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Abstract

Perfect Matching-Cut is the problem of deciding whether a connected graph has a perfect
matching that contains an edge-cut. Deciding whether a graph has a Perfect Matching-Cut is
NP -complete even for the class of bipartite graphs with diameter four. The case of bipartite
graphs with diameter one is trivial since only K2 has a Perfect Matching-Cut. We show that it is
polynomial to decide whether a bipartite graph with diameter three has a Perfect Matching-Cut.

1 Introduction

The Matching-Cut problem consists of finding a matching that is an edge-cut. Chvátal [2] proved
that the problem is NP-complete for graphs with maximum degree four and polynomially solvable
for graphs with maximum degree three. Bonsma [1] showed that it remains NP-complete for planar
graphs with maximum degree four and gave polynomial algorithms for some subclasses of graphs.
Le and Randerath [6] showed that the Matching-Cut problem is NP-complete for bipartite graphs.

We address the Perfect Matching-Cut problem where the matching involved in the matching-cut
is contained in a perfect matching. To our knowledge, the only reference to this problem is from
Diwan [3] which he called Disconnected 2-Factors.

We showed that the Perfect Matching-Cut problem is NP-complete for the 5-regular bipartite
graphs, for the graphs with diameter three and for the bipartite graphs with diameter d, for any
fixed d ≥ 4, for planar graphs with degrees three or four, and for planar graphs with girth five.

Here we give the proof that the Perfect Matching-Cut problem is polynomial for bipartite graphs
with diameter three.

2 Notations and preliminaries

For a graph G = (V,E), let δ(G) denote its minimum degree. For v ∈ V , N(v) is its neighborhood,
d(v) its degree. The diameter of G is the maximum length of a shortest path. For M ⊆ E we
write G −M the partial graph G = (V,E \M). A set M ⊆ E is a matching when no edges of
M share a vertex. A matching M is perfect when every vertex is incident to one edge of M . A
cut in G is a partition V = X ∪ (V \X) with X,V \X 6= ∅. The set of all edges in G having an
endvertex in X and the other endvertex in V \X, also written E(X,V \X), is called the edge-cut
of the cut. A bridge is an edge-cut with exactly one edge. A matching-cut is an edge-cut that is
a matching. A perfect matching-cut is a perfect matching that contains a matching-cut. When a
connected graph or subgraph cannot be disconnected by a matching it is called immune, when it
cannot be disconnected by a perfect matching it is called perfectly immune.

We give some easy observations:

1. K3 and K2,3 are immune.



2. Assume that G has a perfect matching-cut M with E(X,V \X) ⊂M and let H be an immune
subgraph of G. Then either V (H) ⊂ X or V (H) ⊂ V \X.

3. Assume that G has a perfect matching-cut M with E(X,V \X) ⊂M . If v has two neighbors
in X then v ∈ X.

4. If M is a perfect matching that contains a bridge then M is a perfect matching-cut.

5. When a graph G with δ(G) = 1 has a perfect matching then G has a perfect matching-cut.

3 Bipartite graphs with diameter three

We prove that the Perfect Matching-Cut is polynomial for the bipartite graphs with diameter three.
For our proof we use the following characterization given in [5].

A) Let G = (V1 ∪ V2, E) be a bipartite graph. Then diam(G) ≤ 3 if and only if N(a) ∩N(b) 6= ∅
for any pair of distinct vertices a, b in the same side of the bipartition.

We also use the following facts. Let G = (V1 ∪ V2, E) be a bipartite graph, and M be a perfect
matching-cut with (X,Y ) its corresponding partition.

1. Let uv ∈M with u ∈ X, v ∈ Y . Then N(u) \ {v} ⊆ X and N(v) \ {u} ⊆ Y .

2. If a vertex v has two neighbors in X, respectively in Y , then v ∈ X, respectively v ∈ Y .

3. If a vertex v has a neighbor in x ∈ X and another neighbor in y ∈ Y , such that xy ∈ M ,
then M cannot be a perfect matching-cut.

We are ready to show the following.

Theorem 1. Let G = (V1 ∪ V2, E) be a bipartite graph with diam(G) ≤ 3. Deciding if G has a
perfect matching-cut can be done in polynomial time.

Proof. We assume that G has a perfect matching, thus |V1| = |V2|. If uv is a bridge and there
exists M a perfect matching-cut such that uv ∈ M then G has a perfect matching-cut. Now we
can assume that δ(G) ≥ 2 and if M is a perfect matching-cut of G then |E(X,Y )| ≥ 2.

We try to build M a perfect matching-cut with a partition (X,Y ). We guess two edges ab, cd
with a, d ∈ V1, b, c ∈ V2 such that {ab, cd} ⊆ M . When a perfect matching-cut M is found the
algorithm stops, otherwise we try another pair of edges.

We show that when G has a perfect matching-cut, then there exists M a perfect matching-cut
such that {a, c} ⊆ X, {b, d} ⊆ Y . Let a ∈ X, b ∈ Y . For contradiction we assume that V2 ⊆ Y .
Since d(a) ≥ 2, by Fact 2 we have a ∈ Y , a contradiction.

Hence we put a, c ∈ X, b, d ∈ Y . Note that there are O(|V |2) such combinations.

Note that G being bipartite we have N(a)∩N(b) = N(a)∩N(c) = N(b)∩N(d) = N(c)∩N(d) =
∅. Moreover, by Fact 3 if there exists v ∈ N(a) ∩ N(d) or v ∈ N(b) ∩ N(c) then M cannot exist.
Hence we have N(a) ∩N(d) = N(b) ∩N(c) = ∅.

We define the following sets of vertices:



• A = N(a) \ {b, c}, B = N(b) \ {a, d}, C = N(c) \ {a, d}, D = N(d) \ {b, c};

• S = {v ∈ V1 | v 6∈ N(b) ∪N(c), N(v) ∩A 6= ∅, N(v) ∩D 6= ∅};

• T = {v ∈ V2 | v 6∈ N(a) ∪N(d), N(v) ∩B 6= ∅, N(v) ∩ C 6= ∅}.

We show that A,B,C,D, S, T, {a, b, c, d} is a partition of V1 ∪ V2. The subsets are pairwise
disjoint. By contradiction, we assume that there exists v ∈ V1 that is not in one of the previous
subsets. By Fact A) v and a have a common neighbor w. Since N(a) ⊆ A ∪ {b, c} we have a
contradiction. The case v ∈ V2 is the same.

By Fact 1 we have A∪C ⊆ X and B∪D ⊆ Y . Let v ∈ A. By Fact 2, if v has two neighbors in B
then v ∈ Y , so M cannot exist. The situation is the same when a vertex of B has two neighbors in
A, a vertex of C has two neighbors in D, a vertex of D has two neighbors in C. If v has exactly one
neighbor w ∈ B then vw ∈ M and by Fact 1 all its neighbors are put in X, and all the neighbors
of w are put in Y . We do the same for the vertices of B,C,D. By Fact 2 when v ∈ S has two
neighbors in X, resp. Y , then v ∈ X, resp. v ∈ Y . We do in a same way for v ∈ T . If a vertex is
in both X and Y then M cannot exist and we stop. By Fact 2 if a vertex in X, resp. Y , has two
neighbors in Y , resp. X, then M cannot exist.

Let S′ = {v ∈ S | v 6∈ X∪Y } and T ′ = {v ∈ T | v 6∈ X∪Y }. By above and since δ(G) ≥ 2, each
vertex v ∈ S′ has exactly one neighbor va ∈ A and one neighbor vd ∈ D, and each vertex v ∈ T ′ has
exactly one neighbor vb ∈ B and one neighbor vc ∈ C. Let A′ = {va ∈ A | vva ∈ E, v ∈ S′}, D′ =
{vd ∈ D | vvd ∈ E, v ∈ S′}, B′ = {vb ∈ B | vvb ∈ E, v ∈ T ′}, C ′ = {vc ∈ C | vvc ∈ E, v ∈ T ′}.
Note that from Fact 2, for every pair va ∈ A′, vd ∈ D′ we have N(va)∩N(vd) ⊆ S′. By symmetry,
for every pair vb ∈ B′, vd ∈ D′ we have N(vb) ∩N(vc) ⊆ T ′.

For every v ∈ S′, resp. v ∈ T ′, for M to exist we have either vva ∈ M or vvd ∈ M , resp.
vvb ∈M or vvc ∈M . Hence every edge st, s ∈ S′, t ∈ T ′ is such that st 6∈M and the two vertices
s, t will be assigned to a same subset X or Y .

Let |S′| = µ, |A′| = α, |D′| = δ. W.l.o.g we assume that α ≥ δ (the case α ≤ δ being symmet-
ric). By Fact A) and since each vertex of S′ has exactly one neighbor in A′ and one neighbor in
D′, we have µ ≥ αδ. For M to exist we need µ ≤ α + δ. Thus α + δ ≥ αδ, which is possible only
for α = δ = 2 or δ = 1, α ≥ 1.

Let α = δ = 2. We denote A′ = {v1a, v2a}, D′ = {v1d, v2d}, S′ = {v1, v2, v3, v4}. Then G′ =
G[A′∪D′∪S′] consists of the four paths v1a−v1−v1d, v1a−v2−v2d, v2a−v3−v1d, v2a−v4−v2d. There exist
two perfect matchings of G′, that are, Ma = {v1av1, v2dv2, v1dv3, v2av4}, Md = {v1av2, v2dv4, v1dv1, v2av3}.

Let δ = 1. We have α ≤ µ ≤ α+ 1. We denote A′ = {v1a, . . . , vαa }, D′ = {vd}, S′ = {v1, . . . , vµ}
and we assume that viavi ∈ E, 1 ≤ i ≤ µ. We denote G′ = G[A′ ∪D′ ∪ S′].

First µ = α. Then G′ consists of α paths v1a − v1 − vd, . . . , vαa − vα − vd. Note that G′ has no
perfect matching but recall that for each vi ∈ S′, either viv

i
a ∈ M or vivd ∈ M . So in G′ there

exists α + 1 matchings that disconnect A′ from D′. These matchings are M0 = {v1av1, . . . , vαa vα}
and Mi = {vivd} ∪ {vjavj , 1 ≤ j ≤ α, j 6= i}.



Second µ = α+1. Then G′ consists of the two paths v1a−v1−vd, v1a−v2−vd and the α−1 paths
v2a− v3− vd, . . . , vαa − vα+1− vd. There exists exactly two (perfect) matchings of G′ that disconnect
A′ from D′, that are M̄1 = {v1av1, vdv2, v2av3, . . . , vαa vα+1} and M̄2 = {v1av2, vdv1, v2av3, . . . , vαa vα+1}.

By symmetry, to G′′ = G[B′ ∪ C ′ ∪ T ′] correspond the following matchings: either M ′
0 =

{v′1av′1, . . . , v′
α′

a v
′
α′} andM ′

i = {v′iv′d}∪{v′
j
av

′
j , 1 ≤ j ≤ α′, j 6= i} or M̄ ′

1 = {v′1av′1, v′dv′2, v′
2
av

′
3, . . . , v

′α′

a −
v′α′+1} and M̄ ′

2 = {v′1av′2, v′dv′1, v′
2
av

′
3, . . . , v

′α′

a − v′α′+1}. Hence there are O(|E|2) combinations be-
tween the matchings of G′ and G′′.

For each combination we test if E(X,Y ) is a matching-cut. If not then M with E(X,Y ) ⊆M
cannot exist. Otherwise, let X ′ ⊆ X such that N(X ′)∩Y = ∅ and Y ′ ⊆ Y such that N(Y ′)∩X = ∅.
We check if G[X ′ ∪ Y ′] has a perfect matching. If not, M with E(X,Y ) ⊆M cannot exist, else we
have M a perfect matching-cut of G.

We estimate the running time of our algorithm as follows. From [4], we know that computing

a perfect matching in a bipartite graph takes O(|V |
5
2 ). To check if there exists a perfect matching

that contains a bridge can be done in time O(|V |
5
2 ). Now, there are O(|V |2) pairs of edges ab, cd.

Given a pair ab, cd, one can verify that the running time until the next pair is O(|V |
5
2 ). Hence the

complexity of the algorithm is O(|V |
9
2 ).

Remark: The cliques are the graphs with diameter one. Hence K2 is the sole graph of diameter
one that has a perfect matching-cut.
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