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Abstract

Perfect Matching-Cut is the problem of deciding whether a connected graph has a perfect
matching that contains an edge-cut. Deciding whether a graph has a Perfect Matching-Cut is
N P-complete even for the class of bipartite graphs with diameter four. The case of bipartite
graphs with diameter one is trivial since only Ks has a Perfect Matching-Cut. We show that it is
polynomial to decide whether a bipartite graph with diameter three has a Perfect Matching-Cut.

1 Introduction

The Matching-Cut problem consists of finding a matching that is an edge-cut. Chvétal [2] proved
that the problem is NP-complete for graphs with maximum degree four and polynomially solvable
for graphs with maximum degree three. Bonsma [1] showed that it remains NP-complete for planar
graphs with maximum degree four and gave polynomial algorithms for some subclasses of graphs.
Le and Randerath [6] showed that the Matching-Cut problem is NP-complete for bipartite graphs.

We address the Perfect Matching-Cut problem where the matching involved in the matching-cut
is contained in a perfect matching. To our knowledge, the only reference to this problem is from
Diwan [3] which he called Disconnected 2-Factors.

We showed that the Perfect Matching-Cut problem is NP-complete for the 5-regular bipartite
graphs, for the graphs with diameter three and for the bipartite graphs with diameter d, for any
fixed d > 4, for planar graphs with degrees three or four, and for planar graphs with girth five.

Here we give the proof that the Perfect Matching-Cut problem is polynomial for bipartite graphs
with diameter three.

2 Notations and preliminaries

For a graph G = (V, E), let 6(G) denote its minimum degree. For v € V', N(v) is its neighborhood,
d(v) its degree. The diameter of G is the maximum length of a shortest path. For M C E we
write G — M the partial graph G = (V,E\ M). A set M C E is a matching when no edges of
M share a vertex. A matching M is perfect when every vertex is incident to one edge of M. A
cut in G is a partition V = X U (V \ X) with X,V \ X # (). The set of all edges in G having an
endvertex in X and the other endvertex in V'\ X, also written E(X,V \ X), is called the edge-cut
of the cut. A bridge is an edge-cut with exactly one edge. A matching-cut is an edge-cut that is
a matching. A perfect matching-cut is a perfect matching that contains a matching-cut. When a
connected graph or subgraph cannot be disconnected by a matching it is called immune, when it
cannot be disconnected by a perfect matching it is called perfectly immune.

We give some easy observations:

1. K3 and K>3 are immune.



2. Assume that G has a perfect matching-cut M with E(X,V\ X) C M and let H be an immune
subgraph of G. Then either V(H) C X or V(H) C V' \ X.

3. Assume that G has a perfect matching-cut M with F(X,V \ X) C M. If v has two neighbors
in X then v € X.

4. If M is a perfect matching that contains a bridge then M is a perfect matching-cut.

5. When a graph G with §(G) = 1 has a perfect matching then G has a perfect matching-cut.

3 Bipartite graphs with diameter three

We prove that the Perfect Matching-Cut is polynomial for the bipartite graphs with diameter three.
For our proof we use the following characterization given in [5].

A) Let G = (V4 UV, E) be a bipartite graph. Then diam(G) < 3 if and only if N(a) N N(b) # (
for any pair of distinct vertices a, b in the same side of the bipartition.

We also use the following facts. Let G = (V1 U Vs, E) be a bipartite graph, and M be a perfect
matching-cut with (X,Y) its corresponding partition.

1. Let wv € M with u € X,v €Y. Then N(u) \ {v} C X and N(v) \ {u} CY.
2. If a vertex v has two neighbors in X, respectively in Y, then v € X, respectively v € Y.

3. If a vertex v has a neighbor in z € X and another neighbor in y € Y, such that xy € M,
then M cannot be a perfect matching-cut.

We are ready to show the following.

Theorem 1. Let G = (V1 UV, E) be a bipartite graph with diam(G) < 3. Deciding if G has a
perfect matching-cut can be done in polynomial time.

Proof. We assume that G has a perfect matching, thus [Vi| = |Va|. If uv is a bridge and there
exists M a perfect matching-cut such that uv € M then G has a perfect matching-cut. Now we
can assume that §(G) > 2 and if M is a perfect matching-cut of G then |E(X,Y)| > 2.

We try to build M a perfect matching-cut with a partition (X,Y’). We guess two edges ab, cd
with a,d € Vi, b,c € V, such that {ab,cd} C M. When a perfect matching-cut M is found the
algorithm stops, otherwise we try another pair of edges.

We show that when G has a perfect matching-cut, then there exists M a perfect matching-cut
such that {a,c} C X, {b,d} C Y. Let a € X, b € Y. For contradiction we assume that V5 C Y.
Since d(a) > 2, by Fact 2 we have a € Y, a contradiction.

Hence we put a,c € X, b,d € Y. Note that there are O(]V|?) such combinations.

Note that G being bipartite we have N(a)N\N(b) = N(a)NN(c) = N(b)NN(d) = N(¢)NN(d) =
(). Moreover, by Fact 3 if there exists v € N(a) N N(d) or v € N(b) N N(c) then M cannot exist.
Hence we have N(a) N N(d) = N(b) N N(c) = 0.

We define the following sets of vertices:



e A=N(a)\{b,c}, B=N()\{a,d}, C=N(c)\{a,d}, D= N(d)\{b,c};
e S={veV|vgNODUN(), Nv)NA#D, Nv)nD #0};
e T={veVa|vg N(a)UN(d), Nv)yNn B # 0, N(v)nC # 0}.

We show that A, B,C,D,S,T,{a,b,c,d} is a partition of V; U V5. The subsets are pairwise
disjoint. By contradiction, we assume that there exists v € V; that is not in one of the previous
subsets. By Fact A) v and a have a common neighbor w. Since N(a) C AU {b,c} we have a
contradiction. The case v € V5 is the same.

By Fact 1 we have AUC' C X and BUD C Y. Let v € A. By Fact 2, if v has two neighbors in B
then v € Y, so M cannot exist. The situation is the same when a vertex of B has two neighbors in
A, a vertex of C' has two neighbors in D, a vertex of D has two neighbors in C. If v has exactly one
neighbor w € B then vw € M and by Fact 1 all its neighbors are put in X, and all the neighbors
of w are put in Y. We do the same for the vertices of B,C,D. By Fact 2 when v € S has two
neighbors in X, resp. Y, then v € X, resp. v € Y. We do in a same way for v € T'. If a vertex is
in both X and Y then M cannot exist and we stop. By Fact 2 if a vertex in X, resp. Y, has two
neighbors in Y, resp. X, then M cannot exist.

Let S"={veS|vgXUY}andT' ={veT|v¢& XUY}. Byabove and since §(G) > 2, each
vertex v € S has exactly one neighbor v, € A and one neighbor vy € D, and each vertex v € T has
exactly one neighbor vy € B and one neighbor v, € C. Let A’ = {v, € A|vv, € E,ve S}, D' =
{vaeD|vwge E,ve S B ={weB|vyecE,veT}, C"={v.eC|veE veT}
Note that from Fact 2, for every pair v, € A’, vg € D" we have N(v,) N N(vg) € S’. By symmetry,
for every pair v, € B, vqg € D’ we have N (vy) N N(v.) C T".

For every v € S/, resp. v € T’, for M to exist we have either vv, € M or vvg € M, resp.
vy, € M or vv. € M. Hence every edge st,s € S, t € T' is such that st € M and the two vertices
s,t will be assigned to a same subset X or Y.

Let |S'| = u, |A'| = a, |D'| =§. W.lo.g we assume that o > (the case a < § being symmet-
ric). By Fact A) and since each vertex of S’ has exactly one neighbor in A’ and one neighbor in
D', we have > ad. For M to exist we need y < a+ 6. Thus o + § > ad, which is possible only
foroa=6=2o0rd=1,, a>1.

Let « = § = 2. We denote A" = {v},02}, D' = {v} 03}, ' = {v1,v2,v3,v4}. Then G' =
G[A'UD'US'] consists of the four paths v} —v; —v}, vl —ve—v3 v2 —v3—v}, v2—vs—v3. There exist

two perfect matchings of G, that are, M, = {v}v1, vZve, vivs, v2vs}, My = {vlve, v3va, viv1, v203}.

Let § = 1. We have a < u < a+ 1. We denote A’ = {v},...,v¢}, D' = {vg4}, §' = {v1,...,v,}
and we assume that viv; € E,1 <i < u. We denote G' = G[A’ U D' U S|.

First 4 = a. Then G’ consists of a paths v} — vy —vg,...,v% — ve — vg. Note that G’ has no
perfect matching but recall that for each v; € ', either v;v) € M or v;ug € M. So in G’ there
exists o + 1 matchings that disconnect A’ from D’. These matchings are My = {wivy, .. v%v,}
and M; = {vjvg} U{vdv;, 1 <j < a, j#i}.



Second p = a+1. Then G’ consists of the two paths v} —v; —vy, v} —v9 —v4 and the a—1 paths

V2 — 03— g, ...,V —vat1 —vg. There exists exactly two (perfect) matchings of G’ that disconnect
A’ from D', that are My = {vivy,vgve, v2vs, ..., 0% 41} and My = {vlva, vav1, 0203, ..., v2Vas1}.

By symmetry, to G” = G[B’ U C" UT'] correspond the following matchings: either M| =

1y e W, N, . AN oo g2 e
{v/gv'1, . 0 Vi b and My = {ojup U{v"u), 1 < g <o, j # i or My = {v/qu], vgug, v'qus, 0" —
/ gl o 2 % / 2 . .
vy} and My = {v' vy, vjvy, v'ovs, 0"y — v} Hence there are O(|E|®) combinations be-

tween the matchings of G’ and G”.

For each combination we test if F(X,Y) is a matching-cut. If not then M with F(X,Y) C M
cannot exist. Otherwise, let X’ C X such that N(X')NY = @ and Y’ C Y such that N(Y')NX = 0.
We check if G[X'UY’] has a perfect matching. If not, M with F(X,Y) C M cannot exist, else we
have M a perfect matching-cut of G.

We estimate the running time of our algorithm as follows. From [4], we know that computing
a perfect matching in a bipartite graph takes O(]V|g) To check if there exists a perfect matching
that contains a bridge can be done in time (’)(]V|g) Now, there are O(|V|?) pairs of edges ab, cd.
Given a pair ab, cd, one can verify that the running time until the next pair is O(|V|%) Hence the
complexity of the algorithm is O(|V|%) O

Remark: The cliques are the graphs with diameter one. Hence K> is the sole graph of diameter
one that has a perfect matching-cut.
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