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Abstract

A graph X with both edges and arcs is called a mixed graph. This can be considered as a
hybrid of an oriented graph and an unoriented graph. Let α be the primitive nth root of unity
e

2π
n i. Then, for a mixed graph X, the α−Hermitian adjacency matrix of X is defined to be the

matrix Hα(X) = [hrs] where hrs = α if rs is an arc in D, hrs = α if sr is an arc in D, hrs = 1
if sr is an unoriented edge in D and hrs = 0 otherwise. Accordingly, in this paper we study the
inverse of α−hermitian adjacency matrix of a mixed graph.

1 Introduction
A digraph D that can be obtained from a graph after orienting some or all of its edges is called
mixed graph. The unoriented edges of D are called digons. The graph obtained from a mixed
graph D after unorienting all of its edges, denoted by Γ(D), is called the underlying graph of the
mixed graph D. A perfect matching of a mixed graph is just a perfect matching of its underlying
graph. To be formal, a set M of edges and arcs is called perfect matching if all elements of M are
non-incident and cover the vertices of D. If X is a subgraph of a mixed graph D then by D\X we
mean induced mixed graph over V (D)\V (X).
Let D be a mixed graph and α be a complex number with |α| = 1, then the α-hermitian adjacency
matrix of D is the matrix Hα(D) = [huv] where its rows and columns correspond to the vertices of
D and,

huv =


1 if uv is digon in D,
α if uv is an arc in D,
α if vu is an arc in D,
0 otherwise.

Godsil in [1] studied the inverse of adjacency matrix of bipartite graphs. In fact this problem
is related to a chemistry problem. The most interesting theorem in this paper was: the inverse
of the adjacency matrix of a tree T is similar to the adjacency matrix of another graph G, the
similarity matrix is ±1 diagonal matrix and the graph G should contain a copy of T . More research
papers appeared after [1] that continued on Godsil’s work see [2], [3] and [4] for example. Yet, all
research appears in this direction were based on the adjacency matrix of unoriented graphs. One
of the reasons for that is digraphs with nonsingular traditional adjacency matrix are infrequent.
Motivated by this and to overcome the challenge of such infrequency, in this paper we study the
inverse of α−hermitian adjacency matrix of a mixed graphs D. In fact, we give a formula of entries
of the inverse matrix in terms of mixed subgraphs of D. In order to do that we need the following
definitions and theorems:

Definition 1. [5] Let D be a mixed graph and Hα = [huv] its α-hermitian adjacency matrix.

• A mixed subgraph X of D is called elementary mixed subgraph of D if for every component
X ′ of X, Γ(X ′) is either the complete graph K2 or a cycle Ck (for some k ≥ 3).



• For an elementary mixed subgraph X of D. The rank of X is defined as r(X) = n − c,
where n = |V (X)| and c is the number of its components. The co-rank of X is defined as
s(X) = m− r(X), where m is the number of digons and arcs in X.

• The value hα(W ) of a mixed walk W with vertices v1, v2, . . . , vk is defined as

hα(W ) = (hv1v2hv2v3hv3v4 . . . hvk−1vk) ∈ {αr}r∈Z

Recall that a permutation η of a set of n elements V , is just a bijective function from V to
itself. The set of all permutations of V form a group under the functions composition. Let η be a
permutation of a set of n elements V , then sgn(η) is defined to be (−1)k, where k is the number
of transpositions when η is decomposed as a product of transpositions. The following theorem is a
well known result in linear algebra.

Theorem 1. If A = [aij ] is an n× n matrix then

det(A) =
∑
η∈Sn

sgn(η)a1,η(1)a2,η(2)a3,η(3) . . . an,η(n)

2 Inverse of the α-Hermitian adjacency matrix of a Mixed Graph
In this section we give a general description of the inverse of α−Hermitian adjacency matrix of
mixed graphs. The following theorem can be found in [5].

Theorem 2. (Determinant expansion for Hα) [5] Let D be a mixed graph and Hα its α-hermitian
adjacency matrix, then

det(Hα) =
∑
D′

(−1)r(D
′)2s(D

′)Re(
∏
C

hα(C⃗))

where the sum ranges over all spanning elementary mixed subgraphs D′ of D, the product ranges
over all mixed cycles C in D′, and C⃗ is any mixed closed walk traversing C.

In the following theorem we give a general description of the non-diagonal entries of the inverse
of α-hermitian adjacency matrix of mixed graphs in terms of elementary mixed subgraphs.

Theorem 3. Let D be a mixed graph, Hα be its α-hermitian adjacency matrix and for i ≠ j,
ℑij = {P : P is a mixed path from the vertex i to the vertex j}. If det(Hα) ̸= 0, then

[H−1
α ]ij =

1

det(Hα)

∑
Pi→j

[
(−1)|E(Pi→j)| hα(Pi→j)

(∑
D′

(−1)r(D
′)2s(D

′)Re

(∏
C

hα(C⃗)

))]

where the first sum is taken over all paths Pi→j ∈ ℑij and the second sum ranges over all spanning
elementary mixed subgraphs D′ of D\P , the product is being taken over all mixed cycles C in D′

and C⃗ is any mixed closed walk traversing C.

Proof. Suppose that i ̸= j, then
[H−1

α ]ij =
mji

det(Hα)
,

where
mji = (−1)i+j det((Hα)(j,i)),



and (Hα)(j,i) is the matrix obtained from Hα(D) after removing the jth row and ith column.
Now let Mji be the matrix obtained from Hα by replacing the (ji)-entry with 1 and all other

entries of jth row and ith column by 0, then

mji = det(Mji) (1)

On the other hand, using Theorem 1 we have,

det(Mji) =
∑
η∈Sn

sgn(η)h1η(1)h2η(2) . . . hnη(n)

Now for any η ∈ Sn, since (j, k)-entries of Mji are zeros and the (j, i)-entry is one, if η does not
take j to i then η contributes zero in the expansion of det(Mji). Let

ψj→i = {ϕ ∈ Sn : ϕ is a permutation that takes j to i}.

For each ϕ ∈ ψj→i let δϕ be the cycle in ϕ that permutes j to i and δcϕ be all other cycles in ϕ,
then

det(Mji) =
∑

ϕ∈ψj→i

sgn(ϕ)
∏

k∈V (G)\{j}

hkϕ(k)

=
∑

ϕ∈ψj→i

sgn(δcϕ)sgn(δϕ)
∏
k∈δϕ

hkδϕ(k)
∏
k∈δcϕ

hkδcϕ(k)

=
∑

(−1)|E(Pj→i)|hα(Pj→i) det(Hα(X))

=
∑

(−1)|E(Pj→i)|hα(Pi→j) det(Hα(X))

where X is the induced mixed graph over V (D)\V (Pi→j) and Pi→j ∈ ℑij . Therefore using
Equation 1 together with Theorem 2 we have,

det(Mij) =
∑

Pi→j∈ℑij

[
(−1)|E(Pi→j)|hα(Pi→j)

∑
D′

(−1)r(D
′)2S(D

′)Re

(∏
C

hα(C⃗)

)]

where the second sum is taken over all spanning elementary mixed subgraphs of D\Pi→j , the
product ranges over all mixed cycles C in D′, and C⃗ is any mixed closed walk traversing C

Example 1. Consider the mixed graph D shown in Figure 1 and let Hi be its i- Hermitian
adjacency matrix. Observing that D has unique perfect matching and using Theorem 2 we get
det(Hi) = (−1)8−4 = 1.
One can easily check that for any two vertices i and j in D there is at most one path with the property
D\Pi→j has spanning elementary mixed subgraphs. Furthermore, the D unique cycle cannot be part
of any spanning elementary mixed subgraph of D. Since for any path P in D has i-weight 0, ±i or
±1 and using Theorem 3, we have H−1

i is {0,±1,±i}-matrix. In fact a simple calculation can be
done to show that H−1

i is a Hermitian adjacency matrix of another mixed graph.



Figure 1: The mixed graph D
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