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Abstract

The class of Burling graphs is a triangle-free class of graphs with arbitrarily large chromatic
number. Since 1965, when Burling graphs were first introduced by Burling [1], they have been
useful in solving many problems in graph theory, specifically in the two fields of χ-boundedness
and geometric graph theory. Meanwhile, they have been studied in many different ways: as
intersection graphs of several different geometric objects and as subgraphs of an inductively
defined sequence of graphs.

In this talk, after reviewing some applications of Burling graphs and recalling their classical
definition, we see how to unify the previously existing views of Burling graphs by providing some
new equivalent definitions. Moreover, we discuss how each of these definitions can be useful to
obtain new results in graph theory, based on their respective features.

This talk is based on [6, 7, 8].

Prerequisites

A clique in a graph is a set of pairwise adjacent vertices. The size of a clique is the number of its
vertices. The clique number of a graph G, denoted by ω(G), is the size of the biggest clique in G.
A triangle in a graph is a clique of size 3, and a graph is triangle-free if it contains no triangle as
an induced subgraph. A class of graphs is triangle-free if every graph in the class is triangle-free.

The chromatic number of a graph G, denoted by χ(G), is the smallest integer k such that we can
partition the vertex set of G into k stable sets. Notice that for every graph G, we have χ(G) ≥ ω(G),
but the converse is not true in general. In fact, there exist many examples of sequences of graphs
which are triangle-free but have increasing chromatic number.

A class C of graphs is said to be χ-bounded if there exists a function f : N → N such that for
every G ∈ C, we have χ(G) ≤ f(ω(G)). Notice that if C is triangle-free, then C being χ-bounded is
equivalent with the existence of a number c such that every G ∈ C has chromatic number at most c.

A subdivision of a graph H is a graph obtained from H by replacing some of its edges by paths
of length at least 1. For a graph H, we denote by Forb∗(H) the class of graphs which do not
contain any subdivision of H as an induced subgraph. The graph H is said to be weakly pervasive
if Forb∗(H) is χ-bounded, and it is said to be non-weakly pervasive otherwise.

The intersection graph G of a set V = {X1, X2, . . . Xn} of subsets of Rd is the graph whose
vertex set is V and two vertices Xi and Xj are adjacent in it if and only if i 6= j and Xi ∩Xj 6= ∅.

History of Burling graphs

In his Ph.D. thesis, Burling [1] studied the χ-boundedness of the intersection graphs of some specific
polytopes in Rn. In particular, he proved that in many cases the class is not χ-bounded, and in
order to do so, he first reduced the problem to the case of intersection graphs of axis-aligned boxes
in R3 (box graphs for short) which are triangle free, and second built a sequence {Gk}k≥1 of such
graphs with χ(Gk) ≥ k for each k ≥ 1. This sequence is known as the Burling sequence. The graph
of Burling sequence and all their induced subgraphs form the class of Burling graphs.



In 2012, Pawlik, Kozik, Krawczyk, Lason, Micek, Trotter and Walczak [4] used Burling graphs
to answer a question of Erdős. Indeed, they rediscovered Burling sequence as intersection graphs
of line segments in R2 (line segment graphs for short), and thus showed that the triangle-free line
segment graphs have unbounded chromatic number. Also, in a later paper [5], they showed that
the Burling sequence can be regarded as the intersection graph of other geometric object: any
arc-connected compact set in R2 which is not an axis-aligned rectangle.

Following the work of Burling and Pawlik et. al., one can also give a more combinatorial defi-
nition of the Burling sequence in an inductive way. See for example [9] for definition. Using this
definition, Davies [3] proved that Burling graphs are wheel-free.

Another importance of the work of Pawlik et. al. was that they provided the first counterexam-
ples to Scott’s conjecture which was open for about 20 years at the time. Scott’s conjecture states
that every graph is weakly pervasive. Let H be a subdivision of a non-planar graph in which every
edge is subdivided at least once. One can show that no subdivision of H is a line segment graph.
So, Forb∗(H) contains all the graphs of the Burling sequence, thus H is non-weakly pervasive, dis-
proving Scott’s conjecture. After that, however, the question of deciding which graphs are weakly
pervasive and which are not remained of interest, a question which is still wildly open.

What was essential in finding the first examples of non-weakly pervasive graphs was the fact
that there exist graphs H such that none of the subdivisions of H are Burling graphs, and mathe-
maticians found this thanks to regarding Burling graphs in an appropriate way, i.e. as line-segment
graphs. However, triangle-free line-segment graphs are a proper super-class of Burling graphs. So,
it is important to understand Burling graphs better in order to find more non-weakly pervasive
graphs.

In 2016, Chalopin, Esperet, Li and Ossona de Mendez [2], studied Burling graphs as triangle-
free intersection graphs of frames (borders of axis-aligned rectangles) in R2. Frames are compact
and path-connected, so by [5], they contain all Burling graphs, but they contain other graphs too.
By setting several constraints on how the frames can intersect, Chalopin et. al. defined the class of
restricted frame graphs, a strict subclass of triangle-free intersection graphs of frames, which still
contains Burling graphs. This new class, being smaller than the line-segment graphs, enabled them
to provide much more examples of non-weakly pervasive graphs. However, this class is still a strict
super-class of Burling graphs.

Our contribution

So far, we have seen that the class of Burling graphs is defined graph-theoretically in an inductive
way, and also is seen as a subclass of intersection graphs of geometric objects, including boxes, line
segments, and frames. In [6], we give five new equivalent definitions of Burling graphs: three of
them are geometrical, one is of a more graph-theoretical flavour, and one is more axiomatic. See
Figure 1.

First of all, setting some restrictions on how the objects can intersect, we restricted the classes of
box graphs, line-segment graphs, and frame graphs to strict box graphs, strict line-segment graphs,
and strict frame graphs and proved that each class is equal to the class of Burling graphs.

Second, we define the class of derived graphs, a class of graphs with a purely combinatorial
definition: we derive a graph from some tree structure using several simple rules. We prove that
the class of derived graphs is equal to the class of Burling graphs.

Finally, we define the abstract Burling graphs, a class of graphs defined using sets with two



Figure 1: The definitions of Burling graphs

binary relations on them which satisfy a set of four axioms.
Derived graphs seem to be specific and well structured, while abstract Burling graphs seem to

be general (though they are equivalent). Being more “general”, abstract Burling graphs enable us
to easily check that geometrical objects satisfy the axioms in their definition, which is how we prove
that strict geometric objects classes are a subset of Burling graphs. On the other hand, derived
graphs, being more structured, turn out to be useful to study the structure of Burling graphs. This
is mostly done in [7], where we prove several structural theorems about derived graphs. We find
several results about the structure of holes in Burling graphs and their interactions, as well as the
role of star cutsets in the class. Moreover, we give a short proof of the fact that Burling graphs are
wheel-free.

Finally, in [8], we use the results from [7] to find new non-weakly pervasive graphs, among which
are K5, some necklace graphs, and ”dumbbell graphs”, which contain vertex cuts.

Open problems

There are still many open problems about Burling graphs, which can lead to a better understanding
of the class. We conclude this note by one of them:

Question. Does every hereditary proper subclass of Burling graphs have bounded chromatic
number? Equivalently, let H be a Burling graph. Does the class of H-free Burling graphs have
bounded chromatic number?
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