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Abstract

In this paper, we introduce r-splits, a generalization of graph splits. Splits are well-known
graph cuts that allow representing a graph with a structure that can be described in linear
space. We mainly prove that, analogously, r-splits can be described in polynomial space.

1 Introduction

Split-decomposition is a well-known graph decomposition [4] that decomposes a graph in linear
time, using a structure called symmetric crossing family [1], which can be represented in linear
space [3]. Hence, one entry point to decompose a graph via splits in linear time is the existence
of a concise structure that represents every split. This paper aims at generalizing this concept. A
split can be defined as a cut of rank at most 1. In a natural way, we introduce an r-split as a cut
of rank at most r.

Definition 1. Let G = (V,E) be a graph. Let (X,X) be a cut (i.e., a 2-partition of V ). The
rank of this cut, noted ρ(X), is equal to the rank of the adjacency matrix of G where the rows are
restricted to X and the columns are restricted to X. The cut (X,X) is an r-split if ρ(X) ≤ r.
Such a cut is said to be trivial when ρ(X) = min(|X|, |X|).

We focus on the set of non-trivial r-splits of a graph for a fixed r. Function ρ has several
properties [2] which can be carried to r-splits. The most useful is submodularity, which is proved
in [2] and stated as follows:

Lemma 1. For all X,Y ⊆ V , we have ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ).

Oum also defined the notion of r-rank connectivity, as follows:

Definition 2. [5] A graph G is r-rank connected if each k-split for k < r is trivial.

As a direct consequence, in an r-rank connected graph, if a set of vertices X has a cardinality
satisfying r ≤ |X| ≤ |V | − r, then ρ(X) ≥ r. Combined with submodularity, we get the following
lemma:

Lemma 2. If X and Y are two r-splits of an r-rank connected graph G, |X∩Y | ≥ r and |X ∪ Y | ≥
r, then X ∩ Y and X ∪ Y are both r-splits.

Proof. Since X and Y are r-splits, we know that ρ(X) ≤ r and ρ(Y ) ≤ r. By submodularity, we
deduce that ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ 2r. The number of vertices of X ∪ Y and X ∩ Y is both
between r and |V | − r. Hence, by r-rank connectivity of G, ρ(X ∪ Y ) ≥ r and ρ(X ∩ Y ) ≥ r. All
in all, ρ(X ∪ Y ) = ρ(X ∩ Y ) = r, which concludes the proof.

This property is powerful as it organizes the set of all r-splits of a graph, as shown in the
following theorem, which constitutes the main result of this paper:



Theorem 1. Given an r-rank connected graph G with n vertices, and the set of all its r-splits,
there exists a subset of r-splits of size O(n2r+1) that fully characterizes the whole set of r-splits.

Next sections are dedicated to formalizing and proving this theorem.

2 Hypergraph of r-splits

Let G = (V,E) be an r-rank connected graph with vertex set V = [n]. Let us denote by Hr(G)
the hypergraph whose set of vertices is the same as G, namely V (Hr(G)) = [n], and whose set of
hyperedges E is the set of all r-splits of G. From the previous section, we know that Hr(G) satisfies
the following properties: (1) if A ∈ E , then V \ A ∈ E ; (2) for every set of vertices X ⊆ V , if
|X| ≤ r, then X ∈ E ; (3) if A,B ∈ E , |A∩B| ≥ r and |A ∪B| ≥ r, then A∩B ∈ E and A∪B ∈ E .
Therefore, we consider hypergraphs that satisfy these properties:

Definition 3. Let Kr(n) be the class of hypergraphs with set of vertices V = [n] and set of hyper-
edges E that satisfies:

K1 : If A ∈ E, then V \A ∈ E.
K2 : For every set of vertices X ⊆ V , if |X| ≤ r, then X ∈ E.
K3 : If A,B ∈ E, |A ∩B| ≥ r and |A ∪B| ≥ r, then A ∩B ∈ E and A ∪B ∈ E.

We note that for each r-rank connected graph G of order n, the hypergraph Hr(G) made of all
r-splits of G belongs to the class Kr(n).

The classKr(n) has the property of being a closure system. This means that: (1) the hypergraph
with every possible hyperedge belongs to Kr(n); (2) if we take two hypergraphs H1, H2 ∈ Kr(n),
then the intersection of those hypergraphs is also in Kr(n). We recall that the intersection of two
hypergraphs H1 and H2 is the hypergraph whose vertex set is the same as H1 and H2 (namely,
[n]), and whose hyperedge set is the intersection of the set of hyperedges of H1 and H2.

Lemma 3. The class Kr(n) is a closure system.

Proof. First, it is trivial that the hypergraph with all possible edges satisfies Definition 3, meaning
that this hypergraph belong toKr(n). Secondly, let H1, H2 ∈ Kr(n) and let us prove that H1∩H2 ∈
Kr(n). To this purpose, let A,B be hyperedges of H1 ∩H2 and let X be a subset of vertices of V ,
and let us prove that they satisfy properties K1,K2,K3 of Definition 3:

• For K1: As A is a hyperedge of H1∩H2, A is a hyperedge of H1, and V \A is also a hyperedge
of H1 as H1 ∈ Kr(n). For the same reason, V \ A is a hyperedge of H2. Hence, V \ A is a
hyperedge of H1 ∩H2.
• For K2: If |X| ≤ r, then X is a hyperedge of H1 as H1 ∈ Kr(n), and X is a hyperedge of H2

as H2 ∈ Kr(n). Hence, X is a hyperedge of H1 ∩H2.
• For K3: If |A ∩ B| ≥ r and |A ∪B| ≥ r, then A ∩ B and A ∪ B are hyperedges of H1 as
H1 ∈ Kr(n). With the same argument, A∩B and A∪B are hyperedges of H2. Hence, A∩B
and A ∪B are hyperedges of H1 ∩H2.

In conclusion, H1 ∩H2 fully satisfies Definition 3, proving that H1 ∩H2 ∈ Kr(n).

Having a closure system is convenient, as it induces a closure operator. In our case, the closure
operator is defined as follows:



Definition 4. Let H be a hypergraph with vertex set V = [n]. The closure of H in Kr(n), denoted
<H>r, is the hypergraph defined as the intersection of all hypergraphs that contain H and that
belong to Kr(n). A hypergraph H satisfying <H>r= H is called a closed hypergraph for <·>r.

In other words, A is a hyperedge of <H>r if and only if A is a hyperedge of every hypergraph
that contains H and that belongs to Kr(n).

Just like any closure operator, <·>r is extensive (for any hypergraph H, H ⊆<H>r), monotone
(for any hypergraphs H,H ′, if H ⊆ H ′, then <H>r⊆<H ′>r), and idempotent (for any H ∈ Kr(n),
we have <H>r= H). We can now use <·>r to formalize Theorem 1:

Formalization of Theorem 1. Given an r-rank connected graph G with n vertices, there exists
a hypergraph H with O(n2r+1) hyperedges such that <H>r= Hr(G).

3 Proof of Theorem 1

To prove Theorem 1, we introduce the function Edg that takes two sets of vertices (V+, V−) of a
hypergraph H, and that returns the smallest hyperedge (in term of inclusion) of that hypergraph
that contains every vertex of V+ and that avoids every vertex of V−.

Lemma 4. Let H ∈ Kr(G). Let V+, V− be two sets of vertices such that V+∩V− = ∅, |V+| ≥ r and
|V−| = r. Let A be the set of all hyperedges A of H satisfying V+ ⊆ A ⊆ V−. Then, the intersection
of all hyperedges of A is also a hyperedge of H. We denote this hyperedge by EdgH(V+|V−).

Proof. First, let us check that this intersection is not empty, i.e., there exists a hyperedge A such
that V+ ⊆ A ⊆ V−. Let A = V−. We have V+ ⊆ A as V+ ∩ V− = ∅. We claim that V− is a
hyperedge of H. Indeed, since |V−| ≤ r and H ∈ Kr(n), by property K2, V− is a hyperedge of H.
Furthermore, by property K1, V− is also a hyperedge of H.

Secondly, let us prove that if A and B are two hyperedges of A (i.e., they are hyperedges of H
satisfying V+ ⊆ A ⊆ V− and V+ ⊆ B ⊆ V−), then A∩B is in A as well. We know that V+ ⊆ A∩B,
meaning that |A∩B| ≥ |V+| ≥ r; and V− ⊆ A ∪B, meaning that |A ∪B| ≥ |V−| = r. By property
K3, A ∩B is a hyperedge of H. Furthermore, A ∩B satisfies V+ ⊆ A ∩B ⊆ V−. Hence, A ∩B is
a hyperedge of A.

As A is made up of a finite number of hyperedges, and the intersection of any pair of hyperedges
of A is also in A, we deduce that the intersection of all hyperedges of A is a hyperedge of A, and
thus a hyperedge of H.

Before finally proving Theorem 1, let us first state a simple but useful lemma about a kind of
closeness under union for hyperedges of a closed hypergraph (i.e., a hypergraph in Kr(n)).

Lemma 5. Let H ∈ Kr(n). Let V− be a set of r vertices, and let A1, . . . , Ak be k hyperedges of H.
If every Ai satisfies Ai ⊆ V−, and if for every 1 ≤ i < k, we have |Ai ∩ Ai+1| ≥ r, then

⋃k
i=1Ai is

a hyperedge of H.

Proof. We prove it by induction. For k = 1, the lemma is trivial. Suppose the lemma is true
for k hyperedges and let us prove it for k + 1. Let A′ = A1 ∪ . . . ∪ Ak. A′ is a hyperedge of H
by induction. It remains to prove that A′ ∪ Ak+1 is a hyperedge of H. Since Ak ⊆ A′, we have
Ak ∩Ak+1 ⊆ A′ ∩Ak+1, meaning that |A′ ∩Ak+1| ≥ |Ak ∩Ak+1| ≥ r. Besides, A′ ∪Ak+1 ⊆ V−, so
|A′ ∪Ak+1| ≥ |V−| ≥ r. Finally, by property K3, A

′ ∪Ak+1 is a hyperedge of H.



Now, given a hypergraph H ∈ Kr(n), let us build a hypergraph H ′ that has O(n2r+1) hyper-
edges, and such that <H ′>r= H.

Lemma 6. Given H ∈ Kr(n), let H ′ be the sub-hypergraph of H whose hyperedge set is the set of
all hyperedges EdgH(V+|V−) for every V+, V− ⊆ V = [n] such that the set of vertices V+ and V−
are disjoint, |V+| = r + 1 and |V−| = r. Then H ′ has O(n2r+1) hyperedges and <H ′>r= H.

Proof. By construction, H ′ has a number of hyperedges at most equal to the number of hyperedges
of the form EdgH(V+|V−), with |V+| = r + 1 and |V−| = r. This is equal to the number of ways of
picking r + 1 vertices from V to build V+, multiplied by the number of ways of picking r vertices
from V to build V−, i.e.: (

|V |
r + 1

)(
|V |
r

)
=

(
n

r + 1

)(
n

r

)
= O(n2r+1).

Now, let us prove that <H ′>r= H by double inclusion.
Since H ′ ⊆ H and since a closure operator is monotone, we have that <H ′ >r⊆<H >r.

Since H ∈ Kr(n), and since a closure operator is idempotent, we have that <H>r= H. Hence,
<H ′>r⊆ H.

Let A be a hyperedge of H. If |A| ≤ r or |A| ≤ r, A is a hyperedge of <H ′>r by properties
K1 and K2. Now, suppose that |A| > r and |A| > r. Set V− to be any subset of r vertices of
A, which is possible as |A| > r. Let k = |A|, and let A = {u1, . . . , uk}. For 1 ≤ i ≤ k − r, let
Vi = {ui, . . . , ui+r}. Hence, each Vi is a set of vertices of size r + 1, the union of all Vi’s is A, and
the intersection of Vi and Vi+1 is of size r. Now, let Ai = Edg<H′>r

(Vi|V−), i.e., Ai is the smallest
hyperedge of <H ′>r that contains Vi and avoids V−. By definition, Vi ⊆ Ai ⊆ V −, and Ai is a
hyperedge of <H ′>r. Besides,

⋃
i Vi ⊆

⋃
iAi, i.e., A is included in the union of all Ai. Furthermore,

by minimality of Edg<H′>r
(Vi|V−), Ai ⊆ A. Hence, the union of all Ai is exactly A. Using Lemma 5

on the hypergraph <H ′>r∈ Kr(n), we have that A is a hyperedge of <H ′>r, concluding the proof
that H ⊆<H ′>r.

We can now prove Theorem 1. Let G be an r-rank connected graph with n vertices. Then
Hr(G) ∈ Kr(n). Using Lemma 6, it exists H with O(n2r+1) hyperedges such that <H>r= Hr(G).
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