
Pathlength of Outerplanar Graphs

Thomas Dissaux — Université Côte d’Azur, Inria, CNRS, I3S, France
Nicolas Nisse — Université Côte d’Azur, Inria, CNRS, I3S, France

Abstract

A path-decomposition of a graph G = (V,E) is a sequence of subsets of V , called bags, that
satisfy some connectivity properties. The length of a path-decomposition of a graph G is the
greatest distance between two vertices that belong to a same bag and the pathlength, denoted by
p`(G), of G is the smallest length of its path-decompositions. This parameter has been studied
for its algorithmic applications for several classical metric problems. Deciding if the pathlength
of a graph G is at most 2 is NP-complete, however no result about planar graphs is known.
In this work, we first show that p`(Cn) = bn2 c for any n-cycle Cn and that the pathlength can
be computed in linear time in trees. Our main result is a (+1)-approximation algorithm for
computing the pathlength of 2-connected outerplanar graphs, based on a characterization of
almost optimal (of length at most p`(G) + 1) path-decompositions of such graphs.

1 Introduction

Path-decompositions of graphs are well studied since their introduction in the Graph Minor Theory
of Robertson and Seymour, and for their various algorithmic applications. A path-decomposition
of a graph G = (V,E) is a sequence (X1, . . . , Xp) of subsets of V (called bags) such that (1)⋃

i≤pXi = V , (2) for every edge {u, v} ∈ E, there exists 1 ≤ i ≤ p such that u, v ∈ Xi, and (3)
for all 1 ≤ i ≤ z ≤ j ≤ p, Xi ∩Xj ⊆ Xz. These properties imply another fundamental (in proofs)
property, which is that for all 1 ≤ i < p, S = Xi ∩Xi+1 separates

⋃
j≤iXj \ S and

⋃
j≥iXj \ S.

One of the most famous measure about path-decompositions is the width (corresponding to the
maximum size of the bags minus one). The pathwidth of a graph G is the minimum width of its
path-decompositions. Typically, the famous Courcelles’s theorem implies that various NP-hard (in
general graphs) problems can be solved in polynomial time in graphs with bounded pathwidth.

We focus on another measure (less studied) of path-decompositions which has also various
algorithmic applications. For all u, v ∈ V , let dG(u, v) (or d(u, v) if there is no ambiguity) be the
distance between u and v in G. The length `(D) of a path-decomposition D = (X1, . . . Xp) of G is
the maximum diameter of its bags, i.e., `(D) = maxi≤p maxu,v∈Xi dG(u, v). The pathlength p`(G)
of a graph G is the minimum length of its path-decompositions [6].

Concerning the applications, the line-distortion problem can be approximated in graphs of
bounded pathlength [7], which has applications in computer vision, computational chemistry and
biology, distributed protocols...(see references in [8]). Moreover, the pathlength being an upper
bound of the treelength, several problems like the traveling salesman problem or the metric dimen-
sion can be solved (or approximated) efficiently in graphs of bounded pathlength [9, 1, 4].

For any graph G, deciding if p`(G) ≤ 2 is NP-complete and there is no c-approximation of
p`(G) for all c < 3/2 (if P 6= NP) [8]. The best known approximation of p`(G) has a factor 2 [7]
but the complexity in the case of planar graphs is unknown. Here, we initiate the study of planar
graphs by first considering outerplanar graphs (graphs that can be embedded in a plane without
crossing edges and such that every vertex is in the outer face). Note that this class of graphs has
already been studied in the cases of treelength [6] and of pathwidth. In the latter case, the best
exact algorithm has time complexity at least O(|V |11) and there exists a 2-approximation [2, 3].

a b d f g

X Y Z W

Figure 1: Example of a tree T (with
p`(T) = 2) where one of the optimal path-
decompositions described in Theorem 1 is
({ab}, {bc}, X, Y, {cd}, {de}, Z,W, {ef}, {fg}).

12 12

33

16 16
F

C

Figure 2: Example of a graph G with no op-
timal path-decomposition (p`(G) = 10) sat-
isfying Property 2 for the component C (in
bold). A line labeled x is a path with x edges.

Contributions. We first give a linear-time algorithm that computes the pathlength of trees,
and prove that p`(Cn) = bn2 c for all cycle Cn with n vertices. Our main result is an algorithm
that computes, in time O(n3 · p`(G)2), a path-decomposition of length at most p`(G) + 1 of any
2-connected outerplanar graph G. Note that proofs have been omitted but can be found here [5].

Preliminaries. A diameter of a graph G = (V,E) is any shortest path with maximum length
(maxx,y∈V d(x, y)) in G. The distance d(u, S) from u ∈ V to S ⊆ V equals minv∈S d(u, v). From
now on, “decomposition” will always refer to path-decomposition. The following property is widely
used below. A subgraph H of a graph G is isometric if, for all u, v ∈ V (H), dH(u, v) = dG(u, v)
(distances from G are preserved in H). For any isometric subgraph H of G, p`(H) ≤ p`(G) [6].

2 Pathlength of trees, cycles and outerplanar graphs

We begin by investigating the pathlength of trees. This result relatively simple will give us an
intuition on how the pathlength of outerplanar graphs can be computed.

Theorem 1. Let T = (V,E) be any tree that is not a path. Let P be a diameter of T and let
k = maxv∈V d(v, V (P)) > 0. Then, p`(T) = k can be computed in linear time.

Sketch of proof : Since T is not a path, T contains a k-spider graph (which is obtained from K1,3

by subdividing each edge k − 1 times) as isometric subgraph and so p`(G) ≥ k [6]. For the upper
bound, we define a decomposition D of T of length k. Intuitively, this decomposition ”follows” P
by ”adding” the ”branches” sequentially in the order they are met. Formally, let P = (v0, . . . , vr),
ei = {vi−1, vi} and Ti is the component of T \ {ei, ei+1} containing vi (0 ≤ i < r). The first bag
of D is {v0, v1}, then sequentially (from i = 1 to r− 1), we ”add” the bags containing respectively
the path from vi to a leaf of Ti (for all leafs of Ti, ordered by an arbitrary DFS of Ti starting at vi),
followed by the bag containing {vi, vi+1} (see an illustration in Figure 1). Clearly, P and a such
decomposition (and p`(G)) can be computed in linear time. �

We now look at 2-connected outerplanar graphs. Let us begin with the simplest of them, the cycles.

Theorem 2. [5] Let Cn = (V,E) be a cycle with n ≥ 3 vertices. Then, p`(Cn) = bn2 c.

Let us consider a 2-connected outerplanar graph G = (V,E). The weak dual G∗ of G is the graph
whose vertices are the internal (bounded) faces of G and two vertices of G∗ are adjacent if their
corresponding faces share an edge in G. Note that, by 2-connectivity, G has a unique outerplanar
embedding and G∗ is a tree (see Fig. 3). By following the idea of the proof of Theorem 1, for

C

e = e0e = e0

f = e4f = e4F1F1 F2F2 F3F3 F4F4e1e1 e3e3

G1G1

G3G3

F1F1

F2F2
F3F3

F4F4

HH

eCeC

Figure 3: Notations of Theorem 3 on an example. On the left, a 2-connected outerplanar graph G
(in solid lines), its weak dual G∗ (in dotted lines) with the path P ∗ (in red) associated to the edges
e and f and the corresponding ”path of faces” H (in blue). On the right, the subgraphs G1 and
G3, and the subgraph C ∪ eC (in blue) associated to the component C of G\H are illustrated.

any path P ∗ of G∗, a decomposition (not necessarily optimal) of the tree G∗ can be defined by
“following” P ∗ and by “adding” the “branches” (of G∗\P ∗) in the order they are met.

We “transpose” this kind of decomposition to a 2-connected outerplanar graph G. Intuitively,
P ∗ corresponds to a “path of faces” H in G (induced by the vertices of the faces of P ∗) and the
“branches” of G∗\P ∗ correspond to the connected components of G\H. We show that there exists
an “almost” optimal (of length at most p`(G) + 1) decomposition of G which “follows” H (for a
particular path of G∗) in the same way as above and that can be computed in polynomial time.

Theorem 3. Let G = (V,E) be a 2-connected outerplanar graph with n vertices. A path-decomposition
of G with length at most p`(G) + 1 can be computed in time O(n3p`(G)2).
Sketch of proof : Our algorithm actually computes O(n2) decompositions, one for each pair
of edges of G (since G is planar, |E| = O(n)), and then returns one of these decompositions of
minimum length. Precisely, for any two fixed edges e, f ∈ E, the algorithm computes a particular
(see below) decomposition of G where the first bag contains e and the last bag contains f .

If e = f , we design a greedy algorithm that computes, in time O(n), an optimal decomposition
of G among all decompositions such that every bag contains both endpoints of e.

The case e 6= f is more technical and needs more notations (illustrated in Figure 3). Let
P ∗ = (F1, . . . , Fr) be the shortest path in G∗ such that e ∈ V (F1) and f ∈ V (Fr) (possibly
F1 = Fr). Let us recall that P ∗ corresponds to a subgraph (a “path of faces”) H of G. For
1 ≤ i < r, let ei be the edge shared by Fi and Fi+1 (e = e0 and f = er). For each component C of
G\H, let eC be the edge of H such that N(C) = {u ∈ V \C | ∃v ∈ C, {u, v} ∈ E} = eC . Moreover,
let DC be an optimal decomposition of C ∪ eC among all its decompositions with eC in all their
bags. Finally, for 1 ≤ i ≤ r, let Gi be the subgraph of G induced by the vertices of the face Fi and
the vertices of each component C of G \H such that eC ∈ E(Fi) (the set of these components is
denoted by Ci). We give an algorithm that computes a decomposition Def with minimum length
among the decompositions that respect these following three properties:

1. “face of H by face of H, from left to right (from 1 to r)” : Def = D1 � · · · �Dr (�
is the concatenation of sequences) such that, for 1 ≤ i ≤ r, Di is a decomposition of Gi (we
decompose sequentially G1 to Gr) such that ei−1 is in its first bag and ei is in its last bag;

2. for each face of H, “component per component” of G \ H : for all 1 ≤ i ≤ r,
components of Ci are ”added” one by one to Di = (Xi

1, · · · , Xi
ri). Formally, for all C ∈ Ci,

there exists 1 ≤ aC ≤ bC ≤ ri such that (1) the restriction of (Xi
aC

, · · · , Xi
bC

) to C ∪ eC is

exactly DC and (2) for all aC ≤ j ≤ j′ ≤ bC , Xi
j \ V (C ∪ eC) = Xi

j′ \ V (C ∪ eC) ⊆ V (Fi).
Informally, once a vertex of a component C ∈ Ci is “added” to Di, we cannot ”add” a vertex
from another component while all vertices of C have not been ”added” to Di;

3. for each face of H, from “left to right” : for all 1 ≤ i ≤ r, the order in which components
of Ci are ”added” to Di is restricted to the following manner (intuitively, “from left to right”).
Precisely, let Ai et Bi be the two disjoint paths from ei to ei+1 in Fi. For all C,C ′ ∈ Ci such
that eC , eC′ ∈ E(Ai) (resp., eC , eC′ ∈ E(Bi)) with eC closer to ei than eC′ in Ai (resp., in
Bi), then C has to ”be” in Di before C ′ (i.e., bC < aC′).

Once the two edges e and f (e 6= f) are fixed, our algorithm computes first the decomposition DC

for every component C of G \H, which can be done in global time O(n) by the greedy algorithm
previously mentioned. Then, for each 1 ≤ i ≤ r, we compute an optimal (that minimizes the length)
order (property 3) using a dynamic programming algorithm which computes such an order, and so
Di, in times O(|Fi|2) = O(p`(G)2) (each inner face F is an isometric cycle and so |F | = O(p`(G))).
Hence, our algorithm computes Def in time O(n + r · p`(G)2) = O(n · p`(G)2).

Therefore, the O(n2) decompositions can be computed in time O(n3p`(G)2). The key point
is to prove that there exists such a path-decomposition with length at most p`(G) + 1. We show
that, for any optimal decomposition D of G, if there is no edge contained in each bag, then we
can modify D in a decomposition of G satisfying the 3 properties (for two different edges e, f ∈ E
depending on D) with length at most p`(G) + 1. �
Further work. The next step will be to design a polynomial time exact algorithm (if it exists) to
compute the pathlength of outerplanar graphs. Note that there exist graphs such that all previous
particular decompositions have length at least p`(G) + 1 (see Fig. 2), and that this raise is due to
the second property presented above. Note also that we considered 2-connected outerplanar graphs
to simplify the presentation (our results extend to any outerplanar graph). Another interesting
question is to know if our algorithm for trees can be adapted in the case of chordal graphs. Finally,
the complexity of computing the pathlength (treelength) of planar graphs is still open.

References

[1] R. Belmonte, F. V. Fomin, P. A. Golovach and M. S. Ramanujan. Metric Dimension of Bounded Tree-length
Graphs. SIAM J. Discret. Math., 32(2): 1217-1243, 2017.

[2] H. L. Bodlaender and F. V. Fomin. Approximation of pathwidth of outerplanar graphs. J. Alg., 43(2): 190-200,
2002.

[3] D. Coudert, F. Huc and J.-S. Sereni. Pathwidth of outerplanar graphs. J. Graph Theory, 55(1): 27-41, 2007.

[4] T. Dissaux, G. Ducoffe, N. Nisse and S. Nivelle. Treelength of Series-parallel Graphs. In XI Latin and American
Algorithms, Graphs and Optimization Symposium (LAGOS), 195(1): 30-38, 2021.

[5] T. Dissaux and N. Nisse. Pathlength of Outerplanar graphs. Technical Report, http://www-
sop.inria.fr/members/Thomas.Dissaux/Outerplanar.pdf.

[6] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small diameter. Discret. Math., 307(16):
2008-2026, 2007.

[7] F. F. Dragan, E. Köhler and A. Leitert. Line-Distortion, Bandwidth and Path-Length of a Graph. Algorithmica,
77(3): 686-713, 2017.

[8] G. Ducoffe, S. Legay and N. Nisse. On the Complexity of Computing Treebreadth. Algorithmica, 82(6): 1574-
1600, 2020.

[9] R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In 47th Annual IEEE Symp. on
Foundations of Computer Science (FOCS 2006): 119-132, 2006.

http://www-sop.inria.fr/members/Thomas.Dissaux/Outerplanar.pdf
http://www-sop.inria.fr/members/Thomas.Dissaux/Outerplanar.pdf

	Introduction
	Pathlength of trees, cycles and outerplanar graphs

