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Abstract

In this work, we introduce the notion of the forcing function of fractional perfect matchings,
which is continuous analogous to forcing sets defined over the perfect matching polytope of
graphs. We study analytic properties of this function. Finally, we deduce bounds and results
for the integral forcing number from these analytic properties.

1 Introduction

The notion of defining set is an important concept in studying combinatorial structures. Roughly
speaking, when we talk about a defining set for a particular object, we mean a part of it which
uniquely extends to the entire object. As an example, a defining set for a perfect matching M of a
graph (also known as a forcing set) is a subset of M such that M is the unique perfect matching
containing it. The size of the smallest forcing sets of a perfect matching is called the forcing number
of it. The smallest and the largest forcing numbers over all possible perfect matchings of a graph
are, respectively, called the forcing number and the maximum forcing number of the graph and have
been studied intensively for various families of graphs. This parameter is particularly important in
the theory of resonance in Chemistry. (See [2] for more details and historical notes).

In this work, we first introduce the concept of fractional forcing function for g-factors. When
g = 1, g-factors are also called fractional perfect matchings. For the special case of g = 1, we
call fractional forcing functions, fractional forcing number of g. We prove that fractional forcing
number is indeed a continuous extension of the forcing number of perfect matchings.

Notice that the set of fractional perfect matchings is a polytope. Thus, fractional forcing number
is a function defined over this polytope. We study analytic properties of this function and prove
that it is continuous and concave. Such analytic properties imply several combinatorial implications
which we overview in this paper.

Particularly, since the fractional perfect matching polytope contains all the perfect matchings,
the maximum fractional forcing number is an upper bound to the maximum forcing number. When
G is edge and vertex transitive, the fractional perfect matching polytope is symmetric and due to
the symmetry and concavity of the fractional forcing, the maximum is attained at the center of
symmetry. This will provide a systematic way to find an upper bound for the integral maximum
forcing number of such graphs which is generally hard problem even for special family of graphs
such as Cartesian product of even cycles or K2’s. (See [3]). We also prove that when G is bipartite,
the minimum fractional forcing number is equal to the minimum forcing number of G. All the
proofs can be found in [2], which is the long version of this paper.

2 Preliminaries

We assume the knowledge bases of graph theory and follow the notation of [1].
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Let g : V (G) → R≥0 be a function. The function γ : E(G) → R≥0 is called a partial g-factor
if for every vertex v ∈ V (G),

∑
e:e3v

γ(e) ≤ g(v). γ is called a g-factor if for every vertex v ∈ V (G),∑
e:e3v

γ(e) = g(v). Any convex combination of two g-factors is again a g-factor.

Denote by 1G the constant function 1 over V . Any partial 1G-factor is called a fractional
matching and any 1G-factor is called fractional perfect matching. Every fractional perfect matching
γ, with γ(e) ∈ Z, for all e ∈ E(G), is called a perfect matching.

Let M be a perfect matching of a graph G. A subset S ⊆M is called a forcing set for M if M
is the unique perfect matching of G containing S.

Definition 1. Let G be a graph and M be any perfect matching of G. We define the quantities
forcing number of M , f(G,M) the forcing number of G, f(G) the maximum forcing number of G,
F (G) and the spectrum of the forcing numbers of G, Spec(G) as follows

f(G,M) := min{|S| : S is a forcing set for M}
f(G) := min{f(G,M) : M is a perfect matching of G}
F (G) := max{f(G,M) : M is a perfect matching of G}
Spec(G) := {f(G,M) : M is a perfect matching of G}

Observe that f(G) = min
x∈Spec(G)

x, and F (G) = max
x∈Spec(G)

x.

A subset C of Rn is said to be convex if λx+(1−λ)y belongs to C for all x, y ∈ C and 0 ≤ λ ≤ 1.
The convex hull of a set X ⊆ Rn, denoted by Conv(X), is the smallest convex set containing X .
A subset P of Rn is called a polytope if it is the convex hull of finitely many point in Rn.

For every subset M ⊆ E, denote by XM the characteristic function of M . The perfect matching
polytope of G is defined as P(G) := Conv{XM : M is a perfect matching of G}.

It is straightforward to observe that fractional perfect matchings with integer coordinates are
precisely the characteristic vectors of perfect matchings. The set of all fractional perfect matchings
forms a polytope called fractional perfect matching polytope of G and is denoted by Pf (G). If G is
bipartite then, Pf (G) = P(G).

Let g : V (G)→ R≥0 be a function. The set of all g-factors is called the g-polytope.

3 Main Results

In this section, we outline the results of this paper. To better explain the results and their con-
nections, we partition them into three main categories. The first one is about structures of the
fractional forcing function. Next we talk about connection between fractional and integral param-
eters. Finally, we establish analytic results about fractional forcing function. In order to explain
the main results of this paper, we need the following definitions.

Definition 2. Let G be a graph and α, α′ : E(G) → R≥0 are two functions. Define the relation
”�” as follows

α � α′ → ∀e ∈ E(G) : α(e) ≤ α′(e)

One can easily observe that indeed, � is a partial order on the set (R≥0)E .
If α : E(G)→ R, define |α| :=

∑
e∈E(G)

α(e).



Let g : V (G) → R≥0 be a function, α be a partial g-factor and γ be a g-factor in a graph G.
We say α is g-extendable (or simply extendable if g is clear from the context) to γ if α � γ. In this
case, we say γ is a g-extension (or extension, when g is clear from the context) of α.

α is a forcing function for γ if α is uniquely g-extendable to γ (i.e. α � γ and γ is the unique
extention of α). In this situation, we write α ↑ γ. α is a minimal forcing function for γ if α ↑ γ
and, if α′ � α and α′ ↑ γ then, α = α′. In this case, we write α ⇑ γ.

Definition 3. Let G be a graph and γ be any fractional perfect matching of G. We define the
quantities fractional forcing number of γ, ff (G, γ) fractional forcing number of G, ff (G) maximum
fractional forcing number of G, Ff (G) and the spectrum of forcing numbers of G, Specf (G) as
follows

ff (G, γ) := min
α:α↑γ

∑
e∈E

α(e), ff (G) := min
γ∈Pf (G)

ff (G, γ)

Ff (G) := max
γ∈Pf (G)

ff (G, γ), Specf (G) := {ff (G, γ) : γ ∈ Pf (G)}

We first explain results concerning the structure of fractional forcing functions. It turns out
that a useful tool is the notion of saturation of an edge.

Definition 4. In an extention γ of the partial g-factor α, an edge e is called saturated if α(e) =
γ(e).

The next lemma is the key result in this part.

Lemma 1 (Saturated Edges). Let G be a graph, γ be a g-factor and α ⇑ γ. Then, for every
edge e ∈ E(G), α(e) ∈ {0, γ(e)}.

The above lemma implies that the only way one can extend a minimal uniquely extendable
partial g-factor α to a g-factor γ is by increasing the value of α on the edges with α(e) = 0.

Theorem 5. Suppose that γ, γ′ ∈ g-polytope, Supp(γ) = Supp(γ′) and α ⇑ γ. Then, α′ ⇑ γ′, where

α′(e) =

{
γ′(e) α(e) = γ(e)

0 otherwise

In words, Theorem 5 says that if α is a minimal forcing set for some g-factor γ then, if we
alter γ on some of the edges to get a new g-factor γ′, while preserving the support, then the same
alteration will turn α to a minimal forcing function for the resulting g-factor γ′.

Theorem 5 combined with Lemma 1 imply that the minimal forcing functions for every γ ∈
Pf (G) can be obtained in a two-stage process. In the first stage, we only need to know the support
of G. Having access only to Supp(G), the support of every minimal forcing function for G is
specified in the sence that the set Dγ := Supp(α) : α ⇑ γ}, only depends on Supp(γ) i.e. if
Supp(γ) = Supp(γ′) then Dγ = D′γ . In the second stage, once we have access to Supp(α) and the
values of γ(e), we know by Lemma 1, that α is uniquely identified.

This observation raises the following question. If G is a graph, γ ∈ Pf (G) and S ⊆ E(G), is
there a fractional matching α such that α ↑ γ and Supp(α) = S? The next theorem answers this
question for bipartite graphs.



Theorem 6. Let G be a bipartite garph, γ ∈ Pf (G), S ⊆ E(G) and T = E(G)\ Supp(γ). There
exsist a fractional matching α such that α ↑ γ and Supp(α) = S if and only if the following
conditions are satisfied. 1)S ⊆ Supp(γ) 2) For every cycle C of G with a proper 2-coloring of the
edges of C, each color class intersects T ∪ S.

The next theorem relates the fractional parameters to the integral ones.

Theorem 7. For every graph G we have Ff (G) ≥ F (G). If, in addition, G is bipartite, then,
ff (G) = f(G).

A proof of this theorem utilises the following lemmas.

Lemma 2. If M ∈ P(G) and α ↑M then Supp(α) is a forcing set for M .

Lemma 3. For every perfect matching M of G, ff (G,M) ≥ f(G,M). Furthermore, if G is
bipartite then ff (G,M) = f(G,M).

Finally, we state the main result of the paper in the following theorem.

Theorem 8. The function ff : Pf (G) → R≥0 is continuous and concave with respect to the
Euclidian metric.

A quick corollary of the continuity of ff is that the range of ff is an interval on the real line.
Such property for the case of integral forcing number of perfect matching is not always true. For
some families of graphs, however, it has been shown or conjectured that the forcing numbers of
perfect matchings are integers within certain real interval.

4 Application

In this section we show that the fractional forcing function can be used to obtain results about the
integral case. The next theorem in particular provides a systematic way to obtain upper bound on
the maximum fractional forcing number for symmetric graphs.

Theorem 9. Let G be a vertex and edge-transitive graph, and v ∈ V (G). Then, the fractional per-
fect matching that assign the value 1

deg(v) to all edges, has the maximum fractional forcing number.

As a corollary of this theorem, we are able to prove the first non-trivial upper bound on the
maximum forcing number of hypercube graph as follows.

Theorem 10. For any integer n, F (Qn) ≤ bn2n−1−5×2n−3

n c in which Qn is the n-dimensional
hypercube.

For further application of this theory, as well as the details of the proofs, see [2].
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