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Abstract

We introduce a problem called Minimum subTree problem with Degree Weights,
or MTDW, that generalizes covering tree problems. It consists, given an undirected graph
G = (V,E), in the search of a forest (T1, T2, . . . , Tℓ) containing ℓ node-disjoint trees of G
satisfying some constraints and minimizing an objective function that depend only on the degree
of the nodes in the trees.

We investigate MTDW with regard to parameterized complexity with respect to four pa-
rameters that are the number of constraints, the maximum degree after which the constraints
are constant, the value ℓ, and the treewidth of the input graph G. For this problem, we provide
a first dichotomy P versus NP-hard and a second dichotomy FPT versus W[1]-hard depending
whether each of these parameters is constant, considered as a parameter, or disregard.

Particularly, our results show that most of the subproblems of MTDW are FPT by treewidth.

1 Introduction

There exists a real variety of spanning tree, Steiner tree and more generally covering tree problems
that can be found in the literature. These problems find applications in particular in network rout-
ing. In each such problem, the objective is to find a subtree in a graph satisfying some constraints
and minimizing an objective. Well-known examples are theMinimum Undirected Steiner Tree
problem (UST); the k-Minimum Spanning Tree problem (k-MST) [1]; the Prize Collect-
ing Steiner Tree problem (PCST) [3]; the Minimum Branch Vertices problem (MBV) [4];
the Budget Steiner Tree problem with Profits (BSTP) [5]; the k-Bottleneck Steiner
Tree (k-BST) [2]; or the Minimum Leaf Spanning Tree problem (MLST) [6].

A natural question to ask is how hard are those problems and their variants when the graph
is close to a tree. A way to describe the distance between a graph and a tree is the treewidth,
introduced by Robertson and Seymour [7], and actively used in parameterized complexity of graph
optimization problems [8, 9]. It was proved, for instance, that UST, PCST, MLST and k-MST
are FPT with respect to the treewidth [10, 11, 1]. No such result seems to exist for BSTP, k-BST
or MBV. However, note that MBV is a generalization of the Hamiltonian path problem which
is also FPT in the treewidth [9]. This paper aims to explore the fact that all those problems can
be described (or rewritten) only by looking at the degree of the nodes of the graph in the tree. As
shown in the following sections, this common property makes all those problems, and most of their
variants including their node-disjoint counterpart, FPT by treewidth.

The Minimum node-disjoint subTrees problem with Degree Weights (MTDW). We
introduce the Minimum node-disjoint subTrees problem with Degree Weights (MTDW)
in Definition 1. This problem encodes many kinds of constraints (for instance spanning, bounded
degree or cost constraints), that must be satisfied by a feasible forest, by associating to each node
a set of scores depending on the degree of the node in the forest. We then get a set of scores of the



tree by summing the scores of the nodes. One of the scores is used to define an objective function
that must be minimized, and the others are used to define a set of constraints.

Given an undirected graph G and a node of v, we denote by dG(v) and γG(v) the degree and
the set incident edges of v in G respectively.

Definition 1 (MTDW problem). Given an undirected graph G = (V,E) with n nodes, two integers
m, ℓ ∈ N, m mappings Cj : V × N → Z, j ∈ J1,mK, one mapping D : V × N → Z, and m
integers Kj ∈ Z for j ∈ J1,mK, we search for ℓ node-disjoint trees T1, T2, . . . Tℓ such that for each

(i, j) ∈ J1, ℓK × J1,mK,
∑

v∈V Cj(v, dTi(v)) ≤ Kj, minimizing
∑ℓ

i=1

∑
v∈V D(v, dTi(v)).

Note that all the nodes of the graph intervene in the formulae, including those for which
dTi(v) = 0, i ∈ J1, ℓK. For instance, Minimum Leaf Spanning Tree can be rewritten as a
subproblem of MTDW with m = 1 and ℓ = 1. C1 is a spanning tree constraint: C1(v, 0) = 1,
C1(v, d ≥ 1) = 0 and K1 = 0. We minimize the number of leaves with D: D(v, 1) = 1 and
D(v, d ̸= 1) = 0.

The search of a feasible solution of an instance of MTDW. Every hardness result of
this paper deals with the search of such a solution. In the following, we call MTDWFS the
decision problem in which, given an instance of MTDW, we must decide whether there exists a
feasible solution i.e. ℓ node-disjoint trees T1, T2, . . . Tℓ such that for each (i, j) ∈ J1, ℓK × J1,mK,∑

v∈V Cj(v, dTi(v)) ≤ Kj , whatever the cost
∑ℓ

i=1

∑
v∈V D(v, dTi(v)) of that solution is.

Note that, when ℓ = 1, the decision version of MTDW (deciding whether there exists a solution
of cost at most K for some value K) can be easily described by replacing D with a constraint (m
is then increased by 1). An interesting property is that this problem is equivalent to MTDWFS.

The parameters. In this paper, we analyze the MTDW problem with regard to four parameters:
m (the number of constraints), ∆ (the minimum degree above which all the mappings Cj and D
are constant: for every j ∈ J1,mK, v ∈ V and d ≥ ∆, Cj(v, d) = Cj(v,∆), and D(v, d) = D(v,∆)),
ℓ (the number of node-disjoint trees we are looking for), and tw (the treewidth of G).

Throughout the paper, we distinguish three possible cases for a parameter of MTDW. Either
it is fixed as a constant, it is a parameter, with regard to the parameterized complexity point of
view, or it is disregarded in the complexity analysis.

The encoding of the constraints. A last element that affects the complexity results in this
paper is the encoding of the values Kj and Cj(v, d) for every j ∈ J1,mK, v ∈ G and d ≤ dG(v).

Let µ = maxmj=1

∑
v∈V

∑
d≤dG(v) |Cj(d, v)|.

2 Results

In Theorem 1, we show that when µ is written in binary, the MTDW problem is hard, even when
restricted to instances where ℓ, m, tw, and ∆ are constants.

Theorem 1. MTDWFS is NP-hard when µ is written in binary, even when restricted to instances
where ℓ, m, tw, and ∆ are bounded by constants.

In the following, we assume that µ is unary encoded. Moreover we may assume, without loss
of generality, that |Kj | ≤ µ for every j ∈ J1,mK, as, otherwise, either the j − th constraint is



necessarily satisfied or necessarily unsatisfied, thus the encoding of those integers is never given.
Note also that the values of the objective function D may be binary encoded and does not depend
on the encoding of µ.

Classical complexity analysis. We show that the problem is NP-hard even when some of the
parameters we considered are fixed to be constant. We also provide a generic algorithm whose
running time is expressed with regard to ℓ, m, tw, ∆, n and µ.

Theorem 2. MTDWFS is NP-hard even when ℓ, m, and ∆ are constants.

Theorem 3. MTDWFS is NP-hard even when ℓ, ∆, and tw are constants.

Theorem 4. There exists an algorithm solving MTDW in time

O(ℓ2 ·min(ℓ, tw)2 · (2µ+ 1)2·m·min(ℓ,tw) · (∆ + 1)2·tw · tw4tw+1 · n).

By combining Theorems 2, 3 and 4, we obtain the dichotomy for theMTDW problem depending
on whether ℓ, m, tw, and ∆ are fixed to be constant or not summarized in Table 1.

tw disregarded tw constant

m constant NP-hard polynomial

m disregarded NP-hard NP-hard

Table 1: The complexity of MTDW depending on whether m and tw are constant or not. The
results remain the same, whatever the status of ∆ and ℓ is.

Parameterized complexity analysis. In this paragraph, we will focus on the parameterized
point of view when the considered parameters are ℓ, m, tw, and ∆. Regarding Table 1, it remains
to study the cases where either m is a parameter or tw is a parameter.

Theorem 5. MTDWFS is W[1]-hard parameterized by m, even when ℓ, ∆, and tw are constants.

Because of Theorem 2, we know that if tw is not a parameter, the problem is NP-hard, while,
using Theorem 4, if tw is a parameter together with m, then there is an XP algorithm to solve
MTDW. This is summarized in Table 2.

tw disregarded tw as a parameter tw constant

m as parameter NP-hard W[1]-hard W[1]-hard
even for fixed m XP algorithm XP algorithm

Table 2: The parameterized complexity of MTDWFS when m is a parameter. The results remain
the same, whatever the status of ∆ and ℓ is.

With regard to the previous discussion, we now assume that m is constant. Using Table 1, it
remains to deal with the case where tw is a parameter. We present two new hardness results.

Theorem 6. MTDWFS is W[1]-hard parameterized by tw and ℓ, even when ∆ and m are constants.



ℓ disregarded ℓ as a parameter ℓ constant

∆ disregarded W[1]-hard W[1]-hard W[1]-hard

∆ as a parameter W[1]-hard W[1]-hard FPT

∆ constant W[1]-hard W[1]-hard FPT

Table 3: The parameterized complexity of MTDW when m is a constant and tw is a parameter.
For all cases, the problem is NP-hard and can be solved by an XP algorithm.

Theorem 7. MTDWFS is W[1]-hard parameterized by tw, even when ℓ and m are constants.

By combining Theorem 4, Theorem 6, and Theorem 7, we obtain the dichotomy of Table 3.
Altogether, Tables 1, 2, and 3 provide a complete analysis of the complexity of the MTDW

problem with regard to the classical complexity and the parameterized complexity when taking
into account ℓ, m, tw, and ∆ as parameters. In particular, every subproblem of MTDW for which
µ is unary encoded and ℓ, ∆ and m are constants is FPT by tw. This is, for instance, the case of
all the aforedmentioned subproblems of MTDW.
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