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Abstract

Given a graph G with non-negative integral node weights w, an interval coloring is an
assignment of wv consecutive colors to the nodes v of G such that adjacent nodes receive
different colors. A graph G is superperfect if the maximum weight of a clique of G equals the
minimum number of colors needed in an interval coloring of G for all non-negative integral
node weights w. A characterization of superperfect graphs by minimal non-superperfect graphs
is not yet known. Hoffman showed in 1974 that every comparability graph is superperfect,
hence all non-superperfect graphs are in particular non-comparability. Gallai provided 1967 a
complete list of minimal non-comparability graphs, and results of Golumbic 1980 and Andreae
1985 show which minimal non-comparability graphs are also minimal non-superperfect and
which are superperfect. According to Golumbic, even antiholes are minimal non-comparability
superperfect graphs. In this work, we provide infinite families of non-superperfect graphs having
even antiholes as only minimal non-comparability subgraphs.

1 Introduction

Let G = (V,E) be a graph with weight function w : V → N0. A weighted coloring of a weighted
graph (G,w) is an assignment of wv colors to the nodes v of G such that adjacent nodes receive
different colors. The weighted chromatic number of (G,w) is defined as the smallest number of
colors needed for a weighted coloring, and is denoted by χ(G,w).

A generalization of graph coloring in weighted graphs (G,w) was introduced in [7] as interval
coloring where the task is to assign intervals of width wv to the nodes v of G such that adjacent
nodes receive disjoint intervals, see e.g. [4, 6, 8] for applications. In other words, an interval coloring
of (G,w) is a weighted coloring where all wv colors assigned to each node v are consecutive. The
interval chromatic number χI(G,w) is the minimum spectrum width such that (G,w) has a proper
interval coloring. The weighted clique number ω(G,w) is the maximum weight of a clique in (G,w).
Clearly, the weighted clique number ω(G,w) is a lower bound on the weighted chromatic number
χ(G,w) (as all nodes v in a clique have to receive wv different colors), and χ(G,w) is a lower bound
on the interval chromatic number χI(G,w) (as all wv colors assigned to each node v have to be
consecutive). Thus, we obtain for any weighted graph (G,w) that

ω(G,w) ≤ χ(G,w) ≤ χI(G,w)

holds. Berge [2] called a graph G perfect if ω(G,w) = χ(G,w) for all 0/1-valued weights w, and
Lovász [9] showed that a graph G is perfect if and only if ω(G,w) = χ(G,w) holds for all weights
w ∈ N0. (Note that including zero-weights is equivalent to requiring the property for all induced
subgraphs). Berge observed that all chordless odd cycles C2k+1 with k ≥ 2, called odd holes, and
their complements, the odd antiholes C2k+1, are imperfect. Chudnovsky et al. [3] verified a famous
conjecture of Berge that a graph G is perfect if and only if G has no odd hole or odd antihole as
induced subgraph [2].

Graphs where weighted clique number and interval chromatic number coincide for all possible
non-negative integral weights are called superperfect, see e.g. [6]. This shows in particular that
every superperfect graph is perfect.



A graph G = (V,E) is comparability if and only if there exists a partial order O on V × V such
that uv ∈ E if and only if u and v are comparable w.r.t. O. Hoffman [7] proved that every compa-
rability graph is superperfect, and Gallai [5] provided a complete list of minimal non-comparability
graphs, that are

• odd holes C2k+1 for k ≥ 2 and antiholes Cn for n ≥ 6,
• the graphs Jk and J ′k for k ≥ 2 and the graphs J ′′k for k ≥ 3 (see Fig. 1),
• the complements of Dk for k ≥ 2 and of Ek, Fk for k ≥ 1 (see Fig. 2),
• the complements of A1, . . . , A10 (see Fig. 3).
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Figure 1: Minimal non-comparability graphs: Jk, J ′k for k ≥ 2 and J ′′k for k ≥ 3.
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Figure 2: Minimal non-comparability graphs: the complements of Dk, Ek, Fk.
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Figure 3: Minimal non-comparability graphs: A1, . . . , A10 (from top left to bottom right).

The above results imply that every non-superperfect graph is non-comparability, which raises
the question which minimal non-comparability graphs are also minimal non-superperfect. Clearly,
odd holes and odd antiholes are minimal non-superperfect (as they are minimal non-perfect). It
has been shown by Golumbic [6] that A1, D2, E1, E2 and J2 are non-superperfect, but that even
antiholes C2k for all k ≥ 3 are superperfect. Furthermore, Andreae showed in [1], that the graphs



J ′2, J ′′k for k ≥ 3 and the complements of A3, . . . , A10 are superperfect, but that the graphs Jk for
k ≥ 2 and J ′k for k ≥ 3 as well as Dk for k ≥ 2 and Ek, F k for k ≥ 1 are non-superperfect.

In contrary to comparability and perfect graphs, there is no characterization of minimal non-
superperfect graphs known yet. It is, therefore, of interest to find new examples of such graphs. As
noted in [8], all such graphs must not contain any known minimal non-superperfect graph, but must
contain a minimal non-comparability superperfect graph as proper induced subgraph, thus, one of
the following graphs: even antiholes C2k for k ≥ 3, J ′2, the graphs J ′′k for k ≥ 3, or A3, . . . , A10.
Based on this observation, some new minimal non-superperfect graphs have been already presented
in [8]. That are graphs containing A6, A7, and A10 and a further node v, see Fig. 4 for the graphs
and node weights w causing a gap between weighted clique and interval chromatic number.
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Figure 4: Minimal non-superperfect graphs containing A6, A7, A10 (left), and C6 (right) where
white nodes induce the minimal non-comparability subgraphs.

Each further minimal non-superperfect graph is of interest, but we are particularly interested
in infinite families of such graphs. Note that they have to be based on one of the infinite families
of minimal non-comparability superperfect graphs: even antiholes C2k for k ≥ 3 and J ′′k for k ≥ 3.
We are going to present infinite families of new non-superperfect graphs based on even antiholes.

2 Non-superperfect graphs based on even antiholes

Let C2k be an even antihole for some k ≥ 3 and let C2k,j be the graph obtained from C2k by
adding two adjacent nodes x and y, where x is adjacent to all nodes of C2k but 1 and 2, and y is
adjacent to all nodes of C2k but 2 + j and 3 + j, for all even j with 0 ≤ j < k. Note that F 1 can
be considered to be C4,0; the graphs C6,0 and C6,2 are the two rightmost graphs shown in Fig. 4.

Theorem 1. C2k,j is minimal non-superperfect for all k ≥ 3 and all even j with 0 ≤ j < k.

Proof. (sketch) Indeed, C2k,j is non-superperfect due to ω(C2k,j ,w) < χI(C2k,j ,w) with wx =
wy = 1 and wi = 2 for all nodes i in C2k. Minimality follows since C2k,j has the even antihole C2k

as only minimal non-comparability subgraph, and we can show that C2k,j − {x} and C2k,j − {y}
are superperfect.

Moreover, we observe that C6,0 and A7 + v from Fig. 4 differ in exactly one edge. In fact,
removing edge 25 from C6,0 yields a graph isomorphic to A7 + v. Next we examine the removal of
which edges from C2k,j results in further infinite families of non-superperfect graphs.

Theorem 2. The graphs C2k,j − (2, 2k − 1) are non-superperfect for all k ≥ 3 and all even j with
0 ≤ j < k and contain A7 (for k = 3) and C2(k−1) (for k ≥ 4) as only minimal non-comparability
subgraph.



Proof. (sketch) Indeed, C2k,j − (2, 2k − 1) is non-superperfect due to ω(C2k,j − (2, 2k − 1),w) <
χI(C2k,j − (2, 2k − 1),w) with wx = wy = 1 and wi = 2 for all other nodes i. Using Gallai’s
characterization of minimal non-comparability graphs, we can verify that C6,0 − 25 and C6,2 − 25
have A7 and that C2k,j − (2, 2k− 1) has the even antihole C2(k−1) induced by nodes 2, 3, . . . , 2k− 1
as only minimal non-comparability subgraph.

This implies that C6,0−25 and C6,2−25 are minimal non-superperfect. We further conjecture:

Conjecture 1. C2k,j−(2, 2k−1) is minimal non-superperfect for k ≥ 4 and even j with 0 ≤ j < k.

Moreover, we further observe that C6,2− 25 is isomorphic to C6,2− 14. Hence, also C6,2− 14 is
minimal non-superperfect and the smallest graph in another family of new non-superperfect graphs:

Theorem 3. The graphs C2k,j − (1, 4) are non-superperfect for all k ≥ 3 and all even j with
2 ≤ j < k and contain A7 (for k = 3) and C2(k−1) (for k ≥ 4) as only minimal non-comparability
subgraph.

Proof. (sketch) Indeed, C2k,j − (1, 4) is non-superperfect due to ω(C2k,j − (1, 4),w) < χI(C2k,j −
(1, 4),w) with wx = wy = 1 and wi = 2 for all other nodes i. Using Gallai’s characterization of
minimal non-comparability graphs, we can verify that C6,2 − 14 has A7 and C2k,j − (1, 4) the even
antihole C2(k−1) induced by nodes 4, 5, . . . , 2k, 1 as only minimal non-comparability subgraph.

This implies that C6,2 − 14 is minimal non-superperfect and we further conjecture:

Conjecture 2. C2k,j − (1, 4) is minimal non-superperfect for all k ≥ 4 and even j with 2 ≤ j < k.

3 Concluding remarks

We presented in this paper three infinite families of non-superperfect graphs based on even antiholes.
Our future research includes to prove the above conjectures about the minimality of the latter
two families and to identify further minimal non-superperfect graphs containing only superperfect
minimal non-comparability subgraphs. The final goal shall be to characterize superperfect graphs
by giving a complete list of minimal non-superperfect graphs.
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