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Abstract

By g(k, t) we denote the smallest integer such that every plane graph with girth g ≥ g(k, t),
minimum degree at least 2, and no (k+1)-paths consisting of vertices of degree 2 has a 3-vertex
with at least t neighbors of degree 2. Borodin and Ivanova completed the list of values of g(k, t)
for all k ≥ 1 and 1 ≤ t ≤ 3.

By g∗(k, t) we denote the smallest integer for which there exists an (integer) function f(k)
such that for every surface S with non-positive Euler characteristic χ(S) and every graph G
embedded on S with |V (G)| > f(k)|χ(S)|, g(G) ≥ g∗(k, t), δ(G) ≥ 2, and no (k + 1)-path
consisting of vertices of degree 2, k ≥ 1, G has a 3-vertex with at least t neighbors of degree 2.
We have showed that g∗(k, 1) = 4k + 5 if f(k) ≥ 10k + 5, g∗(k, 2) = 4k + 5 if f(k) ≥ 16k + 11,
and g∗(k, 3) = 4k + 7 if f(k) ≥ 30k + 30. Moreover, we will discuss the quality of our results.

1 Introduction

In this contribution we use a standard graph theory terminology according to the books [1] and [6].
However, we recall some more frequent notions. The degree deg(v) of a vertex v is the number of
edges incident with v, and δ(G) = δ is the minimum vertex degree in G. A k-vertex is a vertex v
with deg(v) = k. The girth g(G) of G is the length of the shortest cycle in G.

An orientable surface (or an orientable compact 2-manifold) Sk of genus k is obtained from the
sphere by adding k handles. Analogously, a non-orientable surface (or a non-orientable compact 2-
manifold) Nk of genus k is obtained from the sphere by adding k crosscaps. The Euler characteristic
of surfaces is defined by χ(Sk) = 2 − 2k and χ(Nk) = 2 − k. By a surface S we mean either an
orientable surface Sk or a non-orientable surface Nk.

Given an embedding of a graph G on a surface S (a drawing of G in such a way that no edges
cross each other), the components of S − G are called regions. If each region is homeomorphic to
an open disk, the embedding G → S is called a 2-cellular embedding (or 2-cell embedding) and
the regions are also called faces of G. For the rest of this paper all embeddings will be 2-cellular
embeddings of graphs in surfaces. For a given embedding G → S let V (G), E(G), and F (G) be the
vertex set, the edge set and the face set of G, respectively. To describe a graph embedding G → S
it is sufficient to specify the rotation system of G. Therefore we distinguish two (orientations)
types of edges: orientation-preserving (type 0) and orientation-reversing edges (type 1). Then
rotation system of graph G is an assignment of a rotation to each vertex of G and a designation
(labelling) of orientation type to each edge of G. In figures, edges marked with small ”x” represent
orientation-reversing edges (for more details see [6], pg 113).

For the class of planar graphs there are many results concerning the existence and the structure
of small subgraphs containing only vertices of small degrees − see e.g. the survey paper [9].

We are interested in the subgraphs induced by vertices of degree 3 and their neighbors − so
called 3-stars (we denote it as S3). By g(k, t) we denote the smallest integer such that every plane
graph with girth g ≥ g(k, t), minimum degree at least 2 and no (k+ 1)-paths consisting of vertices



of degree 2 (also called (k + 1)-threads), where k ≥ 1, has a 3-vertex with at least t neighbors of
degree 2, where 1 ≤ t ≤ 3. All known results was summarized into the following theorem:

Theorem 1 (Borodin, Ivanova [2]). For the value of g(k, t), k ≥ 1, it holds:

(i) g(k, 1) = 3k + 4,

(ii) g(k, 2) = 3k + 5,

(iii) g(1, 3) = 10 and g(k, 3) = 3k + 8 for k ≥ 2.

Results about the structure of planar graphs can be naturally extended to graphs embeddable
on other surfaces − see e.g. papers [7, 8]. Theorem 1 can be extended to embeddings with positive
Euler characteristic, since discharging rules and redistribution of initial charges used in [2] can be
applied in the same way also for graphs embedded on N1 (as χ(N1) = 1) and each graph showing
the optimality of lower bounds can be embedded on N1 (by adding one crosscap to sphere we
obtain non-orientable surface N1; if we add a crosscap into planar embedding of G in such a way
that exactly one edge e incident with two different faces will cross this crosscap, then the resulting
embedding is a 2-cellular embedding of G on N1 and two faces incident with e merge into one face
with bigger degree − hence g(G) will not change).

For graphs embedded on surfaces with non-positive Euler characteristic we define g∗(k, t) as the
smallest integer for which there exists an (integer) function f(k) such that for every surface S with
non-positive Euler characteristic χ(S) and every graph G embedded on S with |V (G)| > f(k)|χ(S)|,
g(G) ≥ g∗(k, t), δ(G) ≥ 2, and no (k + 1)-path consisting of vertices of degree 2, k ≥ 1, G has a
3-vertex with at least t neighbors of degree 2. Our aim is to minimize the value of g∗(k, t) in the
sense that increasing the lower bound f(k) for the number of vertices will not affect the value of
g∗(k, t), and decreasing of f(k) will cause that g∗(k, t) is not defined in general. We have showed
the following:

Theorem 2. Let G be a connected graph on n vertices with δ(G) ≥ 2 embedded on a surface S of
Euler characteristic χ(S) ≤ 0. Then for the value of g∗(k, t) it holds:

(i) g∗(k, 1) = 4k + 5, if n > (10k + 5)|χ(S)|,

(ii) g∗(k, 2) = 4k + 5, if k ≤ 5 and n > (16k + 11)|χ(S)|,
and g∗(k, 2) = 4k + 5, if k ≥ 6 and n > (10k + 5)|χ(S)|,

(iii) g∗(1, 3) = 11, if n > 44|χ(S)|,
and g∗(k, 3) = 4k + 7, if k ≥ 2 and n > (30k + 30)|χ(S)|.

2 The optimality of f(k)

It is easy to see that g∗(k, 1) ≤ g∗(k, 2) ≤ g∗(k, 3) (for graphs with sufficiently many vertices). To
show that g∗(k, 1) ≥ 4k+5 it suffices to put k vertices of degree 2 on every edge of a quadrangular
grid of S1 or N2 with g(G) = 4. The resulting graph G1 has g(G1) = 4k + 4 and does not contain
any vertex of degree 3. Similarly, to show that g∗(k, 3) ≥ 4k + 7, we put k vertices of degree 2 on
every dashed edge of a graph of hexagonal grid with g(G) = 6 (see e.g. Figure 1) to obtain a graph
G2 having g(G2) = 4k + 6, where each 3-vertex is adjacent to precisely two 2-vertices (note that



dashed edges have to be chosen in such a way that every cycle of length 6 contains at least four of
them).

In embedding of hexagonal grid in Figure 1, the orientation of rectangle with black arrows
corresponds to embeddings on torus and orientation of rectangle with red arrows corresponds to
embeddings on N2. Note that graphs of quadrangular and hexagonal grids can be arbitrarily large
as well as graphs G1 and G2. Graphs embedded on surfaces with higher genus can be obtained
from graphs embedded on torus by adding of edges in appropriate way or by changing the types of
some edges (for more details see [3]).

Figure 1: Embedding of hexagonal grid
on S1 and N2
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Figure 2: G3 with voltages from Zr; Hβ
3 shows

optimality of f(k) in Theorem 2(i), and (ii) for
k ≥ 6

On the other hand, one can ask if the condition on the number of vertices is necessary for
surfaces with negative Euler characteristic in general. Clearly, as for every pair of parameters r ≥ 4
and g ≥ 3 there exists a finite r-regular graph of girth g (see [4] and [5]), some condition is really
needed (although the determining of genus of this graph is hard in general).

We will say that the value of f(k) is optimal (for some combinations of k and t) if there is
a graph G with f(k)|χ(S)| vertices, girth g(G) ≥ g∗(k, t), having no 3-vertex with t neighbors of
degree 2 for infinitely many surfaces.

Graph G3 (see Figure 2) is a 4-regular voltage graph with voltages β : E(G3) → Zr, red edges
correspond to edges with identity voltage. Moreover, G satisfies Kirchhoff’s voltage law (voltage on
the boundary walk of every face is identity) and it is embedded on a surface S = N3, χ(S) = −1.

Derived graph Gβ
3 is connected and simple for r ≥ 5, has 5r vertices, 10r edges and 4r faces of degree

5 and is embedded on a surface Sβ with |χ(Sβ)| = r · |χ(S)| = r. We additionally subdivide each

dashed edge k times and the resulting graph we denote as Hβ
3 . Graph Hβ

3 has 5r vertices of degree

four, 10rk vertices of degree two and every face has degree 5k+5. Hence, Hβ
3 has together (10k+5)r

vertices, does not contain any 3-vertex, for sufficiently big r (r ≥ 9) has g(Hβ
3 ) > g∗(k, 1) = 4k+5,

and shows the optimality of bound f(k) = (10k + 5) in Theorem 2(i), and (ii) for k ≥ 6.
In Theorem 2(ii) for values k ∈ {2, 3, 4, 5} we have not found the optimal value of f(k), we only

know that f(k) ≤ 16k + 11. Note, that we know f(1) = 27.

Problem 1. Find the optimal values of function f(k), k ∈ {2, 3, 4, 5}, such that for every surface
S with non-positive Euler characteristic χ(S) and every connected graph G embedded on S with
n > f(k)|χ(S)| vertices, δ(G) ≥ 2, g(G) ≥ 4k + 5, and no (k + 1)-path consisting of vertices of
degree 2 (k ≥ 1), G contains a 3-vertex adjacent to at least two 2-vertices.



As we do not have an example showing the optimality of values of f(k) in Theorem 2(iii), it
would be interesting either to find graphs showing the optimality of values 44 or 30k+30, or prove
the better lower bound for f(k). We can formulate this as follows:

Problem 2. Find the optimal values of function f(k) such that for every surface S with non-
positive Euler characteristic χ(S) and every connected graph G embedded on S with n > f(k)|χ(S)|
vertices, δ(G) ≥ 2, g(G) ≥ 4k + 7, and no (k + 1)-path consisting of vertices of degree 2 (k ≥ 1),
G contains a 3-vertex adjacent to three 2-vertices.
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