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Abstract

A semicomplete digraph is a digraph with no pair of non-adjacent vertices and a tour-
nament is a semicomplete digraph with no cycle of length 2. A digraph is k-strong if it has
n ≥ k + 1 vertices and every induced subdigraph on at least n − k + 1 vertices is strongly
connected.

We have proved that every semicomplete digraph on at least k + 1 vertices can be made
k-strong by adding at most

(
k+1
2

)
new arcs. This confirms a conjecture of Bang-Jensen from

1994.
Combined with other work, our results also imply that every tournament on at least 3k − 1

vertices can be made k-strong by reversing at most
(
k+1
2

)
arcs. This provides new support for

the conjecture, due to Bang-Jensen, that we can make any tournament on at least 2k+1 vertices
k-strong by reversing at most

(
k+1
2

)
arcs.
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1 Introduction

The notation used below follows [1]. For a given digraph D on at least k+ 1 vertices we denote by
ak(D) the minimum number of new arcs that must be added to D to obtain a k-strong digraph.
For an arbitrary digraph on n ≥ k + 1 vertices which is not k-strong we may have to add nk new
arcs to obtain a k-strong digraph. One example attaining this bound is the arc-less digraph Dn,0 on
n ≥ k+ 1 vertices which needs nk new arcs. We have ak(Dn,0) = nk as we can label the vertices of
Dn,0 as {0, 1, 2, . . . , n− 1} and add all arcs from vertex i to the vertices i+ 1, i+ 2, . . . i+ k modulo
n. This digraph, denoted Ck

n (also known as the k’th power of an n-cycle) is k-strong [1, Exercise
5.10]. Since any superdigraph of a k-strong digraph is again k-strong, this shows that ak(D) ≤ nk
for every digraph on n ≥ k + 1 vertices.

Let us first observe that ak(D) is bounded by some function of k for every tournament D on
n ≥ k+ 1 vertices. We will just sketch the argument here. We use the following two facts (see e.g.
[2]):

(i) every tournament on at least 4k−2 vertices has a vertex v with both in-degree and out-degree
at least k

(ii) If H = (V,A) is a k-strong digraph and we add a new vertex v along with an arc from v
to each of k distinct vertices of V and from a set of k distinct vertices of V to v, then the
resulting digraph is k-strong (see [1, Exercise 14.8])

These facts imply that for every tournament D on more than 4k − 2 vertices we have ak(D) ≤
ak(D′) for some subtournament D′ of D on at most 4k − 2 vertices. For such a tournament we
clearly have that ak(D′) ≤

(
4k−2
2

)
and hence ak(D′) is bounded by a function of k.



The transitive tournament TTn on n vertices has vertex set {1, 2, . . . , n} and arc set {ij : 1 ≤
i < j ≤ n}. It is easy to check that ak(TTn) ≥

(
k+1
2

)
as we need this many arcs just to get in- and

out-degree at least k for every vertex. In fact we have equality above so it is a natural question
how large ak(D) can become when D is a tournament.

Observations like this made the first author conjecture in 1994 that ak(D) is at most
(
k+1
2

)
for

every tournament D and hence also for every semicomplete digraph on at least k+ 1 vertices. The
purpose of this talk is to give a detailed sketch of a short proof of this conjecture.

Theorem 1. For every semicomplete digraph D on at least k+1 vertices and every positive integer
k we have ak(D) ≤

(
k+1
2

)
.

2 The tool: one-way pairs

Frank and Jordán [5] solved the problem of characterizing ak(D) for a given digraph D and also
gave a polynomial algorithm to find a set of arcs A′ of minimum cardinality to add to a given
digraph D = (V,A) so that the resulting digraph D̂ = (V,A ∪ A′) is k-strong. The tool they used
is described below.

Let H,T be disjoint non-empty proper subsets of V . The ordered pair (H,T ) is a one-way
pair in D = (V,A) if D has no arc with tail in T and head in H. This definition is due to Frank
and Jordán [5] but we use a sligthly different notation here. For such a pair (H,T ) we refer to
H (T ) as the head (tail) of the pair. Let h(H,T ) = |V −H − T |. The deficiency η(H,T ) of a
one-way pair (H,T ) with respect to k-strong connectivity is defined as

η(H,T ) = max{0, k − h(H,T )}. (1)

For instance, if N+[X] 6= V then the pair (X,V − N+[X]) is a one-way pair with deficiency
η(X,V −N+[X]) = max{0, k− |N+(X)|}. Here N+[X] is the closed out-neighbourhood of the set
X ⊂ V . One-way pairs are closely related to k-strong connectivity.

Lemma 1. [5] A digraph D = (V,A) is k-strong if and only if we have h(H,T ) ≥ k for every
one-way pair (H,T ) in D.

Two one-way pairs (H1, T1), (H2, T2) are independent if either their heads or their tails are
disjoint. By Lemma 1, in order to obtain a k-strong superdigraph of D, we must add enough new
arcs to cover all one-way pairs with η(H,T ) > 0: we must add at least η(H,T ) arcs from T to
H). This is the reason why H (T ) is called the head (tail) of the one-way pair (H,T ). Clearly,
if (H1, T1), (H2, T2) are independent one-way pairs, then no new edge can decrease both η(H1, T1)
and η(H2, T2). This implies that, if F is any family of pairwise independent one-way pairs in D,
then we must add at least

η(F) =
∑

(H,T )∈F

η(H,T ) (2)

new arcs to D in order to obtain a k-strong digraph. We call the number η(F) the deficiency of
F .

The following theorem, due to Frank and Jordán, shows that the maximum deficiency over
families of independent one-way pairs gives the right lower bound for the vertex-strong connectivity
augmentation problem.



Theorem 2 (Frank and Jordán). [5] For every digraph D on at least k + 1 vertices we have

ak(D) = max {η(F) : F is a family of independent one-way pairs in D}. (3)

Frank and Jordán also gave a polynomial algorithm for finding an optimal augmentation (set
of new arcs to add) for any given input digraph D.

Theorem 3. [5] There exists a polynomial algorithm which, given a digraph D = (V,A) and a
natural number k, finds a minimum cardinality set F of new arcs to add to D so that the resulting
digraph is k-strong.

3 Short sketch of the proof of Theorem 1

We will use the notation (H,S, T ) to denote a one-way pair. Here H,T are as above and S =
V −H − T so η(H,S, T ) = max{0, k − |S|}. For a one-way pair (H,S, T ) with |H| = 1 (|T | = 1)
we call H (T ) a singleton head (tail) and say that (H,S, T ) is a singleton one-way pair.

We consider a tournament D such that ak(D) is maximum and for all tournaments D′ with
ak(D′) = ak(D) we have n = |V (D)| ≤ |V (D′)|. We then prove that n = k + 1 from which the
theorem follows as we can make any tournament D on k + 1 vertices k-strong by adding all the
arcs of the converse of D and this has

(
k+1
2

)
arcs. Here we used the easy fact that the complete

digraph on k + 1 vertices is k-strong.

Assume below that n ≥ k + 2 and let F = {(H1, S1, T1), . . . , (Hp, Sp, Tp)} be an independent
family of one-way pairs of D achieving the value ak(D), that is, by Theorem 2, η(F) = ak(D).

Claim : Every vertex of D is either a singleton head or a singleton tail of some one-way pair in F

Proof of Claim: Suppose x is neither a singleton head nor a singleton tail. Then we consider the
tournament D′ = D − x and the family F−x = {(H ′1, S′1, T ′1), . . . , (H ′p, S′p, T ′p)} of one-ways pair
in D′, where H ′i = Hi − x, S′i = Si − x and T ′i = Ti − x (precisely one of Hi, Si, Ti contains x).
As x is neither a singleton head nor a singleton tail, each (H ′i, S

′
i, T
′
i ) is a one-way pair in D′ and

η(F ′) ≥ η(F) with strict in-equality if x belongs to at least one Si, i ∈ [p]. This contradicts the
choice of D. �

By the choice of D, whenever we remove a vertex x from D the resulting tournament D − x
will have ak(D − x) < ak(D).

Now the rest of the proof (not to be revealed here as the paper is under review) consists of a
careful analysis of what happens to the deficiency of D when we remove a vertex x, in particular
how removing x affects the deficiency of the family F .

4 Reversing arcs to achieve high connectivity

For a given digraph D let rk(D) denote the minimum number of arcs one needs to reverse to obtain
a k-strong reorientation of D. If no such reversal exists we set rk(D) = ∞. Already for k = 2 it
is an open problem whether rk(D) can be determined efficiently. For k = 1 the problem can be
solved in polynomial time [4] (see also [1, Section 13.1]).



Since every tournament T on n vertices has a hamiltonian path v1v2 . . . vn it is easy to see that
r1(T ) ≤ 1, because either vnv1 is an arc and T is already strong or v1vn is an arc and we can reverse
that arc to obtain a strong tournament.

Using the fact that Ck
n is k-strong as well as (i) and (ii) as we did when we studied the function

ak() it is easy to check that for every tournament T on at least 2k + 1 vertices we have rk(T ) ≤(
4k−2
2

)
/2 so rk is bounded by a function of k for every tournament T on at least 2k + 1 vertices.

Since adding a copy of an existing arc uv cannot increase the vertex connectivity it is easy to
see that no optimal reversal will reverse an arc of a directed 2-cycle. This implies that we have
rk(D) ≥ ak(D) for every digraph. Our earlier arguments for TTn imply that when n ≥ 2k + 1 we
have rk(TTn) =

(
k+1
2

)
. This made the first author pose the following stronger version of Theorem

1.

Conjecture 1 (Bang-Jensen, 1994). For every tournament T on at least 2k + 1 vertices we have
rk(T ) ≤

(
k+1
2

)
.

The proof of the following result also relies on a careful study of one-way pairs.

Theorem 4. [2] For every semicomplete digraph on n ≥ 3k − 1 vertices we have ak(D) = rk(D).
There exists a semicomplete digraph D on 3k − 2 vertices for which we have ak(D) < rk(D).

Combining this with Theorem 1 we see that Conjecture 1 holds when n ≥ 3k − 1.

Corollary 1. For every semicomplete digraph D on n ≥ 3k − 1 vertices we have rk(D) ≤
(
k+1
2

)
.
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