
Maximum size of a triangle-free graph with bounded maximum
degree and matching number
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Abstract

Determining the maximum number of edges under degree and matching number constraints
have been solved for general graphs ([4, 1]). Since extremal graphs contain claws, C4’s and
triangles, it is interesting to ask if the maximum number of edges decreases when these structures
are forbidden separately. The first two cases being already settled ([5, 3]), in this paper we focus
on triangle-free graphs. We show that unlike most cases for claw-free graphs and C4-free graphs,
forbidding triangles from extremal graphs causes a strict decrease in the number of edges and
adds to the hardness of the problem. We provide a formula giving the maximum number of
edges in a triangle-free graph with degree at most d and matching number at most m for all
cases where d ≥ m, and for the cases where d < m with either d ≤ 6 or Z(d) ≤ m < 2d where
Z(d) is roughly 5d/4. We also provide an integer programming formulation for the remaining
cases and as a result of further discussion on this formulation, we conjecture that our formula
giving the size of triangle-free extremal graphs is also valid for these open cases.

1 Introduction

Determining the maximum number of edges of a graph when its maximum degree is at most d
and its matching number is at most m for two given integers d and m, is a special case of a more
general problem posed by Erdős and Rado [6]. This problem is also equivalent to determining
Ramsey numbers for line graphs [2]. This question has been first solved in 1974 by Chvátal and
Hanson [4] using some optimization techniques. A constructive proof has only came out much later
in 2009 by Balachandran and Khare [1].

Let ∆(G) denote the maximum degree of G and ν(G) the size of a maximum matching of
G. Using Vizing’s Theorem, we obtain |E(G)| ≤ (∆(G) + 1)ν(G) for any graph. In [1], it has
been shown that this upper bound is actually met when some divisibility conditions hold, and
we are “pretty close” to it otherwise. More precisely, the authors show that an extremal graph

has dm +
⌊
d
2

⌋ ⌊
m
d d
2
e

⌋
edges; moreover, they exhibit an extremal graph (with maximum number of

edges under given degree and matching number constraints) whose connected components consist
of stars, complete graphs and in some cases “almost complete graphs” that contain C4’s (cycles of
length 4), but do not inform us on the unicity of these extremal graphs. This gives rise to a natural
question: Can the same maximum number of edges be still achieved if we restrict the structure
of extremal graphs? This question is especially interesting for three classes of graphs obtained by
restricting the above-mentioned types of components: claw-free graphs obtained by forbidding the
smallest star, triangle-free graphs obtained by forbidding the smallest complete graph, and C4-free
graphs (since C4’s occur in “almost complete graphs”). Among these directions, the situation of
claw-free graphs has been settled by Dibek et al. in [5] and the situation of chordal graphs (which
are much more restricted than C4-free graphs) by Blair et al. in [3]. In both graph classes, the size
of edge-extremal graphs are the same as the general upper bound in most of the cases.



In this paper, we investigate the direction that remained open and consider triangle-free graphs
from the same perspective. Unlike previous results, the size of edge-extremal triangle-free graphs
that we find in this paper does not achieve the general upper bound apart from two simple cases,
namely d = 1 or m < bd/2c. This adds to the difficulty of proving the optimality in our results.
We provide a single formula giving the maximum number of edges of a triangle-free graph when its
maximum degree is at most d and its matching number is at most m for two given integers d and m
such that d ≥ m or m > d with either d ≤ 6 or Z(d) ≤ m < 2d where Z(d) is roughly 5d/4. Then,
we investigate the remaining cases, namely for natural numbers m and d such that 7 ≤ d < m with
either m < Z(d) or m ≥ 2d. For these open cases, we suggest an integer programming formulation
based on our earlier observations. With further discussion on this formulation, we conjecture that
the formula we provide is valid in general, with no condition on d and m.

2 Triangle-free extremal graphs

For a given graph class C and two given positive integers d and m, we define MC(d,m) to be the set
of all graphs G in C satisfying ∆(G) ≤ d and ν(G) ≤ m. A graph in MC(d,m) with the maximum
number of edges is called (edge)-extremal, and the number of edges of an edge-extremal graph in
MC(d,m) is denoted by fC(d,m). A graph G is said to be factor-critical if G \ v has a perfect
matching for all v ∈ V (G). GC(d,m) is the subclass of the set of edge-extremal graphs in MC(d,m)
which consists of the graphs having maximum number of connected components isomorphic to a
d-star. The following is a key lemma that describes the structure of edge-extremal graphs.

Lemma 1. [1, 3] Let d,m be natural numbers, and let C be a graph class that is closed under
vertex deletion and closed under taking disjoint union with stars. Take a graph G ∈ GC(d,m).
Then, every connected component of G that is not a d-star is factor-critical.

Let M be the class of triangle-free graphs. We first strengthen Lemma 1 for triangle-free graphs
to derive the exact value of fM(d,m) for various cases.

Proposition 1. Let d and m be natural numbers. For any edge-extremal graph in GM(d,m) (whose
number of d-star components is maximum), every component H of it which is not a d-star is a
factor-critical and edge-extremal graph in MM(d, ν(H)) with matching number ν(H) ≥ d.

Using Proposition 1 and constructing extremal graphs, we settle the problem for d ≥ m.

Theorem 1. With the preceding notation, fM(d,m) = dm for d > m ≥ 1, fM(1, 1) = 1 and
fM(d, d) = d2 + 1 for d ≥ 2.

Next, we consider m > d. After settling the trivial case d = 1, we assume d ≥ 2 in the rest.

Theorem 2. With the preceding notation, we have fM(1,m) = m for all m ≥ 1.

For any d ≥ 2, let Z(d) be the smallest natural number n such that there exists a d-regular (if
d is even) or almost d-regular (if d is odd) triangle-free and factor-critical graph G with ν(G) = n.

Proposition 2. For every d ≥ 2, the value Z(d) and a triangle-free factor-critical (almost) d-
regular graph Cd with matching number Z(d) exist.

Our results are based on the following key property which states that if H is a connected
component of a graph G ∈ GM(d,m) and if it is not a d-star, then in addition to the assumption
ν(H) ≥ d given in Proposition 1, we can also bound ν(H) from above by Z(d).



Lemma 2. Let d and m be natural numbers with d ≥ 2, and let G ∈ GM(d,m). Then, for every
connected component H of G, we have ν(H) ≤ Z(d).

We can find the exact value of Z(d) for small values of d and for even d, and identify a very
restricted interval for Z(d) if d is odd.

Lemma 3. We have Z(d) = d for d ∈ {2, 3}, and Z(d) = d + 1 for d ∈ {4, 5}. Moreover,
Z(d) ≥ d+ 1 holds for all d ≥ 4.

Lemma 4. For d ≥ 2, if d is even then we have Z(d) = b5d/4c; if d is odd then we have
b5(d− 1)/4c ≤ Z(d) ≤ b5(d+ 1)/4c.

For d ≤ 6, the value of Z(d) given in Lemmas 3 and 4 allows us to compute fM(d,m) for m > d.
Besides, the case d ≤ Z(d) < 2d for any d ≥ 2 can be derived using Proposition 1. It turns out
that all our findings can be summarized in a single formula that we state as our main result. Recall
that Cd is a (almost) d-regular triangle-free factor-critical graph with matching number Z(d) whose
existence is guaranteed by Proposition 2.

Theorem 3. [Main Theorem] Let d and m be natural numbers with d ≥ 2, and let k and r be
non-negative integers such that m = kZ(d) + r with 0 ≤ r < Z(d). Then, for all the cases with
d ≥ m, and for the cases d < m with either d ≤ 6 or Z(d) ≤ m < 2d, we have

fM(d,m) =

{
dm+ kbd/2c if r < d,

dm+ kbd/2c+ r − d+ 1 if r ≥ d,

where a graph in GM(d,m) can be constructed as the disjoint union of k copies of Cd and

(i) Ad if r ≥ d, where Ad is a graph on 2d + 1 vertices obtained by replacing each one of two
adjacent vertices of a C5 with d − 1 copies so that the copies of two vertices adjacent if and
only if the originals are (a blow-up of C5).

(ii) r copies of d-stars if r < d.

We observe that apart from two simple cases (where m < bd/2c or 1 = d < m), we loose edges
(with respect to the general case) by restricting the extremal graphs to be triangle-free.

3 An integer programming formulation and further discussions

In light of Theorem 3, the remaining open cases are for 7 ≤ d < m, and either m < Z(d) or
m ≥ 2d. To solve these open cases, we develop an integer programming formulation based on our
earlier observations. By Proposition 1 and Lemma 2, there is an edge-extremal graph G ∈ GM(d,m)
whose components are either d-stars, or edge-extremal factor-critical triangle-free graphs H where
d ≤ ν(H) ≤ Z(d). In other words, by letting xi to be the number of connected components of G
whose matching number is i, we have :

fM(d,m) = d
(
m−

Z(d)∑
i=d

ixi

)
+

Z(d)∑
i=d

fM(d, i)xi = dm+

Z(d)∑
i=d

(fM(d, i)− di)xi.

It follows that, for a fixed d, the value of fM(d,m) can be determined for all natural numbers
m by finding the values of fM(d, i) and corresponding xi values only for d ≤ i ≤ Z(d). Accordingly,
fM(d,m) can be computed as the optimal value of the following integer programming:



Model 1: max dm+

Z(d)∑
i=d

(fM(d, i)− di)xi

subject to

Z(d)∑
i=d

ixi ≤ m

xi ≥ 0, xi ∈ Z
This formulation can be seen as a bounded knapsack problem where there is a bounded number

of items of each type. The utilities of the items are (fM(d, i) − di) for d ≤ i ≤ Z(d) and the
volumes of the items range from d to Z(d) which is yet unknown if d is odd (see Lemma 4). Since
fM(d, d) = d2 + 1 for d ≥ 2, and fM(d, Z(d)) = dZ(d) + bd/2c for d ≥ 2 by Theorem 3, it remains to
compute fM(d, i) for d < i < Z(d). We conjecture that fM(d, i) follows the same trend as what we
identified in Theorem 3, which we could verify the correctness for small values by computer search.

Conjecture 1. Theorem 3 holds also for 7 ≤ d < m < Z(d). In other words, for 7 ≤ d < i < Z(d),
we have fM(d, i) = di+ i− d+ 1.

We show that if Conjecture 1 holds, then Model 1 admits an optimal solution with nice prop-
erties. In particular, one can reach fM(d,m) edges by taking the graph Cd as much as possible and
adding either one more graph that is extremal for fM(d, r) or r many stars, depending on r ≥ d
where r is the remainder of m when divided by Z(d). Notice that this is exactly how we construct
an extremal graph in Theorem 3. Therefore, the formula in Theorem 3 would be valid for all
integers d and m if Conjecture 1 is true:

Conjecture 2. Let m = kZ(d) + r for some 0 ≤ r < Z(d). Then, we have

fM(d,m) =

{
dm+ kbd/2c if r < d

dm+ kbd/2c+ r − d+ 1 if r ≥ d.

We also conjecture about the value of Z(d) which plays a crucial role in the computation of
fM(d,m) and the construction of extremal graphs.

Conjecture 3. For d ≥ 21 and odd, we have Z(d) = b5(d+ 1)/4c.
Lastly, we note that computing fM(d, i) for d ≤ i ≤ Z(d) can be seen as a version of the Erdős-

Stone’s Theorem where we consider the maximum number of edges in a graph on 2i + 1 vertices
not containing a subgraph isomorphic to any graph in the family F = {K3,K1,d}.
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