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Abstract
A graph G is minimally t-tough if G has toughness t and for any edge e of G, the graph G− e

is not t-tough. Katona, Soltész, and Varga showed that for every positive rational number t, any
graph is an induced subgraph of some minimally t-tough graph. Hence, no induced subgraph
can be excluded for the class of minimally t-tough graphs. We consider the opposite point of
view and ask which induced subgraphs, if any, must necessarily be present in each minimally
t-tough graph. Katona and Varga showed that for all t ∈ (1/2, 1], every minimally t-tough graph
contains a hole, that is, an induced cycle of length at least four. We complement this result
by showing that for all finite t > 1, every minimally t-tough graph must contain a hole or an
induced subgraph isomorphic to the k-sun for some k ≥ 3. Our approach also shows that for all
finite t > 1, every minimally t-tough graph containing a universal vertex also contains a hole.

1 Introduction

In 1973, Chvátal defined a (finite, simple and undirected) graph G to be t-tough, where t is a real
number, if any cutset S of G satisfies |S|/ω(G − S) ≥ t, where ω(G − S) denotes the number of
connected components of G−S [5]. The toughness of G, denoted by τ(G), is the largest real number
t such that G is t-tough, and is infinite if G is complete. As informally described by Chvátal himself,
toughness “measures in a simple way how tightly various pieces of a graph hold together.” Toughness
aimed at generalizing the notion of Hamiltonicity, since Hamiltonian graphs are 1-tough, and Chvátal
conjectured that that there exists a real t0 such that every t0-tough graph is Hamiltonian. Chvátal
even left open the possibility that any t0 > 3/2 would satisfy the condition; in particular, he asked
whether one could take t0 = 2. While this version of the conjecture has been disproved by Bauer,
Broersma, and Veldman in 2000 [1], the general conjecture remains open until this day.

A concept closely related to Chvátal’s conjecture is that of a minimally t-tough graph, which
Broersma, Engbers, and Trommel defined in 1999 as a graph that is t-tough but for which the
deletion of any edge decreases the toughness [4]. This notion has been studied in a number of
subsequent works (see, e.g., [7, 8, 9, 11]). In particular, Katona, Soltész, and Varga showed in [8]
that for every positive rational number t, any graph is an induced subgraph of some minimally
t-tough graph.

In this paper, we continue the study of minimally t-tough graphs. We provide a necessary and
sufficient condition for a non-complete connected graph G to be minimally t-tough, where t = τ(G)
is the toughness of G. We then use this condition to derive that for all finite t > 1 every minimally
t-tough graph must contain a hole or an induced subgraph isomorphic to the k-sun for some k ≥ 3.
This result complements the one of Katona and Varga stating that for all t ∈ (1/2, 1], every minimally
t-tough graph contains a hole [9]. Hence, this shows that there are no minimally t-tough, strongly
chordal graphs, for all t > 1/2. Besides, our approach also implies that for all t > 1, if a minimally
t-tough graph contains a universal vertex, then it contains a hole.
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2 Preliminaries

Definition of minimally tough graphs. A cutset in G is a set S ⊆ V (G) such that G − S is
disconnected (that is, ω(G− S) > 1). Given a real number t ≥ 0, a graph G is said to be t-tough if

|S|
ω(G−S) ≥ t for all cutsets S in G. The toughness of G, denoted by τ(G), is the largest value of t ≥ 0

such that G is t-tough, taking τ(Kn) = ∞ for all n ≥ 1, where Kn denotes the n-vertex complete
graph. Note that a graph is disconnected if and only if its toughness is 0. A graph G is said to
be minimally t-tough if τ(G) = t and for all edges e ∈ E(G), we have τ(G− e) < t. We say that
a graph G is minimally tough if the deletion of any edge decreases its toughness, that is, if G is
minimally τ(G)-tough.

Chordal and strongly chordal graphs. A hole in a graph is an induced cycle of length at least
four. A graph is chordal if it does not contain a hole. A graph is strongly chordal if it is chordal and
every cycle of length at least six has a chord joining two vertices at an odd distance in the cycle.

We will make use of known characterizations of strongly chordal graphs due to Farber [6]. Given
a graph G and a vertex v ∈ V (G), we denote by N(v) the neighborhood of v in G, that is, the
set of all vertices in G that are adjacent to v, and by N [v] its closed neighborhood, that is, the set
N(v)∪{v}. A vertex u ∈ N [v] is a maximum neighbor of v if for all w ∈ N [v], it holds N [w] ⊆ N [u].
A vertex is simplicial if its closed neighborhood is a clique. A vertex s is a simple vertex if its closed
neighborhood can be linearly ordered so that for x, y ∈ N [s], if x is smaller than y with respect to
the order, then N [x] ⊆ N [y]. This implies that s has a maximum neighbor (the largest neighbor of
s with respect to the order) and that s is simplicial. Given an integer k ≥ 3, a k-sun is the graph
with vertex set A∪B such that A = {a1, . . . , ak} is a clique, B = {b1, . . . , bk} is an independent set,
for all i ∈ {1, . . . , k} vertex bi is adjacent to ai and ai+1 (indices modulo k), and there are no other
edges. A graph G is said to be sun-free if for all k ≥ 3, G does not contain an induced subgraph
isomorphic to the k-sun.

Theorem 1 (Farber [6]). For every graph G, the following conditions are equivalent.

1. G is strongly chordal.

2. G is chordal and sun-free.

3. Each induced subgraph of G has a simple vertex.

Moplexes. A vertex set M in a graph G is a module if each vertex v ∈ V (G) \M is either adjacent
to every vertex in M or not adjacent to any vertex in M . A clique module is a module that is a
clique. Given a graph G and a set X ⊆ V (G), we denote by N [X] the union ∪x∈XN [x] and by
N(X) the set N [X] \X. A moplex in a graph G is an inclusion-maximal clique module X ⊆ V (G)
such that N(X) is empty or there exists a component C of the graph G − N [X] such that each
vertex in N(X) has a neighbor in C. A vertex that belongs to a moplex is said to be moplicial. A
classical theorem of Dirac states that every chordal graph with at least two vertices has at least two
simplicial vertices. This result was strengthened by Berry and Bordat in [2] using the concept of
moplexes, which in the case of chordal graphs consist of simplicial vertices only.

Theorem 2 (Berry and Bordat [2]). Every non-complete graph contains at least two moplexes.

The following lemma provides a link between simple and moplicial vertices.

Lemma 1. If s is a simple vertex of a graph G, then s belongs to a moplex.



3 A characterization of non-minimally tough graphs

For two non-adjacent vertices u, v in a graph G, a set S ⊆ V (G) \ {u, v} is a u,v-cutset in G if u and
v are contained in different components of the graph G− S. The following theorem characterizes
graphs that are not minimally tough.

Theorem 3. Let G be a connected non-complete graph and t = τ(G). Then G is not minimally
t-tough if and only if G contains an edge e = uv such that the following conditions are met.

1. There exist at least 2t+ 1 internally vertex-disjoint u,v-paths in G (including uv).

2. Every cutset S in G that is a u,v-cutset in G− e satisfies |S| ≥ (ω(G− S) + 1) · t.

Theorem 3 implies the following sufficient condition for a graph not to be minimally tough.

Proposition 1. Let t > 0 and let G be a graph containing two adjacent vertices u and v such that u
and v have at least 2t common neighbors, at least t of which have all their neighbors in N(u)∪N(v).
Then G is not minimally t-tough.

4 Implications for chordal and strongly graphs

Proposition 1 leads to an alternative proof of the following result, which appears already in [9].

Corollary 1. For all t ∈ (1/2, 1], there are no minimally t-tough, chordal graphs.

Corollary 1 can be equivalently stated as follows.

Corollary 2. For all t ∈ (1/2, 1], every minimally t-tough graph contains a hole.

Building upon the notion of maximum neighbor defined in Section 2, we say that vertex v has
a maximum neighboring edge if there exist two adjacent vertices u, u′ ∈ N(v) such that, for all
w ∈ N [v], it holds N [w] ⊆ N [u] ∪N [u′].

Theorem 4. Let G be a chordal graph. If G contains a moplicial vertex s such that s has a maximum
neighbor or s has a maximum neighboring edge, then G is not minimally t-tough, for all finite t > 1/2.

Theorem 4 has several interesting consequences. Together with Theorem 1 and Lemma 1, it
implies the following.

Corollary 3. There are no minimally t-tough, strongly chordal graphs, for all finite t > 1/2.

Corollaries 2 and 3 and the forbidden induced subgraph characterization of strongly chordal
graphs given by Theorem 1 imply the following.

Corollary 4. For all finite t > 1, every minimally t-tough graph contains a hole or an induced
k-sun for some k ≥ 3.

Furthermore, since every interval graph is strongly chordal (see [10]), Corollary 3 directly implies
the following.

Corollary 5. There are no minimally t-tough, interval graphs, for all finite t > 1/2.



It is natural to ask whether the result of Corollary 5 generalizes to the larger class of cocompara-
bility graphs (see [3] for the definition). This is not the case.

Proposition 2. For every integer n ≥ 2, there exists a minimally (n/2)-tough cobipartite graph.

Another consequence of Theorem 4 concerns chordal graphs with a universal vertex, that is, a
vertex adjacent to all other vertices.

Corollary 6. For all finite t > 1, there are no minimally t-tough, chordal graphs with a universal
vertex.

We remark that Theorem 4 is a proper common generalization of Corollaries 3 and 6. To illustrate
this, we give an example of a graph G for which Theorem 4 can be used to show that G is not
minimally t-tough, but neither Corollary 3 nor Corollary 6 gives the same conclusion. Let G be the
graph obtained from the 3-sun by fixing a vertex u of degree two, adding a new vertex v and making
it adjacent only to u. Then G is a chordal graph in which v is a moplicial vertex with a maximum
neighbor u. However, G is not strongly chordal (by Theorem 1) and does not have any universal
vertices.
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