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Abstract

A set S ⊆ V (G) of a graph G is a dominating set if each vertex in V (G)\S has a neighbor in
S. Let γ(G) be the cardinality of a minimum dominating set in G. The bondage number b(G) of
a graph G is the smallest cardinality of a set edges A ⊆ E(G) such that γ(G−A) = γ(G)+1. A
chordal graph has no induced cycle of length four or more. We show that the bondage number
of a chordal graph G is at most the order of its maximum clique, that is, b(G) ≤ ω(G). We
show that this bound is best possible.

1 Preliminaries

The graphs considered are finite and simple, that is, without directed edges or loops or parallel
edges. The reader is referred to [1] for definitions and notations in graph theory, and to the survey
of Xu [6] for an overview on the bondage number and its related properties.

Let G = (V,E) be a graph with vertex set V = V (G) and edge set E = E(G). Let v ∈ V (G)
and xy ∈ E(G). We say that x and y are the endpoints of the edge. Let δ(G) and ∆(G) denote
its minimum degree and its maximum degree, respectively. The degree of v in G is dG(v) or simply
d(v) when the referred graph is obvious. If d(v) = 0, we say that v is isolated in G. We denote
by d(u, v) the distance between two vertices, that is, the length of a shortest path between u and
v. Note that when uv ∈ E, d(u, v) = 1. We denote by NG(v) the open neighborhood of a vertex
v in G, and NG[v] = NG(v) ∪ {v} its closed neighborhood in G. When it is clear from context, we
write N(v) and N [v]. The open neighborhood of a set U ⊆ V is N(U) = {N(u) \ U | u ∈ U}. For
a subset U ⊆ V , let G[U ] denote the subgraph of G induced by U which has vertex set U and edge
set {uv ∈ E | u, v ∈ U}. We may refer to U as an induced subgraph of G when it is clear from the
context. If a graph G has no induced subgraph isomorphic to a fixed graph H, we say that G is
H-free. For n ≥ 1, the graph Pn = u1 − u2 − · · · − un denotes the cordless path or induced path on
n vertices, that is, V (Pn) = {u1, . . . , un} and E(Pn) = {uiui+1 | 1 ≤ i ≤ n − 1}. For n ≥ 3, the
graph Cn denotes the cordless cycle or induced cycle on n vertices, that is, V (Cn) = {u1, . . . , un}
and E(Cn) = {uiui+1 | 1 ≤ i ≤ n − 1} ∪ {unu1}. For n ≥ 4, Cn is called a hole. A set U ⊆ V is
called a clique if any pairwise distinct vertices u, v ∈ U are adjacent. We denote by ω(G) the size
of a maximum clique in G. The graph Kn is the clique with n vertices. A set U ⊆ V is called a
stable set or an independent set if any pairwise distinct vertices u, v ∈ U are non adjacent.

We recall the two following results on the upper bound of the bondage number. They will be
of use to prove Theorem 3 in the next section.

Theorem 1 (Fink et al. [3]). Let G = (V,E) be a graph, and u, v ∈ V such that d(u, v) ≤ 2. Then
b(G) ≤ d(u) + d(v)− 1.

Theorem 2 (Hartnell and Rall [5]). Let G = (V,E) be a graph, and uv ∈ E. Then b(G) ≤
d(u) + d(v)− 1− |N(u) ∩N(v)|.

2 Our result

Theorem 3. Let G be a chordal graph. If G is a clique, then b(G) = dω(G)/2e. Else b(G) ≤
ω(G) ≤ ∆(G).



Proof. We can assume that G is connected with at least two vertices. Note that ∆(G) ≥ ω(G)− 1
and ∆(G) = ω(G) − 1 if and only if G is a clique. When G is an even clique, one can see that
b(G) = ω(G)/2 by removing a perfect matching of G. When G is an odd clique, then one can
see that b(G) = (ω(G) − 1)/2 + 1 by removing a perfect matching of G and any edge incident to
the remaining universal vertex. So when G is a clique, then b(G) = dω(G)/2e. Therefore we can
assume that G is not a clique and so ω(G) ≤ ∆(G).

For the sake of contradiction, we suppose that b(G) > ω(G). Let K be a clique of G. The
partition distance in G with respect to K is the partition (A0, . . . , Ak) of V such that A0 = V (K)
and Ai = {v ∈ V | v ∈ N(u), u ∈ Ai−1}, for i = 1, . . . , k. Note that Ai is the set of vertices at
distance i from K.

Claim 1. Let C ⊆ Ai where i 6= 0, be such that G[C] is a connected component of G[Ai], and let
Q = N(C) ∩Ai−1. Then G[Q] is a clique.

For contradiction, suppose that G[Q] is not a clique. Since A0 is a clique, we can consider
that i ≥ 2. Let u, u′ ∈ Q such that uu′ 6∈ E. There is a path from u to K and from u′ to K in
G[A0 ∪ . . . ∪ Ai−2 ∪ {u, u′})]. Therefore there is an induced path P = u− · · · − u′ from u to u′ in
G[A0∪ . . .∪Ai−2∪{u, u′})]. Let P ′ = u−· · ·−u′ be an induced path from u to u′ in G[C ∪{u, u′}].
Then G[V (P ) ∪ V (P ′)] is an induced cycle of length at least four, a contradiction. So G[Q] is a
clique. This proves Claim 1.

Let W ⊆ Ai, where i = 0, . . . , k, such that G[W ] is a connected component of G[Ai] with at
least two vertices. We restrict W such that F = N(W ) ∩ Ai+1 is either empty or an independent
set of G, and such that N(F ) ∩ Ai+2 = ∅. We choose W so that ψ(K) = |F ∪W | is minimum.
When W 6= V (K), we denote Q = N(W ) ∩Ai−1(K). Note that when W = V (K), then Q = ∅.

We show that W exists such as described above. Since G is not a clique, it follows that
Ak−1, Ak 6= ∅. If Ak is not an independent set of G, then there is a connected component C of
G[Ak] with at least two vertices. Since |C| ≥ 2 and N(C)∩Ak+1 = ∅, it follows that W exists. Now
we can assume that Ak is an independent set of G. Let C be a connected component of G[Ak−1]
such that N(C) ∩ Ak 6= ∅. If |C| ≥ 2, then W exists since N(C) ∩ Ak is an independent set of G
and Ak+1 = ∅. Hence it remains the case where |C| = 1. Let C = {u} and v ∈ N(u) ∩ Ak. From
Claim 1 G[N(v) ∩ Ak−1] is a clique. Thus N(v) = {u} and d(v) = 1. From Claim 1 N(u) ∩ Ak−2
is a clique. Therefore d(u) ≤ ω(G). Then from Theorem 1 b(G) ≤ d(u) + d(v) − 1 ≤ ω(G), a
contradiction. Hence |C| ≥ 2 and so W exists.

Let K be a clique of G such that ψ(K) = min({ψ(K ′) | K ′ is a clique of G}). We consider the
sets A0, . . . , Ak, F,Q,W as described above in the partition distance with respect to K.

Claim 2. For every u ∈W such that Q = N(u)∩Ai−1, the sets W \ {u} and N(u)∩ (F ∪W ) are
independent in G, and W = N [u] ∩W .

For contradiction, suppose that W \ {u} or N(u)∩ (F ∪W ) is not an independent set of G. Let
K ′ = G[Q ∪ {u}]. Note that Q is empty when W = A0. From Claim 1 Q is a clique and it follows
that K ′ is also a clique. Let A′0, A

′
1, . . . , A

′
k′ be the partition distance with respect to K ′. Hence

A′0 = K ′. Since W \{u} or N(u)∩ (F ∪W ) are not an independent set, there is W ′ ⊆ A′1∩ (F ∪W )
such that W ′ is a connected component of G[A′1] with at least two vertices. Let F ′ = N(W ′)∩A′2.
Note that F ′ ⊆ F . Therefore either F ′ = ∅ or F ′ is an independent set of G, and N(F ′) ∩A′3 = ∅.
Then |F ′∪W ′| ≤ |F ∪W |− 1 and thus ψ(K) is not minimum, a contradiction. Hence W \ {u} and



N(u)∩ (F ∪W ) are two independent sets of G. Since G[W ] is connected, it follows that W ⊆ N [u].
This proves Claim 2.

Claim 3. There exists u ∈W such that Q = N(u) ∩Q.

For contradiction, suppose that for every vertex u ∈W , we have Q 6= N(u) ∩Q i.e. Q 6⊆ N(u).
Let u ∈ W such that |N(u) ∩ Q| is maximal. Since every vertex of Q has a neighbor in W , there
is u′ ∈W such that q′u′ ∈ E and q′u 6∈ E, where q′ ∈ Q. We choose u′ so that d(u, u′) is minimal.
From the maximality of |N(u) ∩Q|, there is q ∈ Q such that qu ∈ E and qu′ 6∈ E. Since G[W ] is
connected, there is a shortest path P = u− · · · − u′ between u and u′ in G[W ]. If P = u− u′, then
C4 = q − q′ − u′ − u− q is an induced cycle of length four, a contradiction. Let v ∈ V (P ) \ {u, u′}.
Suppose that q′v ∈ E. From the minimality of d(u, u′), it follows that N(u) ∩ Q ⊆ N(v) ∩ Q.
Then |N(v) ∩Q| > |N(u) ∩Q| is a contradiction of the maximality of |N(u) ∩Q|. Hence for every
v ∈ V (P ) \ {u, u′}, we have vq′ 6∈ E. Therefore if no vertex of V (P ) \ {u, u′} is a neighbor of
q, it follows that G[V (P ) ∪ {q, q′}] is an induced cycle of length at least five, a contradiction. So
there is v ∈ V (P ) \ {u, u′} such that qv ∈ E. We choose v such that d(u′, v) is minimum. Let
P ′ = v − · · · − u′ be a shortest path between u′ and v. Then G[V (P ′) ∪ {q, q′}] is an induced cycle
of length at least four, a contradiction. This proves Claim 3.

Claim 4. For every u ∈W , |N(u) ∩ F | ≤ 1, and for every v ∈ F , d(v) = 1.

For contradiction, suppose there exists u ∈W such that v, v′ ∈ N(u) ∩ F . From Claim 3 there
is w ∈W such that Q = N(w)∩Q. From Claim 2 W = N [w]∩W , and W \ {w}, (F ∪W )∩N(w)
are two independent sets of G. From Claim 1 N(v) ∩Ai, N(v′) ∩Ai are two cliques and therefore
N(v) ⊆ W and N(v′) ⊆ W . If d(v) ≥ 2 or d(v′) ≥ 2, then (F ∪W ) ∩N(w) is not an independent
set. Hence d(v), d(v′) ≤ 1. Yet from Theorem 1 it follows that b(G) ≤ d(v) + d(v′) − 1 ≤ 1, a
contradiction. This proves Claim 4.

Claim 5. |Q| ≤ ω(G)− 1

From Claim 1 Q is a clique and from Claim 3 there is u ∈ W such that Q = N(u) ∩Q. Hence
Q ∪ {u} is a clique and therefore |Q| ≤ ω(G)− 1. This proves Claim 5.

From Claim 3 there is u ∈W such that Q = N(u)∩Q. Recall that |W | ≥ 2 and that G[W ] is a
connected. Suppose that there is v ∈W , u 6= v, such that Q = N(v)∩Q. From Claim 2 W \{u} and
W \{v} are two independent sets of G. Thus W = {u, v}. From Claim 1 Q is a clique, and therefore
|Q| ≤ ω(G)− 2. From Claim 4 |N(u)∩F |, |N(v)∩F | ≤ 1. Hence d(u) ≤ |Q∪W \ {u}|+ 1 ≤ ω(G)
and d(v) ≤ |Q ∪W \ {v}| + 1 ≤ ω(G). Suppose that u has a neighbor x ∈ F . It follows from
Claim 4 that d(x) = 1. Thus from Theorem 1 b(G) ≤ d(u) + d(x) − 1 ≤ ω(G), a contradiction.
Hence N(u)∩F,N(v)∩F = ∅. Therefore d(u) = d(v) = ω(G)− 1. From Theorem 2 it follows that
b(G) ≤ d(u) + d(v)− 1− |N(u) ∩N(v)| ≤ ω(G), a contradiction.

So we can assume that u is the only vertex in W such that Q = N(u) ∩ Q. We show that
F is empty. Recall that from Claim 1 G[Q] is a clique, from Claim 5 |Q| ≤ ω(G) − 1, and from
Claim 4 every vertex of W has at most one neighbor in F . Moreover from Claim 2 W = N [u] and
(F∪W )\{u} is an independent set ofG. Hence for every v ∈W \{u}, we have d(v) ≤ |Q|+1 ≤ ω(G).
Let x ∈ F . From Claim 4 d(x) = 1. If there is v ∈ W \ {u} a neighbor of x, then from Theorem
1 it follows that b(G) ≤ d(v) + d(x) − 1 ≤ ω(G), a contradiction. Hence x is a neighbor of
u. Yet for every v ∈ W \ {u}, we have d(v, x) ≤ 2. Therefore from Theorem 1 it follows that
b(G) ≤ d(v)+d(x)−1 ≤ ω(G), a contradiction. Hence F = ∅. It follows that for every v ∈W \{u},
we have d(v) ≤ |Q| ≤ ω(G)− 1.



Let S be a minimum dominating set of G. Suppose that |S ∩W | ≥ 2. Then (S \W )∪ {u} is a
dominating set, a contradiction. Hence for every minimum dominating set ofG, we have |S∩W | ≤ 1.
Let v ∈ W \ {u} and Ev = {vv′ ∈ E | v′ ∈ N(v)}. Recall that d(v) ≤ ω(G) − 1, and therefore
|Ev| ≤ ω(G)−1. Let w ∈W \{v} (u = w is possible). Let Ew = {qw ∈ E | q ∈ (N(w)∩Q)\N(v)},
that is, the edges incident to w with an extremity in Q that is not a neighbor of v. Note that
|Ew| ≤ |Q \N(v)|, and therefore |Ev ∪Ew| ≤ |Q|+ 1 ≤ ω(G). We remove the edges Ev ∪Ew from
G to construct G′ = (V,E − (Ev ∪ Ew)). Since b(G) > ω(G), it follows that γ(G′) = γ(G). Let S′

be a minimum dominating set of G′. Since G′ is the graph G minus some edges, any dominating
set of G′ is a dominating set of G. Hence S′ is a minimum dominating set of G. Therefore from
previous arguments, we have |S′ ∩ W | ≤ 1. Note that v is isolated in G′, and thus v ∈ S′. If
S′ ∩ NG(v) 6= ∅, then S′ \ {v} is a dominating set of G, a contradiction. Hence S′ ∩ NG(v) = ∅.
Recall that NG′(w)∩Q ⊆ NG(v)∩Q. Hence NG′(w)∩S′∩W 6= ∅. Yet it follows that |S′∩W | ≥ 2,
a contradiction.

Hence γ(G′) > γ(G). Since we removed at most ω(G) edges from G to construct G′, it follows
that b(G) ≤ ω(G). This completes the proof.

We show that the bound of Theorem 3 is sharp. The corona G1 ◦G2 (introduced by Frucht and
Harary in [4]) is the graph formed from |V (G1)| copies of G2 by joining the ith vertex of G1 to the
ith copy of G2. Let G = Kn ◦K1. Note that ω(G) = ∆(G) = n. Carlson and Develin in [2] have
shown that γ(G) = ω(G) and that b(G) = ω(G).

For non-chordal graphs, we show that there is an infinite family of graphs C, where for every
G ∈ C, we have b(G) > ω(G), and its longest induced cycle has length four. The cartesian product
G�H of two graphs G and H is the graph whose vertex set is V (G)×V (H). Two vertices (g1, h1)
and (g2, h2) are adjacent in G�H if either g1 = g2 and h1h2 is an edge in H or h1 = h2 and g1g2
is an edge in G. Consider G = (P2�Pk) ◦ K1, where k ≥ 2. The longest cycle of G is four and
ω(G) = 2. Then one can easily check that γ(G) = 2k and that b(G) = 3 = ω(G) + 1. We remark
that it would be of interest to know if there exists a graph G for which the longest cycle is C4,
and such that b(G) > ω(G) + 1. Graphs for which the longest cycle is C4 may be known as the
class of quadrangulated graphs (an extension of chordal graphs, that is, chordal graphs where C4

are allowed).
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