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Abstract

A sequence S of vertices is called a total dominating sequence of a graph G, if every vertex
in the sequence dominates a vertex which was not dominated by the previous vertices in S.
Given a graph G, the Grundy Total Domination (GTD) problem is to find a total dominating
sequence of maximum length. We refine some previously known results on bipartite graphs by
showing that the GTD problem is NP-complete in perfect elimination bipartite graphs and give
a linear-time algorithm for this problem in chain graphs. A sequence S is a double dominating
sequence if every vertex vi ∈ S dominates at least one vertex that has not been dominated by at
least two vertices preceding vi. The Grundy Double Domination (GDD) problem is defined in
a similar way. We prove that it is NP-complete for split graphs and present an algorithm that
solves this problem for threshold graphs efficiently.

1 Introduction

The domination game, introduced in [5] and surveyed in a recent book [4], motivates to study
dominating sequences. Brešar, Gologranc, Milanič, Rall and Rizzi in [2] introduced dominating
sequences and Grundy domination number of a graph. An additional motivation comes from
online expansion of a network, which needs to be backed up by online expansion of a dominating
set, where Grundy domination presents the worst-case scenario and gives the largest possible size
of the resulting dominating set at the end of the process.

Brešar, Henning and Rall introduced the total version of Grundy domination [3]. Given a
graph G with no isolated vertices, let S = (v1, . . . , vk) be a longest possible sequence of vertices
such that each vi is adjacent to a vertex x to which none of the vertices in {v1, . . . , vi−1} is adjacent.
Such a sequence is called a Grundy total dominating sequence and its length k is the Grundy total
domination number (GTDN) of G. The GTD problem is NP-complete in bipartite graphs and
split graphs [3, 6]. On the positive side, determining the Grundy total domination number is linear
in forests and cographs and polynomial in bipartite distance-hereditary graphs and in the class of
P4-tidy graphs [6].

In a recent paper [7], Haynes and Hedetniemi proposed several additional variations of vertex
sequences that could be interesting, and gave a few initial results on some of these concepts. In
particular, they presented Grundy double domination. Size of the Grundy double dominating
sequence presents the worst-case scenario when double dominating set is built on-line and the
structure of the graph is not known in advance. We investigated the computational complexity of
this variation in some graph classes.

The paper is organized as follows. In the next section, we establish basic notations used in the
paper. In Section 3, we give the results stating that the GTD problem is an NP-complete problem
even when restricted to perfect elimination bipartite graphs. In contrast, we present a linear-time
algorithm for determining the Grundy total domination number of a chain graph, a subclass of
perfect elimination bipartite graphs. Section 4 deals with double dominating sequences. We prove



that the GDD problem is NP-complete in split graphs and for the class of threshold graphs (which
is a subclass of split graphs) we present a linear-time algorithm.

2 Notation and preliminaries

Given a graph G, the neighborhood of a vertex x is NG(x) = {y ∈ V (G) : xy ∈ E(G)}, while
the closed neighborhood of x is NG[x] = NG(x) ∪ {x}. Vertices u and v in a graph G are closed
twins (respectively, open twins) if NG[u] = NG[v] (respectively, NG(u) = NG(v)). We may omit
the indices in the above definitions if the graph G is understood from the context.

Let S = (v1, . . . , vk) be a sequence of distinct vertices of G. If S1 = (v1, . . . , vn) and S2 =
(u1, . . . , um), n,m ≥ 0, are two sequences, then the concatenation of S1 and S2 is the sequence
S1 ⊕ S2 = (v1, . . . , vn, u1, . . . , um). A sequence S = (v1, . . . , vk) is an open neighborhood sequence if

N(vi) \
i−1⋃
j=1

N(vj) 6= ∅. (1)

holds for every i ∈ {2, . . . , k}. If, in addition, Ŝ is a total dominating set of G, then we call S a
total dominating sequence of G. The maximum length of a total dominating sequence in G is the
Grundy total domination number of G and is denoted by γtgr(G). The corresponding sequence is a
Grundy total dominating sequence of G. These concepts were introduced and studied by Brešar,
Henning and Rall in [3].

Sequence S is said to be a double neighborhood sequence if every vertex vi ∈ S dominates at
least one vertex that has not been dominated by at least two vertices preceding vi in S. If Ŝ is
a double dominating set of G, then we call S a double dominating sequence of G. The maximum
length of a double dominating sequence is the Grundy double domination number γ×2gr (G) of G and
the corresponding sequence is called Grundy double dominating sequence of G. (We note that the
original definition of Haynes and Hedetniemi is slightly different, but it results in the same value
of the Grundy double domination number in any graph with no isolated vertices.)

3 Total Dominating Sequences

3.1 NP-completeness in perfect elimination bipartite graphs

Theorem 1. Grundy Total Domination Problem is NP-complete even when restricted to
perfect elimination bipartite graphs.

Let G = (X,Y,E) be a bipartite graph. An edge e = xy is said to be a bisimplicial edge if
G[N(x)∪N(y)] is a complete bipartite subgraph of G. Let σ = (x1y1, x2y2, . . . , xkyk) be an ordering
of pairwise non-adjacent edges of G. Denote Sj = {x1, x2, . . . , xj} ∪ {y1, y2, . . . , yj} and let S0 = ∅.
The ordering σ = (x1y1, x2y2, . . . , xkyk) is a perfect edge elimination ordering of G if xj+1yj+1 is a
bisimplicial edge in G[(X ∪Y ) \Sj ] for every j ∈ {0, 1, . . . , k− 1} and G[(X ∪Y ) \Sk] has no edge.
A graph for which there exists a perfect edge elimination ordering is a perfect elimination bipartite
graph.

Grundy total domination number problem is known to be NP-complete for bipartite graphs [3].
To prove the NP-completeness of GTD problem for perfect elimination bipartite graphs, we give
a polynomial time reduction from GTD problem for bipartite graphs to GTD problem for perfect
elimination bipartite graphs.



3.2 Algorithm for chain graphs

A graph G is a chain graph if and only if it is bipartite and for each color class the neighborhoods
of the nodes in that color class can be ordered linearly with respect to inclusion. In this subsection,
G = (X,Y,E) denotes a chain graph.

We say that vertices u and v are in relation R if they are open twins. Clearly, R is an equivalence
relation on V (G), so it provides a partition of the vertex set of G. Let PX = {X1, X2, . . . , Xk1} and
PY = {Y1, Y2, . . . , Yk2} denote the parts of the corresponding partition, which lie in X, resp. Y .
Note that k1 = k2(= k) holds for chain graphs. We prove the following result.

Theorem 2. Let G = (X ∪ Y,E) be a chain graph with no isolated vertices, and let PX and PY be
the parts obtained for X and Y , respectively, from the relation R. Then γtgr(G) = 2k.

Above theorem suggests a simple linear-time algorithm to compute a Grundy total dominating
sequence of a chain graph. We must choose a vertex from each of the parts obtained from the
relation R.

4 Double Dominating Sequences

4.1 NP-completeness in split graphs

In this subsection, we prove the following result.

Theorem 3. Grundy Double Domination Problem is NP-complete even when restricted to
split graphs.

A graph G is a split graph if V (G) can be partitioned into into two sets I and K, where I is
an independent set and K is a clique. We may assume that a partition is done in such a way that
α(G) = |I|, which implies that every vertex in K has a neighbor in I. The partition V (G) = [I,K]
is a split partition of V (G).

A connection between dominating sequences with covering sequences in hypergraphs was estab-
lished in the seminal paper on Grundy domination [2]. Recall that given a hypergraph H = (X, E)
with no isolated vertices, an edge cover of H is a set of hyperedges from E that cover all vertices of
X. Consider a sequence C = (C1, . . . , Cr), where Ci ∈ E . If in each step i, i ∈ [r], Ci covers a vertex
not covered by Cj , for all j < i, C is called a legal (hyperedge) sequence of H. If C = (C1, . . . , Cr)

is a legal sequence and the set Ĉ = {C1, . . . , Cr} is an edge cover of H, then C is an edge covering
sequence. The maximum length r of an edge covering sequence of H is the Grundy covering number
ρgr(H) of H. Given a hypergraph, the Edge Covering Problem in hypergraphs is to find an
edge covering sequence of maximum length.

Edge covering problem for hypergraphs is shown to be NP-complete in [2]. To prove the NP-
completeness of GDD problem for split graphs, we give a polynomial time reduction from edge
covering problem for hypergraphs to GDD problem for split graphs.

4.2 Efficient algorithm for threshold graphs

A threshold graph is a graph that can be constructed from the one-vertex graph by repeated
applications of the following two operations:
1) Addition of a single isolated vertex to the graph. 2) Addition of a single dominating vertex to
the graph, that is, a single vertex that is adjacent to all other vertices.



The set of vertices of G that were added to G by operation 1 is denoted by I, while D denotes
the set of vertices of G added by operation 2.

Algorithm 1: Grundy double dominating sequence of a threshold graph

Input: A connected threshold graph G = (I,D,E) along with an ordering (y1, . . . , y`) of
the vertices of D and an ordering (x1, . . . , xk) of the vertices of I.

Output: A Grundy double dominating sequence S of G.
1 S = (x1, x2, . . . , xk, y1);
2 i = 1;
3 while i ≤ ` do
4 if N(yi) ∩ I = N(yi+1) ∩ I then
5 i = i+ 1;

6 else
7 S = S ⊕ yi;
8 i = i+ 1;

9 Output S.

Suppose that the ordering (y1, . . . , y`) of vertices of D in which they appear in G according to
the definition of threshold graphs is given. This implies that N(y1)∩I ⊆ N(y2)∩I ⊆ · · · ⊆ N(y`)∩I
holds true. Due to this property, it can be observed that Algorithm 1 correctly outputs a Grundy
double dominating sequence of G. So, we state the following result.

Theorem 4. Algorithm 1 returns a Grundy double dominating sequence of a threshold graph G.

Several natural problems remain open. For instance, the computational complexity of GTD
problem in chordal bipartite graphs looks intriguing. Also, what is the computational complexity
of determining the Grundy double domination number in strongly chordal split graphs (respectively
cographs)?
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[4] B. Brešar, M. A. Henning, S. Klavžar, D. F. Rall, Domination games played on graphs, SpringerBriefs
in Mathematics, Springer, Cham, 2021.
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