
A bound on the dissociation number

Felix Bock — Ulm University, Germany
Johannes Pardey — Ulm University, Germany
Lucia D. Penso — Ulm University, Germany
Dieter Rautenbach — Ulm University, Germany

Abstract

The dissociation number diss(G) of a graph G is the maximum order of a set of vertices of G
inducing a subgraph that is of maximum degree at most 1. Computing the dissociation number
of a given graph is algorithmically hard even when restricted to subcubic bipartite graphs. For
a graph G with n vertices, m edges, k components, and c1 induced cycles of length 1 modulo

3, we show diss(G) ≥ n− 1
3

(
m+ k+ c1

)
. Furthermore, we characterize the extremal graphs in

which every two cycles are vertex-disjoint.
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1 Introduction

We consider finite, simple, and undirected graphs, and use standard terminology. A setD of vertices
of a graph G is a dissociation set in G if the subgraph G[D] of G induced by D has maximum degree
at most 1. The dissociation number diss(G) of G is the maximum order of a dissociation set in
G. The dissociation number is algorithmically hard even when restricted, for instance, to subcubic
bipartite graphs [3,9,12]. Fast exact algorithms [8], (randomized) approximation algorithms [7,8],
and fixed parameter tractability [11] have been studied for this parameter or its dual, the 3-path
(vertex) cover number. Several lower bounds on the dissociation number were proposed: If G is a
graph of order n and size m, then

diss(G) ≥



n

⌈∆+1
2 ⌉ , if G has maximum degree ∆ [4],

4
3

∑
u∈V (G)

1
dG(u)+1 , if G has no isolated vertex [4],∑

u∈V (G)

1
dG(u)+1 +

∑
uv∈E(G)

(|NG[u]∪NG[v]|
2

)−1
, [6],

n
2 , if G is outerplanar [4]
2n
3 , if G is a tree [4],
2n
k+2 − m

(k+1)(k+2) , if k =
⌈
m
n

⌉
− 1 [5], and

2n
3 − m

6 , [4].

(1)

The results in the present papers were inspired by bounds in (1).
Our main result is the following.

Theorem 1. If G is a graph with n vertices, m edges, k components, and c1 induced cycles of
length 1 modulo 3, then

diss(G) ≥ n− 1

3

(
m+ k + c1

)
. (2)



Theorem 1 generalizes the lower bound 2n/3 for trees of order n in (1), strengthens the general
lower bound 2n

3 − m
6 in (1) for many graphs, and almost implies the lower bound n/2 for subcubic

graphs of order n, which follows from the first bound in (1). In the proof of Theorem 1, graphs
in which all cycles are pairwise vertex-disjoint play an essential role. We call such graphs cycle-
disjoint; their components are restricted cactus graphs, where a cactus is a connected graph in
which every block is either a K2 or a cycle. As a step towards the understanding of all extremal
graphs for Theorem 1, we consider the extremal cycle-disjoint graphs in more detail. We propose
three extension operations (O1), (O2), and (O3) applicable to a given graph G′, attaching a P3

or a cycle of length not 0 modulo 3 by a bridge to G′, illustrated in Figure 1. It is easy to see
that applying one of these operations to a graph that satisfies (2) with equality yields a graph
that satisfies (2) with equality. Since P3 and the cycles of lengths not 0 modulo 3 satisfy (2) with
equality, this already allows to construct quite a rich family of extremal graphs, yet not all of them.
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Figure 1: Operations constructing an extremal graph from a smaller extremal graph G′.

The two operations (O1) and (O2) are sufficient for the constructive characterization of all trees
T of order n with diss(T ) = 2n/3, that is, of all trees that are extremal for the bound from [4]
stated in (1). Let T be the set of all trees that arise from P3 by repeated applications of the two
operations (O1) and (O2), attaching a new P3 by a bridge to trees in T .

Theorem 2. For a tree T of order n, the following statements are equivalent.

(a) diss(T ) = 2n
3 .

(b) T ∈ T .

(c) n ≡ 0mod 3, and, for every vertex y of T , at most two components of T − y have order not 0
modulo 3.

Next to the three simple operations illustrated in Figure 1, we introduce one slightly more
complicated operation involving so-called ((very) good) spiked cycles: For positive integers ℓ and k
with ℓ ≥ max{3, k}, and indices i1, . . . , ik ∈ [ℓ] with i1 < i2 < . . . < ik, a spiked cycle C∗ with k
spikes at {i1, . . . , ik} arises from the cycle C : u1u2 . . . uℓu1 of length ℓ by attaching a new endvertex
vij to uij for every j ∈ [k]. The spiked cycle C∗ is good if either k = 1 and ℓ ≡ 1mod 3 or k ≥ 2,

� ij+1 − ij ≡ 2mod 3 for every j ∈ [k − 1], and

� ℓ+ i1 − ik ≡ 1mod 3,

that is, the k paths in C∗ between vertices of degree 3 whose internal vertices have degree 2, have
lengths 2, . . . , 2, and 1 modulo 3. The spiked cycle C∗ is very good if it is good and

� ℓ ̸≡ 1mod 3,



that is, in particular, k ≥ 2. See Figure 2 for an illustration.
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Figure 2: A very good spiked cycle with ℓ = 15 and k = 5 spikes at {i1, . . . , ik} = {2, 4, 9, 11, 13}.
Note that removing v4 results in a spiked cycle that is not good.

Let C be the set of all graphs that arise from the graphs in

C0 =
{
P3

}
∪
{
Cℓ : ℓ ∈ N, ℓ ≥ 3, and ℓ ̸≡ 0mod 3

}
∪
{
C∗ : C∗ is a very good spiked cycle

}
by repeated applications of the three operation (O1), (O2), and (O3), as well as the fourth operation
(O4) of forming the disjoint union of some graph G′ in C with a very good spiked cycle C∗, and
adding a bridge between V (G′) and V (C∗).

Lemma 1. All graphs in C satisfy (2) with equality. Furthermore, for every vertex u of every graph
G in C, the graph G has a maximum dissociation set not containing u.

As our final result, we show that C contains all connected cycle-disjoint extremal graphs for
Theorem 1. Figure 3 shows two extremal graphs that are not cycle-disjoint.

Theorem 3. A connected cycle-disjoint graph satisfies (2) with equality if and only if it belongs to
C.
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Figure 3: Two graphs G that satisfy (2) with equality. Note that the removal of the vertex u, which
lies on two cycles, yields dG(u)− 2 components.

Within our results, the value c1 can be replaced by the maximum number of pairwise vertex-
disjoint cycles of length 1 modulo 3. It remains to elucidate the structure of all extremal graphs
for Theorem 1.

All proofs are provided in the arxiv version of this paper. [2]
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