
Deciding twin-width at most 4 is NP-complete1

Pierre Bergé — LIP, ENS Lyon, Université Lyon 1, France
Edouard Bonnet — LIP, ENS Lyon, Université Lyon 1, France
Hugues Déprés — LIP, ENS Lyon, Université Lyon 1, France

Abstract

We show that determining if an n-vertex graph has twin-width at most 4 is NP-complete,
and requires time 2Ω(n/ logn) unless the Exponential-Time Hypothesis fails. Along the way,
we give an elementary proof that n-vertex graphs subdivided at least 2 logn times have twin-
width at most 4. We also show how to encode trigraphs H (2-edge colored graphs involved
in the definition of twin-width) into graphs G, in the sense that every d-sequence (sequence of
vertex contractions witnessing that the twin-width is at most d) of G inevitably creates H as
an induced subtrigraph, whereas there exists a partial d-sequence that actually goes from G to
H. We believe that these facts and their proofs can be of independent interest.

1 Introduction to twin-width
A trigraph is a graph with some edges colored black, and some colored red. A (vertex) contraction
consists of merging two (non-necessarily adjacent) vertices, say, u, v into a vertex w, and keeping
every edge wz black if and only if uz and vz were previously black edges. The other edges incident
to w become red (if not already), and the rest of the trigraph stays the same. A contraction
sequence of an n-vertex graph G is a sequence of trigraphs G = Gn, . . . , G1 = K1 such that Gi is
obtained from Gi+1 by performing one contraction. A d-sequence is a contraction sequence where
all the trigraphs have red degree at most d. The twin-width of G, denoted by tww(G), is then
the minimum integer d such that G admits a d-sequence. See Figure 1 for an example of a graph
admitting a 2-sequence. The red graph of a trigraph is obtained by simply deleting its black edges.
A partial d-sequence is similar to a d-sequence but ends on any trigraph Gi, instead of on the
1-vertex (tri)graph G1. Twin-width can be naturally extended to matrices over a finite alphabet

a

b

c

d

e

f

g

a

b

c

d

ge

f

ef

b

c

gef

a dad

c

g

ad

b efbef

c

adg

bef

adg

bcef
abcdefg

Figure 1: A 2-sequence witnessing that the initial graph has twin-width at most 2.

(in an unordered [6], or an ordered setting [4]), and hence to any binary structure.
Surprisingly many classes turn out to be of bounded twin-width. Such is the case of graphs with

bounded clique-width, H-minor free graphs for any fixed H, posets with antichains of bounded size,
strict subclasses of permutation graphs, map graphs, bounded-degree string graphs [6], as well as
Ω(logn)-subdivisions of n-vertex graphs, and some classes of cubic expanders [3]. One of the main
algorithmic interests with twin-width is that first-order (FO) model checking, that is, deciding
if a first-order sentence ϕ holds in a graph G, can be decided in fixed-parameter time (FPT)

1The full version of this extended abstract can be found at: https://arxiv.org/abs/2112.08953

https://arxiv.org/abs/2112.08953

f(|ϕ|, d) · |V (G)| for some computable function f , when given a d-sequence of G [6]. As for most
classes known to have bounded twin-width, one can compute O(1)-sequences in polynomial time for
members of the class, the latter result unifies and extends several known results [9, 11, 12, 10, 13]
for hereditary (but not necessarily monotone) classes.

2 Results
Prior to this paper, no algorithmic lower bound was known for computing the twin-width. Our
main result rules out an (exact) XP algorithm to decide tww(G) 6 k, that is, an algorithm running
in time nf(k) for some computable function f . Indeed we show that deciding if the twin-width of
a graph is at most 4 is intractable.

Theorem 1. Deciding if a graph has twin-width at most 4 is NP-complete. Furthermore, no
algorithm running in time 2o(n/ log n) can decide if an n-vertex graph has twin-width at most 4,
unless the ETH fails.

Is Theorem 1 surprising? On the one hand, it had to be expected that deciding, given a
graph G and an integer k, whether tww(G) 6 k would be NP-complete. This is the case for
example of treewidth [1], clique-width [8], rank-width [15] and mim-width [16]. On the other hand,
the parameterized complexity of these width parameters is more diverse and harder to predict.
Famously, Bodlaender’s algorithm is a linear FPT algorithm to exactly compute treewidth [2]. In
contrast, it is a long-standing open whether an FPT or a mere XP algorithm exist for computing
clique-width exactly, or even simply if one can recognize graphs of clique-width at most 4 in
polynomial time (deciding clique-width at most 3 is indeed tractable [7]).

Theorem 1 almost completely resolves the parameterized complexity of exactly computing twin-
width on general graphs. Two questions remain: can graphs of twin-width at most 2, respectively
at most 3, be recognized in polynomial time. Graphs of twin-width 0 are cographs, which can be
recognized in linear time [14], while it was recently shown that graphs of twin-width at most 1 can
be recognized in polynomial time [5].

In the course of establishing Theorem 1 we show and generalize the following, where an (> s)-
subdivision of a graph is obtained by subdividing each of its edges at least s times.

Theorem 2. Any (> 2 logn)-subdivision of an n-vertex graph has twin-width at most 4.

We knew that those graphs have bounded twin-width [3], but not with the explicit bound.

3 Outline of the proof of Theorem 1
The membership to NP is ensured by the d-sequence: a polynomial-sized certificate that a graph
has twin-width at most d, checkable in polynomial time. We thus focus on the hardness part of
the statement, and design a quasilinear reduction from 3-SAT.

Given an n-variable instance I of 3-SAT, we construct an O(n logn)-vertex graph G = G(I)
which has twin-width at most 4 if and only if I is satisfiable.

We proceed in two steps. First, we design a trigraph H, depending on I such that H has
twin-width at most 4 if and only if I is satisfiable. However, we aim at showing the NP-hardness
of computing twin-width on (plain) graphs, and not trigraphs. Hence, as a second step, we provide
a construction allowing to encode trigraphs H into graphs G.

Given any 3-SAT instance I, the red graph of the trigraph H produced has maximum degree 2
and connected components of bounded size. Our encoding allows us, given a trigraph H with red
degree at most d, to obtain a graph G such that H admits a 2d-sequence iff G admits a 2d-sequence.
Hence, for d = 2:

Lemma 1. Given any trigraph H whose red graph is a disjoint union of paths of bounded size and
isolated vertices, one can compute in polynomial time a graph G on O(|V (H)|) vertices such that
H has twin-width at most 4 if and only if G has twin-width at most 4.

Now, we give some intuition for the first step of the reduction, i.e. transforming a 3-SAT
instance I into an equivalent trigraph H for the problem of deciding whether tww(H) = 4. We
propose several gadgets: their role is described below.

• the fence gadget is a trigraph F whose red graph is a 12-vertex path. Its vertex set can be
partitionned into two sets A = {ai | 1 6 i 6 6} and B = {Bi | 1 6 i 6 6}. A set S of vertices
is attached to the fence if it is fully adjacent to A and fully non-adjacent to B. We ensure in
this reduction that every vertex not attached to F is fully adjacent to B or fully non-adjacent
to A. Our intent is that, in a 4-sequence, a vertex of F can be contracted with another vertex
only when S has been contracted into a single vertex.

• the vertical set is made up of two vertices (called a vertical pair) attached to a fence.

• the propagation gadget of two vertical sets: it forces, in a 4-sequence, one vertical pair to be
contracted before the second one.

b1

a1

b2

a2

b3a3

b4

a4

b5

a5

b6 a6

e

(a) The fence gadget F .

x1

y1

(b) A vertical set.

x1

y1

x2

y2

x3

y3

x4

y4

(c) A series of propagation gadgets.

Figure 2: We represent every fence gadget as a brown rectangle surrounding set S it is attached to.

• the AND gadget: it forces two vertical pairs to be contracted before a third one. The OR
gadget forces at least one among two vertical pairs to be contracted before a third one.

• the variable gadget: it contains an “input” fence with three vertices x,>,⊥ and two “output”
vertical pairs {x>, y>}, {x⊥, y⊥}. This gadget is constructed in such a way that, inside the
3-vertex fence, the first pair to be contracted must be either (x,>) or (x,⊥). Contracting
(x,>) (resp. (x,⊥)) precedes necessarily the contraction of the vertical pair {x>, y>} (resp.
{x⊥, y⊥}). The meaning of this action is to assign variable x to boolean True (resp. False).

By assembling these elements together, we can translate any instance I into an equivalent
boolean circuit made up of fences and vertical sets. The trigraph produced is H. Each connected
component of its red graph is the red graph of a fence, i.e. a 12-vertex path.

References
[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.

SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[2] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

[3] E. Bonnet, C. Geniet, E. Kim, S. Thomassé, and R. Watrigant. Twin-width II: small classes.
In Proc. of SODA, pages 1977–1996, 2021.

[4] E. Bonnet, U. Giocanti, P. Ossona de Mendez, P. Simon, S. Thomassé, and S. Toruńczyk.
Twin-width IV: ordered graphs and matrices. CoRR, abs/2102.03117, 2021.

[5] E. Bonnet, E. Kim, A. Reinald, S. Thomassé, and R. Watrigant. Twin-width and polynomial
kernels. In Proc. of IPEC, volume 214, pages 10:1–10:16, 2021.

[6] E. Bonnet, E. Kim, S. Thomassé, and R. Watrigant. Twin-width I: tractable FO model
checking. In Proc. of FOCS, pages 601–612. IEEE, 2020.

[7] D. G. Corneil, M. Habib, J. Lanlignel, B. A. Reed, and U. Rotics. Polynomial-time recognition
of clique-width ≤3 graphs. Discret. Appl. Math., 160(6):834–865, 2012.

[8] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Clique-width is NP-complete.
SIAM J. Discret. Math., 23(2):909–939, 2009.

[9] J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model-checking. SIAM
J. Comput., 31(1):113–145, 2001.

[10] J. Gajarský, P. Hlinený, D. Lokshtanov, J. Obdrzálek, S. Ordyniak, M. S. Ramanujan, and
S. Saurabh. FO model checking on posets of bounded width. In Proc. of FOCS, pages 963–974,
2015.

[11] J. Gajarský, P. Hlinený, J. Obdrzálek, and S. Ordyniak. Faster existential FO model checking
on posets. Logical Methods in Computer Science, 11(4), 2015.

[12] R. Ganian, P. Hlinený, D. Král, J. Obdrzálek, J. Schwartz, and J. Teska. FO model checking
of interval graphs. Logical Methods in Computer Science, 11(4), 2015.

[13] S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In Proc. of
SODA, pages 82–101, 2014.

[14] M. Habib and C. Paul. A simple linear time algorithm for cograph recognition. Discret. Appl.
Math., 145(2):183–197, 2005.

[15] P. Hlinený and S. Oum. Finding branch-decompositions and rank-decompositions. SIAM J.
Comput., 38(3):1012–1032, 2008.

[16] S. H. Sæther and M. Vatshelle. Hardness of computing width parameters based on branch
decompositions over the vertex set. Theor. Comput. Sci., 615:120–125, 2016.

	Introduction to twin-width
	Results
	Outline of the proof of Theorem 1

