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Abstract

A dominating set C of a graph G is an identifying code if any two distinct vertices of G
have distinct closed neighbourhoods within C. We prove new upper bounds for the size of the
smallest (optimal) identifying codes in bipartite graphs which do not have twins of degree two
or greater, and in graphs of girth at least 5. We show that (n + `)/2 is a tight upper bound
for optimal identifying codes in the bipartite case, where n is the order and ` is the number of
leaves of the graph. This bound is an improvement over two previous bounds for trees, in size
and generality. Moreover, the bound is tight for several structurally different infinite families
of trees. We derive from our bound a tight upper bound of 2n/3 for twin-free bipartite graphs
of order n, and give an exact characterization for graphs attaining it. Then we give an upper
bound of (5n+ 2`)/7 for identifying codes in graphs of girth at least 5.

1 Introduction

We denote by N(v) the open neighbourhood of vertex v ∈ V (G) and by N [v] = {v} ∪ N(v) the
closed neighbourhood of v. The I-set of vertex v is I(v) = N [v] ∩ C where C ⊆ V (G). A set of
vertices C is dominating if the I-set of each vertex is non-empty, i.e. I(v) 6= ∅ for each v ∈ V (G).
Furthermore, a dominating set C is an identifying code if any distinct vertices v, u ∈ V (G) have
distinct I-sets, that is, I(v) 6= I(u). We call any vertex v ∈ C a codeword. The smallest possible
identifying code in graph G is called optimal and its cardinality is denoted by γID(G).

Vertex v ∈ V (G) is a leaf if it has degree 1 and it is a support vertex if it has an adjacent
leaf. We denote by L(G) the set of leaves in G and by S(G) the set of support vertices. The
cardinalities of these sets are denoted by |L(G)| = `(G) and |S(G)| = s(G). Moreover, graph has
girth g(G) if the length of a shortest cycle in G is g(G). A pair of vertices v, u is called open twins
if N(v) = N(u) and closed twins if N [v] = N [u]. A graph which does not have any open or closed
twins is said to be twin-free and a graph without closed twins is said to be identifiable. Observe
that if vertices v and u are closed twins, then they have I(v) = I(u) for any subset of vertices C
and the graph does not admit any identifying code.

Identifying codes were originally introduced over 20 years ago in [5] for multiprocessor archi-
tectures. Since then, they and related topics have been studied in numerous articles for different
applications [6]. As identifying codes have been studied for over 20 years, naturally they have
been considered in trees. In particular, the following two upper bounds have been presented. The
bound in Theorem 1 is better when the number of leaves is small, and when there are many leaves,
Theorem 2 gives the better bound.

Theorem 1 ([3, Theorem 15]). Let T be a tree on n ≥ 3 vertices. Then γID(T ) ≤ n+2`(T )−2
2 .

Theorem 2 ([7, Theorem 11]). Let T be a tree on n ≥ 3 vertices. Then γID(T ) ≤ 3n+2`(T )−1
5 .

Equality holds if and only if T = P4.
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In Theorem 5, we offer a new improved upper bound γID(G) ≤ (n+`(G))/2 for bipartite graphs
which do not have any twins of degree two or greater. This new upper bound is not only more
general but also an improvement even in the case of trees. This is rather surprising, considering
the long history of study of identifying codes and the fact that the upper bounds presented in
Theorems 1 and 2 are tight for some trees. Observe that we may present the bound in Theorem 2
as 3n+2`(T )−1

5 = 3n−`(T )−1
5 + `(T ) and the bound in Theorem 5 as (n − `(T ))/2 + `(T ). Now, our

new bound is clearly an improvement over both previous bounds.
We also show the tight upper bound of γID(G) ≤ n − s(G) for triangle-free graphs in Lemma

1 and generalize it to every graph with the tight bound of γID(G) ≤ n − s(G) + 1 in Theorem 4.
Together these upper bounds give the tight upper bound γID(G) ≤ 2n/3 for twin-free bipartite
graphs, presented in Corollary 1. In Theorem 6, we characterize every graph attaining this bound.

Besides bipartite graphs, we also consider graphs of girth at least 5. Earlier in [1], the authors
have provided the following upper bound for γID(G) in these graphs when we have `(G) = 0.

Theorem 3 ([1]). Let G be a graph of order n and girth at least 5 with minimum degree δ(G) ≥ 2.
Then γID(G) ≤ 5n/7.

The bound of Theorem 3 is tight for the 7-cycle. In Theorem 7, we show that when G has girth
at least 5, we have γID(G) ≤ (5n + 2`(G))/7 generalizing Theorem 3 to graphs of girth at least 5.
The generalization is tight for stars and the cycle C7. Full version of the paper is available at [2].

2 New upper bounds

We first present our new upper bounds based on the number of the support vertices. Then we give
bounds using the number of leaves. After that, we combine these results to get a new upper bound
as a corollary. Finally, we generalize a previous upper bound to every graph of girth at least 5.

The following lemma has been presented for total dominating identifying codes in trees in [4].
We generalize it for a larger class of graphs. In particular, it holds for bipartite graphs.

Lemma 1. Let G be a connected graph on n ≥ 4 vertices that is not the path P4, such that G−L(G)
is identifiable or G is triangle-free. Then γID(G) ≤ n− s(G).

The bound in Lemma 1 is tight. We present some graphs attaining this bound in Theorem 6.
Moreover, some restrictions on the structure are necessary. For example, if we consider the graph
G consisting of the complete graph Km and a single leaf added to every vertex in the clique, then
we have γID(G) = m+ 1 = 2m−m+ 1 = n− s(G) + 1. As we show in the following theorem, this
is actually a tight upper bound for every connected graph G.

Theorem 4. Let G be a connected identifiable graph on n ≥ 3 vertices. Then γID(G) ≤ n−s(G)+1.

Theorem 5 is based on the idea that if u is a non-leaf, non-codeword, then N(u) forms a unique
I-set. Similarly, in Theorem 7, if a non-codeword is at least 2-dominated, then it has unique I-set
since there are no triangles or 4-cycles in the graph. Some restrictions on the graph structure are
necessary. For example, Theorem 5 does not hold for odd cycles or for the 4-cycle C4.

Theorem 5. Let G be a connected bipartite graph on n ≥ 3 vertices which does not have twins of
degree two or greater. We have

γID(G) ≤ n+ `(G)

2
.



Proof (sketch). The proof is based on first constructing two almost identifying codes C ′e and C ′o.
Then we show that at least one of them has the claimed cardinality and after that one can shift
some codewords to create an identifying code with the same cardinality.

We construct C ′e and C ′o in the following way: First we add every leaf to both codes. Then we
choose some non-leaf vertex x and add every vertex at even distance from x to C ′e and every vertex
at odd distance from x to C ′o. Either C ′e or C ′o contains at most half of the non-leaf vertices, that
is, one of these codes has cardinality at most `(G) + (n− `(G))/2.

Moreover, a non-leaf, non-support vertex clearly has a unique I-set since either it is a non-
codeword which is dominated by two codewords or it is a codeword dominated only by itself with
adjacent non-codewords dominated by at least two codewords. However, we may have problems
with some leaf-support vertex pairs. In particular, if there is a support vertex v which has exactly
one adjacent leaf u and v is a codeword, then I(v) = I(u) = {v, u}. We can work around this
problem by shifting the codeword in the leaf u to any vertex w adjacent to v. We denote the
resulting codes by Ce and Co. Now, I(u) = {v} and I(v) = {v, w} while |I(w)| ≥ 3. The shifting
and construction are presented in Figure 1.
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Figure 1: Gray vertices form the sets C ′e (left) and C ′o (right). Arrows and red vertices depict the
shifts in forming the (non-optimal) identifying codes Ce and Co.

Notice that Theorem 5 holds especially for trees. Moreover, the theorem is tight for quite a
large class of graphs, for example, paths, even cycles (other than C4), stars, 2-coronas presented in
Theorem 6 and some other trees for which we have given examples in Figure 2.
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Figure 2: The gray vertices form optimal identifying codes in these two trees whose sizes are equal
to the bound presented in Theorem 5.

When G is twin-free, we have s(G) = `(G). Thus, Lemma 1 and Theorem 5 together provide
the following corollary for twin-free bipartite graphs since γID(G) ≤ min{n− s(G), (n+ s(G))/2}.

Corollary 1. Let G 6= P4 be a twin-free bipartite graph on n ≥ 3 vertices. Then γID(G) ≤ 2n/3.

The 2-corona H◦2 of graph H, is constructed by joining to every vertex of H a path P2 with a
single edge so that `(H◦2) = |V (H)|. In the following theorem, we give an exact characterization
for graphs attaining the upper bound of Corollary 1.



Theorem 6. Let G be a connected twin-free bipartite graph on n vertices. We have γID(G) = 2n/3
if and only if G is the 2-corona H◦2 of some bipartite graph H.

2.1 New upper bound for graphs of girth at least 5

As we have seen in Theorem 3, there exists a tight upper bound γID(G) ≤ 5n/7 in graphs of girth
at least 5 when `(G) = 0. Some constraint on the graph structure is necessary here since there exist
graphs of lesser girth without leaves for which we have γID(G) = n− 1. In the following theorem,
we generalize the result of Theorem 3 to every graph of girth at least 5. The bound does not hold
for girth 4 since for the complete bipartite graph Kp,q with p, q ≥ 3, we have γID(Kp,q) = n− 2.

Theorem 7. Let G be an identifiable graph with girth at least 5 without isolated vertices. Then
γID(G) ≤ (5n+ 2`(G))/7.

Proof (sketch). The proof is based on induction on the number n of vertices. By Theorem 3, the
bound holds when `(G) = 0 and by Theorem 5 the bound holds when we have no cycles. Thus, we
may assume that there exists a vertex v which either belongs to a cycle or connects two cycles and
there is a cut edge vu such that one of the components in G− vu is a tree. The basic idea is to use
Theorem 3 on the tree component and the induction hypothesis on the other components. After
that, we may be required to do some small modifications to make sure that I(u) 6= I(v). Some
small tree components, such as P2 are considered separately.

3 Concluding remarks

We continue the study of identifying codes in bipartite graphs, trees and graphs of girth at least 5.
Somewhat surprisingly, we manage to improve the known upper bounds for γID in trees, both in
generality and in size. In total, we give five new tight upper bounds for γID.
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