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Abstract

A set S of vertices of a graph G is said to be a dominating set if every vertex of G either
belongs to S or is adjacent to some vertex in S. The domination number γ(G) of G is the
minimum cardinality of a dominating set of G. An independent dominating set in a graph is
a set that is both dominating and independent. The minimum cardinality of an independent
dominating set i(G) of G is the independent domination number of G. We show that, for every
Goldberg Snark Gl, l ≥ 3 and l odd, it holds that γ(Gl) = i(Gl) =

⌈
11l
5

⌉
.

1 Introduction

Let G be a finite, undirected and simple graph with vertex set V (G) and edge set E(G). Denote
by d(v) the degree of v ∈ V (G) and by δ(G) the minimum degree of G. A graph G is k-regular
if d(v) = k for every v ∈ V (G). A graph is cubic if it is 3-regular. For v ∈ V (G), the closed
neighbourhood of v is N [v] = {u ∈ V (G) : uv ∈ E(G) and u 6= v} ∪ {v}. Extending these concepts
to a set S ⊆ V (G), we define N [S] = ∪v∈SN [v]. A dominating set of G is a set S ⊆ V (G) such that
every v ∈ V (G) is either in S or is adjacent to some vertex in S; we say that S dominates G and
u ∈ S dominates its adjacent vertices. We also say that a set S′ ⊆ S dominates a set H ⊆ V (G)
if H ⊆ N [S′]. The domination number γ(G) of G is the minimum cardinality of a dominating set
of G. A set S ⊆ V (G) is independent if its elements are pairwise nonadjacent. An independent
dominating set of G is both dominating and independent. The independent domination number
i(G) of G is the minimum cardinality of an independent dominating set of G.

In 1979, Garey and Johnson [4] showed that determining both γ(G) and i(G) for arbitrary
graphs are NP-hard problems and remain NP-hard even when restricted to cubic graphs [3, 7].
These results motivate the search for bounds for γ(G) and i(G) and, over the years, many results
have been obtained considering classes of graphs. Let n = |V (G)|. Ore [8] proved that γ(G) ≤ n

2
for graphs with δ(G) ≥ 1. Later on, Blank [2] proved that, except for seven graphs, every connected
graph with δ(G) ≥ 2 has γ(G) ≤ 2n

5 . Also, Reed [10] proved that γ(G) ≤ 3n
8 for connected graphs

with δ(G) ≥ 3. All these bounds are tight. Reed [10] also conjectured that every connected cubic
graph has γ(G) ≤

⌈
n
3

⌉
. However, Kostochka and Stodolsky [6] showed that this conjecture is false

by constructing an infinite family of connected cubic graphs for which γ(G) >
⌈
n
3

⌉
. In fact, Reed’s

Conjecture remains false even for 2-connected cubic graphs [11]. Nevertheless, the search for classes
of cubic graphs that verify or improve Reed’s Conjecture is still a quite challenging problem.

Another interesting problem is establishing the relationship between γ(G) and i(G). Note that,
by the definition, γ(G) ≤ i(G). Furthermore, deciding whether γ(G) = i(G) is an NP-complete
problem [1]. Although no necessary and sufficient conditions are known for the characterization of
graphs having γ(G) = i(G), there are some families of graphs that achieve this equality [5]. On the
other hand, there exist infinite families of graphs for which the difference i(G)−γ(G) is unbounded
even when restricted to connected cubic graphs [12].

All these considerations motivate the search for cubic graphs with domination number bounded
by the value conjectured by Reed, as well as the determination of the independent domination
number of these graphs, so as to evaluate how far apart these two parameters are.



Snarks are connected cubic graphs without bridges (edges whose removal increases their number
of connected components), which are not 3-edge-colourable, i.e., whose edges cannot be assigned
three colours such that adjacent edges have distinct colours. Snarks are an important class of cubic
graphs that played an essential role in the proof of the Four-Colour Theorem and that have been
shown to be interesting when approaching other problems in Graph Theory ever since.

In this work, we determine the domination number and the independent domination number of
an infinite family of snarks known as Goldberg Snarks. The domination problem seems unexplored
for these graphs, with the known results focusing on variants of the classical problem. We show
that the domination number and the independent domination number are equal for every graph in
this family and remark that its domination number is less than the value conjectured by Reed.

2 Main Results

Let G = {G3, G5, G7, . . .} be the family of Goldberg Snarks. Each Gl ∈ G is formed by l copies of
a block B with V (B) = {r, s, t, u, v, w, x, y} and E(B) = {ru, rw, rx, sw, tv, tw, ty, uy, vx}; denote
the i-th copy of B by Bi and attach index i to its vertices as in Figure 1(a). For each l ≥ 3, l
odd, graph Gl is built from B0, B1, ..., Bl−1 by adding edges xivi+1, yiui+1 and sisi+1 for every
0 ≤ i < l, with indexes taken module l, as exemplified in Figure 1(b). In Theorem 1, we establish
upper bounds for γ(Gl) and i(G).

ri ti

yiui

wi

vi xi

si

(a) Block Bi.

r0 t0

y0u0

w0

v0 x0

s0

r1 t1

y1u1

w1

v1 x1

s1

r2 t2

y2u2

w2

v2 x2

s2

(b) Graph G3.

Figure 1: Block Bi and graph G3, constructed from B0, B1 and B2.

Theorem 1. For Goldberg Snark Gl, γ(Gl) ≤ i(Gl) ≤
⌈
11l
5

⌉
.

Proof (sketch). We construct an independent dominating set S for G = Gl, with |S| ≤
⌈
11l
5

⌉
to

prove that γ(G) ≤ i(G) ≤
⌈
11l
5

⌉
. Let l = 5t+ r, t ≥ 0 and r ∈ {0, 1, 2, 3, 4}. Let H0, H1, . . . ,Ht be

subgraphs of G such that: Hi = G[∪4j=0V (B5i+j)] if 0 ≤ i < t; Ht = G[∪r−1j=0V (Bl−r+j)] if r 6= 0.
Note that |V (Hi)| = 40 for 0 ≤ i < t and |V (Ht)| = 8r if r 6= 0. Figure 2 exhibits subgraphs Hi

and Ht. We construct an independent dominating set S for G where S = ∪ti=0Si such that, for
0 ≤ i < t,

Si =

{
{w5i, x5i, y5i, w5i+1, s5i+2, u5i+2, v5i+2, r5i+3, t5i+3, r5i+4, t5i+4} if i = 0 and r = 1;

{s5i, x5i, y5i, w5i+1, s5i+2, u5i+2, v5i+2, r5i+3, t5i+3, r5i+4, t5i+4} otherwise; and



St =



∅ if r = 0;

{sl−1, xl−1, yl−1} if r = 1;

{sl−2, xl−2, yl−2, rl−1, tl−1} if r = 2;

{sl−3, xl−3, yl−3, wl−2, ul−1, vl−1, wl−1} if r = 3;

{sl−4, xl−4, yl−4, wl−3, sl−2, ul−2, vl−2, rl−1, tl−1} if r = 4.
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(a) Subgraph Hi, i 6= 0 or r 6= 1.
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(b) Subgraph Ht, r = 3.
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Bl−2 Bl−1

(d) Subgraph Ht, r = 2.
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(e) Subgraph Ht, r = 4.

Figure 2: The dark vertices belong to S.

By construction, |Si| = 11 when 0 ≤ i < t and |St| = 2r+1 when r 6= 0. Then, γ(G) ≤ 11t+2r+1
when r 6= 0 and γ(G) ≤ 11t when r = 0. In both cases, γ(G) ≤

⌈
11l
5

⌉
, which concludes the proof.

In Theorem 3, we show that the upper bounds previously established for γ(Gl) and i(Gl) are also
lower bounds. The proof is based on Theorem 2 and Lemma 1. Theorem 2 shows that Theorem 1 is
tight for Gl with l ∈ {3, 5, 7, 9, 11, 13} and is crucial for Lemma 1, which is the key for Theorem 3.
The complete proofs of these results can be found in A. A. Pereira Master’s thesis [9].

Theorem 2. For Goldberg Snark Gl, l ∈ {3, 5, 7, 9, 11, 13}, γ(Gl) =
⌈
11l
5

⌉
.

Lemma 1. For Goldberg Snark Gl, l ≥ 13, γ(Gl−10) ≤ γ(Gl)− 22.

Proof (sketch). Let H = Gl[∪10i=1V (Bi)] and H = Gl[V (Gl)\V (H)]. Note that H is isomorphic to a
subgraph of Gl. Let S be a minimum dominating set of Gl. Then, set SH = S\V (H) may be or may
not be a dominating set of Gl−10. The core of the proof consists of building a dominating set S′ for
Gl−10 from SH such that |S′| ≤ |S|−22. Then, we show that γ(Gl−10) ≤ |S′| ≤ |S|−22 = γ(Gl)−22.
In order to do this, we show |S ∩V (H)| > 20 and that S′ = SH ∪ {s11, u11, v11} is a dominating set
of Gl−10. Thus, if |S ∩ V (H)| ≥ 25, |S′| ≤ |S| − 22. Then, we prove the result for the remaining
cases |S ∩ V (H)| ∈ {21, 22, 23, 24}.

Theorem 3. For Goldberg Snark Gl, γ(Gl) = i(Gl) =
⌈
11l
5

⌉
.

Proof. By Theorem 1, γ(Gl) ≤
⌈
11l
5

⌉
and, by Theorem 2, γ(Gl) =

⌈
11l
5

⌉
for l ∈ {3, 5, 7, 9, 11, 13}.

We prove that γ(Gl) ≥
⌈
11l
5

⌉
for l ≥ 15. Let F = {Gl : γ(Gl) <

⌈
11l
5

⌉
}. Suppose F 6= ∅. Let Gl ∈ F



be the graph with minimum |V (Gl)|. Consider graph Gl−10. By Lemma 1, γ(Gl−10) ≤ γ(Gl)−22 <⌈
11l
5

⌉
− 22 <

⌈11(l−10)
5

⌉
. Hence, Gl−10 ∈ F . However, |V (Gl−10)| < |V (Gl)|, which contradicts the

choice of Gl. Therefore, F = ∅. Then, γ(Gl) =
⌈
11l
5

⌉
. In order to complete the proof, we show that

i(Gl) =
⌈
11l
5

⌉
. Since γ(Gl) =

⌈
11l
5

⌉
and γ(Gl) ≤ i(Gl), we conclude that i(Gl) =

⌈
11l
5

⌉
.

3 Concluding Remarks

In this work, we determined the domination and the independent domination numbers of Goldberg
Snarks, which contribute to a deeper understanding of the domination problem in cubic graphs, in
particular in view of the bound proposed by Reed [10]. Set S constructed in Theorem 1 is also an
independent dominating set of Twisted Goldberg Snarks, TGl, defined from Gl by replacing edges
x0v1 and y0u1 by edges x0u1 and y0v1. Observe that N [x0]∩N [y0]∩S = N [u1]∩N [v1]∩S = {x0, y0}
regardless of the edges that link the pairs x0, y0 and u1, v1. Therefore, S is also independent
dominating for TGl and γ(TGl) ≤ i(TGl) ≤

⌈
11l
5

⌉
. The complete proof of the lower bound for

γ(Gl) is extensive and very technical. We believe the same key ideas can be used to prove the lower
bound for γ(TGl).
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