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Abstract

A dicoloring of a directed graph, as introduced by Neumann-Lara, is a partition of the graph
in sets of vertices that induce graphs with no directed cycles. A directed graph is said to be
oriented if there exists at most one arc between each pair of vertices. While it is obvious that the
complete directed graph with n vertices is the smallest n-chromatic graph, finding the smallest
oriented graph that requires n colors is a very interesting and challenging problem. It is already
known that the smallest 2-, 3- and 4-chromatic oriented graphs have respectively 3, 7 and 11
vertices. However, the question of the smallest oriented graph of dichromatic number 5 has
been open since 1994, when Neumann-Lara conjectured that the answer was 17. We solve the
problem by proving that it actually has size 19.

Proper coloring of undirected graphs lies among the most studied problems in graph theory.
It asks to color vertices while giving different colors to adjacent ones. In [11], Neumann-Lara
introduced a generalization of this problem to directed graphs. When walking in an undirected
graph, an undirected edge between two vertices u and v can be used both to go from u to v and
from v to u, while in a directed graph, an arc uv can only lead from u to v. As such, undirected
graphs can be seen as a special case of directed graphs where for every arc uv, there also exists an
arc vu (such graphs are called symmetric directed graphs). Neumann-Lara’s generalized coloring
of directed graphs requires that there exists no monochromatic closed walk in the graph i.e. no
walk that starts and ends on the same vertex and only uses vertices of the same color. Like in the
undirected case, a pair of arcs uv and vu enforce that u and v receive different colors since they
form a closed walk. Such a pair or arc is called a digon. However, if there is no arc vu, u and v may
receive the same color even if there is an arc uv, as long as there is no monochromatic walk from
v to u. The smallest number of colors required for properly coloring a directed graph is called its
dichromatic number is sometimes denoted −→χ . While there exist other generalizations of coloring
to directed graphs (for example based on graph homomorphisms, see [4]), Neumann-Lara’s is the
best-known and has received evergrowing attention since its introduction.

Since digons are similar to undirected edges, their impact on colorability of graphs has already
been studied very extensively. Hence, many papers on directed coloring forbid them and only focus
on oriented graphs i.e. graphs where there can be at most one arc between two given vertices. One
can illustrate the difference with the following: for any integer k, the smallest directed graph of
dichromatic number k is easily constructed as the complete graph on k vertices (complete means
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that for every pair of vertices u, v, there is both an arc uv and an arc vu). However, the question
becomes much harder when digons are forbidden. Actually, determining the size of the smallest
oriented graph of dichromatic number k was raised by Neumann-Lara in 1982 [12].

Many other related questions have also been studied in the literature. For instance, Bang-
Jensen et al. establish some structural results about k-critical directed graphs in [2], i.e.
directed graphs with dichromatic number k that are minimal by inclusion. The average degree
of such graphs was also source of attention in recent years. In [8, 10], the authors provide some
bounds on the smallest possible value of this parameter among all k-critical directed graphs on n
vertices. Note that the question is easily answered without the dependency in n since each vertex
of a k-critical graph needs to have in- and out-degree at least k − 1 and this value is reached by
complete graphs on k vertices. But here again, the question becomes much harder when digons are
forbidden: the smallest average degree of oriented k-critical graphs is still open even for k = 3 [1].

These works are also reminiscent of numerous works in the undirected case that look for the
smallest graph of chromatic number k that does not contain any complete subgraph of size c. The
problem has been especially well-studied for triangle-free graphs (the case c = 3), since this is the
smallest value of c that makes the problem non-trivial. In [3], Chvátal proved that the smallest
triangle-free k-chromatic graph has size 11 for k = 4 and Jensen and Royle proved in [9] through a
computer search that it has size 22 for k = 5. The question is still open for k = 6 where Goedgebeur
proved in [7] that it is between 32 and 40. For directed graphs, forbidding cliques of size c = 2
corresponds to considering oriented graphs, and actually yields again Neumann-Lara’s question.

Observe that adding arcs to a graph cannot decrease its dichromatic number. Therefore, for
every oriented graph, one can construct another one with same dichromatic number where every
pair of vertices is linked by exactly one arc. Such graphs are called tournaments. As such, the
search of the smallest oriented graph of dichromatic number k can be restricted to tournaments.
A tournament or a vertex set in a tournament is transitive if for every arc uv and arc vw, the
arc between u and w is from u to w. One can easily observe that coloring a tournament with k
colors amounts to partition its vertices into transitive subtournaments. Thus, our question can be
rephrased as finding the smallest tournament that cannot be partitioned into k− 1 transitive sets.
This formulation connects this problem to questions that Erdős and Moser raised 20 years before
Neumann-Lara’s definition of directed coloring in [5].

The question was asymptotically solved since the maximum chromatic number of a tournament
on n vertices is Θ( n

logn) [6, 5]. However, the question of finding the size of such tournaments for
small values of k is still mostly open. The smallest tournament of dichromatic number 2 (i.e.
non-transitive) is the directed cycle of size 3. The constructions for k = 4, 5 rely on the so-called
Paley tournaments. For every prime integer n of the form 4k + 3, the Paley tournaments on
n vertices Pn is the tournament whose vertex set is {0, ..., n − 1} and containing the arc ij if and
only if i− j is a square modulo n. In [12], Neumann-Lara proved that the smallest tournament of
dichromatic number 3 has size 7 and that there exists 4 such tournaments, including P7. He also
proved that the smallest tournament of dichromatic number 4 has size 11, is unique and is P11.

In the conclusion of [12], Neumann-Lara discussed future works about the size of the smallest 5-
chromatic tournaments. He claimed to know that the answer is between 17 and 19 and conjectured
that it is 17. To the best of our knowledge, no proof of these bounds has been published. Note
that the next natural candidate, namely the Paley tournament P19 is actually 4-colorable.

Moreover, the number of non-isomorphic tournaments on 17, 18 and 19 vertices have respectively
27, 31 and 35 digits [13], generating them up to isomorphism is already a very challenging task and
the problem of 5-colorability that we need to solve on each of them is NP-complete. Therefore, it



is definitely out of question to solve the problem by bruteforce.
To this day, almost 30 years after the question was raised, the question of the smallest tourna-

ment of dichromatic number 5 is still open, despite the efforts of many authors. The question still
appears frequently in the literature, see for example [2, 10] for recent examples, where this problem
is presented as an open question in conclusion.

We provide a definitive answer to Neumann-Lara’s question for k = 5. Building on the known
structural results on smallest tournaments with fixed chromatic number or avoiding a transitive
subtournament of a given size, we disprove Neumann-Lara’s conjecture by showing the following.

Theorem 1. Every 17-vertex tournament is 4-colorable.

The proof relies on a surprising following intermediate result proved by a computer analysis,
and from which we derive our result in a human-readable way.

Theorem 2. Every 4-chromatic tournament on 12 vertices contains P11.

Using slightly more involved arguments, we extend the computer search to tournaments on 18
vertices. The analysis still does not provide a 5-chromatic tournament.

Theorem 3. Every 18-vertex tournament is 4-colorable.

Finally, we exhibit an example of a 5-chromatic tournament on 19 vertices, which settles 19 as
the right answer to Neumann-Lara’s question, see Figure 1.

P7

Figure 1: A 5-chromatic graph on 19 vertices. Thick arrows induce P7 and represent (3 or) 9 arcs
with the same direction.
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