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Tomáš Madaras — Pavol Jozef Šafárik University in Košice, Slovakia
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Abstract

For a graph G and an integer i, let K◦
i (G) be the maximum number of colors in an edge-

coloring of G such that each its cycle contains at most i colors. We explore basic properties
and estimates of this coloring invariant. We give a greedy-based degree-related general lower
bounds for K◦

i (G) when i ≥ 3 and discuss their sharpness. In particular, we provide the exact
value for K◦

3(G) and K◦
2(G) for G being 5-connected or 3-connected, respectively. Furthermore,

we show that, for a graph G of vertex connectivity 2, the exact value of K◦
2(G) can be found

by maximizing the number of components after deleting a 2-cut, and, if G is highly connected,
then the exact value is 2. We also provide upper bounds in terms of anti-Ramsey numbers for
the cycles of length i+ 1 and discuss the effectiveness of these bounds.

In the research of edge colorings, a great attention is paid on the study of colorings defined
by constraints on the number of colors appearing on particular subgraphs within a graph. For
example, the classical proper edge coloring satisfies the condition that, for each maximal star Sx

centered at a vertex x, the number of colors on Sx is deg(x); the related coloring invariant – the
chromatic index – is the minimum number of colors of such coloring. If one asks to see at least
(at most) i colors on each Sx for a fixed positive integer i, the corresponding colorings are mi- and
Mi-colorings defined first in [3]; the latter one was further extensively investigated in [4], [2], [7], [8],
[14]. Other kinds of edge colorings operate with cycles within graphs – the requirement of at least
three colors on every cycle (while keeping the coloring to be proper) yields the notion of acyclic
edge coloring, first considered in [10] (and independently in [1]); a generalization where each cycle
C sees at least min{|C|, r} colors for a fixed r ≥ 4 was introduced in [12]. A variant of acyclic edge
coloring where, instead of cycles, the facial cycles (or, in general, face-induced subgraphs) of plane
graphs were considered, has been studied in [5]. Very recently, a facial variation where each face of
a plane graph sees at most i ≥ 3 colors (and the total number of used colors is to be maximized)
was introduced in [6].

Motivated by the above coloring concepts, we consider the following problem:

Problem 1. Given a graph G and a positive integer i, determine the maximum number K◦
i (G) of

colors in an edge-coloring of G such that every cycle of G sees at most i colors.

To deal with Problem 1, it is enough to consider 2-connected graphs, as the colors used in
particular block of a graph have no influence on color sets of cycles in other blocks. Thus K◦

i (G) =∑
B∈B(G)

K◦
i (B), where B(G) is the set of blocks of a graph G; and therefore, K◦

i (G) is an additive

coloring invariant. On the other hand, it is not hereditary, because, for each fixed i, taking an
n-cycle Cn with n > i + 1, we have K◦

i (Cn) = i, but, for its subgraph Pn, the n-vertex path,
K◦

i (Pn) = n− 1.
We give a greedy-based degree-related general lower bound for K◦

i (G) when i ≥ 3 is odd:

Theorem 1. Let i ≥ 3 be odd, G be a connected graph of order at least 2 and let S = {S ⊆ V (G) :

|S| = i−1
2 }. Then K◦

i (G) ≥ 1 + max
S∈S

{∑
x∈S

deg(x)− |E(G[S])|

}
.



To prove Theorem 1, it is sufficient to take any subset S ⊆ V (G) of i−1
2 vertices and color all

edges incident with vertices of S with distinct colors; the remaining edges of G color with one extra
color. In so obtained coloring, the number of colors equals the sum of degrees of vertices from S
minus the number of edges with both endvertices in S. Now, each cycle of G visits each vertex of
S at most once, and so it sees at most 2 · |S| + 1 = i colors. By maximizing the number of colors
through all possible S, the result follows.

A similar approach can be used also for i being even: an admissible coloring which uses 2 +

max
S′∈S′

{∑
x∈S′

deg(x)− |E(G[S′])|

}
colors can be constructed.

There are graphs for which the lower bound provided by Theorem 1 is sharp – consider, for
example, the complete bipartite graph K2,r and i = 3. We obtain that K◦

i (K2,r) ≥ r + 1; this, in
particular, implies that there exists a 2-valent vertex y1 such that its incident edges are colored
differently. Then, to avoid a rainbow 4-cycle, we have that, for each 2-valent vertex yk ̸= y1, its
incident edges have the same color, and so the total number of colors is at most 2+ (r− 1) = r+1.

For an upper bound on K◦
i (G), one can use the value of anti-Ramsey number ar(G,Ci+1), which

is equal to the maximum number of colors in an edge-coloring of G without any rainbow copy of
Ci+1 (for the survey of results, see [11]). It can be easily seen that K◦

i (G) ≤ ar(G,Ci+1) + 1. For
complete n-vertex graph, we thus obtain

i− 1

2
n− i2 − 9

8
≤ K◦

i (Kn) ≤
(
i− 1

2
+

1

i

)
n+O(1),

where the lower bound is derived from Theorem 1 and the upper bound is from the result of [16].
Let us note here that this anti-Ramsey based upper bound may be distant from the exact value of

K◦
i (G). As an example, consider the (classical) Petersen graph P (5, 2): by [15], ar(P (5, 2), C5) = 10.

On the other hand, it is possible to show that any edge 6-coloring of P (5, 2) induces a 5-colored
cycle, which yields that K◦

4(P (5, 2)) = 5.
The exact value of K◦

i (G) can be determined (for small i) for graphs with sufficiently high vertex
connectivity. We provide several results for such graphs; following results on cycles of k-connected
graphs are used in their respective proofs.

Theorem 2 (Häggkvist, Thomassen [13]). Let G be a k-connected graph (k ≥ 2).

1. For any set S of independent edges of size k− 1, there is a cycle in G containing all edges of
S;

2. For any set S of independent paths (except single vertices) of total length k − 1 there is a
cycle in G containing all elements of S.

Theorem 3 (Denley, Wu [9]). Let G be a k-connected graph where k ≥ 2. Let S be a set of
independent paths with a total of s edges and T be a set of t vertices, where s + t = k and t ≥ 1.
Then there is a cycle of G containing each path of S and each vertex of T .

The following theorem shows that the bound in Theorem 1 is sharp in the case of i = 3 and G
being a 5-connected graph.

Theorem 4. If G is a 5-connected graph then K◦
3(G) = ∆(G) + 1.



It can be shown, using Theorem 1, that K◦
3(G) ≥ ∆(G) + 1 for every connected graph G of

order at least 2. To prove Theorem 4, it therefore suffice to show that in each (∆(G) + 2)-coloring
of a 5-connected graph G there is a subgraph consisting of four edges of mutually distinct colors
whose maximum degree is at most 2. Then Theorem 2 yields an existence of a four-colored cycle.

In the case of colorings with only monochromatic and bichromatic cycles allowed, we provide
following two results. The first one deals with the case when G is 3-connected and the second one

deals with the case when the vertex connectivity of G is 2. Since K◦
i (G) =

∑
B∈B(G)

K◦
i (B), where

B(G) is the set of blocks of a graph G, Problem 1 is fully solved in the case when i = 2.

Theorem 5. If G is a 3-connected graph then K◦
2(G) = 2.

Theorem 6. Let G be a graph with κ(G) = 2. Then K◦
2(G) = max

X
(c(G,X) + ε(G,X)), where the

maximum is taken over all 2-cuts of G, c(G,X) denotes the number of components of G−X, and
ε(G,X) = 1 if the vertices of X are connected by an edge and ε(G,X) = 0 otherwise.
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