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Graph Homomorphisms

A homomorphism from a graph F to a graph G is a mapping
h : V (F )→ V (G) that preserves edges, that is,

vw ∈ E(F ) =⇒ h(v)h(w) ∈ E(G).

Example
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Counting Homomorphisms
For all graphs F,G, we let

hom(F,G) := number of homomorphisms from F to G

Example

hom
(
,

)
= 23 + 33 + 33 + 23 = 70.

More generally, for the star Sk with k leaves and arbitrary G we
have

hom(Sk , G) =
∑
v∈V (G)

deg(v)k .

In particular,

hom ( , G) = |V (G)|,
hom ( , G) = 2|E(G)|.
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General Theme

What information about G do we get from the
numbers hom(F,G) for a range of F s?
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Homomorphism Embeddings

For every class F we can define a vector embedding
HomF : All → RF by HomF(G) :=

(
hom(F,G)

∣∣ F ∈ F
)
.

Example

The embedding HomF for F = { , , }

Vector embeddings are the basis for machine learning on graphs.

M. Grohe. word2vec, node2vec, graph2vec, X2vec: Towards a Theory of
Vector Embeddings of Structured Data. Proc. PODS’20.
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Homomorphism Indistinguishability

G,H are homomorphism indistinguishable over a class F of
graphs (we write G ≡F H) if

hom(F,G) = hom(F,H) for all F ∈ F.

Observation
Let St be the class of all stars. Then

G ≡St H ⇐⇒ G and H have the same degree sequence.

Theorem (Lovász 1967)

G ≡All H ⇐⇒ G ∼= H.

That is, G and H are homomorphism indistinguishable over the
class of all graphs if and only if they are isomorphic.
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Proof Sketch
aut(G) := number of automorphisms of G

I(F,G) := number of injective homomorphisms from F to G

S(F,G) := number of surjective homomorphisms from F to G

We view hom, I, and S as infinite matrices in RAll×All.
Row and column indices are ordered by increasing size.

Observation 1
I is upper triangular with positive diagonal entries and S is lower
triangular with positive diagonal entries.

Observation 2
hom(F,H) =

∑
G S(F,G) ·

1
aut(G) · I(G,H).

That is, hom = S ·D · I for a diagonal matrix D with positive
diagonal entries.

Hence the columns of hom are linearly independent and thus
mutually distinct.
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The Structure of Homomorphorphism
Indistinguishability Relations

Theorem (Roberson 2022)

1. Homomorphism indistinguishability over graph classes of
bounded maximum degree is not isomorphism.

2. Homomorphism indistinguishability over the class of perfect
graphs is not isomorphism.

Theorem (Roberson 2022)
There uncountably many homomorphism indistinguishability
relations.
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Complexity

Theorem
1. (follows from Dvorák 2010, Dell, G., Rattan 2018, G. 2020,

G., Rattan, Seppelt 2022)
For every k , homomorphism indistinguishability over the class
of graphs of tree width k , the class of graphs of tree depth
k , the class of graphs of path with k is decidable in
polynomial time.

2. (follows from Babai 2016)
Homomorphism indistinguishability over the class of all
graphs is decidable in quasipolynomial time.
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Complexity (cont’d)

Theorem (Böker, Chen, G., Rattan 2019)
There is a polynomial time decidable class F of graphs of tree
width 2 such that homomorphism indistinguishability over F is
undecidable.

Theorem (Atserias, Mančinska, Roberson, Šámal, Severini,
Varvitsiotis 2019; Mančinska, Roberson 2020)
Homomorphism indistinguishability over the class of planar graphs
is undecidable.
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Logical and Algebraic
Characterisations
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Trees and Treelike Structures

Theorem (Dvorák 2010)
Let k ≥ 1. For all graphs G,H, the following are equivalent.

1. G,H are homomorphism indistinguishable over the class
Twk of graphs of tree width at most k :

G ≡Twk H.

2. The k-dimensional Weisfeiler-Leman algorithm does not
distinguish G,H.

3. G and H are Ck+1-equivalent, where Ck+1 is the
(k + 1)-variable fragment of first-order logic with counting
quantifiers ∃≥n.
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Tree Depth

Theorem (G. 2020)
Let q ≥ 1. For all graphs G,H, the following are equivalent.

1. G,H are homomorphism indistinguishable over the class Tdq
of graphs of tree depth at most q:

G ≡Tdq H.

2. G and H are C(q)-equivalent, where C(q) is the
quantifier-rank-q fragment of first-order logic with counting
quantifiers ∃≥n.
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Fractional Isomorphism

Notation
▶ F,G,H will always be graphs with vertex sets
U := V (F ), V := V (G),W := V (H);

▶ A ∈ {0, 1}V×V , B ∈ {0, 1}W×W will be the adjacency
matrices of G,H.

Observation
G,H are isomorphic if and only if there is a permutation matrix X
such that

AX = XB.

G,H are fractionally isomorphic if there is a doubly-stochastic
matrix X such that AX = XB.

Theorem (Tinhofer 1990)
G,H are fractionally isomorphic if and only if the 1-dimensional
WL algorithms does not distinguish G,H.
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Algebraic Characterisation of Tree and
Path Homomorphism Counts

T and P denote the classes of trees and paths, respectively.

Corollary

G ≡T H ⇐⇒ G and H are fractionally isomorphic.

A matrix X is pseudo-stochastic if its row- and column sums are
1:

X111 = 111⊤X = 111.

Theorem (Dell, G. Rattan 2018)

G ≡P H ⇐⇒ there is a pseudo-stochastic X such
that AX = XB.
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Equational Characterisation

Observation

A


pseudo-stochastic
doubly-stochastic

permutation

 matrix X = (Xvw ) v∈V
w∈W

such that

AX = XB

is a


real

nonnegative real
nonnegative integer

 solution to the following system of

linear equations:

L(G,H)
∑
w∈W

Xvw =
∑
v∈V
Xvw = 1∑

v ′∈V
Avv ′Xv ′w =

∑
w ′∈W

Xvw ′Bw ′w for all v ∈ V, w ∈ W.
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Higher Dimensions
For k ≥ 2, we define a a system of equations in variable Xπ for
π ∈

(
V×W
≤k

)
. Essentially, this is the Sherali-Adams lift of L(G,H).

Lk(G,H) X∅ = 1,∑
w∈W

Xπ∪vw =
∑
v∈V
Xπ∪vw = Xπ for π ∈

(
V×W
<k

)
, v ∈ V, w ∈ W

Xπ = 0 for π that are not partial
isomorphisms.

Theorem (Atserias, Maneva 2013, G., Otto 2015)
For all k ≥ 1, the following are equivalent.

1. G and H are not distinguished by the k-dimensional WL
algorithm.

2. Lk+1(G,H) has a non-negative real solution.
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Path Width

Corollary

G ≡Twk H ⇐⇒ Lk+1(G,H) has a non-negative real
solution.

Pwk is the class of graphs of path width at most k .

Theorem (Dell, G., Rattan 2018, G., Rattan, Seppelt 2022)

G ≡Pwk H ⇐⇒ Lk+1(G,H) has a real solution.

Remark
There is also a logical characterisation of ≡Pwk (Montacute and
Shah 2021).
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Tree Depth
For q ≥ 2, we define a a system of equations in variables Xp for
p ∈

⋃q
ℓ=0(V ×W )ℓ.

Dq(G,H) X() = 1,∑
w∈W

Xpvw =
∑
v∈V
Xpvw = Xp for p ∈

⋃q−1
ℓ=0 (V ×W )ℓ,

v ∈ V, w ∈ W
Xp = 0 for p that are not partial

pseudo isomorphisms.

Here p = (v1w1, . . . , vℓwℓ) is a partial pseudo isomorphism if
vi = vi+1 ⇐⇒ wi = wi+1 and vivj ∈ E(G) ⇐⇒ wiwj ∈ E(H)
for all i < j ≤ ℓ.

Theorem (G., Rattan, Seppelt 2022)

G ≡Tdq H ⇐⇒ Dq(G,H) has a real solution.
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Planar Graphs

Quantum isomorphism is an equivalence relation on graphs based
on a similar system of equations, but now we are looking for
solutions in an arbitrary C*-algebra.

Pl is the class of planar graphs.

Theorem (Mančinska and Roberson 2020)

G ≡Pl H ⇐⇒ G and H are quantum isomorphic.

20



The Algebra of Graph
Homomorphisms
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Labelled Graphs

A k-labelled graph is a pair

F = (F ; u) = (F ; u1, . . . , uk)

where F is a graph (with V (F ) = U) and u = (u1, . . . , uk) ∈ Uk .

Examples

▶ 1
=

(
({u}, ∅); u

)
is the simplest 1-labelled graph;

▶ 1 2
=

(
({u1, u2, u3}, {u1u2, u2u3}); u1, u3

)
is a 2-labelled

graph.
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Operations on Rooted Graphs
Let F be a class of rooted graphs. For every k ≥ 0, we let F(k)

be the class of k-labeled graphs in F.

We have natural operations linking these classes.

Example (Disjoint Union)
For k-labelled F = (F, u) and ℓ-labelled F ′ = (F ′, u), we obtain
(k + ℓ)-labelled F ⊗ F ′ = (F ⊎ F ′; uu′).
We usually assume F to be closed under disjoint union. Then

⊗ :F(k) ×F(ℓ) →F(k+ℓ)

for all k, ℓ.

Other basic operations are permuting labels, merging labels,
dropping labels. We can combine these to obtain operations like
series composition and parallel composition.
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Linear Spaces

It will be convenient to consider formal linear combinations

n∑
i=1

aiFi

of k-labelled graphs Fi with complex coefficients ai (sometimes
called quantum graphs).

This turns the spaces F(k) into complex vector spaces

CF(k).

We can linearly extend operations like disjoint union.
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Homomorphisms from Labelled Graphs

For every G, we let hom(F , G) ∈ CV k to be the tensor (or vector
or mapping V k → C) defined by

hom(F , G)(v) := number of homomorphisms h from F to G
with h(u) = v

for v ∈ V k .

To simplify the notation, we denote hom(F , G) by FG .

Examples

▶ (
1 2
)G ∈ CV×V is the adjacency matrix of G.

▶ (
1
)G ∈ CV is the degree vector of G.

▶ ( )G ∈ C is the number of edges of G.
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Homomorphism Tensors as
Representations

For each k and every graph G, we have

(·)G : CF(k) → CV k .

The operations on the spaces CF(k) correspond to natural
algebraic operations on the spaces CV k :
▶ Disjoint union corresponds to tensor product.
▶ Dropping labels corresponds to aggregation of a coordinate:

for all k-labelled (F ; u1, . . . , uk) and G we have(
(F ; u1, . . . , uk−1)

)
G
(v1, . . . , vk−1)

=
∑
v∈V

(
(F ; u1, . . . , uk)

)
G
(v1, . . . , vk−1, v).
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Schur Product and Matrix Product
▶ For k-labelled F = (F ; u1, . . . , uk), F ′ = (F ′, u′1, . . . , u

′
k), let

F ⊙ F ′ be the graph obtained from F ⊗ F ′ by identifying ui
with u′i , for all i .

Then
(
F ⊙ F ′)G is the Schur product (pointwise product) of(

F )G and
(
F ′)G :(
F ⊙ F ′)G(v) =

(
F )G(v) ·

(
F ′)G(v).

▶ For 2-labelled F = (F ; u1, u2), F ′ = (F ′, u′1, u
′
2), let FF ′ be

the graph obtained from F ⊗ F ′ by identifying u2 with u′1 and
dropping the second label (series composition).

Then
(
FF ′)G is the matrix product of

(
F )G and

(
F ′)G :(

FF ′)G(v1, v2) =
∑
v∈V

(
F )G(v1, v) ·

(
F ′)G(v , v2).

We can easily generalise this to 2k-labelled graphs.
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Idea

▶ To understand homomorphism indistinguishability over F we
need to understand finite dimensional representations of the
spaces CF(k) for a family F of labelled graphs over F.

▶ Representation theory tells us a lot about finite dimensional
representations of algebras.
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Application: Graphs of Bounded Path
Width

Theorem (Dell, G., Rattan 2018, G., Rattan, Seppelt 2022)
Graph G,H are homomorphism indistinguishable over the class of
graphs of path width at most k if only if the system Lk+1(G,H)
of linear equations has a solution.
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The Algebra of Graphs of Pathwidth k

▶ We consider 2(k + 1)-labelled graphs of pathwidth k with
(k + 1) labels on the first and last bag of a path
decomposition of width k . Let P be the set of all such
graphs and CP the corresponding vector space.

▶ (k + 1)-dimensional series composition (that is,
concatenation of the path decompositions) gives us a binary
product on this space, resulting in an algebra P.

1

2

3

4

5

6
· 1

2

3

4

5

6=
1

2

3
4

5

6

▶ This algebra is generated by a finite set of basal graphs
(single-bag path decompositions).

▶ Reverting the paths gives us an involution operation, which
turns P into a *-algebra.
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Proof of the Theorem (Sketch)

▶ In the representations (·)G , series composition corresponds
to matrix multiplication and reverting the paths to matrix
transposition.

Thus the image of the pathwidth-k graph algebra P under
(·)G is a finite-dimensional *-algebra.

▶ It is known that finite-dimensional *-algebras are semi-simple
and that two finite-dimensional semi-simple representations
of an algebra are equivalent iff they have the same characters
(Frobenius, Schur).

▶ We relate equivalence of characters to homomorphism
indistinguishability.

▶ Equivalence of representations can be described by a finite
system of linear equations involving the finitely many
generators of our algebra.

▶ We massage this system to turn it into Lk+1(G,H).

31



Proof of the Theorem (Sketch)

▶ In the representations (·)G , series composition corresponds
to matrix multiplication and reverting the paths to matrix
transposition.

Thus the image of the pathwidth-k graph algebra P under
(·)G is a finite-dimensional *-algebra.

▶ It is known that finite-dimensional *-algebras are semi-simple
and that two finite-dimensional semi-simple representations
of an algebra are equivalent iff they have the same characters
(Frobenius, Schur).

▶ We relate equivalence of characters to homomorphism
indistinguishability.

▶ Equivalence of representations can be described by a finite
system of linear equations involving the finitely many
generators of our algebra.

▶ We massage this system to turn it into Lk+1(G,H).

31



Proof of the Theorem (Sketch)

▶ In the representations (·)G , series composition corresponds
to matrix multiplication and reverting the paths to matrix
transposition.

Thus the image of the pathwidth-k graph algebra P under
(·)G is a finite-dimensional *-algebra.

▶ It is known that finite-dimensional *-algebras are semi-simple
and that two finite-dimensional semi-simple representations
of an algebra are equivalent iff they have the same characters
(Frobenius, Schur).

▶ We relate equivalence of characters to homomorphism
indistinguishability.

▶ Equivalence of representations can be described by a finite
system of linear equations involving the finitely many
generators of our algebra.

▶ We massage this system to turn it into Lk+1(G,H).

31



Proof of the Theorem (Sketch)

▶ In the representations (·)G , series composition corresponds
to matrix multiplication and reverting the paths to matrix
transposition.

Thus the image of the pathwidth-k graph algebra P under
(·)G is a finite-dimensional *-algebra.

▶ It is known that finite-dimensional *-algebras are semi-simple
and that two finite-dimensional semi-simple representations
of an algebra are equivalent iff they have the same characters
(Frobenius, Schur).

▶ We relate equivalence of characters to homomorphism
indistinguishability.

▶ Equivalence of representations can be described by a finite
system of linear equations involving the finitely many
generators of our algebra.

▶ We massage this system to turn it into Lk+1(G,H).

31



Proof of the Theorem (Sketch)

▶ In the representations (·)G , series composition corresponds
to matrix multiplication and reverting the paths to matrix
transposition.

Thus the image of the pathwidth-k graph algebra P under
(·)G is a finite-dimensional *-algebra.

▶ It is known that finite-dimensional *-algebras are semi-simple
and that two finite-dimensional semi-simple representations
of an algebra are equivalent iff they have the same characters
(Frobenius, Schur).

▶ We relate equivalence of characters to homomorphism
indistinguishability.

▶ Equivalence of representations can be described by a finite
system of linear equations involving the finitely many
generators of our algebra.

▶ We massage this system to turn it into Lk+1(G,H).

31



Concluding Remarks
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Where We Stand

▶ Homomorphism counts extract interesting information from
graphs that characterise many natural equivalence relations
on graphs and pull together combinatorics, logic, and algebra.

▶ When generalised to rooted graphs, they induce a rich
algebraic structure.

▶ Homomorphism counts are also useful and expressive graph
features in practice (Master’s thesis of Pascal Kühner).
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Homomorphism Indistinguishability and
Graph Minors—Roberson’s Conjecture

Conjecture (Roberson 2022)
Let F and F′ be graph classes closed under taking minors and
under taking disjoint unions. Then homomorphism
indistinguishability over F and F′ coincide if and only if the
classes are equal, that is:

≡F = ≡F′ ⇐⇒ F = F′.
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The Geometry of Homomorphism
Indistinguishability

▶ Homomorphism embeddings also induce metrics on graphs.

▶ Lovász’s theory of Graph Limits is based on the metric
induced by HomAll.

▶ It is our goal to extend this theory of HomF for other classes
F.

▶ Jan Böker obtained results for trees and graphs of bounded
tree width.
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