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Abstract

The problem of finding explicit values of the Ramsey number R(H,H) has been studied
extensively, but the explicit value of R(H,H) is known only for a few graphsH. Among the most
relevant results in the area, Gerencsér and Gyárfás proved in 1967 that R(P2n, P2n) = 3n − 1,
where P2n is the path on 2n vertices.

We denote by P 2
3n the square of the path on 3n vertices, which is the graph over 3n vertices

obtained from P3n by adding edges between vertices of distance 2. We prove that R(P 2
3n, P

2
3n) =

9n− 3 for n large enough.

1 Introduction

1.1 General introduction

The study of unavoidable regularities has a long history in mathematics and has given interesting
results in multiple areas. One of the first (and better known) examples is a lemma used to prove
the Bolzano-Weierstrass theorem, and it states that every sequence in R admits a monotone sub-
sequence. This lemma is a good example of a wide array of results that try to study what kind of
regular substructures cannot be avoided in large structures.

The first results of this kind in graph theory are due to Ramsey. In his seminal paper [5],
Ramsey showed that for any graph H it is possible to find a monochromatic copy of H in any
two-colouring of Kn, provided n is large enough. This result started an active and influential area
of graph theory which is now called Ramsey Theory.

Definition 1. Let H be a graph. We denote by R(H,H) the Ramsey number of H, which is the
smallest n ∈ N such that any {red, blue}-edge colouring of Kn admits a monochromatic copy of H.

In his 1930 paper [5], Ramsey showed that the value R(H,H) is well defined for any graph H.
Determining or approximating the value of R(H,H) for any given H has been the driving question
of Ramsey theory since then.

One of the first families of graph for which the Ramsey number was determined is the fam-
ily of paths. By path Pn we mean the graph over the vertex set {1, . . . , n} and with edge set
{12, 23, . . . , (n− 1)n}. The result, due to Gerencsér and Gyárfás [4], reads as follows.

Theorem 2 (Gerencsér and Gyárfás, [4]). Let n ≥ 2 be a natural number. Then R(P2n, P2n) =
3n− 1.

More recently, Chvátal, Rödl, Szemerédi and Trotter proved that if a graph H has bounded
degree, then its Ramsey number is linear in the number of vertices of H.

Theorem 3 (Chvátal, Rödl, Szemerédi and Trotter, [3]). Let H be a graph over n vertices and with
maximum degree ∆. The Ramsey number R(H,H) is bounded above by c∆ · n for some constant
c∆ depending only on ∆.

However, this result is still very far from giving us more precise estimates for R(H,H).



1.2 Power of paths

For k, n ∈ N+, we denote by P k
n the k-th power of the path Pn, which is the graph obtained from

Pn by adding an edge between any two vertices at distance at most k in the path Pn.
There are at least two reasons why studying the Ramsey number of power of paths is an

important question in Ramsey theory. Firstly, it is a natural next step in the strengthening of
the result of Gerencsér and Gyárfás. Secondly, powers of paths are of particular importance in
the study of Ramsey problems because they are related to a measure of complexity of graphs (the
bandwidth) that has been proved to be relevant in the area.

More in detail, we say that a graph H over n vertices has bandwidth k if k is the smallest
integer such that H is a subgraph of P k

n . A result by Allen, Brightwell and Skokan [2] shows a
better upper bound for the Ramsey number of graphs with bounded maximum degree if in addition
we assume that the graph has sublinear bandwidth.

Theorem 4 (Allen, Brightwell and Skokan, [2]). For any ∆ positive integer, there exist n0 ∈ N and
ϵ > 0 such that the following holds for any n ≥ n0. Let H be a graph over n vertices with maximum
degree at most ∆ and with bandwidth at most ϵn, then we have that R(H,H) ≤ 2(χ(H) + 2)n.

The proof of this theorem relies on good estimates of the value of R(P k
(k+1)n, P

k
(k+1)n) and an

improvement in the approximation of the Ramsey number for the square of paths is likely to lead
to better upper bounds for the Ramsey number of graphs with sublinear bandwidth. In particular,
Allen, Brightwell and Skokan conjectured the following:

Conjecture 5 (Allen, Brightwell and Skokan, [2]). For any ∆ positive integer, there exist n0 ∈ N
and c, ϵ > 0 such that the following holds for any n ≥ n0. Let H be a graph over n vertices
with maximum degree at most ∆ and with bandwidth at most ϵn, then we have that R(H,H) ≤
(χ(H) + c)n.

For the nature of the proof of Theorem 4, it seems that determining the value ofR(P k
(k+1)n, P

k
(k+1)n)

would be of a big step forward in proving Conjecture 5.
The aim of this paper is to prove the following result.

Theorem 6. There exists an n0 ∈ N such that for all integers n ≥ n0 we have

R(P 2
3n, P

2
3n) = 9n− 3.

Let us point out that the n0 of this theorem is given us by the Regularity Lemma, and we did
no effort to try to minimise n0. Even if this result answers a natural question in the Ramsey theory
setting and it might be of help in improving the result of Theorem 4, additional study will be re-
quired to extend Theorem 6 to higher powers of k and to determine the value of R(P k

(k+1)n, P
k
(k+1)n)

for other values of k.



2 Lower bound

In order to prove Theorem 6, we first show that there exists a {red, blue}-edge colouring of K9n−4

without monochromatic copied of P 2
3n. The construction follows the recipe drawn in Figure 1.
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Figure 1: Our extremal colouring

We partition our 9n−4 vertices in six sets. The sets B1, B2, R1, R2 of size 2n−1, the set Z of size
n−1 and an additional single vertex r. We colour all the edges in B1, B2, (B1∪B2, {r}), (R1, R2, Z)
by blue and all the edges in R1, R2, (R1 ∪ R2, {r}), (B1, B2, Z) by red. We then arbitrarily colour
the rest of the edges.

It is evident that in our construction there is no monochromatic P 2
3n

3 Proof strategy for the upper bound

At the base of our strategy for the upper bound of R(P 2
3n, P

2
3n) there are the regularity method of

Szemerédi [6] and an embedding lemma due to Allen, Böttcher and Hladký [1].
We show that any two-edge-colouring of a large clique not containing a monochromatic copy of

P 2
3n must have a very specific structure. Which is, any such colouring must be similar in structure

to the colouring in Figure 1. Some of the details follow.

Theorem 7 (Szemerédi, [6]). For every ϵ > 0 there exist natural numbers M and n0 such that for
any n ≥ n0 and any two-colouring G of Kn we can partition the vertex set of G in at most M sets
V0, . . . , Vm such that m ≥ 1

ϵ and |V0| ≤ ϵn and |V1| = . . . = |Vm|. Moreover, all but at most ϵ
(
m
2

)
of the pairs (Vi, Vj) are ϵ-regular in both colours.

Here, by (Vi, Vj) being ϵ-regular we mean that whenever A ⊆ Vi and B ⊆ Vj are such that
|A| ≥ ϵ |Vi| and |B| ≥ ϵ |Vj |, the density of edges (both in blue and in red) between A and B is the
same (up to an error ϵ) of the density of the same colour between Vi and Vj.

Therefore, given n sufficiently large and a two edge colouring of Kn, we can partition the vertex
set of Kn in a bounded number of subsets such that between most pairs of subsets we see some
strong regularity property. In particular, we can build a support graph R, called an ϵ-reduced
graph for G, over the parts V1, . . . , Vm such that we have the edge ViVj if and only if (Vi, Vj) is
ϵ-regular in both colours. We can colour each edge ViVj of the majority colour in the set of edges
E(Vi, Vj). Notice that R is an almost complete two-edge-coloured graph.



The use of Szemerédi regularity lemma has been used to embed substructures in large graphs,
and it is of fundamental importance here because it allows us to apply a result introduced by Allen,
Böttcher and Hladký [1].

We first need a definition.

Definition 8. Let R be a {red, blue}-edge-coloured graph. Let T and T ′ be monochromatic (wlog
blue) triangles. We say that T and T ′ are triangle-connected if there exists a sequence of blue
triangles T = T0, . . . , Tℓ = T ′ such that for every i = 0, . . . , ℓ − 1 we have that Ti and Ti+1 share
an edge.

A triangle factor is a set of vertex disjoint triangles. It is natural to define as monochromatic
triangle-connected triangle factor a set of pairwise vertex disjoint monochromatic triangles of the
same colour that are pairwise triangle connected.

The following embedding lemma allows us to reduce the problem of finding a monochromatic
copy of P 2

3n in a two-colouring of Kn to the problem of finding a monochromatic triangle-connected
triangle factor in the reduced graph R.

Theorem 9 (Allen, Böttcher and Hladký, [1]). For all positive δ, λ < 1 there exists ϵ > 0 and
M,n0 ∈ N such that whenever n > n0 the following holds. Let G be a two-colouring of Kn, and
let R be an ϵ-reduced graph of G with |R| = m ≤ M vertices. If R contains a monochromatic
triangle-connected triangle factor over 3(1 + δ)λm vertices, we can find a monochromatic copy of
P 2
3λn in G.

We can show that whenever R is an almost complete two-coloured graph over m vertices, either
R contains a triangle-connected triangle factor of the right size or the colouring of R is close to the
lower bound construction. A careful analysis of the possible extremal structure finishes the proof
of the upper bound.
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