
On three domination-based identification problems in block graphs1

Dipayan Chakraborty — LIMOS, Université Clermont Auvergne, France
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Abstract

The problems of determining minimum identifying or (open) locating-dominating codes are
special search problems that are challenging from both theoretical and computational view-
points. In these problems, one selects a dominating set C from the vertex set V (G) of a graph
G such that the vertices of a chosen subset of V (G) (e.g. V (G) \C or V (G) itself) are uniquely
determined by their neighborhoods in C. Hence, a typical line of attack for these problems is to
determine tight bounds for the minimum codes in special graphs. In this work, we do the same
for block graphs (i.e. diamond-free chordal graphs). We present for all three codes tight lower
and upper bounds, and examples of block graphs which attain these bounds. Our upper bounds
are in terms of the number of maximal cliques nQ(G), the order |V (G)| and other structural
properties of a block graph G. As for the lower bounds, we prove them to be linear in terms of
(i) nQ(G), and (ii) the order of G.

1 Introduction

For a graph G = (V (G), E(G)) that models a facility, detection devices can be placed at its vertices
to locate an intruder (like a fire or a thief). Depending on the features of the detection devices,
different types of dominating sets can be used to determine the optimal distribution of the detection
devices in G. In the following, we study three problems arising in this context which have all been
actively studied during the last decades, see the bibliography maintained by Lobstein [7].

Let G = (V (G), E(G)) be a graph. The (open) neighborhood of a vertex u is the set N(u)
of all vertices of G adjacent to u, and N [u] = {u} ∪ N(u) is the closed neighborhood of u. A
subset C ⊆ V (G) is an identifying code [6] (for short: ID-code) of G if N [u] ∩ C ̸= ∅ for all
u ∈ V (domination); and N [u]∩C ̸= N [v]∩C for all u, v ∈ V (G) (separation) [refer Figure 1 (a)].
A graph G admits an identifying code if and only if G is true-twin-free (i.e., there is no pair of
distinct vertices u, v ∈ V with N [u] = N [v]). A subset C ⊆ V (G) is a locating-dominating code
[8, 9] (for short: LD-code) if N [u] ∩ C ̸= ∅ for all u ∈ V (domination); and N(u) ∩ C ̸= N(v) ∩ C
for all u, v ∈ V \ C (open-separation) [refer Figure 1 (b)]. A subset C ⊆ V (G) is an open locating-
dominating code [10] (for short: OLD-code) of G if N(u)∩C ̸= ∅ for all u ∈ V (open-domination);
and N(u)∩C ̸= N(v)∩C for all u, v ∈ V (open-separation) [refer Figure 1 (c)]. A graph G admits
an open-locating-dominating code if and only if G has no isolated vertices and is false-twin-free
(i.e., there is no pair of distinct vertices u, v ∈ V (G) such that uv /∈ E(G) and that N(u) = N(v)).
The identifying code number γID(G), locating-dominating number γLD(G) and the open locating-
dominating number γOLD(G) of a graph G are the minimum cardinalities of an ID-code, an LD-code
and an OLD-code, respectively, of G. If A△B denotes the symmetric difference between any two
sets A and B, for a set C ⊂ V (G) and u, v ∈ V (G), any w ∈ (N(u) ∩ C)△(N(v) ∩ C) (resp.
(N [u] ∩ C)△(N [v] ∩ C)) is said to open-separate (resp. closed-separate) u and v in C.
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A lot of research has been done to determine these codes of special graphs (see [3, 4, 6, 8, 9, 10]).
In this paper, we consider the family of block graphs. A block graph is a graph in which every
maximal 2-connected subgraph induces a clique; or precisely, a diamond-free chordal graph. Linear-
time algorithms to compute all three domination numbers in block graphs are presented in [1]. In
this paper, we complement this result by determining tight lower and upper bounds for all three
domination numbers in block graphs. We give bounds using both the number of vertices – as it has
been done for several classes of graphs – but also using the number nQ(G) of maximal cliques of
G, that is relevant to block graphs. In doing so, we also prove the conjecture posed in [2] that the
identifying code number of block graphs can be bounded from above by nQ(G). We also address
similar questions for LD- and OLD-codes. For a block graph G, let K be the set of all maximal
cliques of G. Any x ∈ V (G) such that {x} = K ∩ K ′, for two distinct K,K ′ ∈ K, is called an
articulation vertex of both K and K ′. Let art(K) be the set of all articulation vertices of K ∈ K.

(a) (b) (c)

Figure 1: Block graphs whose black vertices form a minimum (a) ID-, (b) LD- and (c) OLD-code.

2 Upper and lower bounds

Theorem 1. Let G be a true-twin-free block graph. Then γID(G) ≤ nQ(G).

Sketch of the proof. The proof is by contradiction assuming G to be a block graph of minimum
cardinality to have the property γID(G) > nQ(G). Since G does not contain true twins, there
exists in G a vertex, say x (in a leaf-clique), of degree 1. We then take the graph G′ = G− x and
notice that nQ(G

′) = nQ(G) − 1. By the minimality of G therefore, γID(G′) ≤ nQ(G) − 1. If C ′

is an ID-code of G′, by some graph theoretic analysis and case studies, we are then able to show
that adding just one appropriate vertex to C ′ gives an ID-code, say C, for G. However, this is a
contradiction since |C| ≤ nQ(G) which contradicts the assumption that γID(G) > nQ(G).

The bound in Theorem 1 can be refined for LD-codes as follows:

Theorem 2. Let G be a block graph, n′
Q(G) be the number of maximal cliques with no true twins

and S = {S ⊂ K ∈ K : S is a maximal set of pairwise true twins}. Then, γLD(G) ≤ n′
Q(G) +∑

S∈S(|S| − 1).

Sketch of the proof. Let K0 ∈ K. Define a function f : K → Z by: f(K0) = 0, and for any other
K ∈ K, define f(K) = i if K ∩ K ′ ̸= ∅ for some K ′ ∈ K such that f(K ′) = i − 1. Then, let
art−(K) = K ∩K ′. Next, we define a set C ⊂ V (G) by the rules that, for all K ∈ K not containing
any true twins, pick any one vertex from K \ art−(K) in C; and, for all K ∈ K containing
true twins, pick any |K \ art(K)| − 1 vertices from K \ art(K) in C. On counting, we find that
|C| = n′

Q(G) +
∑

S∈S(|S| − 1). Next, we notice that for every K ∈ K, |K ∩ C| ≥ 1. Therefore,



C is a dominating set of G. Further, for any u, v ∈ V (G) \ C, we have u ∈ K and v ∈ K ′ for a
distinct pair of K,K ′ ∈ K and there exist vK ∈ K ∩C and vK′ ∈ K ′ ∩C such that vK ̸= vK′ . This
completes the proof, as either one of vK and vK′ open-separates u and v in C.

For a false-twin-free graph G, γOLD(G) ≤ |V (G)| − 1 unless G is a half-graph (a special kind of
bipartite graph) [5]. We extend the result for block graphs, noting that the only half-graphs which
are block graphs are P2 and P4:

Theorem 3. Let G be a connected, false-twin-free block graph which is neither a P2, nor a P4. Let
mQ(G) be the number of maximal cliques K in G such that |K \ art(K)| ≥ 1 and |art(K)| ≥ 2.
Then γOLD(G) ≤ |V (G)| −mQ(G)− 1.

Sketch of the proof. Take a clique K0 ∈ K such that |K0| = min{|K| : K ∈ K such that |art(K)| =
1} and define C ⊂ V (G) by the following rules: For all K ∈ K \ {K0} such that |art(K)| = 1,
pick all vertices of K in C; and for all K ∈ {K ∈ K : |art(K)| > 1} ∪ {K0}, let art(K) ⊂ C and
pick any max{|K \ art(K)| − 1, 0} vertices of K \ art(K) in C. First of all, every vertex in K0 is
dominated by art(K0) ⊂ C; and for each other maximal clique K in G, |K ∩C| ≥ 2. This makes C
an open-dominating set of G. Then, by case analysis, one shows that C is also an open-separating
set of G thus making it an OLD-code of G. Moreover, observing that, for K0 and for all other
maximal cliques K for which |K \art(K)| ≥ 1 and |art(K)| ≥ 2, exactly one vertex is left out from
it in C, this gives the count for the size of C and the upper bound for γOLD(G) in the theorem.

The upper bounds in Theorems 1, 2 and 3 are tight, as they are attained, respectively, by:
(1) for ID-codes: stars and thin headless spiders [3];
(2) for LD-codes: graphs obtained by taking a complete graph K of any size and attaching another
complete graph of any size to each vertex of K; and
(3) for OLD-codes: graphs constructed by taking k (≥ 2) triangles with vertices ai, bi, ci (1 ≤ i ≤ k),
attaching a degree 1 vertex di to each ai and identifying all the bis to a single vertex.

Theorem 4. Let G be a block graph. Then γID(G), γOLD(G) ≥ |V (G)|
3 +1 and γLD(G) ≥ |V (G)|+1

3 .

Sketch of the proof. As an example, we give the sketch of the proof only for γOLD(G) ≥ |V (G)|
3 +1.

The other two cases of γID(G) and γLD(G) follow similarly. Let C be an OLD-code for G and k be
the number of connected components of G. We partition V (G) into V1, V2, V3 and V4 where, V1 = C;
V2 = {v ∈ V (G) : |N(v)∩C| = 1}; V3 contains vertices that have neighbors in at least two different
connected components of C; and V4 = V (G)\(V1∪V2∪V3). Then, through a series of arguments, one
shows that |V2| ≤ |C|−n1(G[C]), |V3| ≤ k−1 and |V4| ≤ |C|−3k+n1(G[C]), where ni(H) denotes
the number of degree i vertices in the subgraph H of G. Noting that k ≥ 1, this gives the result by
n = |C|+ |V2|+ |V3|+ |V4| ≤ |C|+ |C|−n1(G[C])+k−1+ |C|−3k+n1(G[C]) = 3|C|−2k−1.

Extremal cases where these bounds are attained can be constructed as follows: Consider the
graph with one path u1, ...., uk (the vertices in the code C) and attach further vertices:
(1) for an ID-code: attach a single vertex to each ui and vertices to the pairs ui, ui+1 for 1 < i < k−1;
(2) for an OLD-code: attach a single vertex to u1, uk and each ui for 2 < i < k− 1 and vertices to
all the pairs ui, ui+1; and
(3) for an LD-code: attach a single vertex to each ui and vertices to all the pairs ui, ui+1.

Theorem 5. Let G be a block graph. Then γID(G), γOLD(G) ≥ 3(nQ(G)+2)
7 , γLD(G) ≥ nQ(G)+2

3

and γOLD(G) ≥ nQ(G)+3
2 .



Sketch of the proof. We give the sketch of the proof for the case γOLD(G) ≥ nQ(G)+3
2 and the other

cases follow similarly. We use the same definitions of k, V1, V2, V3, V4 and ni(H) as in the sketch
of the proof for Theorem 4. We see that there are four types of maximal cliques: (1) Maximal
cliques that are maximal cliques of C (of size at least 2) or a maximal clique of C with one vertex
of V4. We show that there are at most nQ(G[C]) − n0(G[C]) ≤ |C| − 3k + n1(G[C]) of them; (2)
Maximal cliques of size 2 between V2 and its unique neighbor in the code. Again, we show that
there are at most |V2| ≤ |C| − n1(G[C]) such cliques; (3) Maximal cliques formed with a vertex
of V3 and some vertices of C; and (4) Maximal cliques that are included in V (G) \ C. We prove
that the number of maximal cliques of the types (3) and (4) is at most 2k − 2. Thus, noting that
k ≥ 1 and putting together the upper bounds for all the four types of maximal cliques, nQ(G) ≤
nQ(G[C])−n0(G[C])+|V2|+2k−2 ≤ |C|−3k+n1(G[C])+|C|−n1(G[C])+2k−2 = 2|C|−k−2.

Note that for trees, since we have nQ(G) = |E(G)| = |V (G)| − 1, these bounds are equivalent
to the known lower bounds using the number of vertices (see [4] for ID-codes, [8] for LD-codes and
[10] for OLD-codes). In particular, there are infinite families of trees reaching the three bounds.

3 Concluding remarks

We provided tight upper and lower bounds for all three dominating codes for block graphs by study-
ing their structural properties. Perhaps, similar ideas also work for graph classes with a similar
structure, e.g. cacti or block-cacti (graphs in which every maximal 2-connected subgraph is either
a complete graph or a cycle). Other sub-classes of chordal graphs could also be of interest.
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