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Abstract

We call a graph with a k-edge coloring c balanced, if every color appears equally often.
We contribute to a question posed by Kittipassorn and Sinsap [arxiv:2011.00862v1], who asked
whether every balanced complete graph K2kn with a k-edge coloring contains a balanced perfect
matching. While this question has previously been answered affirmatively for k = 2, we show
that it is not true in general. However, we believe that there are always almost balanced perfect
matchings. To measure the deviation of a matching from being balanced, we introduce the

function f(M) = fk,n,c(M) =
k∑

i=1

∣∣∣ ∣∣c−1(i) ∩M
∣∣− n

∣∣∣, measuring the sum of deviations for each

color class from being balanced.
We show that for any balanced complete graph, we can find a perfect matching M with f(M) ≤
3k

√
kn ln(2k) and for k = 3 a perfect matching M with f(M) ≤ 2, which is tight in some cases.

We conjecture that in fact there is always a perfect matching with f(M) ≤ O(k2).

1 Introduction

As a special question from the area of zero-sum Ramsey theory [3, 8], Caro, Hansberg, Lauri, and
Zarb [4] asked whether every 2-edge-colored complete graph of order 4n with equally many edges
of both colors always has a perfect matching that also contains equally many edges of both colors.
This question was answered independently and affirmatively by Ehard, Mohr, and Rautenbach [5]
and by Kittipassorn and Sinsap [11]. The motivation for the present work is an interesting problem
formulated by Kittipassorn and Sinsap concerning possible generalizations of this result to settings
with more than two colors. In particular, they [11] asked whether, for every k-edge-coloring of K2kn

with equally many edges of each color, there is a perfect matching M that also contains equally
many edges of each color; in other words, whether there is a color-balanced perfect matching for
every color-balanced edge-coloring of K2kn. Note that the considered edge-colorings are not required
to be proper, and that an obvious necessary condition for the existence of M is that the order of
the complete graph is a multiple of 2k. While the example in Figure 1 shows that there is not
always such a matching, we believe that there are always perfect matchings that are very close to
being color-balanced.

We propose the following conjecture.

Conjecture 1. If n and k are positive integers, and c : E(K2kn) → [k] is such that, for every i in
[k], there are equally many edges e with c(e) = i, then there is a perfect matching M of K2kn with

f(M) ≤ O(k2),

where f(M) = fk,n,c(M) =
k∑

i=1

∣∣∣ ∣∣c−1(i) ∩M
∣∣− n

∣∣∣.
In order to upper-bound the value of fk,n,c(M) for some optimal matching M , we introduce the

function
g(k, n) = max

c∈Ck,n
min

M∈Mk,n

fk,n,c(M),



Figure 1: For the edge-coloring of the 15 edges ofK6 with three colors such that the 5 edges indicated
by bold lines form one color class, the 5 edges indicated by dashed lines form a second color class,
and the missing 5 edges form the third color class, there is no perfect matching containing one edge
from each color class.

where Mk,n is the set of perfect matchings of K2kn and Ck,n is the set of balanced k-edge-colorings
of E(K2kn). This allows us to rephrase Conjecture 1 as

g(k, n) ≤ O(k2).

Pardey and Rautenbach [18] showed that g(k, n) ≤ 3k
√
kn ln(2k), which still includes a dependency

on n. For smaller values of k we know the following: Trivially, g(1, n) = 0 for all n ∈ N. In [11]
and [5], it was shown that g(2, n) = 0 for all n ∈ N. In [18], Pardey and Rautenbach showed that
g(3, n) ≤ 2 for all n ∈ N and g(3, 1) = 2, the latter resulting from the counterexample given in
Figure 1.

2 Results

We will not show the results g(2, n) = 0 and g(3, n) ≤ 2 from [18], but rather provide proofs for
weaker results, bounding g(2, n) and g(3, n) by a constant, that is, a bound independent of n. This
omits the detailed analysis of each case but rather shows the general strategies used to obtain some
results for the conjecture g(k, n) ≤ O(k2).

Lemma 2. g(2, n) ≤ 2.

For a perfect matching M and matching edges uv, xy ∈ M , we can swap, to obtain another
perfect matching M ′ = M − {uv, xy}+ {ux, vy}.

Proof of Lemma 2. For a K4n with a balanced red-blue edge coloring, let M be a matching that
minimizes f(M) = ||r− n|+ |b− n||, where r and b denote the number of red and blue edges in M
respectively. W.l.o.g. r ≥ b. Suppose r ≥ n+2. If there is a blue edge ux between 2 red matching
edges uv, xy ∈ M , then swapping the matching edges uv and xy for ux and vy would yield a
matching M ′ where f(M ′) < f(M), a contradiction. Similarly, if for a red matching edge uv and a
blue matching edge xy the edges ux and vy are both blue, swapping would again yield a matching
M ′ where f(M ′) < f(M). By symmetry, we obtain that there are no blue edges between red
matching edges and at least half the edges between red and blue matching edges are red. Counting



the total number of red edges in the graph we find at least(
2r

2

)
+

1

2
2r(4n− 2r) = 2r2 − r + 4nr − 2r2 = r(4n− 1) ≥ (n+ 2)(4n− 1)

red edges, which is a contradiction to the edge coloring being balanced, that is, there being exactly
1
2

(
4n
2

)
= n(4n− 1) red edges in the graph.

Lemma 3. g(3, n) ≤ 8.

Proof. Similarly as in Lemma 2, for some balanced red-green-blue edge coloring of K6n, let M be a
perfect matching that minimizes f(M) = ||r−n|+ |g−n|+ |b−n||, where again r, g, and b denote
the number of red, green, and blue edges in M respectively. W.l.o.g. let r ≥ g ≥ b.
We first observe, that |g−n| ≤ 1. Otherwise, if g ≥ n+2, we can argue similarly as in the proof of
Lemma 2, by observing that there are no blue edges between matching edges that are either red or
green and at most half the edges between blue and red or blue and green matching edges are blue.
Counting now the total number of blue edges in the graph, we find at most(

2b

2

)
+

1

2
2b(6n− 2b) = 2b2 − b+ 6nb− 2b2 = b(6n− 1) ≤ (n− 4)(6n− 1)

blue edges, which is strictly less than the actual total number of blue edges, n(6n− 1).
If g ≤ n − 2, a similar argument, where we count the total number of red edges, again yields a
contradiction,implying that g ∈ [n− 1, n+ 1]
Among all matchingsM that minimize f(M) pick one that minimizes |r−g|. Suppose that r ≥ n+3.
Then, b ≤ n− 2. If there is a blue or green matching edge between 2 red matching edges, we could
swap to obtain a matching that either decreases f(M) or decreases |r − g|, while maintaining the
value of f(M), both being contradictions. If there were 2 non-incident non-red edges between a red
matching edge and a non-red matching edge, then we could again decrease either f(M) or |r − g|
by swapping accordingly.
Hence, we can count the total number of red edges in the graph, obtaining at least(

2r

2

)
+

1

2
2r(6n− 2r) = 2r2 − r + 6nr − 2r2 = r(6n− 1) ≥ (n+ 3)(6n− 1)

red edges, which is strictly more than the actual total number of red edges, n(6n − 1). This
contradiction completes our proof.

If we analyse g(k, n) for general k, let M be a matching that minimizes f(M) and let mi be the
number of matching edges of color i for i ∈ [k]. A recurring observation from the previous proofs
was that two consecutive color classes never were farther apart than 2, that is, if m1 ≤ · · · ≤ mi ≤
· · · ≤ mk, then mi+1 −mi ≤ 2 for all i ∈ [k − 1]. This motivates the exponent 2 in the conjecture
g(k, n) ≤ O(k2).
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