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Abstract

We show that for every subcubic graph H of treewidth at least 1000, the set of graphs that
contains H as a minor does not have the edge-Erdős-Pósa property.

1 Introduction

Menger’s theorem provides a strong duality between packing and covering for paths: In every
graph G, there are either k disjoint paths between predefined sets A,B ⊆ V (G), or there is a set
X ⊆ V (G) of size at most k such that G−X contains no A–B path. Relaxed versions of this result
exist for many sets of graphs, and we call this duality the Erdős-Pósa property. In this talk, we
focus on the edge variant: A graph H has the edge-Erdős-Pósa property if there exists a function
f : N → R such that for every graph G and every integer k, there are k edge-disjoint graphs in G
each containing a minor isomorphic to H or there is an edge set X ⊆ E(G) of size at most f(k)
meeting all subgraphs in G containing a minor isomorphic to H.

The vertex-Erdős-Pósa property seems to be well understood: Robertson and Seymour [2]
proved that a graph H has the vertex-Erdős-Pósa property if and only if H is planar. While the
edge-Erdős-Pósa property is still false for all non-planar graphs (see for example [3]), the situation
is much more mysterious for planar graphs. Some simple planar graphs such as long cycles, K4 and
Θt still have the edge-Erdős-Pósa property, while some others, for example subcubic trees of large
pathwidth, do not. For most planar graphs, it is unknown whether the edge-Erdős-Pósa property
holds or not.

We partially fill this gap by proving that every subcubic graph of large treewidth does not
have the edge-Erdős-Pósa property. Note that while it was known that large walls do not have
the edge-Erdős-Pósa property (claimed without proof in [1]), this does not imply our main result
as, unlike the vertex-Erdős-Pósa property, the edge variant is not known to be closed under taking
minors.

Theorem 1. Subcubic graphs of treewidth at least 1000 do not have the edge-Erdős-Pósa property.

To prove Theorem 1, we only use treewidth to deduce that the subcubic graph contains a large
wall, for which we use the linear bound provided by Grigoriev [4]. So in fact, we show the following
lemma:

Lemma 1. Subcubic graphs that contain a wall of size 100× 100 do not have the edge-Erdős-Pósa
property.

There is room for improvement in the theorem. Requiring the graph H to be subcubic simplifies
the argument considerably but does not seem to be essential. We expect the theorem to hold for
all graphs of large treewidth, whatever the maximum degree. The treewidth/wall size is certainly
not best possible. While our proof uses a wall of size 100×100, we believe that with a more careful
but somewhat tedious analysis the wall size could be dropped to 30 × 30. Considering that walls
of size 6 × 4 (but not graphs containing such walls) do not have the edge-Erdős-Pósa property
(unpublished result), even 30× 30 is unlikely to be close to best possible.



2 Construction

There is only one known tool to prove that a graph H that satisfies the vertex-Erdős-Pósa property
does not have the edge-Erdős-Pósa property: The Heinlein Wall, named after its discoverer [1],
shown at size 5 in Figure 1. We skip a formal definition.
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Figure 1: A Heinlein Wall of size 5.

For vertices a∗, b∗, c∗, d∗, an (a∗–b∗, c∗–d∗) linkage is the vertex-disjoint union of an a∗–b∗ path
with a c∗–d∗ path. A Heinlein wall has three essential characteristics:

� Its threewidth is small. Therefore, it cannot contain any graph H of large treewidth as a
minor.

� It does not containy any two edge-disjoint (a∗–b∗, c∗–d∗) linkages.

� At sufficient size, no small edge set covers all (a∗–b∗, c∗–d∗) linkages.

How does a Heinlein Wall help in proving the main result? Given a size r for a hypothetical
edge set X that meets all H-subdivisions, we construct, based on a large Heinlein Wall, a graph
G with two key features: No edge set of size at most r will meet all subdivisions of H; and every
subdivision of H will induce an (a∗–b∗, c∗–d∗) linkage in the Heinlein Wall. As there cannot be two
such linkages without a common edge, we have then shown that H cannot have the edge-Erdős-Pósa
property.

Since H has large treewidth, it contains a wall M of size at least 100× 100. In M , we pick two
(subdivided) edges e1 and e2 that are far away from each other. We denote the endvertices of e1
by a, b and the endvertices of e2 by c, d.

Given a positive integer r, we define G as follows (see Figure 2):

� start with a copy of H − {e1, e2}, where we denote the copy of a vertex v of H by v∗;

� replace every edge u∗v∗ in the copy of H − {e1, e2} by 2r internally disjoint u∗–v∗ paths of
length 2; and

� add a Heinlein wall W of size 2r, where the terminals a∗, b∗ are identified with the endvertices
of e1, and where the terminals c∗, d∗ are identified with the endvertices of e2.
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Figure 2: The graph G for which we prove that it contains no two edge-disjoint embeddings of H.

We extend the mapping V (H) → V (G) defined by v 7→ v∗ to sets of vertices: For a vertex set
S ⊆ V (H), we set S∗ = {v∗ : v ∈ S}.

We can easily embed H in G by embedding every v on v∗ and by picking one of the 2r paths
in G for the embedding of every edge uv in H − {e1, e2}. For e1 and e2, we can use an (a∗–b∗,
c∗–d∗) linkage in W . As there are 2r internally disjoint paths and sufficient edges in W to form
many different linkages, this still works if we delete r edges in G, which implies that there is no
covering of size r for H in G. The hard part is to prove that every embedding of H in G must use
an (a∗–b∗, c∗–d∗) linkage.

3 Results

Let Φ be an arbitrary embedding of H in G. In order to get some control on what is mapped where
by Φ, we concentrate on a set of “central” vertices which are well connected to a large wall. Let

B = {v ∈ H : v has a 3-fan to branch vertices of degree 3 of a 10-wall M̃}.

A 3-fan from a vertex v to a set S is the union of 3 paths from v to S which are disjoint except
for their first vertex v. A 10-wall is a wall of size at least 10× 10. Note that B contains all branch
vertices of M : Indeed, every branch vertex of degree 3 in M is connected to its three adjacent
branch vertices in M . Those paths form the desired 3-fan. On top of that, B has the following
properties:

Lemma 2. Φ(B) ⊂ B∗ ∪ V (W 0).

Lemma 3. |B∗ \ Φ(B)| ≤ 40.

While we cannot force Φ(v) = v∗ for any vertex, Lemma 2 shows that every v ∈ B is at least
mapped on some w∗ ∈ B∗ with similar properties, unless Φ(v) vanishes into the Heinlein wall.
Lemma 3 in turn yields that the latter possibility is very limited, that is, all but a few vertices
of B are mapped on B∗. This includes the branch vertices of M∗. Combining both Lemmas, we
conclude that all but a few branch vertices of M∗ are in Φ(B). For the rest of our proof, we will
give a short outline.

Our next step is to “repair” the paths in between the branch vertices of M∗ ∩ Φ(B), that is,
we prove that Φ(H) contains a large wall M ′ that uses the same branch vertices as M∗, with only
a few (at most 40) rows and columns missing.



Finally, we observe that Φ(H) must use some parts of the Heinlein Wall W as there is too few
space outside of it. If Φ(H) ∩W contains an (a∗–b∗, c∗–d∗) linkage, we are done. Otherwise, we
show that Φ(H)∩W must contain a path that connects some other terminals, e.g. an a∗–c∗ path P .
However, a∗ and c∗ are both contained in (or at least connected to, which again requires proof)
the repaired wall M ′ ⊂ Φ(H), and they are very distant to each other in M ′. When adding the
a∗–c∗ path P to an arbitrary planar drawing of M ′, P must cross several edges of M ′, which is a
contradiction to the planarity of Φ(H). We conclude that Φ(H) ∩W contains an (a∗–b∗, c∗–d∗)
linkage, which proves Theorem 1.
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[2] Neil Robertson and P.D Seymour. Graph minors. V. Excluding a planar graph. Journal of Combinatorial
Theory, Series B, 41(1):92–114, 1986.

[3] Jean-Florent Raymond and Dimitrios M. Thilikos. Recent techniques and results on the Erdős-Pósa
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