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Abstract

We call a 4-cycle inKn1,n2,n3 multipartite, denoted by Cmulti
4 , if it contains at least one vertex

in each part ofKn1,n2,n3 . The Turán number ex(Kn1,n2,n3 , C
multi
4 ) ( respectively, ex(Kn1,n2,n3 , {C3, C

multi
4 }))

is the maximum number of edges in a graph G ⊆ Kn1,n2,n3
such that G contains no Cmulti

4

(respectively, G contains neither C3 nor Cmulti
4 ). We call an edge-colored Cmulti

4 rainbow
if all four edges of it have different colors. The anti-Ramsey number ar(Kn1,n2,n3

, Cmulti
4 )

is the maximum number of colors in an edge-colored Kn1,n2,n3
with no rainbow Cmulti

4 . In
this paper, we determine that ex(Kn1,n2,n3 , C

multi
4 ) = n1n2 + 2n3 and ar(Kn1,n2,n3 , C

multi
4 ) =

ex(Kn1,n2,n3 , {C3, C
multi
4 }) + 1 = n1n2 + n3 + 1, where n1 ≥ n2 ≥ n3 ≥ 1.

1 Introduction

After extended study of Ramsey problems - finding monochromatic subgraphs - anti-Ramsey ques-
tions were raised and discussed first by Erdős, Simonovits and Sós [7]. A subgraph of an edge-colored
graph is rainbow, if all of its edges have different colors. For graphs G and H, the anti-Ramsey
number ar(G,H) is the maximum number of colors in an edge-colored G with no rainbow copy
of H. Erdős, Simonovits and Sós [7] first studied the anti-Ramsey number in the case when the
host graph G is a complete graph Kn and showed the close relationship between it and the Turán
number. Since then, the anti-Ramsey numbers for various special graph classes - e.g., paths, cycles,
cliques and matchings - in the complete graph have been determined, see e.g. [1, 5, 9, 12, 13, 15].
Later, many different graphs have been considered as the host graph G: complete bipartite or r-
partite graphs, complete hypergraphs, complete split graphs and triangulations, etc. In this paper,
we consider the anti-Ramsey number of Cmulti

4 in the complete 3-partite graphs.
We consider only nonempty simple graphs. Let G be such a graph, the vertex and edge set

of G is denoted by V (G) and E(G), the number of vertices and edges in G by ν(G) and e(G),
respectively. We denote the neighborhood of v in G by NG(v), and the degree of a vertex v in G
by dG(v), the size of NG(v). Let U1, U2 be vertex sets, denote by eG(U1, U2) the number of edges
between U1 and U2 in G. We write d(v) instead of dG(v), N(v) instead of NG(v) and e(U1, U2)
instead of eG(U1, U2) if the underlying graph G is clear.

Given a graph family F , we call a graph H an F-free graph, if H contains no graph in F as
a subgraph. The Turán number ex(G,F) for a graph family F in G is the maximum number of
edges in a graph H ⊆ G which is F-free. If F = {F}, then we denote ex(G,F) by ex(G,F ).

An old result of Bollobás, Erdős and Szemerédi [3] showed that ex(Kn1,n2,n3 , C3) = n1n2+n1n3

for n1 ≥ n2 ≥ n3 ≥ 1 (also see [4, 2, 6]). Lv, Lu and Fang [10, 11] constructed balanced 3-
partite graphs which are C4-free and {C3, C4}-free respectively and showed that ex(Kn,n,n, C4) =
( 3√

2
+ o(1))n3/2 and ex(Kn,n,n, {C3, C4}) ≥ (

√
3 + o(1))n3/2.



For further discussion, we need the definitions of the multipartite subgraphs and a function
f(n1, n2, . . . , nr).

Definition 1. [8] Let r ≥ 3 and G be an r-partite graph with vertex partition V1, V2, . . . , Vr, we
call a subgraph H of G multipartite, if there are at least three distinct parts Vi, Vj , Vk such that
V (H) ∩ Vi ̸= ∅, V (H) ∩ Vj ̸= ∅ and V (H) ∩ Vk ̸= ∅. In particular, we denote a multipartite H by
Hmulti.

Fang, Győri, Li and Xiao [8] recently showed that if G ⊆ Kn1,n2,...,nr and e(G) ≥ f(n1, n2, . . . , nr)+
1, then G contains a multipartite cycle. Furthermore, they proposed the following conjecture.

Conjecture 1. [8] For r ≥ 3 and n1 ≥ n2 ≥ · · · ≥ nr ≥ 1, if G ⊂ Kn1,n2,...,nr and e(G) ≥
f(n1, n2, . . . , nr) + 1, then G contains a multipartite cycle Cmulti of length at most 3

2r.

In this paper, we study the Turán numbers of Cmulti
4 and {C3, C

multi
4 } in the complete 3-partite

graphs and obtain the following results.

Theorem 1. For n1 ≥ n2 ≥ n3 ≥ 1, ex(Kn1,n2,n3 , C
multi
4 ) = n1n2 + 2n3.

Lower bound: Let G ⊆ Kn1,n2,n3 be a graph, such that V1 and V2 are completely joined, V1

(respectively, V2) and V3 are joined by an n3-matching. Clearly, G is Cmulti
4 -free and e(G) =

n1n2 + 2n3. Therefore, ex(Kn1,n2,n3 , C
multi
4 ) ≥ n1n2 + 2n3.

Theorem 2. For n1 ≥ n2 ≥ n3 ≥ 1, ex(Kn1,n2,n3 , {C3, C
multi
4 }) = n1n2 + n3.

Lower bound: Let G ⊆ Kn1,n2,n3 be a graph, such that V1 and V2 are completely joined, V1

and V3 are joined by an n3-matching and there is no edge between V2 and V3. Clearly, G is
{C3, C

multi
4 }-free and e(G) = n1n2 + n3. Therefore, ex(Kn1,n2,n3 , {C3, C

multi
4 }) ≥ n1n2 + n3.

Notice that Theorem 2 confirms Conjecture 1 for the case when r = 3.

Theorem 3. For n1 ≥ n2 ≥ n3 ≥ 1, ar(Kn1,n2,n3 , C
multi
4 ) = n1n2 + n3 + 1.

Lower bound: We color the edges of Kn1,n2,n3 as follows. First, color all edges between V1 and
V2 rainbow. Second, for each vertex v ∈ V3, color all the edges between v and V1 with one new
distinct color. Finally, we assign a new color to all edges between V2 and V3. In such way, we use
exactly n1n2 + n3 + 1 colors, and there is no rainbow Cmulti

4 .
The following lemma plays an important role in our proof.

Lemma 1. Let G be a 3-partite graph with vertex partition X,Y and Z, such that for all x ∈ X,
N(x) ∩ Y ̸= ∅ and N(x) ∩ Z ̸= ∅.

(i) If G is Cmulti
4 -free, then e(G) ≤ |Y ||Z|+ 2|X|;

(ii) If G is {C3, C
multi
4 }-free, then e(G) ≤ |Y ||Z|+ |X|.

Proof. (i) Since G is Cmulti
4 -free, G[N(x)] is K1,2-free for each x ∈ X. Therefore,

e(G[N(x)]) = e

(
N(x) ∩ Y,N(x) ∩ Z

)
≤ min

{
|N(x) ∩ Y |, |N(x) ∩ Z|

}
. (1)



For x ∈ X, we let ex be the number of missing edges of G between N(x)∩Y and N(x)∩Z. By
(1), we have

ex = |N(x) ∩ Y | · |N(x) ∩ Z| − e

(
N(x) ∩ Y,N(x) ∩ Z

)
≥ |N(x) ∩ Y | · |N(x) ∩ Z| −min

{
|N(x) ∩ Y |, |N(x) ∩ Z|

}
(2)

≥ |N(x) ∩ Y |+ |N(x) ∩ Z| − 2,

where the last inequality holds since |N(x) ∩ Y | ≥ 1 and |N(x) ∩ Z| ≥ 1 for all x ∈ X.
By (2), we get∑

x∈X
ex ≥

∑
x∈X

(
|N(x) ∩ Y |+ |N(x) ∩ Z| − 2

)
= e(X,Y ) + e(X,Z)− 2|X|. (3)

Notice that for any two distinct vertices x1, x2 ∈ X, they cannot have common neighboors in both
Y and Z at the same time, otherwise we find a copy of Cmulti

4 in G. Thus each missing edge
between Y and Z is calculated at most once in the sum

∑
x∈X ex. Hence the number of missing

edges between Y and Z is at least
∑

x∈X ex. Then we have

e(Y, Z) ≤ |Y ||Z| −
∑
x∈X

ex ≤ |Y ||Z| − (e(X,Y ) + e(X,Z)− 2|X|). (4)

By (4), we get

e(G) = e(X,Y ) + e(X,Z) + e(Y, Z) ≤ |Y ||Z|+ 2|X|.

(ii) Since G is C3-free, for each x ∈ X,

e

(
N(x) ∩ Y,N(x) ∩ Z

)
= 0. (5)

Since for each x ∈ X, |N(x)∩Y | ≥ 1 and |N(x)∩Z| ≥ 1 hold, by (5), the number of missing edges
between N(x)∩Y and N(x)∩Z is |N(x)∩Y | · |N(x)∩Z|. Notice that for any two distinct vertices
x1, x2 ∈ X, they cannot have common neighboors in both Y and Z at the same time, otherwise
we find a copy of Cmulti

4 in G. Hence, the number of missing edges between Y and Z is at least∑
x∈X |N(x) ∩ Y | · |N(x) ∩ Z|. Thus,

e(Y, Z) ≤ |Y ||Z| −
∑
x∈X

|N(x) ∩ Y | · |N(x) ∩ Z|

≤ |Y ||Z| −
∑
x∈X

(|N(x) ∩ Y |+ |N(x) ∩ Z| − 1) (6)

= |Y ||Z|+ |X| − e(X,Y )− e(X,Z),

the second inequality holds since |N(x) ∩ Y | ≥ 1 and |N(x) ∩ Z| ≥ 1 for x ∈ X.
By (6), we have e(G) = e(Y, Z) + e(X,Y ) + e(X,Z) ≤ |Y ||Z|+ |X|.

The proof of the general case when the conditions of this lemma do not hold is several pages,
we cannot include it in this extended abstract.
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[8] C. Fang, E. Győri, B. Li, J. Xiao, The anti-Ramsey number of C3 and C4 in the complete r-partite
graphs, arXiv:2007.06003.

[9] R. Haas, M. Young, The anti-Ramsey number of perfect matching, Discrete Math. 312 (5) (2012)
993-937.

[10] Z. Lv, M. Lu, C. Fang, A note on 3-partite graphs without 4-cycles, J. Combin. Des. 28 (10) (2020)
753-757.

[11] Z. Lv, M. Lu, C. Fang, A note on 3-partite graphs without 3-cycles or 4-cycles, submitted.

[12] J.J. Montellano-Ballesteros, V. Neumann-Lara, An anti-Ramsey theorem on cycles, Graphs Combin.
21 (3) (2005) 343-354.

[13] J. J. Montellano-Ballesteros, V. Neumann-Lara, An anti-Ramsey theorem, Combinatorica 22 (3) (2002)
445-449.
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