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Abstract

Let G be a connected graph with maximum degree ∆ ≥ 3 distinct from K∆+1. Generalizing
Brooks’ Theorem, Bollobás and Manvel proved that if s1, . . . , st are non-negative integers such
that s1 + · · ·+ st ≥ ∆− t, then G admits a vertex partition into parts A1, . . . , At such that, for
1 ≤ i ≤ t, G[Ai] is si-degenerate. Here we show that such a partition can be performed in linear
time. This generalizes previous results that treated subcases of a conjecture of Abu-Khzam,
Feghali and Heggernes [2], which our result addresses in full.

1 Introduction

Brooks’ Theorem is a fundamental theorem in graph coloring that draws a connection between the
chromatic number and the maximum degree of a graph.

Theorem 1 (Brooks’ Theorem [6]). Every connected graph with maximum degree ∆ ≥ 3 that is
distinct from K∆+1 is ∆-colorable.

A graph G is d-degenerate if every subgraph of G contains a vertex of degree at most d. Bollobás
and Manvel [3] obtained the following generalization.

Theorem 2 (Bollobás and Manvel [3]). Let G be a non-complete connected graph with maximum
degree ∆ ≥ 3. Let s ≥ 2 and p1, . . . , ps ≥ 0 be integers such that

∑s
i=1 pi ≥ ∆− s. Then V (G) can

be partitioned into sets V1, . . . , Vs such that, for each i ∈ [s], G[Vi] is (i) pi-degenerate and (ii) has
maximum degree at most pi + 1.

As usual, the notation [n] stands for {1, . . . , n}. Brooks’ Theorem follows from Theorem 2
by noting that a d-degenerate graph is (d + 1)-colorable. We should also mention that similar
generalizations and variants of Brooks’ Theorem exist: see for example [1] for a directed version or
[9] for a distributed version.

From an algorithmic perspective, a very short proof of Brooks’ Theorem due to Lovász [7] pro-
duces the coloring in linear time. The original proof of Theorem 2, as the alternative proof provided
by Matamala [8], are not algorithmic, and do not seem to lead to a polynomial algorithm. An al-
ternative proof of Theorem 2 is provided in [5], which is algorithmic with polynomial complexity:
the runtime appears to be cubic in the number of vertices. This raises the question of whether one



can possibly improve its time complexity to linear. In view of this, several groups improved the
complexity of such a partition algorithm focusing on property (i) only. Bonamy et al. [4] showed
that the complexity in the special case s = 2 with p1 = 0 and p2 = ∆ − 2 can be improved to
quadratic for ∆ ≥ 4 and to linear for ∆ = 3. Similarly, Abu-Khzam, Feghali and Heggernes [2]
showed that in the special case pi ≤ 1 for all i ∈ [s], it can be improved to linear.

The object of this paper is to obtain a common generalization of these results in linear time,
via a much shorter argument.

Theorem 3. Let G be a non-complete connected graph with maximum degree ∆ ≥ 3. Let s ≥ 2
and p1, . . . , ps ≥ 0 be integers such that

∑s
i=1 pi ≥ ∆ − s. There exists a linear-time algorithm

partitionning V (G) into sets V1, . . . , Vs such that, for each i ∈ [s], G[Vi] is pi-degenerate.

Theorem 3 settles a conjecture of Abu-Khzam, Feghali and Heggernes [2] and, in the special
case s = 2, a problem of Bonamy et al. [4].

2 Sketch of proof of Theorem 3

To prove Theorem 3, one should focus on the s = 2 case, which we present here. It corresponds to
the following theorem (with notations slightly simpler than Theorem 2).

Theorem 4. Let G be a connected graph with n vertices and maximum degree ∆ ≥ 3 that is distinct
from K∆+1. For each pair dA, dB such that dA + dB = ∆ − 2, there is an O(n)-time algorithm
partitioning V (G) into sets A and B such that G[A] is dA-degenerate and G[B] is dB-degenerate.

Given a graph G and a vertex ordering v1, v2, . . . , vn of G let us denote N<(vi) the neighbors
of vi with lower index, that is N<(vi) = N(vi) ∩ {vj | j < i}. The following folklore observation
shows us how such sets can help us construct a certificate that a graph is d-degenerate.

Observation 5. If a graph G admits a vertex ordering v1, v2, . . . , vn such that |N<(vi)| ≤ d for
every vertex vi, then G is d-degenerate.

If G is not ∆-regular, let v be a vertex of degree at most ∆ − 1, and let T be a spanning tree
of G rooted at v. Let v1, v2, . . . , vn = v be a vertex ordering obtained by peeling off the leaves of
T iteratively. The main property of this ordering is the following:

Fact 6. Every vertex vi has at most ∆− 1 neighbors in N<(vi).

Indeed, this is clear for vn = v. This is also clear for every vertex vi ̸= vn, as its parent neighbor
in T does not belong to N<(vi). Note that such an ordering can be obtained in linear time as
finding v and constructing T are clearly feasible in linear time and as the ordering considered can
be a simple post-order traversal of T . Now, given such an ordering we partition V (G) into A and
B, using Algorithm 1, that is clearly linear.

In view of Observation 5, it remains to show that the ordering v1, v2, . . . , vn ensures us that
G[A] is dA-degenerate and G[B] is dB-degenerate. Phrased differently, we must show that for every
vertex vi ∈ A, we have |A∩N<(vi)| ≤ dA and, for every vertex vi ∈ B, we have |B∩N<(vi)| ≤ dB.
The former is clearly implied by Algorithm 1. For the latter, it follows from

|B ∩N<(vi)| = |N<(vi)| − |N<(vi) ∩A| ≤ (∆− 1)− (dA + 1) ≤ dB.



Algorithm 1

A← ∅
B ← ∅
for vi from v1 to vn do

if |N<(vi) ∩A| ≤ dA then
A← A ∪ vi

else
B ← B ∪ vi

end if
end for
return (A,B)

To complete the proof of Theorem 4, it remains to deal with the case where G is ∆-regular.
For this case, we have to introduce a particular graph that we denote K−

∗ . This graph is obtained
from K∆+1 by subdividing exactly one edge (see Figure 1). Note that this graph has a degree two
vertex denoted v and that all the ∆ + 1 remaining vertices have degree ∆.

In the case where G is not 2-connected and where one of its end-blocks is a K−
∗ with v as its

cut-vertex one should proceed as follows. We can first partition G\V ′, where V ′∪{v} is the vertex
set of K−

∗ , viewed as a non-∆-regular graph (thanks to Algorithm 1), and then we can easily extend
the partition to the whole graph G (by appropriately partitioning K−

∗ ).
A key ingredient for the rest of the proof is the following lemma.

Lemma 1. If there exists a vertex z in G and a set X ⊂ N(z) such that

a) |X| = dB + 1,

b) G[X] is not a complete graph, and

c) G \X is connected,

then there is a linear-time algorithm partitionning G into sets A,B such that G[A] is dA-degenerate
and G[B] is dB-degenerate.

This lemma follows from a variant of Algorithm 1, where one starts by setting B ← X.

In the remaining case, if G is 2-connected, or if none of its end-blocks is a K−
∗ , it is always

possible to compute a pair (z,X) fulfilling the conditions of Lemma 1.

Finally, to prove Theorem 3, one just has to note that it follows from Theorem 4 (by bi-
partitioning G into a p1- and a (∆− p1 − 2)-degenerate graph) and from the following lemma (by
setting dA = pi and dB = (

∑
i<j≤s pj) + (s− 1− i), for i taking values from 2 to s− 1).

Lemma 7. Let G be a d-degenerate graph, given with a vertex ordering v1, . . . , vn, such that
|N<(vi)| ≤ d for every vi. For any pair dA, dB such that d = dA + dB + 1, Algorithm 1 partitions
V (G) into sets A and B such that G[A] and G[B] are dA- and dB-degenerate, respectively.

The proof of this lemma also relies on Algorithm 1.
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Figure 1: The graph K−
∗ for ∆ = 6, and some vertex partitionings for dA = 1 and dB = 3 where

the vertices in A ∋ v are represented in red and vertices in B in blue.
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