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Abstract

We study vertices that belong to all (strong) metric bases of a graph, i.e., to all (strong)
resolving sets of minimum cardinality; such vertices are called (strong) basis forced. Although
we also consider them in general graphs, we mainly focus on unicyclic graphs. In particular, we
give a characterization of branch-active unicyclic graphs containing basis forced vertices.

1 Introduction

Let G = (V (G), E(G)) = (V,E) be a connected, simple and undirected graph with the vertex set
V = V (G) and the edge set E = E(G). The distance dG(u, v) = d(u, v) between the vertices
u, v ∈ V is defined as the number of edges in any shortest path from u to v. A set R ⊆ V is
called a resolving set of G if for all distinct vertices u, v ∈ V we have d(r, u) 6= d(r, v) for some
r ∈ R. A smallest resolving set of G is a metric basis of G. The cardinality of any metric basis of
G is called the metric dimension and is denoted by dim(G). Originally, these concepts have been
independently introduced in [4] and [9]. Resolving sets are connected to various applications such
as network discovery and verification [1], robot navigation [5], chemistry [2] as well as embedding
biological sequence data such as DNA, RNA and amino acid sequence data [10].

Observe that no vertex of G is required to be in all resolving sets of G since the set V \ {u} is
resolving for any u ∈ V . However, the situation is different if we consider metric bases instead of
resolving sets. Indeed, for some graphs G, there exist vertices which belong to all metric bases of
G as previously discussed in [3] (see Figure 1). Furthermore, a vertex u ∈ V is called a basis forced
vertex if u is contained in every metric basis of G.

In this paper, we further study the basis forced vertices building on the results of [3]. In Sec-
tion 2, we first present a couple of results of basis forced vertices in general graphs. In Section 3, we
proceed by presenting various results on unicyclic graphs; in particular, we give a characterization
of basis forced vertices in branch-active unicyclic graphs. Throughout the paper, the proofs are
omitted due to space limitations. However, they are given in the full version of this paper.

2 General graphs

In this section, we present two results concerning basis forced vertices in general graphs. In the
first theorem, it is shown that if G is a graph with basis forced vertices, then we can construct a
new graph based on G with the same basis forced vertices but with more vertices in total than G.

Theorem 1. Let G be a graph of order n and B 6= ∅ be the set of basis forced vertices of G. Choose
b ∈ B and let v ∈ V (G)\B be such that d(b, v) = max{d(b, u) | u ∈ V (G)\B}. If H is a graph with
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Figure 1: Three examples of unicyclic graphs that contain basis forced vertices. The black vertices
are basis forced vertices and the gray vertices are in some metric bases but not all.

V (H) = V (G) ∪ V (Pm) and E(G) = E(G) ∪ E(Pm) ∪ {{v, v1}}, where Pm is a path v1v2 . . . vm,
then B is also the set of basis forced vertices of H, dim(H) = dim(G) and |V (H)| = |V (G)|+ m.

A vertex u of G is called a pendant if the degree deg(u) = 1. In the following theorem, we
consider when a basis forced vertex can be moved to its pendant just added to the graph.

Theorem 2. Let G be a graph with a basis forced vertex v and H be the graph obtained from G
by attaching a pendant u to v. The vertex u is a basis forced vertex of H if and only if for every
metric basis R of G there exists a vertex w ∈ NG(v) such that dH(r, w) = dH(r, u) for all r ∈ R.

3 Unicyclic graphs

In this section, the basis forced vertices are considered in unicyclic graphs. Hence, for the rest of
the section, assume that G is a unicyclic graph, i.e., a graph with exactly one cycle C consisting
of the vertices v0, v1, . . . , vg−1, where g denotes the girth of G. In what follows, we first present
some notation and terminology concerning unicyclic graphs (following the ones used in [7, 8]).
The connected component of G − E(C) containing vi is denoted by Tvi . A thread in G is a path
u1u2 · · ·uk (k ≥ 1), where deg(uk) = 1, the degrees of (possible) other vertices are equal to 2 and
u1 is attached to a vertex v ∈ V (G) such that deg(v) ≥ 3. We say that v ∈ V (G) is a branching
vertex if v ∈ V (C) and deg(v) ≥ 4, or v /∈ V (C) and deg(v) ≥ 3. A vertex vi ∈ V (C) is called
branch-active if Tvi contains a branching vertex. The number of branch-active vertices on the cycle
of G is denoted by b(G). Further denote the number of threads attached to v by `(v). The set S is
branch-resolving if for every v ∈ V (G) of degree at least 3 the set S contains a vertex from at least
`(v)− 1 threads attached to v. We denote

L(G) =
∑

v∈V (G),`(v)>1

(`(v)− 1).

For a subset S ⊆ V (G), we say a vertex vi ∈ V (C) is S-active if S ∩ Tvi 6= ∅. The number of
S-active elements on the cycle is denoted by a(S). A thread attached to v ∈ V (G) is S-free if it
does not contain any element of S (observe that v is not included in the thread). If vi, vj , vk ∈ V (C)
and d(vi, vj) + d(vj , vk) + d(vk, vi) = |V (C)|, then the vertices vi, vj and vk form a geodesic triple
on C. In [7], it is shown that each resolving set S of G is also branch-resolving and a(S) ≥ 2, and
that each branch-resolving set S of G with three S-active vertices on C forming a geodesic triple is
also a resolving set of G. For the further study of a branch-resolving set S of G with a(S) ≥ 2, we
say that the cycle C = v0v1 · · · vg−1v0 is canonically labelled with respect to S if v0 is S-active and
k = max{i | vi is S-active} is as small as possible. Furthermore, based on the canonical labelling,



a characterization for resolving sets of unicyclic graphs have been given in [8]; many of the proofs
of this paper rely on this characterization. In [7], it is also shown that for a unicyclic graph G the
metric dimension dim(G) is equal to

L(G) + max{2− b(G), 0} or L(G) + max{2− b(G), 0}+ 1. (1)

The first of following theorems is a reformulation of the results in [3] and the second one is
presented in [3] (as a direct corollary of the results in [7]).

Theorem 3 ([3]). Let v ∈ V (G) be a basis forced vertex of a unicyclic graph G. Then either (i)
v = vi for some vi ∈ V (C) and V (Tvi) = {vi} or (ii) v is a pendant attached to some vi ∈ V (C)
and V (Tvi) = {vi, v}.

Theorem 4 ([3]). If G is a unicyclic graph, then G contains at most two basis forced vertices.

Combining Equation (1) and Theorem 3, we obtain that if the unicyclic graph G contains f
basis forced vertices and the set R ⊆ V (G) is a minimum branch-resolving set of G, then R contains
no basis forced vertices and dim(G) ≥ L(G) + f . Furthermore, it can be shown that a unicyclic
graph with basis forced vertices has even girth. Moreover, the unicyclic graphs containing basis
forced vertices can shown to be of one of the following types: (1) b(G) = 0, dim(G) = 2 and G has
a unique metric basis (Figure 1(a)), (2) b(G) = 0 and G contains exactly one basis forced vertex
(Figure 1(b)) and (3) b(G) = 1 and G contains exactly one basis forced vertex (Figure 1(c)). The
following theorems can be obtained by a careful analysis using the previous observations.

Theorem 5. If G is a unicyclic graph with the girth g ≥ 4 and at least one basis forced vertex,
then dim(G) = L(G) + max{2− b(G), 0}.

Theorem 6. If S is a metric basis of a unicyclic graph G with basis forced vertices, then a(S) = 2.

By the previous theorem, if S is a metric basis of G with basis forced vertices, then using the
canonical labelling for C we know that v0 and vk are the only S-active vertices. In the following
lemma, we give restrictions (which cannot be generally improved) for the value k.

Lemma 7. If G is a unicyclic graph containing at least one basis forced vertex, then 2 ≤ k < g/2.

The following two lemmas further discuss the structure of G containing basis forced vertices.

Lemma 8. If G is a unicyclic graph with at least one basis forced vertex and i ∈ [1, k − 1],
then following properties hold: (i) Either deg(vi) = 2 or there is exactly one thread at vi. (ii) A
thread at vi is of length at most g/2 − k − 1. (iii) There exists a thread of length g/2 − k − 1
at some vi or k = g/2 − 2 and there is no basis forced vertex on the cycle. (iv) For each i ∈
[k + 1, g/2− 1] ∪ [g/2 + k + 1, g − 1], we have deg(vi) = 2.

Lemma 9. Let G be a unicyclic graph with at least one basis forced vertex v, S a metric basis of G
and C (canonically) labelled so that Tvk contains the basis forced vertex v. Denoting m = min{j ≥
1 | deg(vj) ≥ 3 or deg(vg/2+j) ≥ 3}, we have m < k and there exists a thread of length ≥ m at
some vi where i ∈ [g/2 + m + 1, g/2 + k].

Recall by Theorem 3 that a basis forced vertex v on G is either on the cycle C with deg(v) = 2
or v is a pendant attached to a vertex on the cycle. In what follows, we focus on the case, where
b(G) = 1 and the (single) basis forced vertex is a pendant. Before our main theorem, we still
require one additional lemma.



Lemma 10. If G is a unicyclic graph containing basis forced vertices with b(G) = 1 and v is a
branch-active vertex, then there is no thread attached to v.

In the following theorem, we finally show that the properties obtained for unicyclic graphs
containing basis forced vertices in Lemmas 7–10 (together with the fact that G has even girth) are
actually sufficient when b(G) = 1 and pendants are considered; hence, we are able to characterize
the basis forced vertices in the case of pendants.

Theorem 11. Let G be a unicyclic graph with b(G) = 1 and C be its cycle labelled in such a way that
v0 is branch-active. Assume further that v is a pendant attached to vj ∈ C and V (Tvj ) = {vj , v}.
Now v is a basis forced vertex of G if and only if (1) the girth g of G is even, (2) no thread is
attached to v0, (3) j ∈ [2, g/2− 1], (4) deg(vi) = 2 for all i ∈ [j + 1, g/2− 1] ∪ [g/2 + j + 1, g − 1],
(5) every thread attached to some vi where i ∈ [1, j − 1] is at most of length g/2 − j − 1, (6) for
m = min{l ≥ 1 | deg(vl) ≥ 3 or deg(vg/2+l) ≥ 3} we have m < j and there exists a thread at least
of length m at some vi where i ∈ [g/2 +m+ 1, g/2 + j], and (7) j = g/2− 2 or there exists a thread
of length g/2− j − 1 at some vi where i ∈ [1, j − 1].

In addition to the results above, we also investigate the vertices forced to belong to every strong
metric basis of unicyclic graphs (see [6] for the formal definitions of strong metric basis and strong
metric dimension of graphs). Among other results, and in contrast to the classical version, we prove
that unicyclic graphs can have as many strong basis forced vertices as we would require. We also
give some structural properties of unicyclic graphs having strong basis forced vertices.
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