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Abstract

We introduce a new operation between graph classes and we prove the existence of an explicitly
constructive bound on the size of the obstruction set of the resulting class, i.e., the set of
minor-minimal graphs not belonging to the class. We define the binary operation ▶ between
minor-closed graph classes as follows. Given a graph G and a set X ⊆ V (G), the torso of X in
G is the graph obtained from G after removing all vertices not in X and making adjacent each
pair of non-adjacent vertices in X that are connected by a path whose internal vertex are not
in X. Given two minor-closed graph classes B and G, we set B▶G to be the class of all graphs
G for which there is some set X ⊆ V (G) such that the torso of X in G belongs to B and the
graph obtained from G after the removal of X belongs to G. We prove that if the obstruction
set of B contains at least one planar graph, then the size of the obstructions of B▶G is bounded
by a computable function of the size of the obstructions of B and G.

1 Introduction

A graph H is a minor of a graph G if H can be obtained from G by a sequence of vertex removals,
edge removals, and edge contractions. Given a set of graphs F , we denote by excl(F) the set
containing every graph that excludes all graphs in F as minors. A graph class G is minor-closed if
every minor of a graph in G is also a member of G. The (minor) obstrucion set of a graph class G is
the set obs(G) of all minor-mininal graphs that are not contained in G. When G is minor-closed, the
set obs(G) completely characterizes G, as G = excl(obs(G)). By definition, no two elements of obs(G)
are comparable with respect to the minor relation, and by Robertson-Seymour theorem [12] we know
that there is no infinite set of graphs where every pair of graphs is non-comparable by the minor
relation. This implies that for every graph class G, the set obs(G) is always finite. Unfortunately,
while we know that obs(G) is finite, there is no general way to construct this set, given some (finite)
description of G [7] (see also [9, 10]). Therefore, we may resort to a case study of proving bounds
on the size of obs(G) for particular instantiations of G (see [2, 11, 13, 1, 4, 5]). Having such a bound
on obs(G), one may use the finite description of G in order to identify all obstructions of obs(G),
by exhaustive search. As an attempt to enlarge the constructibility horizon of Robertson-Seymour
theorem, researchers have considered several mechanisms to build minor-closed graphs classes from
simpler ones. An interesting problem is whether it is possible to construct the obstruction of the
new class given the obstructions of the simpler ones. To detect the widest possible set of operations
between graphs classes that maintains this constructibility is an interesting challenge. We proceed
with some definitions.

1The results of this extended abstract are based on https://arxiv.org/abs/2111.02755.
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Basic definitions on graphs. For S ⊆ V (G), we set G[S] to be the graph induced by the
vertices in S and use the shortcut G \ S to denote G[V (G) \ S]. Given a class of graphs G we
define sobs(G) = max{|V (H)| | H ∈ obs(G)}. Given a graph G, we denote by cc(G) the set of all
connected components of G. For a graph G and a set X ⊆ V (G), the torso of X in G is the graph
torso(G,X) obtained by contracting each C ∈ cc(G \X) to a vertex vC , adding all edges between
the neighborhood of each vC , and finally removing all vertices vC .

Constructive operations. Given an integer r ≥ 1, a graph class operation of arity r is any
function f : (2Gall)r → 2Gall , where 2Gall is the powerset of the class Gall of all graphs. Such an
operation f is minor-invariant if whenever G1, . . . ,Gr are minor-closed graph classes, then so is
f(G1, . . . ,Gr). We say that a minor-invariant graph class operation f is explicitly constructive if
there is a computable function f : N → N such that if G1, . . . ,Gr are minor-closed graph classes,
then sobs(f(G1, . . . ,Gr)) ≤ f(max{sobs(Gi) | i ∈ {1, . . . , r}}).

It is easy to verify that the intersection operation ∩ is explicitly constructive. The case of
the union operation ∪ is more difficult and has been studied by Adler, Grohe, and Kreutzer [2]
– see also [11] where the notion of intertwines has been introduced. It has also been proved
by Bulian and Dawar [3] that the operation c defined as Gc = {G | ∀C ∈ cc(G), C ∈ G} is
also explicitly constructive. The same was proven recently in [6] for the operation b defined as
Gb = {G | ∀C ∈ bc(G), C ∈ G}, where bc(G) is the set of all blocks of G. We enlarge this set of
operations by defining the graph class operation ▶ as follows:

B▶G = {G | ∃X ⊆ V (G), torso(G,X) ∈ B ∧ G \X ∈ G}.

It is easy to prove that ▶ is minor-invariant. Here we should stress that, alternatively, one might
define B▶G by replacing torso by torso+, where torso+(G,X) is defined as torso(G,X) with the
difference that now we do not remove the contracted vertices vC in the end. We can prove the
following.

Theorem 1. The operation ▶ is explicitly constructive when restricted to B’s where obs(B) contains
some planar graph.

2 Concluding remarks

As discussed above, the operation ▶ can be seen as a way to create minor-closed classes by “com-
posing together” simpler ones. The only previously known result about the constructibility of ▶

follows from [2, 13] (see also [8]) for the case where |X| ≤ 1, that is, when obs(B) = {K2}. The-
orem 1 extends this for every obstruction set containing some planar graph. It is an interesting
question whether ▶ remains explicitly constructive if we drop the planarity condition on obs(B).
Finally, we wish to clarify that the upper bounds emerging from our proof are immense. It would
be certainly desirable to give an estimation of an upper bound on sobs(B▶G) as a “reasonable”
function of sobs(B) and sobs(G).
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