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Frédéric Havet — CNRS, Université Côte d’Azur, I3S, INRIA, Sophia Antipolis,
France
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Abstract

We prove that every 3-dicritical oriented graph on n vertices has at least 7n+2
3 arcs. We also

give a construction of 3-dicritical oriented graphs on n vertices with 5n
2 arcs for all even n ≥ 12.

Let G be a graph. We denote by V (G) its vertex set and by E(G) its edge set, and we set
n(G) = |V (G)| and m(G) = |E(G)|. A subgraph of G is a graph G′ such that V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). A proper subgraph of G is a subgraph G′ of G such that V (G′) ̸= V (G) or
E(G′) ̸= E(G).

A proper k-colouring of a graph G is a partition of the vertex set of G into k disjoint stable
sets (i.e. sets of pairwise non-adjacent vertices). A graph is k-colourable if it has a k-colouring.
The chromatic number of a graph G, denoted by χ(G), is the least integer k such that G is
k-colourable. The chromatic number is monotone in the sense that if G′ is a subgraph of G, then
χ(G′) ≤ χ(G). A graph G is said to be critical and k-critical if every proper subgraph G′ of
G satisfies χ(G′) < χ(G) = k. Clearly, every graph contains a critical subgraph with the same
chromatic number. Hence many problems concerning the chromatic number can be reduced to
critical graphs. The study of critical graphs was initiated by G. A. Dirac in the 1950s and has
attracted a lot of attention since then. Dirac [3, 4, 5] established the basic properties of critical
graphs and started to investigate the minimum number of edges possible in a k-critical graph of
order n, denoted by gk(n). It is easy to show that the minimum degree of a k-critical graph is at
least k − 1. Consequently, gk(n) ≥ 1

2(k − 1)n for all n ≥ k. In 2014, using the potential method,
Kostochka and Yancey [7] proved that g4(n) =

⌈
5n−2

3

⌉
for all n ≥ 4, n ̸= 5. Furthermore, they [8]

determined the best linear approximation for the function gk(n). In particular, they established a
lower bound for gk(n) that is sharp when k ≥ 4 and n ≡ 1 mod (k − 1). In particular, it proved
that g5(n) ≥ 9

4n−
5
4 with equality when n ≡ 1 mod 4.

The girth of a graph G is the minimum length of a cycle in G or +∞ if G is acyclic. Also
using the potential method, Liu and Postle [10] showed that the minimum number of edges of a
4-critical graph is larger than g4(n) if we impose the graph to have girth 5: If G is a 4-critical graph

of girth at least 5, then m(G) ≥ 5n(G)+2
3 . Likewise, Postle [13] showed that every 5-critical graph

with girth at least 4 satisfies m(G) ≥ (94 + ϵ)n(G)− 5
4 for ϵ = 1

84 .

Let D be a digraph. We denote by V (D) its vertex set and by A(D) its arc set, and we set
n(D) = |V (D)| and m(D) = |A(D)|. A subdigraph of D is a digraph D′ such that V (D′) ⊆ V (D)
and A(D′) ⊆ A(D). A proper subdigraph of D is a subdigraph D′ of D such that V (D′) ̸= V (D)
or A(D′) ̸= A(D).

A k-dicolouring of a digraph is a partition of its vertex set into k subsets inducing acyclic
subdigraphs. A digraph is k-dicolourable if it has a k-dicolouring. The dichromatic number
of a digraph D, denoted by χ⃗(D), is the least integer k such that D is k-dicolourable. This notion



was introduced and investigated by Neumann-Lara [12]. It can be seen as a generalization of the

chromatic number. Indeed, for a graph G, the bidirected graph
←→
G is the digraph obtained from

G by replacing each edge by a digon, that is a pair of oppositely directed arcs between the same

end-vertices. Observe that χ(G) = χ⃗(
←→
G ) since any two adjacent vertices in

←→
G induce a directed

cycle of length 2.
Similarly to the chromatic number, the dichromatic number is monotone. A digraph D is said

to be dicritical and k-dicritical if every proper subdigraph D′ of D satisfies χ⃗(D′) < χ⃗(D) = k.
Clearly, every digraph contains a critical subdigraph with the same dichromatic number. Dicritical
digraphs were introduced in Neumann-Lara’s seminal paper [12]. Observe that χ⃗(D) = 1 if and
only if D is acyclic. As a consequence, a digraph D is 2-dicritical if and only if D is a directed
cycle. Bokal, Fijavž, Juvan, Kayll and Mohar [1] proved that deciding whether a given digraph is
k-dicolourable is NP-complete for all k ≥ 2. Hence a characterization of the class of k-dicritical
digraphs with fixed k ≥ 3 is unlikely. However, it might be possible to derive bounds on the
number of arcs in a k-dicritical digraph. Kostochka and Stiebitz [9] deduced the following from a
Brooks-type result for digraphs due to Mohar [11]: if D is a 3-dicritical digraph of order n ≥ 3,
then m(D) ≥ 2n and equality holds if and only if n is odd and D is a bidirected odd cycle.

For integers k and n, let dk(n) denote the minimum number of arcs in a k-dicritical digraph of
order n. By the above observations, d2(n) = n for all n ≥ 2, and d3(n) ≥ 2n for all possible n, and
equality holds if and only if n is odd and n ≥ 3.

If G is a k-critical graph, then
←→
G is k-dicritical, so dk(n) ≤ 2gk(n) provided that there is a

k-critical graph of order n. (It is known that, for k ≥ 4, there is a k-critical graph of order n if and
only if n ≥ k and n ̸= k + 1).

Kostochka and Stiebitz proved that if D is a 4-dicritical digraph then m(D) ≥ 10
3 n(D) − 4

3 =
2g4(n). They also proposed the following conjecture.

Conjecture 1 (Kostochka and Stiebitz [9]). If D is a k-dicritical digraph of order n with k ≥ 4
and n ≥ k, then m(D) ≥ 2gk(n) and equality implies that D is a bidirected k-critical graph. As a
consequence, dk(n) = 2gk(n) when n ≥ k and n ̸= k + 1.

Similarly to the undirected case, it is expected that the minimum number of arcs in a k-dicritical
digraph of order n is larger than dk(n) if we impose this digraph to have no short directed cycles,
and in particular if the digraph is an oriented graph, that is a digraph with no digon. Let ok(n)
denote the minimum number of arcs possible in a k-dicritical oriented graph of order n. Clearly
ok(n) ≥ dk(n).

Conjecture 2 (Kostochka and Stiebitz [9]). There is a constant c > 1 such that ok(n) > c · dk(n)
for k ≥ 3 and n sufficiently large.

As observed by Hoshino and Kawarabayashi [6], using iteratively an analogue of Hajós construc-
tion for oriented graphs, for each k ≥ 3, one can construct an infinite family of sparse k-dicritical
oriented graphs such that m(D) < 1

2(k
2 − k + 1)n(D). Consequently, ok(n) < 1

2(k
2 − k + 1)n

for infinitely many values of n. When k = 3, a better result can be obtained using the unique
3-dicritical oriented graph with 20 arcs. It yields 3-dicritical oriented graphs with n vertices and
19n
6 + 1 arcs for all n ≡ 1 mod 6. Consequently, o3(n) ≤ 19n

6 + 1 for all n ≡ 1 mod 6.
In this paper, we give better lower and upper bounds on o3(n).
In [2], the authors conjecture that there is no 3-dicritical digraph on n vertices with less than

5
2n(G) arcs. We give a construction that matches this bound.



The knob of height 1 is the tournament K⃗1 defined by V (K⃗1) = {x1, x2, y1, y2, y3}, and
A(K⃗1) = {x1x2, y1y2, y2y3, y3y1, y1x1, y2x1, y3x1, x2y1, x2y2, x2y3}. The base of the knob is the arc
x1x2. For all integer i ≥ 2, The knob of height i, denoted by K⃗i, is the oriented graph obtained
from K⃗i−1 by adding two new vertices z1z2 and the arcs of the two directed 3-cycle (z1, z2, x, z1)
for all end-vertex x of the base of K⃗i−1. The base of K⃗i is the arc z1z2. A knob is a knob of
height i for some positive integer i.

Let O3 be the family of the oriented graphs that are obtained from an odd directed cycle by
adding a copy of a knob with base a for every arc a of this cycle. See Figure 1. Since there are
knobs of any odd order at least 5, there are elements of O3 of every even order at least 12.

Figure 1: A digraph of O3 of order 14.

Proposition 3. If D ∈ O3, then m(D) = 5
2n(D) and D is 3-dicritical.

We then prove the main result of the paper stating o3(n) ≥ 7n+2
3 .

Theorem 4. If D is a 3-dicritical oriented graph, then m(D) ≥ 7n(D)+2
3 .

To prove this theorem, we use the so-called potential method introduced by Kostochka and
Yancey [7, 9], as well as some ideas introduced by Liu and Postle [13, 10]. The digon graph of D,
denoted by B(D), is the graph with vertex set V (D) in which uv is an edge if and only if there is
a digon between u and v in D. We denote by π(D) the maximum size of a matching in B(D). The
potential of a set R of vertices in a digraph D is ρD(R) = 7|R| − 3m(D[R]) − 2π(D[R]) and we
write ρ(D) = ρD(V (D)). We actually prove the following stronger result than Theorem 4, where
an odd 3-wheel is a digraph obtained by connecting a vertex c to a directed 3-cycle by three odd
bidirected paths that are disjoint except in c.

Theorem 5. If D is a 3-dicritical digraph, then ρ(D) = 1 if D is a bidirected odd cycle, ρ(D) = −1
if D is in an odd 3-wheel, ρ(D) ≤ −2 otherwise.

This result implies Theorem 4 because π(D) = 0 for every oriented graph D.
The proof of Theorem 5 is by considering a minimal counterexample D. Using a usual trick

in the potential method, we prove that every set R of vertices such that 3 ≤ |R| ≤ n(D) − 1 has
potential at least 4. We then deduce that many digraphs cannot be subdigraphs of D. Using those
forbidden configurations and the discharging method we then derive a contradiction. An important
role is played by the out-chelou arcs, which are arcs xy such that d+(x) = d−(y) = 2 and y is
incident to no digon (and their directional dual the in-chelou arcs). We show that if xy is an



out-chelou arc and d(x) ≥ 5 or is incident to at least two chelou arcs, then the structure around y
is very constrained. This structure is intensively used to show forbidden configurations and then
design the dedicated discharging rules.

References

[1] D. Bokal, G. Fijavz, M. Juvan, P. M. Kayll, and B. Mohar. The circular chromatic number of a digraph.
Journal of Graph Theory, 46(3):227–240, 2004.

[2] J. Bang-Jensen, T. Bellitto, M. Stiebitz, and T. Schweser. Hajós and ore constructions for digraphs.
The Electronic Journal of Combinatorics, 27(1):1–63, 2020.

[3] G. A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs. Journal of the
London Mathematical Society, s1-27(1):85–92, 1952.

[4] G. A. Dirac. A theorem of R. L. Brooks and a conjecture of H. Hadwiger. Proceedings of the London
Mathematical Society, s3-7(1):161–195, 1957.

[5] G. A. Dirac. On the structure of k-chromatic graphs. Mathematical Proceedings of the Cambridge
Philosophical Society, 63(3):683–691, 1967.

[6] R. Hoshino and K.-i. Kawarabayashi. The edge density of critical digraphs. Combinatorica, 35(5):619–
631, 2015.

[7] A. Kostochka and M. Yancey. Ore’s conjecture for k = 4 and Grötzsch’s theorem. Combinatorica,
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