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Abstract

Square coloring is a variant of graph coloring where vertices within distance 2 must receive
different colors. When considering planar graphs, the most famous conjecture about this coloring
(Wegner, 1977) states that 3

2∆ + 1 colors are sufficient to square color every planar graph of
maximum degree ∆. This conjecture has been proven asymptotically for graphs with large
maximum degree. We consider here planar graphs with small maximum degree and show that
2∆ + 7 colors are sufficient, which improves the best known bounds when 6 ⩽ ∆ ⩽ 31.

1 Introduction

In graph theory, graph coloring is among the most studied problems. The history of graph coloring
begins in the 19th century with the coloration of maps and the question asking whether four colors
are sufficient to color differently regions sharing a same border. This question can be rephrased
as whether every planar graph can be properly colored with four colors, which was proved by
Appel and Haken in 1976 [3]. The proof of this result is known for being one of the first major
computer-assisted proof.

Many other types of colorings were studied in the last decades, in particular in the case of
planar graphs. We are interested here in the so-called square coloring, where two vertices must
receive distinct colors if they are at distance at most 2. Given a graph G, the square chromatic
number, denoted by χ2(G), is the minimum number of colors to color vertices at distance at most 2
differently. The name “square coloring” comes from the fact that χ2(G) can also be defined as the
chromatic number of the square G2 of G, i.e. the graph obtained from G by adding edges between
vertices at distance 2.

Given a graph G, it is not hard to see that χ2(G) ≥ ∆(G) + 1 where ∆(G) (or ∆ when G is
clear from the context) is the maximum degree of G. Indeed, all the neighbors of a vertex v are
at distance at most 2 in G and then must receive distinct colors. On the other hand, we have
χ2(G) ≤ ∆(G)2+1 since every vertex is adjacent to at most ∆(G)2 vertices in G2 and in particular
G2 can be colored greedily with ∆(G)2+1 colors. One can prove that in general graphs this bound
is tight for a finite number of graphs called the Moore graphs [7], and asymptotically tight for the
infinite family of incidence graphs of projective planes (which require ∆2 −∆+ 1 colors).

In this paper, we focus on the particular case of planar graphs, that are graphs that can be
embedded on the plane without edge-crossings. Using degeneracy arguments, one can show a linear
bound for planar graphs, namely χ2 ≤ 9∆ [8]. However, even if linear, this bound seems far from
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tight, since the graphs from Figure 1 satisfy χ2(G) = ⌊3∆(G)
2 ⌋+1, which is the highest known value

of χ2.

Figure 1: Wegner’s construction

A famous conjecture from Wegner [14] states that this should be asymptotically the right bound.

Conjecture 1 (Wegner [14]). Every planar graph G with maximum degree ∆ satisfies:

χ2(G) ≤


7 if ∆ = 3,
∆+ 5 if 4 ≤ ∆ ≤ 7,

⌊3∆2 ⌋+ 1 if ∆ ≥ 8.

Despite receiving considerable attention, Wegner’s conjecture is still open today, except for the
case of subcubic graphs solved by Thomassen [12]. As shown independently in [6] and [2], the
conjecture asymptotically holds: χ2(G) = 3/2∆ + o(∆) when ∆ → ∞. Many results of the form
c∆+O(1) (where c is a constant) were also found, culminating with c = 5/3 from [11].

However, since the constants hidden in these proofs are large (and these results only hold for
large enough ∆), the picture is far from being complete, especially for small values of ∆. An
extensive line of work consists in improving the function when ∆ is small. Some of the existing
results are summarized in Table 1.

Authors Restriction Result
Thomassen [12] ∆ ≤ 3 χ2(G) ≤ 7

Jonas [8] ∆ ≥ 7 χ2(G) ≤ 8∆− 22

Wong [15] ∆ ≥ 7 χ2(G) ≤ 3∆ + 5

Madaras and Marcinova [10] ∆ ≥ 12 χ2(G) ≤ 2∆ + 18

∆ ≤ 20 χ2(G) ≤ 59
Borodin et al. [4] 21 ≤ ∆ ≤ 46 χ2(G) ≤ ∆+ 39

∆ ≥ 47 χ2(G) ≤ ⌈9∆5 ⌉+ 1

Van den Heuvel and McGuinness [13] ∆ ≥ 5 χ2(G) ≤ 9∆− 19
χ2(G) ≤ 2∆ + 25

Agnarsson and Halldorsson [1] ∆ ≥ 749 χ2(G) ≤ ⌊9∆5 ⌋+ 1

Molloy and Salavatipour [11] ∆ ≥ 249 χ2(G) ≤ ⌈5∆3 ⌉+ 25

χ2(G) ≤ ⌈5∆3 ⌉+ 78

Zhu and Bu [16] ∆ ≤ 5 χ2(G) ≤ 20
∆ ≥ 6 χ2(G) ≤ 5∆− 7

Zhu and Bu [17] ∆ = 4 χ2(G) ≤ 13

Krzyzinski et al. [9] ∆ ≥ 6 χ2(G) ≤ 3∆ + 4



A graph summarizing all these results is depicted in Figure 2.
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Figure 2: Bounds on χ2(G) depending on ∆ for 3 ≤ ∆ ≤ 26

2 Our results

We follow this line of research by improving the best known bound on χ2(G) for every planar graph
whose maximum degree is between 6 and 31. More formally, we prove the following.

Theorem 1. Let G be a planar graph of maximal degree ∆ ≥ 9. Then, χ2(G) ≤ 2∆ + 7.

For ∆ ⩽ 6, the 2∆ + 7 bound is 19. Reusing our analysis, we can easily prove a slightly worse
bound, which still improves the best current bound of [9].

Theorem 2. Let G be a planar graph of maximal degree ∆ ≤ 6. Then, χ2(G) ≤ 21.

The two theorems are proved using the discharging method. The idea of this method is to
assume that there is a counter-example G to one of these theorems, and to choose it as a minimal
one. Then we look for a contradiction by double counting some suitable quantity. To this end, we
put charges on faces and vertices such that the total weight is negative (by Euler’s formula). We
then define some “discharging rules”, i.e. ways to transfer the charges between the faces and vertices.
On the other hand we prove that G does not contain some subgraphs (called configurations). The



classical way to forbid a configuration is, assuming G contains it, to build a counter-example smaller
than G for the theorem (which contradicts the minimality of G). Finally, we use this structural
information to show every vertex and face has a non-negative weight after applying the rules. This
yields a contradiction and proves that G cannot exist.

We use a not so standard order, by choosing a counter-example with minimum number of vertices
and maximum number of edges. Then we provide a set of 4 rules and 7 configurations to prove
Theorem 1. Using the same rules and adding two configurations, we also obtain Theorem 2.
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