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Abstract

We make progress toward a characterization of the graphs H such that every connected
H-free graph has a longest path transversal of size 1. In particular, we show that the graphs H
on at most 4 vertices satisfying this property are exactly the linear forests. We also show that if
the order of a connected graph G is large relative to its connectivity κ(G) and α(G) ≤ κ(G)+2,
then each vertex of maximum degree forms a longest path transversal of size 1.

1 Introduction

It is a classic result in graph theory that every two longest paths in a connected graph share at
least one vertex. Gallai [4] asked whether in fact all longest paths in a connected graph share at
least one vertex. This was answered in the negative by Walther [9], who provided a counterexample
with 25 vertices. A counterexample with 12 vertices was later constructed by Walther and Voss
[10] and, independently, by Zamfirescu [12] (see Figure 1).

Figure 1: The graph G0: A 12-vertex graph with no Gallai vertex.

A Gallai set (or longest path transversal) in a graph G is a set of vertices S intersecting every
longest path in G. The Gallai number of G, denoted by lpt(G), is the minimum size of a Gallai set
and a Gallai family is a family of graphs G such that lpt(G) = 1 for each connected graph G ∈ G.
A vertex v in G is a Gallai vertex if {v} is a Gallai set and a graph is Gallai if it has a Gallai
vertex. The counterexamples mentioned above consist of connected graphs G for which lpt(G) = 2.
In fact, there are examples of connected graphs G for which lpt(G) = 3 [12] and Walther [9] and
Zamfirescu [11] asked if the Gallai number of connected graphs is bounded. In a companion paper
[7] we addressed this fifty-year-old question. Improving on [8], we showed that connected graphs
admit sublinear longest path transversals. The gap between our upper bound and the constant
lower bound 3 remains large.

In this paper we focus on another natural variant of Gallai’s question: Which classes of graphs
form Gallai families? It is well known that a family of pairwise intersecting subtrees of a tree has
non-empty intersection; in particular, trees form a Gallai family. Several other Gallai families have
been identified: for example, 2K2-free graphs [6] and P4-sparse graphs [1].

Let Free(H) be the class of H-free graphs. A monogenic class of graphs has the form Free(H),
for some graph H. In this paper we aim at characterizing monogenic Gallai families. In Section 2,
we make progress by showing that if Free(H) is a Gallai family, then H is a linear forest, and this



suffices when |V (H)| ≤ 4. In the spirit of [6], we in fact prove something more general: if H is a
linear forest on at most 4 vertices and G is a connected H-free graph, then all maximum degree
vertices in G are Gallai. We also show that if G is a connected graph with independence number
α(G) ≤ 4 (i.e., G is 5P1-free), then G is Gallai.

A celebrated result of Chvátal and Erdős [2] asserts that a graph G has a Hamiltonian cycle
when |V (G)| ≥ 3 and α(G) ≤ κ(G), and that G has a Hamiltonian path when α(G) ≤ κ(G) + 1.
It follows that every vertex in G is Gallai when α(G) ≤ κ(G) + 1. In Section 3, we show that if
a connected graph G is large relative to its connectivity κ(G) and α(G) ≤ κ(G) + 2, then each
vertex of maximum degree is a Gallai vertex. Our result has the following immediate consequence:
if a regular graph G is large relative to its connectivity and α(G) ≤ κ(G) + 2, then G contains a
Hamiltonian path.

2 Monogenic Gallai families

In this section we make progress toward a classification of monogenic Gallai families. We first show
that a necessary condition for a monogenic family Free(H) to be Gallai is that H is a linear forest
on at most 9 vertices, where a linear forest is a forest in which every component is a path. Let G0

be the graph in Figure 1 with lpt(G0) = 2 [10, 12]. In the following, we say that a graph H is a
fixer if Free(H) is a Gallai family; that is, forbidding H “fixes” the answer to Gallai’s question.

Proposition 1. If H is a fixer, then H is a linear forest on at most 9 vertices.

Remark 2. Gao and Shan [5] asked whether all longest paths in a connected claw-free graph have
a non-empty intersection. Proposition 1 answers this question in the negative.

For |V (H)| ≤ 4, we show that H is a fixer if and only if H is a linear forest. Necessity follows
from Proposition 1. For sufficiency, we show that every 4-vertex linear forest is a fixer. The linear
forests of order 4 are P4, P3 + P1, 2P2, P2 + 2P1, and 4P1. Cerioli and Lima [1] showed that
P4-sparse graphs, a superclass of P4-free graphs, form a Gallai family, whereas Golan and Shan [6]
showed that 2P2-free graphs form a Gallai family. In other words, P4 and 2P2 are fixers. In the
following, we address the remaining cases: P3 + P1, P2 + 2P1, and 4P1.

Theorem 3. If G is a connected (P3 +P1)-free graph, then every vertex of degree at least ∆(G)−1
is a Gallai vertex.

The degree assumption in Theorem 3 is best possible. Indeed, the complete bipartite graph
Kt,t+2 is (P3 + P1)-free, has maximum degree t+ 2, and the vertices of degree t are not Gallai.

Proposition 4. If G is a connected (P2 + 2P1)-free graph, then every vertex of maximum degree
is a Gallai vertex.

Vertices of degree ∆(G)− 1 in a (P2 + 2P1)-free graph G need not be Gallai. Indeed, consider
the graph G obtained from Kt,t+2 by removing a matching saturating the part of size t. G is
(P2 + 2P1)-free and ∆(G) = t+ 1. The longest paths in G omit one vertex, and the Gallai vertices
are those in the smaller part. Two of the non-Gallai vertices in the larger part have degree t, which
equals ∆(G)− 1.

Theorem 5. Let k ∈ {1, 2}. If G is k-connected and α(G) ≤ k + 2, then every longest path in G
contains every vertex of degree at least ∆(G)− (2− k).

Corollary 6. If G is a connected graph with α(G) ≤ 3 and ∆(G) − δ(G) ≤ 1, or if G is a
2-connected regular graph with α(G) ≤ 4, then G has a Hamiltonian path.



Corollary 7. The graph 4P1 is a fixer.

To show that every connected graph G with α(G) ≤ 4 has a Gallai vertex, we distinguish two
cases. If G is 2-connected, the result already follows from Theorem 5. When G has cut-vertices,
we exploit the block-cutpoint structure of G.

Theorem 8. Let G be a connected graph. If α(G) ≤ 4, then G has a Gallai vertex. Equivalently,
5P1 is a fixer.

Note that there are connected 5P1-free graphs in which no vertex of maximum degree is Gallai
(see Example 11). This is in contrast to the case of fixers F of order at most 4, where the vertices
of maximum degree in a connected F -free graph are all Gallai (Golan and Shan [6] show this for
F = 2P2, we show it for F ∈ {P3 + P1, P2 + 2P1, 4P1}, and the case F = P4 is an easy exercise).

The graph G0 from Figure 1 shows that there is a connected graph G such that G has no Gallai
vertex and α(G) = 6. The case α(G) ≤ 5 remains open.

Conjecture 9. If α(G) ≤ 5 and G is connected, then G has a Gallai vertex.

When G is 3-connected, α(G) ≤ 5, and G is sufficiently large, Theorem 10 below shows that
G has a Gallai vertex. Outside of a finite number of cases when κ(G) ≥ 3, resolving Conjecture 9
reduces to the cases that κ(G) = 1 and κ(G) = 2. Although it is reasonable to expect that the case
κ(G) = 1 may be treated by analyzing the block structure of G, it is less clear how to handle the
case κ(G) = 2.

3 A Chvátal–Erdős type result

We show that if α(G) ≤ κ(G) + 2 and G is sufficiently large in terms of κ(G), then the maximum
degree vertices in G are Gallai.

Theorem 10. For each positive integer k, there exists an integer n0 such that if G is an n-vertex
k-connected graph with α(G) ≤ k + 2 and n ≥ n0, then each vertex of maximum degree is Gallai.

Example 11. The assumption α(G) ≤ κ(G) + 2 in Theorem 10 is best possible. Let G be the
graph obtained from the star K1,k+2 with leaves {x1, . . . , xk+2} by replacing the center vertex with
a k-clique S and replacing each leaf vertex xi with a t-clique Xi containing a set of k distinguished
vertices Yi that are joined to S. Since V (G) can be covered by k+ 3 cliques, we have α(G) ≤ k+ 3.
Also, we have κ(G) = k since S is a cutset of size k and when R ⊆ V (G) and |R| < k, the graph
G−R contains at least one vertex in each of S, Y1, . . . , Yk+2, implying that G−R is connected.

We claim that the set of Gallai vertices in G is S. Since |S| = k and G−S is the disjoint union
of k + 2 copies of Kt, it follows that every path in G has at most |V (G)| − t vertices. Paths in
G that achieve this bound contain S and all but one of X1, . . . , Xk+2, implying that u ∈ V (G) is
Gallai if and only if u ∈ S. By construction, each vertex in S has degree k(k+ 2) + (k− 1). Hence,
when t is sufficiently large, the set of vertices in G of maximum degree is Y1 ∪ · · · ∪ Yk+2, and none
of these is Gallai.

Although maximum degree vertices are not Gallai, our construction still has Gallai vertices. It
is natural to ask whether every graph with sufficiently high connectivity has a Gallai vertex [11, 13].
As noted in Section 1, there are k-connected graphs having no Gallai vertices when k ≤ 3. The
question remains open for k ≥ 4.

The complete bipartite graphs Ks,s+2 show that the condition α(G) ≤ κ(G) + 1 cannot in
general be relaxed to α(G) ≤ κ(G) + 2 while still guaranteeing existence of Hamiltonian paths [2].
However, Theorem 10 immediately implies that this is possible for sufficiently large regular graphs.



Corollary 12. For each positive integer k, there exists n0 such that every k-connected regular graph
G with α(G) ≤ k + 2 and n ≥ n0 vertices has a Hamiltonian path.

We do not know whether the condition α(G) ≤ k + 2 in Corollary 12 is best possible. The
following construction from [3] shows that it cannot be relaxed to α(G) ≤ k + 5.

Example 13. Let k ≥ 6 be even. Let G1 be Kk+1 minus an edge and let G2 be Kk+1 minus a
matching on k− 4 vertices. Let G be the graph obtained from two copies of G1 and one copy of G2

by adding a new vertex adjacent to all k vertices of degree k− 1. We have that G is a 1-connected
regular graph with α(G) = 6 and no Hamiltonian path.
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