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Abstract

Given a set system (also well-known as a hypergraph) H = {U ,X}, where U is a set of
elements and X is a set of subsets of U , an exact hitting set S is a subset of U such that each
subset in X contains exactly one element in S. We refer to a set system as exactly hittable if
it has an exact hitting set. In this paper, we study interval graphs which are the intersection
graphs of set systems that are exactly hittable. We refer to these interval graphs as exactly
hittable interval graphs (EHIG). We present a forbidden structure characterization for EHIG and
also show that the class of proper interval graphs is a strict subclass of EHIG. Finally, we give
an algorithm that runs in polynomial time to recognize graphs belonging to the class of EHIG.

1 Introduction

An interval is a set of consecutive elements belonging to the set {1, . . . , n}. In [1], it is shown
that a conflict free coloring of a set of intervals is exactly a partition into sets of intervals such
that each set has an exact hitting set. This motivates the question of characterizing those sets of
intervals which have an exact hitting set. A natural characterization is obtained by writing the
hitting set linear program with one constraint per interval. This system is totally unimodular and
thus defines an integer polytope [2]. Thus the intervals have an exact hitting set if and only if the
polytope defined by the exact hitting set linear program is non-empty. Thus it is possible to find
if the interval hypergraph is exactly hittable in polynomial time [2]. In this work we consider a
related graph theoretic version of this question- which interval graphs are the intersection graphs
of a set of intervals that have an exact hitting set? We refer to this class as the class of Exactly
Hittable Interval Graphs (EHIG). We believe that the two characterization questions are different.
The reason is that a given set of intervals defines a unique interval graph, but an interval graph
can have many interval representations. We present a characterization of the class of interval
graphs which can be represented as the intersection graph of a set of intervals which has an exact
hitting set. One natural observation is that proper interval graphs are a strict subclass of EHIG.
An example is that the graph K1,3 is an EHIG, but it is not a proper interval graph. Further,
a constraint propagation algorithm naturally computes an exact hitting set for a proper interval
representation of an interval graph.

1.1 Our results

We introduce the class EHIG, which is the set of interval graphs that have an exactly hittable
representation. We present a forbidden structure characterization for EHIG.

Definition 1. For each k ≥ 1, Fk denotes the set of connected interval graphs whose vertex set
can be partitioned into an induced path P consisting of k vertices and the open neighbourhood of P
(consisting of only those vertices which are not in P ), which is an independent set of size k + 3.

Further, F is defined to be
⋃
k≥1
Fk.
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We show that every graph in F is a forbidden structure for EHIG. See Figure 1 for examples of
forbidden structures.
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Figure 1: Two simple instances of forbidden induced subgraphs

Theorem 1. An interval graph G = (V,E) is exactly hittable if and only if it does not contain any
graph from the set F as an induced subgraph.

We consider a canonical interval representation for a given interval graph. This representation
is crucial in proving Theorem 1. Given an interval graph G, a canonical interval representation
HG is an interval hypergraph denoted by HG = ([n], I), where [n] = {1, . . . , n} and I ⊆
{{i, i + 1, . . . , j} | i ≤ j, i, j ∈ [n]}, and all intervals have distinct left endpoints and distinct right
endpoints. Further, for each v ∈ G, Iv ∈ I denotes the corresponding interval. HG is obtained
by stretching intervals obtained from the well known linear ordering of maximal cliques associated
with an interval graph [3, 4]. We use HG to show that if the interval graph G does not have any of
the forbidden structures in F , then HG has an exact hitting set. We show that the class EHIG is
positioned between the class of proper interval graphs and the class of interval graphs in the graph
classes containment hierarchy.

Theorem 2. Proper interval graphs ⊂ EHIG ⊂ Interval Graphs.

This result suggests a generalization of exactly hittable interval graphs, and thus opens up the
possibility of an interesting classification of interval graphs. For k ≥ 1, an interval graph is called
a k-hittable interval graph, if it is the intersection graph of an interval hypergraph which has a
k-membership hitting set. The k-membership hitting set, which is a natural generalization of the
exact hitting set, is a hitting set that hits each interval at most k times. This is the dual of the
minimum membership set-cover problem studied by [5]. In this paper we present a characterization
for k = 1, however, we do not know of a characterization of k-hittable interval graphs for k ≥ 2.
Further, we do not know of polynomial time algorithms to recognize if a given interval graph is a
k-hittable interval graph.

2 Characterizing Exactly Hittable Interval Graphs

Theorem 1 is proved using the following lemmas.

Lemma 1. Let G be an interval graph. Let F ∈ F . If G contains F as an induced subgraph, then
G is not an Exactly Hittable Interval Graph.

We prove this lemma as a simple application of the pigeonhole principle.

Lemma 2. If an interval graph G does not contain a graph in F as an induced subgraph, then G
is an Exactly Hittable Interval Graph.
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Let O = {Q1, Q2 . . . Qt} be a linear ordering of maximal cliques in G, which each interval graph
has. As mentioned in the introduction, we can assume that HG is obtained from O. To prove
Lemma 2 we use a minimum clique cover of the closed neighbourhood of a vertex v which satisfies
the property in Observation 3. We denote this minimum clique cover by C(N [v]).

Observation 3. For a vertex v ∈ V , let {Qi . . . Qj}, i, j ∈ [1, t], i ≤ j be the set of maximal cliques
containing v. Then there is a minimum clique cover of N [v] which contains Qj.

Let |C(N [v])| denote the number of cliques in C(N [v]). We denote the minimum clique cover of
vertices in the maximal cliques Qi to Qj (in the ordering O, i < j) by C(Qi, . . . , Qj). By an abuse
of notation, we use C(N [vi, vi+1, . . . , vj ]), i < j to denote a clique cover of the graph induced on the
vertex set N [vi]∪N [vi+1]∪. . .∪N [vj ] which is implicitly constructed in Algorithm 1. Note that since
the intervals in HG associated with the vertices all have distinct left end points, it is well-defined
to consider vi, . . . , vj , i < j in increasing order of the left-end ponts. Let | C(N [vi, vi+1, . . . , vj ]) |
to denote the number of cliques in C(N [vi, vi+1, . . . , vj ]). Note that this may not be the minimum
clique cover. Our proof is based on the structural properties of a path P in G, the construction of
which is described in Algorithm 1.

Algorithm 1: Construction of path P .

1: i = 1
2: v1 ← Interval in Q1 with largest right endpoint

3: P ← v1
4: Q1

r = last maximal clique containing v1
5: C(N [v1]) = Minimum clique cover of N [v1]
6: Q1

r′ = Maximal clique previous to Q1
r in C(N [v1])

7: while Qir 6= Qt do
8: i = i+ 1
9: vi = vertex associated with that interval I ∈ Qi−1r \Qi−1r′ which has largest

right endpoint

10: P ← P ∪ vi
11: Qir = last maximal clique containing vi
12: Let Qi−1r+1 denote the clique just to the right of Qi−1r in O. Note that r + 1 is not the

increment of an index, but points to the clique just to the right of Qi−1r

13: C(N [v1, . . . , vi]) = C(N [v1, . . . , vi−1]) ∪ C(Qi−1r+1, . . . , Q
i
r)

14: Qir′ = Maximal clique previous to Qir in C(N [v1, . . . , vi])
15: end while
16: K = C(N [v1, . . . , vi])
17: return P

Let {v1, v2, . . . , vp} be the set of vertices in path P constructed by Algorithm 1, with respect to
the linear ordering O. The maximal cliques in K are denoted by {K1,K2, . . . ,Kα′}. We next state
some important properties of path P .

• P is an induced path, and N [P ] = V (G).
• For 1 ≤ i ≤ p, | C(N [vi]) |≤ 3.
• Since G is a connected interval graph, for each vertex v ∈ P \ vp, | C(N [v]) |≥ 2.
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• In path P , there is at most one vertex which has minimum clique cover of size 3. If for any
vertex vi, 1 ≤ i ≤ p, | C(N [vi]) |= 3, then |C(N [vj ])| ≤ 2, ∀j 6= i.

• α′ is either p+ 1 or p+ 2.

We now use the properties of the P listed above to construct a clique cover of G with the property
that the cliques are all vertex disjoint. The clique cover is denoted by B = {B1, B2 . . . Bα′}. We
outline the steps in the procedure below.

Let vl, 1 ≤ l ≤ p be the vertex in P such that |C(N [vl])| = 3. If no such vertex exists in P ,
then let l = p+ 1, and let Kp+2 be the empty set. Further, Kp+3 is the empty set. We know that
there is at most one such vertex, and the construction below will also take care of the case when
for all vi, 1 ≤ i ≤ p, |C(N [vi])| = 2.

1. For 1 ≤ i ≤ l − 1, Bi = Ki \Ki+1.
2. For i = l ≤ p, we define Bl, Bl+1, Bl+2.

• Bl = Kl \Kl+1.

• Bl+1 = Kl+1 \ (Kl ∪Kl+2)

• Bl+2 = Kl+2 \Bl+1.

3. For i ≥ l + 1, Bi+2 = Ki+2 \Ki+3.

Since G does not have the forbidden structure, it follows that B is a clique cover, and by construc-
tion, it is a parition of the vertex set. Further, the number of cliques in B is α′.

To complete the proof of Theorem 1, we use the crucial property of the canonical representation
HG that no two intervals in HG have the same left end point or the same right end point. Using this
propetry, we show that for each Bi there is a point pi in HG such that the intervals in HG which
contain pi are exactly those which correspond to the vertices in Bi. These points pi, 1 ≤ i ≤ α′

form an exact hitting set of HG. This completes the characterization of EHIG. Further, given G,
HG can be constructed in polynomial time, and thus it is possible in polynomial time to check
using the result of [2] whether G is an EHIG.
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