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Abstract

Let ¢ be a real number. A graph is called t-tough if the removal of any vertex set S that
disconnects the graph leaves at most |S|/t components. The toughness of a graph is the largest
t for which the graph is t-tough. A graph is minimally ¢-tough if the toughness of the graph
is t and the deletion of any edge from the graph decreases the toughness. We investigate the
minimum degree and the recognizability of minimally ¢-tough graphs in the classes of chordal
graphs, split graphs, claw-free graphs, and 2Ks-free graphs.

1 Introduction

All graphs considered here are finite, simple and undirected. Let w(G) denote the number of
components and a(G) denote the independence number and x(G) denote the connectivity number
of the graph G. (Using w(G) to denote the number of components may be confusing, however,
most of the literature on toughness uses this notation.)

The notion of toughness was introduced by Chvétal in [9].

Definition 1. Let t be a real number. A graph G is called t-tough if

S

w(G-29)< ‘t‘

for any vertex set S C V(G) that disconnects the graph (i.e. for any S C V(G) with w(G—S) > 1).

The toughness of G, denoted by 7(G), is the largest t for which G is t-tough, taking T(K,) = oo
for alln > 1.

Definition 2. A graph G is said to be minimally t-tough if 7(G) =t and 7(G — e) < t for all
e € E(G).

It follows directly from the definition that every t-tough noncomplete graph is 2¢t-connected,
implying x(G) > 27(G) for noncomplete graphs. Therefore, the minimum degree of any t-tough
noncomplete graph is at least [2¢].

The following conjecture is motivated by a theorem of Mader [10], which states that every
minimally k-connected graph has a vertex of degree k.

Conjecture 1 (Kriesell [8]). Fvery minimally 1-tough graph has a vertex of degree 2.
This conjecture can be naturally generalized.

Conjecture 2 (Generalized Kriesell’'s Conjecture). Every minimally t-tough graph has a vertex of
degree [2t].



In [4] we proved that every minimally 1-tough graph has a vertex of degree at most n/3 + 1.

In general, determining whether a graph is minimally ¢-tough is hard, in [5] we proved that it
is DP-complete for any positive rational number t. DP-complete problems are believed to be even
harder than NP-complete ones. For more details about the complexity class DP, see [1].

Proving the generalized Kriesell’s conjecture seems to be difficult, so the main motivation is
to study the conjecture in some special graph classes. It turns out that in the classes of chordal
graphs, split graphs, claw-free graph and for some values of ¢ we can prove the conjecture by
giving a characterization of the special graph class, which easily implies the affirmative answer to
the conjecture. In the case of 2Ks-free graphs, the conjecture is still open, but we can at least
show that these graphs can be recognized in polynomial time, which may give a chance to find a
characterization later.

2 Chordal graphs

Definition 3. A graph is chordal if it does not contain an induced cycle of length at least 4.

Theorem 1. Lett <1 be a positive rational number.

o Ift <1/2, then all minimally t-tough, chordal graphs can be obtained from a tree of mazimum
degree A > 3 by removing some (or all) of its vertices with degree 3 whose neighbors have
degree A, and joining these neighbors with triangle.

e If1/2 <t <1, then there exist no minimally t-tough, chordal graphs.

This implies that Conjecture 2 holds for chordal graphs if ¢ < 1, but the conjecture is open for
larger ¢ values.

3 Split graphs

Definition 4. A graph is a split graph if its vertices can be partitioned into a clique and an
independent set.

The toughness of split graphs can be computed in polynomial time. First, it was shown for
t =1 in [2], then in [3] for all positive rational number ¢.

Theorem 2 ([3]). For any rational numbert > 0, the class of t-tough, split graphs can be recognized
i polynomaial time.

Such an algorithm turns out to be helpful in giving a complete characterization of minimally
t-tough, split graphs.

Theorem 3. For any rational number t > 1/2 there exist no minimally t-tough, split graphs.

Theorem 4. Lett < 1/2 be an arbitrary positive rational number and G a minimally t-tough, split
graph partitioned into a clique C' and an independent set I. Then there exists an integer b > 2 for
which t = 1/b, and |C| < 3. Moreover,

e cither G is a tree with at most two internal vertices and with A(G) = b,



e or |C| =3, every vertex in I has degree 1 and every vertex in C' has degree b+ 1.

Corollary 1. Let t be a positive rational number. If G is a minimally t-tough, split graph, then G
has a vertex of degree [2t].

So Conjecture 2 holds for split graphs.

4 Claw-free graphs
In [7] it was shown that the toughness of any claw-free graph is either an integer or half of an
integer. In this section we deal with minimally 1-tough and minimally 1/2-tough, claw-free graphs.

Definition 5. The graph K 3 is called a claw. A graph is said to be claw-free if it does not contain
a claw as an induced subgraph.

Theorem 5 ([7]). If G is a noncomplete claw-free graph, then 27(G) = k(G).

Corollary 2. For any rational numbert > 0 the class of t-tough, claw-free graphs can be recognized
in polynomial time.

We have a characterization of of t-tough, claw-free graphs if ¢t < 1.

Theorem 6 ([4]). The class of minimally 1-tough, claw-free graphs consists of the cycles of length
at least 4.

Theorem 7. The class of minimally 1/2-tough, claw-free graphs are exactly those graphs that can
be built up in the following way.

o Tuake a tree T with maximum degree at most 3 where the set of vertices of degree 1 and 3
together form an independent set.

o Now delete every vertex of degree 3, but connect its 8 neighbors with a triangle.

Since the toughness of any claw-free graph is either an integer or half of an integer, in the class
of claw-free graphs Conjecture 2 is true for all rational number 0 < ¢t < 1, but it is open for larger
t values.

5 2Ks-free graphs

For split graphs and claw-free graphs it was useful to be able to compute the toughness in polynomial
time. In this section we prove that for any positive rational number ¢ the class of minimally ¢-tough,
2K-free graphs can be recognized in polynomial time. This might be helpful in obtains results
connected to Conjecture 2.

Definition 6. A graph is said to be 2Ks-free if it does not contain an independent pair of edges as
an induced subgraph.

Theorem 8 ([6]). For any rational number t > 0 the class of t-tough, 2Ks-free graphs can be
recognized in polynomial time.

Theorem 9. For any positive rational number t the class of minimally t-tough, 2Ks-free graphs
can be recognized in polynomial time.

Conjecture 2 is open for every positive rational ¢.
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