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Abstract

We study the minimum size f of a feedback vertex set in directed and undirected n-vertex
graphs of given degeneracy or treewidth. In the undirected setting the bound k−1

k+1n is known
to be tight for graphs with bounded treewidth k or bounded odd degeneracy k. We show that
neither of the easy upper and lower bounds k−1

k+1n and k
k+2n can be exact for the case of even

degeneracy. More precisely, for even degeneracy k we prove that 3k−2
3k+4n ≤ f < k

k+2n.

For directed graphs of bounded degeneracy k, we prove that f ≤ k−1
k+1n and that this in-

equality is strict when k is odd. For directed graphs of bounded treewidth k ≥ 2, we show

that k−2blog2(k)c
k+1 n ≤ f ≤ k

k+3n. Further, we provide several constructions of low degeneracy or
treewidth and large f .

We consider only simple graphs and oriented directed graphs, i.e. our graphs do not have loops
or multiple edges or arcs. A set F ⊆ V (G) of vertices of a (directed) graph G, is a feedback vertex
set if deleting F results in a (directed) graph without (directed) cycles. The complement of a
feedback vertex set is called acyclic set, and some results in the literature are formulated in terms
of acyclic sets. Deciding whether a graph has a feedback vertex set of a given size is among the 21
original NP-complete problems of Karp [1]. Thus finding the minimum size of a feedback vertex
set or equivalently, the largest acyclic set, is a challenging algorithmic problem and was extensively
studied in the literature.

Because of its hardness, a natural class to study the minimum size of a feedback vertex set
are sparse (directed) graphs. A particular example are planar graphs. The size of a minimum
feedback vertex set in a planar graph is conjectured to be at most half the vertices by Albertson
and Berman [2]. Up to date the best-known upper bound is 3

5n achieved through acyclic colorings
with Borodin’s result [3]. Further, it is known that if true this bound is best-possible [5]. Moreover,
it is noteworthy that the best known upper bound coincides with the above mentioned 3

5n from
the undirected setting [3]. This conjecture remains open even in the directed setting. Note that,
in this setting, it is a weakening of the Neumann-Lara conjecture.

Conjecture 1 (Neumann-Lara [4]). Every planar oriented graph can be vertex-partitioned into two
acyclic sets.

Another class that has received attention in the directed setting is the class of tournaments.
Already Stearns [6] and Erdős and Moser [7] have shown that any tournament on n vertices admits
a feedback vertex set of size n−blog2(n)c−1, while there are tournaments where no feedback vertex
set on less than n− 2blog2(n)c − 1 vertices exists. More precise bounds for small values of n have
been obtained by Sanchez-Flores [8, 9] and recently more work has been done into that direction
by Neiman, Mackey and Heule [10] and by Lidický and Pfender [11]. Improving the asymptotic
upper and lower bounds remains an open problem.



We focus on the class of (directed) graphs of bounded treewidth or degeneracy. Here, the
treewidth or degeneracy of a directed graph is simply the treewidth or degeneracy of its underlying
undirected graph. Recall that every graph of treewidth k also has degeneracy k. In the undirected
setting, the minimum feedback vertex set of graphs of bounded treewidth has been determined
by Fertin, Godard and Raspaud [12]: for a graph of order n, treewidth k, the size of a minimum
feedback vertex set is at most k−1

k+1n and this bound is best-possible. Moreover, for odd degeneracy
k it is easy to achieve the same upper bound. However, for even degeneracy the same argument
only yields an upper bound of k

k+2n, and a lower bound of k−1
k+1n. Indeed, in [13] Borowiecki, Drgas-

Burchardt, and Sidorowicz show that the true value for k = 2 is 2
5n which lies strictly between the

above bounds.
Our main contribution here is to construct for any even k a family of graphs of degeneracy k,

whose members of large order n have minimum feedback vertex sets whose size comes arbitrarily
close to 3k−2

3k+4n. Let n(G) be the number of vertices of G and f(G) be the size of a minimum
feedback vertex set of G.

Theorem 1. For every even k there exists a family of k-degenerate graphs (Gi)i∈N such that
n(Gi) = 3k+6

2 + i3k+4
2 and f(Gi) = 3k−2

2 + i3k−22 .

On the other hand we know that there exists no graph of order n and even degeneracy k whose
minimum feedback vertex set is of size k

k+2n.

Proposition 1. For every even k ≥ 2 there is a graph G with degeneracy k, n(G) = (k+2)k
2 + 1

and f(G) = k2

2 .

In the directed setting, to our knowledge, apart from the above mentioned results in planar
digraphs and tournaments no classes of given degeneracy or treewidth have been studied previously.
We give an upper bound for the smallest feedback vertex sets of n-vertex graphs of degeneracy k.

Theorem 2. If D is a k-degenerate directed graph, then f(D) ≤ k−1
k+1n(D).

For k = 2 and k = 3, this yields tight bounds 1
3n and 1

2n, respectively. For k = 2, the directed
triangle is a simple example reaching the upper bound and for k = 3, the construction from [5]
yields 1

2n for degeneracy 3. Unlike the undirected setting, we know that there exists no graph of

order n and odd degeneracy k whose minimum feedback vertex set is of size k−1
k+1n.

Proposition 2. If D is a directed graph of odd degeneracy k ≥ 3, then f(D) < k−1
k+1n(D).

We also present constructions for digraphs with large minimum feedback vertex set and given
small degeneracy or treewidth that improve on the bounds obtained from using just tournaments
from [8, 9, 10].

For general treewidth, taking disjoint unions of the tournaments of [7], one can find n-vertex

digraphs of treewidth k and f ≥ k−2blog2(k+1)c
k+1 n. However, we show that on general graphs of

treewidth k one can force slightly larger minimum feedback vertex sets.

Theorem 3. For every k, there exists a family of directed graphs (Di)i∈N of treewidth k, such that
n(Di) = k + 2 + i(k + 1) and f(Di) ≥ (i + 1)(k − 2blog(k)c).

On the other hand, we show that every n-vertex digraph of treewidth k has a feedback vertex
set of size at most k

k+3n.

Theorem 4. If G has treewidth k, then f(G) ≤ k
k+3n(G).
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[8] A. Sanchez-Flores. On tournaments and their largest transitive subtournaments. Graphs Comb.,
10(4):367–376, 1994.

[9] A. Sanchez-Flores. On tournaments free of large transitive subtournaments. Graphs Comb., 14(2):181–
200, 1998.

[10] D. Neiman, J. Mackey, and M. Heule. Tighter bounds on directed Ramsey number R(7), 2020.
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