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Abstract

A strict bramble of a graph G is a collection of pairwise-intersecting connected subgraphs of G,
whose order is the minimum size of a set of vertices intersecting all its sets. The strict bramble
number of G, denoted by sbn(G), is the maximum order of a strict bramble in G. sbn can be
seen as a way to extend the notion of acyclicity, as for (non-empty) acyclic graphs every strict
bramble has order 1. We initiate the study of this parameter by providing three alternative
definitions, each revealing different structural characteristics. The first asserts that sbn(G) is
the minimum k for which G is a minor of the lexicographic product of a tree and a clique on
k vertices (known as the lexicographic tree product number). The second is in terms of a new
variant of a tree decomposition called lenient tree decomposition. We show that sbn(G) is the
minimum k for which there is a lenient tree decomposition of G of width at most k. The third
is in terms of extremal graphs. For this we define for each k the concept of a k-domino-tree
and we prove that every edge-maximal graph of sbn ≤ k is a k-domino-tree. We also identify
the graphs that constitute the minor-obstruction set of the class of graphs with sbn ≤ 2. We
complete our results by proving that deciding whether sbn(G) ≤ k is an NP-complete problem.

Introduction. A well-known definition of acyclicity is the following: a non-empty graph G is
acyclic if for every collection of pairwise intersecting subtrees of G there is some vertex appearing
in every subtree. In this paper we deal with a natural parametric extension of acyclicity, that is,
the minimum k such that for every collection of pairwise intersecting subtrees of G there is a set
of k vertices intersecting all of them. To our knowledge, this graph parameter2 was studied for the
first time by Kozawa, Otachi and Yamazaki in [1] with the name PI number (where PI stands for
“Pairwise Intersecting”) and was used in order to derive lower bounds for the treewidth of several
classes of product graphs. The same parameter was recently introduced by Aidun, Dean, Morrison,
Yu, and Yuan in [2] with the name strict bramble number and is the term that we adopt in this
paper. The strict bramble number was used in [2] in order to study the relation of treewidth and
the gonality on particular classes of graphs.

Strict brambles. Given a graph G, a collection B of vertex sets of G and some vertex set X, we
say that X covers B if every set in B has some vertex in common with X. We say that a vertex set
S is connected if the subgraph of G induced by S is connected. A strict bramble of a graph G is a
collection B of vertex sets of G such that:
(1) every set in B is connected;
(2) every two sets in B have some vertex in common.

The order of a strict bramble B of G is the minimum size of a set that covers B and is denoted
by order(B). The strict bramble number of G, denoted by sbn(G), is the maximum order of a strict
bramble of G.

1Full version preprint available at arXiv:2201.05783
2We use the term graph parameter for every function mapping graphs to non-negative integers.
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Brambles. Given two vertex sets S and S′ of a graph G we say that S and S′ touch in G if either
they have some vertex in common or there is an edge with one endpoint in S and the other in S′.
If we relax the definition of strict bramble by substituting (2) with:
(2′) every two sets in B are touching,

then we obtain the (classic) notion of bramble and the parameter bramble number (bn(G)), intro-
duced by Seymour and Thomas in [3]3. The study of brambles attracted a lot of attention because
of the main result in [3], that is a min-max theorem asserting that for every graph G, the treewidth
of G (tw(G)), is one less than its bramble number. As already observed in [1] (using the results of
[4]), for every graph G, it holds that sbn(G) ≤ bn(G) ≤ 2 · sbn(G) which, in turn, implies that:

sbn(G)− 1 ≤ tw(G) ≤ 2 · sbn(G)− 1. (1)

Treewidth, the min-max analogue of brambles, is one of the most important graph parameters.
Reinvented by Robertson and Seymour in [5] (see [6, 7] for earlier appearances), treewidth served as
a cornerstone parameter of the Graph Minors series of Robertson and Seymour and is omnipresent
in a wide range of topics in combinatorics and graph algorithms [8].

In this paper we initiate the study of the strict bramble number, mainly motivated by the fact
that, so far, no min-max analogue, parallel to treewidth, is known for this graph parameter. In
this direction, we provide three alternative definitions of the strict bramble number, each revealing
different characteristics of this parameter. We continue with a brief introduction of these definitions.

Lexicographic tree product. Let G,H be a pair of graphs. The lexicographic product of G and
H, denoted by G ·H, is the graph whose vertex set is the Cartesian product of the vertex sets of G
and H and where the vertex (u, v) is adjacent with the vertex (w, z) in G ·H if and only if either
u is adjacent with w in G or it holds that u = w and v is adjacent with z in H. The lexicographic
tree product number of G is defined by Harvey and Wood in [9] as:

ltp(G) = min{k ∈ N | there is a tree T such that G is a minor of T ·Kk}.

Our first contribution is to show that the lexicographic tree product number and the strict bramble
number are the same parameter. Unsurprisingly it was already proved in [9] that (1), holds if we
replace sbn with ltp.

Lenient tree decompositions. Let G be a graph, T a tree and let χ be a function mapping
vertices of T to vertex sets of G. We say that two vertices t, t′ of T are close in T if either they are
identical or they are adjacent. The pair (T, χ) is a lenient tree decomposition of G if it satisfies the
following three conditions:
(C1)

⋃
t∈V (T ) χ(t) is the vertex set of G;

(C2) for every edge e of G, there are two close vertices t, t′ of T such that, e ⊆ χ(t) ∪ χ(t′);
(C3) for every vertex x of G, the set {t | x ∈ χ(t)} is connected in T.

We define the width of (T, χ), as the maximum size of a set χ(t), for vertices t of T. Our second
characterization of the strict bramble number is that, for every graph G, sbn(G) is equal to the
minimum width of a lenient tree decomposition of G. In that way, lenient tree decompositions
can serve as the analogue of tree decompositions for the case of strict brambles. Notice that the
definition of a standard tree decomposition follows from the above definition if we substitute “close”
by “identical”.

3We wish to stress that in [3] the term “screen” was used, instead of the term “bramble”.



k-domino-trees. Given a non-negative integer k, a k-tree is recursively defined as follows: a graph
G is a k-tree if it is either isomorphic to Kr, for some r ≤ k, or it contains a vertex v of degree k in
G whose neighborhood induces a clique in G and whose removal from G yields a k-tree. It is known
that among all the graphs with treewidth at most k, those that are edge-maximal (that is, after the
addition of any edge they have treewidth more than k) are precisely the k-trees. This implies that
the treewidth of a graph can be defined as the minimum k for which G is a spanning subgraph of a
k-tree. Is there an analogous definition for the strict bramble number? What are the edge-extremal
graphs of strict bramble number at most k?

Our third characterization is obtained by answering the above questions. For this, we introduce
the concept of a k-domino-tree.

Given a graph G, we denote by cc(G) the set of all connected components of G. Let S ⊆ V (G).
We define the connectivity-degree of S as cdegG(S) = |cc(G − S)|, i.e. the number of connected
components of G−S. Let G be a chordal graph. We call a maximal clique of G, external (respectively
internal), if its vertex set contains at most one (respectively at least two) minimal separator(s) of
G. We say that all external maximal cliques containing the same minimal separator S, form an
external family of S, and we denote it by KG(S). For each K ∈ KG(S), we define its valiancy to
be val(K) = |V (K) \ S|, i.e. the number of private vertices of K. We call a minimal separator S,
external (respectively internal), if KG(S) 6= ∅ (respectively KG(S) = ∅).
Let k ∈ N. A graph G is a k-domino-tree if it is either Kr for some r ≤ k, or it satisfies the following
properties:

i. G is chordal;
ii. Every minimal separator of G has size k;
iii. Every maximal clique of G has size in [k + 1, 2k];
iv. The vertex set of every maximal clique of G contains at most two minimal separators;
v. The vertex set of every maximal clique of G that contains exactly two minimal separators
S, S′ is equal to S ∪ S′;

vi. Every internal minimal separator of G of connectivity-degree two, is not contained in the
union of two other minimal separators;

vii. For every external minimal separator S of connectivity-degree two, the union of the vertex
sets of the maximal cliques that contain S, has size greater than 2k;

viii. For every external minimal separator S, with |KG(S)| > 1, for any different pair K,K ′ ∈ KS ,
val(K) + val(K ′) > k.

A graph G is a partial k-domino-tree if it is a spanning subgraph of a k-domino-tree.
We prove that sbn(G) is equal to the minimum k for which G is a partial k-domino-tree. More-

over, we prove that the edge-extremal graphs of strict bramble number at most k are precisely
the k-domino-trees. Interestingly, k-domino-trees enjoy a more elaborate structure than the one of
k-trees. While all k-trees on n vertices have the same number of edges, the same does not hold for
the k-domino-trees on n vertices as the number of edges may vary considerably.

Results. We prove all aforementioned equivalencies by proving the following theorem.

Theorem 1. Let G be a graph and k ∈ N. The following statements are equivalent:
1. There is a tree T such that G is a minor of T ·Kk.
2. G has a lenient tree decomposition of width at most k.
3. G has no strict bramble of order greater than k.
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Figure 1: The graphs in Z.

4. G is a partial k-domino-tree.

We identify the exact structure of all edge maximal graphs of sbn(G) ≤ k by proving that the
edge-maximal graphs of sbn(G) ≤ k are exactly the k-domino-trees.

Theorem 2. Let G be a graph with sbn(G) ≤ k. G is an edge-maximal graph if and only if, G is a
k-domino-tree.

Moreover, we prove that the obstruction set of the class of graphs of strict bramble number at
most two are precisely the graphs in Figure 1.

Theorem 3. The obstruction set of the graphs G with sbn(G) ≤ 2, consists of the graphs in Z.
To complete our results we prove that, given a graph G and an integer k ∈ N, deciding whether

sbn(G) ≤ k is NP-complete. To that end we reduce our problem to deciding whether tw(G) ≤ k.
Theorem 4. There exists a polynomially computable function that, given a graph G and an integer
k ∈ N, outputs a graph H such that, tw(G) ≤ k − 1 if and only if, sbn(H) ≤ k.
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