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Abstract

In the Exact Matching Problem (EM), we are given a graph equipped with a fixed coloring
of its edges with two colors (red and blue), as well as a positive integer k. The task is then
to decide whether the given graph contains a perfect matching exactly k of whose edges have
color red. Despite EM being quite well-known, attempts to devise deterministic polynomial
algorithms have remained illusive during the last 40 years and progress has been lacking even
for very restrictive classes of input graphs. In this paper we finally push the frontier of positive
results forward by proving that EM can be solved in deterministic polynomial time for input
graphs of bounded independence number, and for bipartite input graphs of bounded bipartite
independence number. This generalizes previous positive results for complete (bipartite) graphs
which were the only known results for EM on dense graphs.

1 Introduction

In 1982, Papadimitriou and Yannakakis [12] studied a decision problem related to perfect matchings
in edge-colored graphs as follows: Given as input a graph G whose edges come with a given fixed
two-edge coloring (say, with colors red and blue), then the task is to decide whether for a given
integer k there exists a perfect matching M of G such that exactly k of the edges in M are red.
Only few years after its introduction, Mulmuley, Vazirani and Vazirani [11] showed that EM can
be solved by a randomized polynomial time algorithm, i.e. it is contained in RP. This makes it
unlikely to be NP-hard. In fact, deciding whether RP=P remains one of the big challenges in
complexity theory. This means that problems such as EM, for which we know containment in
RP but are not aware of deterministic polynomial time algorithms, are interesting candidates for
testing the hypothesisRP=P. Indeed, due to this, EM is cited in several papers as an open problem.
This includes recent breakthrough papers such as the seminal work on the parallel computation
complexity of the matching problem [13], works on planarizing gadgets for perfect matchings [8],
works on more general constrained matching problems [1, 10] and on multicriteria optimization
problems [6] among others. Even though EM has caught the attention of many researchers from
different areas, there seems to be a substantial lack of progress on the problem even when restricted
to very special subclasses of input graphs as we will see next. This highlights the surprising difficulty
of the problem given how simple it may seem at first glance.

1.1 Previous results for EM on restricted classes of graphs.

It may surprise some readers that EM is even non-trivial if the input graphs are complete or com-
plete bipartite graphs: In fact, at least four different articles have appeared on resolving these
two special cases of EM [9, 14, 5, 7], which are now known to be solvable in deterministic poly-
nomial time. Another positive result follows from the existence of Pfaffian orientations and their
analogues on planar graphs and K3,3-minor free graphs [15], EM is solvable in polynomial time on
these classes via a derandomization of the techniques used in [11]. Considering a generalization of
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Pfaffian orientations, it was further proved in [4] that EM can be solved in polynomial time for
graphs embeddable on a surface of bounded genus. Finally, from the well-known meta-theorem of
Courcelle [2], one easily obtains that EM can be efficiently solved on classes of bounded tree-width.

1.2 Our contribution.

In this paper, we generalize the known positive results for EM on very dense graphs such as complete
and complete bipartite graphs to graphs of independence number at most α and to bipartite graphs
of bipartite independence number2 at most β, for all fixed integers α, β ≥ 1.

Theorem 1. There is a deterministic algorithm for EM on graphs of independence number α
running in time nO(f(α)), for f(α) = 2O(α).

Theorem 2. There is a deterministic algorithm for EM on bipartite graphs of bipartite indepen-
dence number β running in time nO(f(β)), for f(β) = 2O(β).

For the full proofs we refer the reader to the full version of the paper [3]. In Section 2 we give
an overview of the proof of Theorem 1.

1.3 Preliminaries

For a graph G = (V,E) we let n = |V (G)|, i.e. the number of vertices in G. Given an instance
of EM and a perfect matching (abbreviated PM) M , we define edge weights as follows: blue edges
get weight 0, matching red edges get weight −1 and non-matching red edges get weight +1. For
G′ a subgraph of G, we define R(G′) (resp. B(G′)) to be the set of red (resp. blue) edges in G′,
r(G′) := |R(G′)| and w(G′) to be the sum of the weights of edges in G′.

2 Exact Matching on Bounded Independence Number Graphs

To prove Theorem 1 we develop an algorithm that relies on a 2 phase process. The first phase is an
algorithm that outputs a PM M with |k− r(M)| bounded (by a function of α), i.e. with a number
of red edges that only differs from k by a function of α. This algorithm is also of independent
interest since it provides a solution that is close to optimal (for small independence number) while
its running time is polynomial and independent of the independence number.

Theorem 3. Given a ‘Yes’ instance of EM, there exists a deterministic polynomial time algorithm
that outputs a PM M with k − 2 · 4α ≤ r(M) ≤ k.

The second phase is an algorithm that outputs a solution matching with a running time that
depends on the size of the smallest color class in a symmetric difference between a given matching
and a solution matching. It is also of independent interest as it can be more generally useful for the
study of other parameterizations of EM as well as other matching problems with color constraints.

Proposition 1. Let M and M ′ be two PMs in G s.t. |B(M∆M ′)| ≤ L or |R(M∆M ′)| ≤ L. Then
there exists a deterministic algorithm running in time nO(L) such that given M it outputs a PM
M ′′ with r(M ′′) = r(M ′).

2The bipartite independence number of a bipartite graph G equipped with a bipartition of its vertices is defined
as the largest number β such that G contains a balanced independent set of size 2β, i.e., an independent set using
exactly β vertices from both color classes.



For the correctness of this phase, we need to show that there exists a PM M∗ with exactly k
red edges, where M∆M∗ has a bounded number of edges of some color class. The main technical
challenge is to show that for this to be the case it is sufficient to have |k − r(M)| bounded (which
is guaranteed by the first phase). In the rest of this section we give a quick overview of the proof,
for more details we refer the reader to the full version of the paper [3].

2.1 Proof Overview

Skips. The main tool we use to reduce the size of a cycle C is something we call a skip (see
Figure 1). At a high level, a skip is simply a pair of edges that creates a new cycle C ′ by replacing
two paths of C. If those paths have total length more than 2 then |C ′| < |C|. Now we also want
to preserve the weight of the cycle so that the new target PM still has k red edges, so we look for
skips that do not change the total weight (we call them 0 skips). It can happen, however, that
even though no 0 skip exists, a collection of skips exists, that can be used independently, and their
total weight change is zero (we call them 0 skip sets). Also observe that these skips can come from
different cycles of M∆M∗ and still be used to reduced its total number of edges. So by taking
M∆M∗ to be minimal, we are guaranteed that no such skip sets exist.
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Figure 1: A skip formed by two non-matching edges e1 and e2 (in orange). Matching edges are
represented by full lines and non-matching edges by dotted lines. The paths removed by the skip
are depicted in black.

Skips from Paths. To find such skips, we rely on Ramsey theory to show that if we take a
large enough (with respect to α) collection of disjoint paths from a cycle, starting and ending with
non-matching edges, then they must form skips. Now if these paths had certain desired weights,
then we could make sure that we get a 0 skip set as desired.
Paths from Edge Pairs. To prove the existence of paths of desired weight, we analyse the cycles
in M∆M∗ by looking at their edge pairs, i.e. pairs of consecutive matching and non-matching
edges. These edge pairs can have 3 configurations from which we can extract the paths. (1)
Consecutive same sign pairs, (2) consecutive different sign pairs and (3) consecutive 0 pairs. We
show that we can extract paths of the desired properties from all of these configurations, and the
types of skips we get is dependent on the weights of the cycles and the sizes of their color classes.
Bounding the Cycle Weights. Next we show that if M∆M∗ is minimal, all of its cycles have
bounded weight. This is mainly achieved by showing that cycles of large weight must have skips
that reduce the weight. This changes the overall weight however, and must be compensated for
either by skips on a cycle of the opposite weight, or by removing some of the cycles in M∆M∗.
Bounding one color class. With bounded weights, the number of cycles in M∆M∗ can also
be bounded if their total weight is bounded. With these properties, we can show that if M∆M∗

has enough edges from both colors, then at least one of its cycles contains enough positive skips
and one of its cycles contains enough negative skips, together forming a 0 skip set, i.e. it is not
minimal. So choosing M∆M∗ minimal implies a bound on the size of one of its color classes.



3 Concluding remarks

In this paper we initiated the study of the parameterized complexity of EM by showing that it
can be solved in deterministic polynomial time on graphs of bounded independence number and
bipartite graphs of bounded bipartite independence number (i.e. we developed XP algorithms).
This is an important step towards finding the right complexity class of the problem in general graphs
as it generalizes the only previously known results on dense graph classes which were restricted to
complete (bipartite) graphs.

References
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