction




Relevant Work: Cycles above degeneracy

SIAM J. DISCRETE MATH. @ 2020 Society for Industrial and Applied Mathematics
Vol. 34, No. 3, pp. 1587-1601

GOING FAR FROM DEGENERACY*

FEDOR V. FOMINT, PETR A. GOLOVACH', DANIEL LOKSHTANOV?*, FAHAD ‘;;;_:;1‘ —
PANOLANS, SAKET SAURABHY, AND MEIRAV ZEHAVI! | 74 \\
. . : 1 ALLIWANTIS L
Abstract. An undirected graph G is d-degenerate if every subgraph of G has a vertex of degree ;

at most d. By the classical theorem of Erdés and Gallai from 1959, every graph of degeneracy d > 1
contains a cycle of length at least d + 1. The proof of Erdés and Gallai is constructive and can = = godemades
be turned into a polynomial time algorithm constructing a cycle of length at least d + 1. But can
we decide in polynomial time whether a graph contains a cycle of length at least d + 27 An easy
reduction from HAMILTONIAN CYCLE provides a negative answer to this question: Deciding whether a
graph has a cycle of length at least d+2 is NP-complete. Surprisingly, the complexity of the problem
changes drastically when the input graph is 2-connected. In this case we prove that deciding whether
G contains a cycle of length at least d 4+ k can be done in time 2°(%) . |V(G)|9(). In other words,

deciding whether a 2-connected n-vertex GG contains a cycle of length at least d+logn can be done in
polynomial time. Similar algorithmic results hold for long paths in graphs. We observe that deciding
whether a graph has a path of length at least d + 1 is NP-complete. However, we prove that if graph
G is connected, then deciding whether G contains a path of length at least d+ k can be done in time
20(k) . nO(1)  We complement these results by showing that the choice of degeneracy as the “above
guarantee parameterization” is optimal in the following sense: For any £ > 0 it is NP-complete to
decide whether a connected (2-connected) graph of degeneracy d has a path (cycle) of length at least



Cycle of length at least maximum average-degree(G)+i

Cycle of length at least o\ve_ragemciegrée(é)-rw

Cycle of length at least degeneracy(G)+k

[FF, Golovach, Lokshtanov, Panolain, Saurabh,Zehavi, 2020



Creneral idea

Color-coding for oukside part \

Id\ehﬁ&fj very dense graph H



How to identify a dense component?

After some preprocessing, an old friend,
comes to help




Cownclusion

Stasys Jukna

Extremal
Combinatorics

With Applications
in Computer Science

SO
=5
%

i

Parameterized
Algorithms

FT333

<3
Pt e
4283

@ Springer




Q'F??.V\ qu@.sﬁmms

Theorem (Thomassen 1981)
Let D be a 2-connected digraph with at least 2d + 1 vertices such

that d;(v) > d and d7(v) > d for every d € V(D). Then D
contains a cycle of length at least 2d.

Is there a Fatvmomiatvﬁme algorithm deciding whether
there is a cycle of length ot least 2d+1?

Is there an XP algorithm deciding whether there is a cycle
of length ot least 2d+k?

Is there an FPT algorithm deciding whether there is a
ijde. of length at least 2d+k?



Vassily Kandinsky, Composition X, 1939
5 J i



