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Abstract

If a graph is n-colourable, then it obviously is n′-colourable for any n′ ≥ n. But the situation
is not so clear when we consider multi-colourings of graphs. A graph is (n, k)-colourable if we
can assign each vertex a k-subset of {1, 2, . . . , n}, such that adjacent vertices receive disjoint
subsets.

We consider the following problem: if a graph is (n, k)-colourable, then for what pairs (n′, k′)
is it also (n′, k′)-colourable? This question can be translated into a question regarding multi-
colourings of Kneser graphs, for which Stahl formulated a conjecture in 1976. We present new
results and discuss some observations that lead to simple proofs of some known cases of the
conjecture.

1 Introduction and Results

All graphs in this note are finite, undirected and without multiple edges or loops. All colourings of
such graphs are vertex colourings. A proper colouring of a graph assigns a colour to each vertex
such that adjacent vertices receive different colours. A graph G is n-colourable if n colours are
enough for a proper colouring of G, and the chromatic number χ(G) is the smallest n for which G
is n-colourable.

Multi-colouring generalises vertex colouring. It has been studied extensively; see e.g. [8] for
background. In a multi-colouring of a graph, each vertex receives a set of colours, and such a
colouring is proper if adjacent vertices receive disjoint colour sets. A graph G is (n, k)-colourable if
there is a proper multi-colouring by assigning k-subsets of [n] ( = {1, 2, . . . , n}) to the vertices of G.
And the k-th multi-chromatic number χk(G) is the smallest n such that G is (n, k)-colourable.

It this note we consider the following question.

Question 1.
If G is (n, k)-colourable, then for what pairs (n′, k′) is G also (n′, k′)-colourable?

We note that the corresponding question for more standard n-colouring is trivial: if G is n-
colourable, then it is n′-colourable for all n′ ≥ n. Or, more precise: if χ(G) = n, then G is
n′-colourable if and only if n′ ≥ n. Maybe somewhat surprisingly, the question for multi-colouring
appears to be much more challenging, and in fact it is mostly open!

Kneser graphs play a central role in the studies of multi-colouring. For n ≥ k ≥ 1, the Kneser
graph K(n, k) has as vertex set the collection of all k-subsets of [n], and there is an edge between
two vertices if and only if the two k-sets are disjoint. We will always assume n ≥ 2k, as otherwise
the graph is edgeless.

It is well known and easy to prove (see e.g. [8]) that a graph G is (n, k)-colourable if and only
if there is a homomorphism from G to K(n, k). (A homomorphism from a graph G to a graph H
is a mapping φ : V (G) → V (H) that preserves edges; i.e. if uv is an edge in G, then φ(u)φ(v) is
an edge in H.)



This means that the following questions are all equivalent to Question 1.

1. Given n, k, for what n′, k′ is the Kneser graph K(n, k) also (n′, k′)-colourable?

2. Given n, k, for what n′, k′ is there a homomorphism from K(n, k) to K(n′, k′)?

3. Given n, k, for what n′, k′ do we have n′ ≥ χk′(K(n, k))?

The last question was studied by Stahl [9], who formulated the following conjecture.

Conjecture 2 (Stahl [9]).
If k′ = qk − r where q ≥ 1 and 0 ≤ r ≤ k − 1, then we have χk′(K(n, k)) = qn− 2r.

Note that for k = 1, the Kneser graph K(n, 1) is just the complete graph on n vertices, and hence
Stahl’s conjecture is trivially true in that case. For k′ = 1 (hence q = 1 and r = k − 1) we find
that Conjecture 1 is true, since χ1(G) = χ(G), and we know χ(K(n, k)) = n− 2k + 2 by Lovász’s
proof [6] of the Kneser conjecture.

Stahl made quite a number of observations regarding the multi-chromatic number of Kneser
graphs. In particular they showed that the conjectured value for the multi-chromatic number is an
upper bound, i.e. χqk−r(K(n, k)) ≤ qn− 2r, and that in order to prove the conjecture it suffices to
prove it for r = k − 1.

In a follow-up paper [10], Stahl also proved a general lower bound for χk′(K(n, k)):

χqk−r(K(n, k)) ≥ qn− 2r − (k2 − 3k + 4). (1)

Some special values of n, k, k′ for which the conjecture is known to be true are as follows.

Theorem 3.
(a) Conjecture 2 is true for the bipartite Kneser graphs K(2k, k) and for the so-called odd graphs
K(2k + 1, k) (all k′) (Stahl [9]).

(b) Conjecture 2 is true whenever k′ is a multiple of k (all n, k); in other words: χqk(K(n, k)) = qn
(Stahl [9]).

(c) Conjecture 2 is true for all k′ ≤ k (all n, k); in other words χk−r(K(n, k)) = n− 2r (Stahl [9]).

(d) Conjecture 2 is true for k = 2 and k = 3 (all n, k′) (Stahl [10]).

Osztényi [7] proved the conjecture for 2k < n < 3k, 0 ≤ r < k
n−2k . That proof is long and quite

involved. We give a one-paragraph proof in the next section (which also holds for r = k
n−2k and

n ≥ 3k, r = 0).

Theorem 4.

If 0 ≤ r ≤ k

n− 2k
, then we have χk′(K(n, k)) = qn − 2r (where k′ = qk − r with q ≥ 1 and

0 ≤ r ≤ k − 1).

Another result we want to present in this note is that for a fixed k, only at most k3 − k2 values
χk′(K(n, k)) need to be determined in order to conclude whether or not Stahl’s conjecture is true
for that value of k and for all n and k′.

Theorem 5.
Fix k ∈ N. Then there exist n0(k) and q0(n, k) such that the following holds.
If χqk−(k−1)(K(n, k)) = qn− 2(k− 1) for all 2k ≤ n ≤ n0(k) and for at least one q ≥ q0(n, k), then
we have χqk−r(K(n, k)) = qn− 2r for all n ≥ 2k, q ≥ 1 and 0 ≤ r ≤ k − 1.



The functions n0(k) and q0(n, k) in Theorem 5 need to satisfy some quite complicated equations we
won’t give here. From those equations, it is possible to show that we have n0(k) < k3− k2+2k for

all k, and q0(n, k) <
4k

ek
(n− 2k) for all k ≥ 2 and n ≥ 2k + 1 (where e ≈ 2.718 is Euler’s number).

We could replace q0(n, k) by q′0(k) = max{q0(n, k) | 2k ≤ n ≤ n0(k)} in Theorem 5 to remove
the dependency of q0 on n. We chose to keep q0(n, k), since for larger values of n we get better
bounds for q0(n, k). For instance, if n ≥ (log2 e) k

2, then we can show q0(n, k) < n.

For k = 4, our methods show that we only need to find χ4q−3(K(n, 4)) for 8 ≤ n ≤ 10, q = 13,
and 11 ≤ n ≤ 38, q = 12. The cases n = 8, 9 follow from Theorem 3 (a). The case n = 10 is solved
in [5]. So the first open case is to determine whether or not χ45(K(11, 4)) = 126. Note that Stahl
already showed χ45(K(11, 4)) ≤ 126, while bounds in the next section give χ45(K(11, 4)) ≥ 124.

In the next section we also explain that determining χ45(K(11, 4)) can be done by finding the
chromatic number of the lexicographic product K(11, 4) • K45. Unfortunately, K(11, 4) • K45 is
a highly symmetric graph with 14,850 vertices and 12,021,075 edges, and none of the publicly
available packages for graph colouring we could find seems to be able to deal with this graph within
a reasonable amount of time.

2 Main Ideas

In this section we sketch some of the ideas behind our results and methods to approach Stahl’s
conjecture. In fact, most of these ideas have been observed before, but we haven’t seen them used
in the way we use them.

For any proper k′-multi-colouring of a graph G with χk′(G) colours, it is obvious that each
colour class (the set of vertices whose colour set contains some particular colour) is an independent
set, hence contains at most α(G) vertices (where α(G) is the independence number). Since each

vertex appears in k′ colour classes, this immediately gives χk′(G) ≥
⌈
k′|V (G)|
α(G)

⌉
.

For Kneser graphs we have |V (K(n, k))| =
(
n
k

)
by definition, while the celebrated Erdős-Ko-

Rado Theorem [2] gives that α(K(n, k)) =
(
n−1
k−1

)
for n ≥ 2k. Substituting those values and

k′ = qk − r in the bound above leads to

χk′(K(n, k)) ≥

⌈
k′
(
n
k

)(
n−1
k−1

)⌉ =

⌈
k′n

k

⌉
= qn− 2r −

⌊
r(n− 2k)

k

⌋
. (2)

This simple inequality is surprisingly powerful. For instance, it gives a better bound than (1)
if n ≤ k2 + 2. It also more or less directly gives Theorem 4.

We can obtain further results by using more detailed knowledge about independent sets in
Kneser graphs. For instance, in [2] it is also proved that if n ≥ 2k + 1, then the only independent
sets of order

(
n−1
k−1

)
in the Kneser graph K(n, k) are the so-called trivial independent sets: those

vertex sets whose vertices correspond to all k-sets in [n] that contain some fixed element i ∈ [n].
Using that information about the structure of independent sets of order α(K(n, k)) shows that we
can only have equality in (2) in very special cases.

Theorem 6.
We have equality in (2) if and only if k′ = qk for some integer q. In those cases we have
χqk(K(n, k)) = qn.



Theorem 6 is not explicitly stated in Stahl [9], although it is implicit in its proof of Theorem 3 (b)
(using significantly more involved arguments).

As observed in [3], we have for any graph G that χk′(G) = χ(G •Kk′), where “•” denotes the
lexicographic product of graphs: V (G •H) = V (G)× V (H), and (u1, v1)(u2, v2) ∈ E(G •H) if and
only if either u1u2 ∈ E(G) or u1 = u2 and v1v2 ∈ E(H). This allows us to translate the problem
of finding multi-chromatic numbers to finding chromatic numbers, and also can give an alternative

proof of χk′(G) ≥
⌈k′|V (G)|

α(G)

⌉
.

One of the essential elements in the proof of Theorem 5 is the result of Hilton and Milner [4]
that if an independent set in the Kneser graph K(n, k), n ≥ 2k + 1, is not trivial, then it has
order at most

(
n−1
k−1

)
−

(
n−k−1
k−1

)
+ 1. This ‘second best’ bound is significantly smaller than the

Erdős-Ko-Rado bound, which means that for large n and q, many of the colours used in a ‘good’
(qk − r)-multi-colouring of K(n, k) must induce trivial independent sets. This observation allows
us to prove relations between the multi-chromatic numbers χqn−r(K(n, k)) for different values of n
and q, and eventually to prove Theorem 5.

Finally, we note that Theorem 5 generalises some known results. Chvátal, Garey and Johnson [1]
showed that for fixed k, we only need to find χk+1(K(n, k)) for finitely many n to decide if Stahl’s
Conjecture holds for χk+1(K(n, k)) for all n. And Stahl [9] proved that for fixed n, k and sufficiently
large k′, the correctness of the conjecture for k′ is equivalent to its correctness for k′−k. The proof
of that result is non-constructive and does not give an explicit bound on the value of k′, and hence
it can only give a version of Theorem 5 without a bound on the function q0(n, k).
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