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Abstract

We study connections between combinatorial discrepancy and graph degeneracy. We prove
that the maximum discrepancy over all subgraphs H of a graph G of the neighborhood set
system of H is in Ω(log deg(G)) and O(deg(G)), where deg(G) denotes the degeneracy of G. We
also relate weak coloring numbers and discrepancy of graph powers.

We prove that a monotone class of graphs has bounded expansion if and only if all the
set systems FO-definable in this class have bounded hereditary discrepancy. We also give a
characterization of nowhere dense classes in terms of discrepancy.

We derive a corollary on the discrepancy of neighborhood set systems of edge colored graphs, a
polynomial-time algorithm to compute ε-approximations of size O(1/ε) for set systems definable
in bounded expansion classes, an application to clique coloring, and the non-existence of a
quantifier elimination scheme for nowhere dense classes.

1 Introduction

Discrepancy theory emerged from the study of the irregularities of statistical distributions and
number sequences. It developed and became a central tool in computational geometry. Two decades
ago, Matoušek initiated the study of combinatorial discrepancy, which became a significant subject
in its own right. The combinatorial discrepancy measures the inevitable irregularities of set systems
and the inherent difficulty to approximate them.

Discrepancy theory offers powerful tools and techniques with many applications in computational
geometry, probabilistic algorithms, derandomization, communication complexity, searching, machine
learning, pseudorandomness, optimization, computer graphics, and more. Central notions in this
theory are also the well known notions of VC-dimension, ε-nets and ε-approximations, the latter
corresponding to the expected properties of a pseudorandom set.

A structural theory of classes of sparse graphs emerged recently, which is based on the study
of densities of shallow minors, generalized coloring numbers, and constrained orientations. In this
setting, two central notions are those of classes with bounded expansion, which generalize classes
excluding a topological minor, and nowhere dense classes, which generalize classes locally excluding
a topological minor. These classes have strong algorithmic and structural properties. In particular,
in a nowhere dense class it can be checked in almost linear time whether a first-order formula is
satisfied in a given graph from the class. This last example is only one among others that witness a
strong connection between sparsity theory and first-order logic.



2 Motivating examples

We illustrate our results with a few motivating examples. All these results mentioned here are
obtained as special cases of our general theorems on combinatorial discrepancy of set systems
definable in sparse graph classes.

Problem 1. Assume that a graph G has the property that for every red/blue coloring of the edges
of G there exists a partition (A,B) of the vertex set of G such that the number of red (resp. blue)
neighbors in A and B of any vertex differ by at most 1. Does G contain a vertex with small degree?

It follows from our results that such a graph G is 1303-degenerate.

Problem 2. Given a planar graph G, find a small subset F of edges such that, for every pair u, v
of distinct vertices of G, the probability that an edge of G belongs to a uv-path of length at most 100
differs from the probability that an edge in F belongs to a uv-path of length at most 100 by at most ε.

We prove that a set F of edges of size O(1/ε) with the prescribed properties can be constructed
deterministically in polynomial time.

Problem 3. Does there exist a constant c, such that the vertices of every map graph1 G can be
colored red or blue, in such a way that the difference between the number of red and blue vertices in
every maximal clique of G is at most c?

Although there are quite a few reasons to believe that such a constant would not exist (it is not
even possible in general to color the vertices of a perfect graph red and blue in such a way that
no maximal clique is monochromatic) we prove that such a constant c exists for map graphs.

Last, we also consider the following (seemingly completely unrelated) problem from sparse finite
model theory. It is known that every class of finite graphs with bounded expansion has a quantifier
elimination scheme involving unary relations and functions. As it is known that the fixed-parameter
tractability of first-order model-checking extends from bounded expansion classes to the more
general nowhere dense classes, it is natural to ask whether the quantifier elimination scheme also
extends. It has been conjectured that this is not the case, but no proof of this fact was known.

Problem 4. Give an example of a nowhere dense class C of graphs such that there exists no
expansion σ of the signature of graphs by unary relation and function symbols with the property
that every first-order formula is equivalent on a σ-expansion C+ of C to a quantifier-free first-order
σ-formula.

We prove that the class C of 1-subdivisions of bipartite graphs whose girth exceeds the maximum
degree has the above property. Precisely, there is no expansion σ of the signature of graphs by
unary relation and function symbols in which the formula φ(x, y) expressing that x and y are
at distance 2 in the graph is equivalent on a σ-expansion of C to a quantifier-free first-order
σ-formula.

1A map graph is the vertex-face incidence graph of a planar map.



3 Preliminaries: Combinatorial discrepancy and Sparse classes

Let (U,S ) be a set system, where S is a collection of subsets of the ground set U . When the
ground set is clear from the context, we refer to the set system as S . The discrepancy of a mapping
χ : U → {−1, 1} on a set S ∈ S is discχ(S) =

∣∣∑
v∈S χ(v)

∣∣; the discrepancy of χ on S is the
maximum of discχ(S) over all S ∈ S , that is, discχ(S ) = maxS∈S discχ(S). The (combinatorial)
discrepancy of S is the minimum discrepancy of a mapping χ : U → {−1, 1} on S , that is,

disc(S ) = min
χ:U→{−1,1}

max
S∈S

∣∣∣∣∑
v∈S

χ(v)

∣∣∣∣.
Amore robust notion is the hereditary discrepancy of a set system (U,S ), defined as herdisc(S ) =

maxU ′⊆U disc(S |U ′), where S |U ′ denotes the set system {S ∩ U ′ : S ∈ S }. Moreover, bounding
the hereditary discrepancy allows to bound the sizes of ε-nets and ε-approximations (what is not
the case for discrepancy).

A graph G is d-degenerate if every non-empty induced subgraph of G has minimum degree at
most d. The minimum integer d such that a graph G is d-degenerate is the degeneracy deg(G) of G.
A class C is degenerate if there is an integer d such that all the graphs in C are d-degenerate. A
class C of graphs is called monotone if it is closed under taking subgraphs and hereditary if it is
closed under taking induced subgraphs.

For a graph G and an integer r, a ≤ r-subdivision of a graph G is a graph obtained by subdividing
every edge of G at most r times. A graph H is a topological minor of a graph G at depth r if a
≤ 2r-subdivision of H is a subgraph of G. For a class C of graphs, we denote by C ▽̃ r the class of
the topological minors at depth r of graphs in C . A class C has bounded expansion if, for every
integer r, the class C ▽̃ r is degenerate. For example, every proper minor-closed classes of graphs
and every class of graphs with bounded maximum degree have bounded expansion. The class C is
nowhere dense if no class C ▽̃ r is the class of all graphs. For example, every class with bounded
expansion is nowhere dense, as well as the class of all graphs whose maximum degree is bounded by
the girth, are nowhere dense.

Generalized coloring numbers have been introduced by Kierstead and Yang as a generalization
of the so-called coloring number. Let G be a graph and let L be a linear ordering of V (G). We
say that a vertex u is weakly d-reachable from a vertex v if there exists in G a path P of length
at most d (possibly 0) linking u and v such that u is the minimum vertex of P with respect
to L, and we denote by WReachd[G,L, v] the set of all vertices weakly d-reachable from v. The
weak coloring number wcold(G) is defined as the minimum over all possible linear orderings L of
maxv∈V (G) |WReachd[G,L, v]|. Zhu proved that a class C of graphs has bounded expansion if and
only if, for each integer d, the weak coloring numbers with rank d of the graphs in C are bounded.
(Note that nowhere dense classes can also be characterized in terms of bounds on the weak coloring
numbers.)

Structural and algorithmic properties of classes with bounded expansion and nowhere dense
classes have strong links with first-order logic. In particular, the fixed-parameter linear time
first-order model-checking algorithm of Dvořák, Král’, and Thomas for bounded expansion classes is
based on a quantifier elimination scheme. This also justifies to extend the study of the discrepancy
of neighborhood set systems to first-order definable set systems, that is to set systems definable
using first-order logic formulas.



4 Our results.

We prove that the notions of discrepancy and degeneracy are deeply linked:

Theorem 1. For every graph G we have

log2(π deg(G))

4
− 2 ≤ max

H⊆G
disc(S E(H)) < 3 deg(G),

where S E(H) denotes the neighborhood set system of H.

We extend this result to inequalities relating weak coloring numbers and discrepancy of graph
powers.

Theorem 2. Let G be a graph and let d be a positive integer. Then

log2(wcol⌈d/2⌉(G))

6(d+ 1)
− log2(d+ 1)

3
− 3

2
≤max

d′≤d
max
H⊆G

herdisc(S E(Hd′))

< (2dwcold−1(G) + 1)wcold(G).

We deduce that a monotone class C has bounded expansion if and only if the hereditary
discrepancy of S E(Gk) is bounded on C for each positive integer k.

In order to extend these results further, we switch to a model theoretic point of view. We
introduce a theory of structures with only unary relations and unary functions, which we prove has
quantifier elimination and mirrors the properties of the classes of graphs with bounded expansion.
From this, we deduce a characterization of bounded expansion classes.

Theorem 3. Let C be a monotone class of graphs. Then the following are equivalent
(where S φ(G) denotes the set system defined by a partitioned first order formula φ(x̄; ȳ) on a
vertex-colored graph G):

1. the class C has bounded expansion;

2. the hereditary discrepancy of every set system S φ(G) definable on a monadic expansion
of C (i.e. using arbitrary vertex colorings of the graphs in C ) is bounded;

3. for each positive integer k, the hereditary discrepancy of S E(Gk) for G ∈ C is bounded.

Then, using the bounds on the VC-density of set systems definable in nowhere dense classes of
Pilipczuk, Siebertz, and Toruńczyk, we give a characterization of nowhere dense classes in terms of
discrepancy. We believe that our upper bounds on discrepancy can be improved in this case, and
we propose a conjecture for the optimal bound.

We provide some corollaries on edge colored graphs, ε-approximations, clique coloring, and
quantifier elimination schemes, which allows us to solve the motivating problems presented in the
introduction.


