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Abstract

A Berge-cycle of length k in a hypergraph H is a sequence of distinct vertices and hyperedges
v1, h1, v2, h2, . . . , vk, hk such that vi, vi+1 ∈ hi for all i ∈ [k], indices taken modulo k. Füredi,
Kostochka and Luo recently gave sharp Dirac-type minimum degree conditions that force non-
uniform hypergraphs to have a Hamiltonian Berge-cycles. We give a sharp Pósa-type lower
bound for r-uniform and non-uniform hypergraphs that force Hamiltonian Berge-cycles.

1 Introduction

The study of Hamiltonian-cycles is one of the essential topics of Graph Theory. In the present
paper, we study sufficient degree conditions for a hypergraph to be Hamiltonian, in both uniform
and non-uniform cases. We call a hypergraph Hamiltonian if there is a Berge-cycle containing all
of the vertices of the hypergraph as defining vertices. Note that it is natural to follow the definition
of Berge for cycles in hypergraphs. There is a one-to-one correspondence between Berge-cycles of
the hypergraph and cycles in the incidence bipartite graph of the hypergraph. In particular, for
a hypergraph H consider the incidence bipartite graph G(A,B), where the vertices from A in G
represent the vertices of H and the vertices from B represent the hyperedges of H. A vertex a
from A is adjacent with a vertex b from B in G if and only if the corresponding vertex of a in H is
contained in the corresponding hyperedge of b in H. There is a one-to-one correspondence between
cycles in G and Berge-cycles of H. The corresponding cycle in G of a Hamiltonian Berge-cycle
in H is a cycle containing all vertices of the set A. Note that, incidence bipartite graphs of a
simple hypergraphs have an extra condition: the neighborhoods of any two vertices representing
different hyperedges of the hypergraph are distinct. While the topic of searching for cycles covering
a color class for the class of all bipartite graphs is an interesting and active topic of research see
[11, 12, 17, 15, 14], in this paper, we study simple hypergraphs only.

1.1 Hamiltonicity for hypergraphs

In order to describe the problem and existing results, first we need to introduce some standard
notions. Let H be a hypergraph. We denote the vertex set of H by V (H) and we denote the set
of hyperedges of H by E(H), where E(H) ⊆ ℘(V (H)). We say H is r-uniform if every hyperedge
has size r. For a vertex v, v ∈ V (H), the degree of the vertex is number of hyperedges incident
with it, and it is denoted by dH(v). If the host hypergraph is obvious from the context we will use
d(v) instead of dH(v). The neighborhood of a vertex v is a set of vertices for which there exists a
hyperedge incident with both vertices. We denote the neighborhood of a vertex v by NH(v). In
particular, we have NH(v) = {u ∈ V (H) \ {v} : {u, v} ⊆ h, h ∈ H}. The closed neighborhood of v
is denoted by NH[v], where NH[v] = NH(v)∪{v}. For a hypergraph H and sub-hypergraph H′ the
hypergraph on the same vertex set as H and with hyperedges E(H) \E(H′) is denoted by H \H′.
For a set S and integer r let us denote the set of all subsets of S of size r by

(
S
r

)
. Let us introduce

the notions of Berge-paths [1], the notion of Berge-cycles is analogues.

Definition 1. A Berge-path of length t is an alternating sequence of t + 1 distinct vertices and t
distinct hyperedges of the hypergraph, v1, e1, v2, e2, v3, . . . , et, vt+1 such that vi, vi+1 ∈ ei, for i ∈ [t].



The vertices v1, v2, . . . , vt+1 are called defining vertices and the hyperedges e1, e2, . . . , et are called
defining hyperedges of the Berge-path.

Long Berge-cycles are well-studied for hypergraphs. Turán-type questions for uniform hyper-
graphs without long Berge-cycles are settled in [5, 6, 9, 18]. Bermond, Germa, Heydemann, and
Sotteau [2] found a Dirac-type condition forcing long Berge-cycles in uniform hypergraphs. Recently
Coulson and Perarnau [3] found a Dirac-type condition for a hypergraph forcing Hamiltonicity.
Füredi, Kostochka, and Luo [7] generalized Dirac’s theorem [4] to non-uniform hypergraphs. For
uniform linear hypergraphs Jiang, and Ma [13] settled a conjecture of Verstraëte. In a recent work
Kostochka, Luo and McCourt proved a version of Dirac’s theorem [4] for r-uniform hypergraphs.
Here we state the theorem of Pósa which is a generalization of Dirac’s theorem.

Theorem 2 (Pósa [19]). Let G be an n vertex graph. Let n ≥ 3 and the degree sequence of G be
d1 ≤ d2 ≤ · · · ≤ dn. If for all k < n

2 the inequality k < dk holds then G is Hamiltonian.

In this work we prove a theorem analogous to Pósa’s theorem 2 with similar methods to those
used in [8, 10]. We say an integer sequence (d1, d2, . . . , dn) is r-Hamiltonian if every r-uniform
hypergraph with this degree sequence is Hamiltonian. We say an integer sequence (d1, d2, . . . , dn)
is N-Hamiltonian if every non-uniform hypergraph with the given degree sequence is Hamiltonian.

Theorem 3. An integer sequence (d1, d2, . . . , dn) such that d1 ≤ d2 ≤ · · · ≤ dn, n > 2r and r ≥ 3
is r-Hamiltonian if the following conditions hold

di > i for 1 ≤ i < r, (1)

di >

(
i

r − 1

)
for r ≤ i ≤

⌊
n− 1

2

⌋
, (2)

dn−2
2

>

( n−2
2

r − 1

)
+ 1 if n is even. (3)

One may interpret Theorem 3 as an analogue of Theorem 2 for r-uniform hypergraphs. More-
over, we prove analogue of Theorem 2 for non-uniform hypergraphs.

Theorem 4. An integer sequence (d1, d2, . . . , dn) such that d1 ≤ d2 ≤ · · · ≤ dn and n > 40 is
N-Hamiltonian if the following conditions hold:

di > 2i for 1 ≤ i ≤
⌊
n− 1

2

⌋
, (4)

dn−2
2

> 2
n−2
2 + 1 if n is even. (5)

In the following subsection, we show that the conditions of Theorem 3 and Theorem 4 are sharp.

1.2 Examples showing the sharpness of conditions

In this subsection, we show that it is impossible to strengthen Theorem 3 or Theorem 4 by changing
a condition for a given i. We start with Theorem 3, and we show it is impossible to strengthen it
by changing a condition for some fixed i = k, where 1 ≤ k ≤

⌊
n−1
2

⌋
.

Example 1 shows the sharpness of Condition 1 for all k, where 1 ≤ k < r.



Example 1. For integers n, r and k, such that n > 2r > 2k > 0, let H1
k be an n-vertex, r-uniform

hypergraph. Let us partition the vertex set of H1
k, into two disjoint sets V1 and V2 of sizes k and

n − k. The hyperedge set of H1
k contains all hyperedges from

(
V2

r

)
and k distinct hyperedges all

containing V1 as a proper subset.

Let d1 ≤ d2 ≤ · · · ≤ dn be the degree sequence of H1
k. We have d1 = d2 = · · · = dk = k and(

n−k−1
r−1

)
≤ dk+1 ≤ dk+2 ≤ · · · ≤ dn. Observe that, for the degree sequence of hypergraph H1

k all
conditions hold from Theorem 3 except one, Condition 1 for i = k. In particular dk = k instead of
the required dk > k. Clearly H1

k is non-Hamiltonian, since the vertices from V1 are incident with
only k hyperedges, therefore there is no Berge-cycle in H1

k containing all vertices of V1 longer than
|V1| = k, hence H1

k is not Hamiltonian since n > 2k.
Example 2 shows the sharpness of Condition 2 for all k, r ≤ k ≤

⌊
n−1
2

⌋
. The idea of this

construction is to construct a hypergraph with a special vertex set of size k adjacent with only k
vertices.

Example 2. For integers n, r and k, such that 3 ≤ r ≤ k < n
2 , let H

2
k be an n-vertex, r-uniform

hypergraph. Let us partition the vertex set of H2
k, into three disjoint sets V1, V2 and V3 of sizes

|V1| = k, |V2| = k and |V3| = n− 2k. The hyperedges of H2
k are

E(H2
k) =

{
h ∈

(
V (H2

k)

r

)
: (h ⊂ V1 ∪ V2 and |h ∩ V1| = 1) or h ∈ V2 ∪ V3

}
.

The degree sequence of H2
k is d1 = d2 = · · · = dk =

(
k

r−1

)
, dk+1 = · · · = dn−k =

(
n−k−1
r−1

)
and

dn−k+1 = · · · = dn =
(
n−k−1
r−1

)
+ k

(
k−1
r−2

)
. Observe that, for the degree sequence of the hypergraph

H2
k all conditions hold from Theorem 3 except one, Condition 2 for i = k. In particular we have

dk =
(

k
r−1

)
instead of required dk >

(
k

r−1

)
. Here we show that H2

k is non-Hamiltonian. The vertices
from V1 are pairwise non-adjacent, and the number of vertices adjacent to V1 is k = |V1|, therefore
there is no Berge-cycle in H2

k containing all vertices of V1 longer than 2 |V1| = 2k, hence H2
k is not

Hamiltonian since n > 2k.
The next example shows the sharpness of Condition 3. The idea is very similar to the previous

example.

Example 3. For integers n and r, such that 2|n, 3 ≤ r < n
2 , let H3 be an n vertex, r-uniform

hypergraph. Let us partition the vertex set of H3, into two disjoint sets V1 and V2 of sizes |V1| = n
2+1

and |V2| = n
2 − 1. Let us fix a subset of V1 of size r and denote it by h′. The hyperedge set of H3 is

E(H3) =

{
h ∈

(
V (H3)

r

)
: (h ⊂ V1 ∪ V2 and |h ∩ V1| ≤ 1) or h = h′

}
.

The degree sequence of H3 is d1 = d2 = · · · = dn
2
+1−r =

(n
2
−1

r−1

)
, dn

2
+2−r = · · · = dn

2
+1 =(n

2
−1

r−1

)
+1 and dn

2
+2 = · · · = dn =

(n
2
−2

r−1

)
+(n2 +1)

(n
2
−2

r−2

)
. As one can observe all conditions hold for

hypergraph H3 of Theorem 3 except Condition 3. Here we show that H3 is non-Hamiltonian and
the number of vertices in V1 is n

2 + 1. Therefore if there is a Hamiltonian Berge-cycle, then there
should be at least two pairs of consecutive vertices from V1 on the cycle. This is not possible since
the number of hyperedges incident with at least two vertices of V1 is just one.

These three examples show the sharpness of each condition of Theorem 3. Since the examples
showing the sharpness of conditions of Theorem 4 are very similar we will skip them. Please see
the proofs of Theorem 3 and Theorem 4 in manuscript [20].
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[20] N. Salia. Pósa-type results for Berge-hypergraphs ArXiv:2111.06710, 2021.


