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Pavol Hell – School of Computing Science, Simon Frasers University, Canada
César Hernández-Cruz – Facultad de Ciencias, UNAM, México

Abstract

Each hereditary property can be characterized by its set of minimal obstructions; these sets
are often unknown, or known but infinite. By allowing extra structure it is sometimes possible
to describe such properties by a finite set of forbidden objects. This has been studied most
intensely when the extra structure is a linear ordering of the vertex set. For instance, it is
known that a graph G is k-colourable if and only if V (G) admits a linear ordering ≤ with no
vertices v1 ≤ · · · ≤ vk+1 such that vivi+1 ∈ E(G) for every i ∈ {1, . . . , k}. In this paper, we
study such characterizations when the extra structure is a circular ordering of the vertex set. We
show that the classes that can be described by finitely many forbidden circularly ordered graphs
include forests, circular-arc graphs, and graphs with circular chromatic number less than k. In
fact, every description by finitely many forbidden circularly ordered graphs can be translated to
a description by finitely many forbidden linearly ordered graphs. Nevertheless, our observations
underscore the fact that in many cases the circular ordering descriptions are simpler and more
natural.

1 Introduction

A natural way to characterize or define a hereditary property is by exhibiting its set of minimal
obstructions. For instance, bipartite graphs are characterized as those graphs with no induced odd
cycles, while the class of evenhole-free graphs is defined as the class of graphs that contain no even
cycle as an induced subgraph. Unfortunately exhibiting the set of minimal obstructions might be a
highly complex task; as of today, the set of minimal obstructions to the class of k-colourable graphs
is unknown for every positive integer k greater than 2.

In 1990, Damaschke [1] proposed to study characterizations of hereditary properties P by ex-
hibiting a finite set of linearly ordered graphs F such that P is the class of graphs that admit an
F -free linear ordering. He observed that, chordal graphs, bipartite graphs, and interval graphs are
characterized by a forbidden set of linearly ordered graphs on three vertices; also in [1] he asked if
the class of circular-arc graphs can be described by finitely many forbidden linearly ordered graphs.
We will see that we can reinterpret a (known) characterization of circular-arc graphs in our context
to obtain a positive answer to Damaschke’s question.

Around 2014, Hell, Mohar, and Rafiey [4] showed that for every set F of linearly ordered
graphs on three vertices, the class of graphs that admit an F -free linear ordering can be recognized
in polynomial time. Recently, Habib and Feuilloley published a thorough survey [2] on the subject,
where they characterized all hereditary properties defined by forbidden linear ordered graphs on
three vertices. Moreover, they showed that all but two of these classes can be recognized in linear
time. In their work, Habib and Feuilloley stated that an obvious next step is to study graph
properties described by forbidden linear orderings on more vertices. All of our results can be
translated to this context.

A classical result is the following characterization of k-colourable graphs in terms of certain
forbidden linear orderings.



Proposition 1. [2, 4] Let k be a positive integer. A graph G is k-colourable if and only if there
is a linear ordering ≤ of V (G) such that there are no k + 1 vertices v1 ≤ · · · ≤ vk+1 such that
vivi+1 ∈ E(G) for every i ∈ {1, . . . , k}.

In this work, we start the study of circularly ordered graphs, attempting to obtain a development
parallel to the one described in the above paragraphs for linearly ordered graphs.

2 Circularly ordered graphs

A circularly ordered graph (G,C) is a graph G together with a circular ordering C of its vertices.
In this case we say that (G,C) is a circular ordering of the graph G. A natural way to represent a
circularly ordered graph is by depicting its set of vertices on circumference S where C is recovered
by traversing S in a clockwise motion. Notice that each graph on two or three vertices defines
a unique circularly ordered graph; in Figure 1 we depict some circularly ordered graphs on four
vertices.
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Figure 1: Some circularly ordered graphs on 4 vertices. In all cases, the circular ordering is
v1 ≤ v2 ≤ v3 ≤ v4 ≤ v1.

Induced circular ordered subgraphs of (G,C) are induced subgraphs of G whose set of vertices
respects the circular ordering C. For a set F of circularly ordered subgraphs, we say that a circularly
ordered graph (G,C) is F -free if (G,C) does not contain any induced circularly ordered subgraphs
in F . A graph G admits an F-free circular ordering if there exists an F-free circularly ordered
graph (G,C).

A pattern consists of a set V together with a set of edges E and a set of non-edges NE with the
restriction that NE ∩E = ∅. A pattern (V,E,NE) represents all graphs (V (G), E(G)) such that
V (G) = V and E ⊆ E(G) but E(G) ∩NE = ∅. So a circularly ordered pattern (G,C) consists of
a pattern G together with a circular ordering of its vertices, and it represents all circularly ordered
graphs obtained by a graph represented by G and ordering its vertices by C. We denote by 〈(G,C)〉
the set of circularly ordered graphs represented by (G,C).

We begin by noticing a relation between circularly ordered graphs and linearly ordered graphs.
Consider a linear ordering ≤ of a set X, and depict the elements of X as points in the interior of a
closed interval I according to ≤. The circular closure of ≤ is the circular ordering c(≤) recovered
by identifying the endpoints of I and traversing the resulting circumference in a clockwise motion.
Conversely, for every circular ordering C there is a linear ordering ≤ such that C = c(≤). So
we can always describe a circular ordering of X as the circular closure of a linear ordering on X.
Let c be the function that maps a linearly ordered graph (G,≤) to the circularly ordered graph
(G, c(≤)), i.e., c(G,≤) = (G, c(≤)). It is convenient to define the “linearizing operator” L for a set
of circularly ordered graphs F as L(F ) = c−1[F ]. For instance, in Figure 2 we depict a circularly
ordered pattern CA and a pair of linearly ordered patterns that represent L(〈CA〉).



Observation 1. Let F be a set of circularly ordered graphs and let P be the class of graphs that
admit an F -free circular ordering. Then, P is the class of graphs that admit a L(F )-free linear
ordering.
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Figure 2: The circularly ordered pattern CA and a pair of linearly ordered patterns that represent
L(〈CA〉).

We can naturally reinterpret a result due to Tucker [5] and obtain a characterization of circular-
arc graphs by forbidden circular orderings. Outerplanar graphs also have a natural characterization
in this context. We also show that other graph families described by forbidding “small” circularly
ordered graphs include linear forests, caterpillar forests, and forests. We summarize these results
in Table 2. We denote by OUT the set of spanning circularly ordered supergraphs of Out.

Forbidden circularly ordered graphs Graph family

SC3, SP4, CP4, Claw Linear Forests.

SC3, SP4, CP4 Caterpillar Forests.

SC3, SC4, CC4, Out, CP4, SC5, SP5 Forests.

OUT Outerplanar graphs.

〈CA〉 Circular-arc graphs.

Table 1: Some graph families described by forbidden circularly ordered graphs on at most 5 vertices.

By Observation 1 and Table 2, we recover an observation mentioned in [2] that states that there
is a finite set of linearly ordered patterns that characterizes outerplanar graphs. With the same
arguments we conclude that the patterns that represent L(CA) (Figure 2) characterize circular
ordered graphs by finitely many forbidden linearly ordered graphs. This remark positively answers
a question posed by Damaschke [1]: is there a finite set of linearly ordered graphs that describes
the class of circular-arc graphs?

The descriptions by forbidden circular arrangements of outerplanar graphs and circular-arc
graphs proposed here are simpler (and more intuitive) than their descriptions by forbidden linearly
ordered graphs. On the contrary, describing forests, linear forests, and caterpillar forest by linearly
ordered graphs yields simpler expressions (and proofs) than describing these classes by forbid-
den circularly ordered graphs. Nonetheless, these results show that circularly ordered graphs can
describe several natural graph classes. Moreover, these observations raise the following question.

Question 1. Is there a hereditary property described by finitely many forbidden linearly ordered
graphs that does not admit a characterization by finitely many forbidden circularly ordered graphs?

We believe that the classes of k-colourable graphs are possible candidates to answer the previous
question in the negative. More generally, we are interested in the following problem.



Problem 2. Find a (relatively well-known) hereditary property that cannot be described by a finite
set of forbidden circularly ordered graphs.

Question 3. For which positive integer k the class of k-colourable graphs can be described by finitely
many forbidden circularly ordered graphs? In particular, is there a finite set of circularly ordered
graphs that describes the class of bipartite graphs?

Regarding larger circularly ordered graphs, we propose a characterization that relates the cir-
cular chromatic number of graphs and certain forbidden linear ordering of graphs. We interpret
this characterization as an analogous version of Proposition 1 for circular orderings.

Lemma 1. Let k be a positive integer. A graph G has circular chromatic number strictly less
than k if and only if there is a circular ordering c(≤) of V (G) such that there are no vertices
v1 ≤ · · · ≤ vk+1 ≤ v1 such that vivi+1 ∈ E(G) for every i ∈ {1, . . . , k}.

Let SPk+1 denote the path v1 · · · vk+1 together with the circular ordering v1 ≤ v2 ≤ · · · ≤ vk+1 ≤
v1, and let SCk denote the cycle v1 . . . vk together with the circular ordering v1 ≤ v2 ≤ · · · ≤ vk ≤ v1.
Finally, let Hk+1 denote the set of spanning circularly ordered supergraphs of SPk+1 and SCk and
let χc(G) the circular chromatic number of a graph G. In terms of forbidden circularly ordered
graphs the previous lemma reads as follows.

Theorem 4. Let k be a positive integer and G a graph. Then, χc(G) < k if and only if G admits
an Hk-free circular ordering.

Given a set F of circularly ordered graphs, the F -free circular ordering problem consists of
determining if an input graph G admits an F -free circular ordering. As a consequence of Theorem 4
and a result of Hatami and Tuserkani [3] we conclude the following statement.

Corollary 1. For every positive integer k, k ≥ 5, there is a set F of circularly ordered graphs on
k vertices such that the F -free circular ordering problem is NP -complete.

Trivially, for every set of circularly ordered graphs on at most 3 vertices, the F -free circular
ordering problem is polynomial time solvable. It is only natural to ask the following questions,
where the second one is a particular case of the first one due to Theorem 4.

Question 5. Is there a set F of circularly ordered graphs on at most 4 vertices such that the F -free
circular ordering problem is NP -complete?

Question 6. Given a graph G, is the problem of determining if χc(G) < 3 an NP -complete
problem?
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