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Abstract

The Thue number π(G) of a graph G is the minimum number of colors needed to color G
without creating a square on a path of G. For a graph class C, π(C) is the supremum of π(G)
over the graphs G ∈ C. The Thue number has been investigated for famous minor-closed classes:
π(tree) = 4, 7 ⩽ π(outerplanar) ⩽ 12, and 11 ⩽ π(planar) ⩽ 768. Following a suggestion of
Grytczuk, we consider the generalized parameters πk(C) such that only squares of period at
least k must be avoided. Thus, π(C) = π1(C). We show that π5(tree) = 2, π2(tree) = 3, and
πk(planar) ⩾ 11 for every fixed k.

1 Introduction

A coloring of a graph G is non-repetitive if the sequence induced by the colors of any path of
G is not a square. The Thue number π(G) of G is the minimum number of colors needed in a
non-repetitive coloring G. Recall that the period of a square uu is |u|.

For a graph class C, π(C) is the supremum of π(G) over the graphs G ∈ C. Let twk denote the
class of graphs with treewidth at most k.

Theorem 1.

• π(path) = 3 [12]

• π(tree) = 4 [7]

• 7 ⩽ π(outerplanar) ⩽ 12 [2]

• π(twk) ⩽ 4k [9]

• 11 ⩽ π(planar ∩ tw3) ⩽ π(planar) ⩽ 768 [5, 4]

Other types of coloring, namely proper coloring and star coloring [1], are defined by forbidding
only squares of period 1 and squares of period 1 and 2, respectively. The corresponding chromatic
numbers χ and χs thus satisfy χ(C) ⩽ χs(C) ⩽ π(C) for every graph class C.

This paper investigates another variation of non-repetitive coloring, suggested by Grytczuk,
such that only large enough squares are forbidden. The parameter πk(G) is the minimum number
of colors needed to color G such that no squares of period at least k appears in G. We similarly
define πk(C) for a graph class C, so that π(C) = π1(C) ⩾ π2(C) ⩾ π3(C) ⩾ · · ·

The case of words, i.e. infinite paths, is already settled.

Theorem 2.

• πk(path) = 3 for 1 ⩽ k ⩽ 2 [12]

• πk(path) = 2 for k ⩾ 3 [6]



We settle the case of trees in Section 2.

Theorem 3.

• π1(tree) = 4

• πk(tree) = 3 for 2 ⩽ k ⩽ 4

• πk(tree) = 2 for k ⩾ 5

We also obtain a lower bound for planar graphs in Section 3.

Theorem 4. for every fixed k, πk(planar ∩ tw3) ⩾ 11.

This disproves a conjecture of Grytczuk [8] that πk(planar) = 4 for some k.
For any given graph G, πk(G) is a non-increasing function of k that eventually reaches 1.

Actually, it reaches 1 for a value k when G contains no path of length 2k. It is thus natural to ask
what are the classes of graphs C for which there exists k such that πk(C) ⩽ 2. We show that for
the class Ct of graphs with blocks of size at most t, πk(Ct) eventually reaches 2.

Theorem 5. For any integer t ⩾ 2 and graph G with no block of order more than t, πk(G) ⩽ 2 for
some sufficiently large k.

In contrast, the class of cactus graphs is one of the simplest classes of graphs with blocks of
arbitrarily large order, and we show that for this class πk never reaches 2.

Theorem 6. For any integer k, there exists a cactus graph G such that πk(G) > 2.

2 Trees

Colorings of trees have been considered [11] that minimize the critical exponent of repetitions. To
avoid large squares, and for the same reasons as in [11], we can assume without loss of generality
that our colored tree is rooted and that all the vertices at the same distance to the root have the
same color. So we only need to describe the word w lying on one branch of the tree. We adopt
the counter-intuitive convention that the reading direction of w goes towards the root. Then every
factor fs of w with |s| = 1 should be such that fsfR (where fR is the reverse of f) avoids the

forbidden large squares. Let w3 be any infinite
(
7
4

+
)
-free ternary word.

We obtain w by taking the image of any
(
7
4

+
)
-free ternary word by the following morphisms.

We use the 12-uniform morphism g2 to prove π2(tree) ⩽ 3 and the 21-uniform morphism g5 to
prove π5(tree) ⩽ 2:

g2(0) = 011220012201

g2(1) = 122001120012

g2(2) = 200112201120

g5(0) = 001101110001010110010

g5(1) = 001101110001001110101

g5(2) = 001101110001001101010

A word u is d-directed if for every factor f of u of length d, the word fR is not a factor of u. To
prove that a word is d-directed, it suffices to check its factors of length d. A word is (β+, n)-free if
it contains no repetition with exponent strictly greater than β and period at least n. To prove the
(β+, n)-freeness, we use the method described in [10]. This way, we obtain the following.



• g2(w3) is 3-directed and
(
19
10

+
, 2
)
-free.

• g5(w3) is 20-directed and
(
83
42

+
, 5
)
-free.

Consider g2(w3). For contradiction, suppose that g2(w3) contains a factor fs with |s| = 1 such
that the word fsfR contains a square of period p ⩾ 20. Since fsfR is a palindrome, we can assume

that the center of the square is on the left of s. Since fs is
(
19
10

+
, 2
)
-free, fs must contain (as a

suffix) a prefix of this square of length at least p+ 1 and at most 19
10p. So sfR must contain (as a

prefix) a suffix x of this square of length at most p and at least 1
10p+1 ⩾ 3. Because of the square,

x appears both in fs and sfR. Notice that (fs)R = sfR, so that fs contains both x and xR. This
is a contradiction since |x| ⩾ 3 and fs is 3-directed. Finally, an exhaustive computer check shows
that the words fsfR contain no square of period p with 2 ⩽ p ⩽ 19.

The proof for g5(w3) is similar.

3 Planar graphs

We start with helpful results on paths and outerplanar graphs.

Lemma 1. Let k be a fixed integer and let P be a path. In every proper coloring of P avoiding
squares of period at least k, every subpath of P with 4k vertices contains at least 3 colors.

Proof. A proper 2-coloring of the path of 4k vertices contains the square (01)2k of period 2k. So
at least 3 colors are needed to avoid squares of period at least k.

Lemma 2. For every fixed k, there exists an outerplanar graph that admits no proper 5-coloring
avoiding squares of period at least k.

Proof. Our outerplanar graph G has a root vertex and vertices at distance i from the root are said
to be on level i. A vertex on level i+ 1 has exactly one neighbor on level i. The neighborhood on
level i+ 1 of vertex on level i induces a very long path. Finally, G contains 6k levels.

For contradiction, suppose that G has a proper 5-coloring avoiding squares of period at least k
using the colors {0, 1, 2, 3, 4}. Without loss of generality, the root (on level 0) is colored 0. Without
loss of generality, the very long path on level 1 contains two non-intersecting occurrences of a long
factor of the form w1. Now we consider the very long path on level 2 adjacent to the suffix letter 1
of the rightmost occurrence of w1. It does not contain color 0, since otherwise we would have the
long square w10w10 such that the first 0 is the root and the second 0 is on level 2. So it must be
colored with the remaining colors {2, 3, 4}. By Lemma 1, each of the three colors in {2, 3, 4} are
recurrent in our very long path. In particular, it contains two non-intersecting occurrences of a
long factor of the form z2. On level 3, below the suffix letter 2 of the rightmost occurrence of z2,
the very long path does not contain color 2, since otherwise we would have the long square z21z21.
So this very long path on level 3 must be colored with letters {0, 3, 4}.

This line of reasonning leads to the existence of a downward path from the root such that the
vertex on level i is colored i (mod 3): By induction, we consider the very long path on level i
adjacent to the suffix letter p = (i− 1) (mod 3) of the rightmost occurrence of a long factor of xp
on level i − 1. Also by induction, the grandparent of this very long path is colored g = (i − 2)
(mod 3). So this very long path contain neither color p and nor color g, since otherwise we would



have the long square xpgxpg. Thus it must be colored with the three colors in {0, 1, 2, 3, 4}\{p, g} =
{i (mod 3), 3, 4}, which implies that color i (mod 3) appears on level i.

So G contains the long square (012)2k.

The proof of Theorem 4 builds on a similar approach. We also consider an arbitrary large
graph of our class, a planar 3-tree obtained from K4 by iteratively adding a vertex of degree 3 in
every face, a sufficiently large number of times. As above, we use the fact that for each vertex,
its neighborhood contains a graph with particular coloring properties. Here, this graph is the
outerplanar graph witnessing Lemma 2.
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