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Open Problem #1 (posed by Ignasi Sau):

We consider the Directed Disjoint Paths problem, where we are given as input a directed graph
G and 2k vertices s1, . . . , sk, t1, . . . , tk ∈ V (G) and we ask whether G contains pairwise vertex-disjoint
paths P1, . . . , Pk such that, for every i ∈ {1, . . . , k}, Pi is an (si, ti)-path.

The problem is known to be NP-hard for k = 2. If n is the number of vertices of the input graph G, and
w is the directed treewidth dtw(G) of G, then the Directed Disjoint Paths problem can be solved
in time nO(w+k). It is known that, unless FPT = W[1], there is no algorithm running in time f(k) ·ng(w),
for any two functions f, g : N → N.

Question: Is there an algorithm running in time f(w) · ng(k), for some functions f, g : N → N?

Open Problem #2 (posed by Pierre Aboulker):

Consider a set of n points a1, . . . , an in the plane, that are not all contained in a single straight line.
Each pair of points defines a unique line. Suppose the set of points defines m distinct lines, which we
denote by ℓ1, . . . , ℓm.

As first observed by Erdős, the Sylvester-Gallai Theorem implies that m ≥ n.

For each i ̸= j ∈ {1, . . . ,m}, we denote by ℓi∩ℓj the number of points among a1, . . . , an that are included
in both lines ℓi and ℓj (which is 0 or 1). We set iav =

∑
i̸=j ℓi∩ℓj

(m2 )
≤ 1. This corresponds to the average

intersection of the lines.

Question: Is it true that iav ·m ≥ n ?

Denote by d(v) the number of lines going through a point v. Observing that in the sum
∑

i̸=j ℓi ∩ ℓj

each point v is counted exactly
(
d(v)
2

)
times, one can easily see that the above inequality is equivalent to

the following one:
n∑

i=1

d(ai)(d(ai)− 1) ≥ n(m− 1),

Open Problem #3 (posed by Colin Geniet):

We know that a graph G has twinwidth at most k ⇐⇒ there is an ordering of V (G) such that the
adjacency matrix of G with respect to this ordering cannot be separated to k2 blocks, each of rank more
than k.

We know that bounded stack/queue number implies bounded twinwidth. We also know that cubic graphs
can have unbounded twinwidth. The proof of the latter uses some counting arguments.

Question: Can we have an explicit construction of a cubic graph of large twinwidth?

Open Problem #4 (posed by David Wood):

The following Ramsey-theoretic conjecture about points in the plane is known as Big Line Big Clique
Conjecture, given by Jan Kara, Attilla Por, and David Wood.

1



Conjecture: For k, ℓ ∈ N there exists n ∈ N such that every finite set of at least n points in R2 has ℓ
collinear points or k pairwise visible points.

Standard Ramsey-theoretic arguments fail to solve the above problem, since visibility graphs are not
closed under induced subgraphs.
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Open Problem #5 (posed by Jørgen Bang-Jensen):

We define the following problem:

Given a directed graph that is not strongly connected, our task is to reverse the minimum number of
arcs so as to make it strongly connected.

This problem can be solved in polynomial time using an algorithm for finding a minimum cost submodular
flow.

A directed graph is k-strong if it has at least k+1 vertices and for any set of at most k− 1 vertices, the
digraph obtained after their removal is strongly connected.

We define a variant of the problem above, when we ask for the minimum number of arcs needed to be
reversed to make it k-strong.

Clearly D has a set of arcs whose reversal makes the new digraph k-strong if and only if its underlying
undirected graph UG(D) has a k-strong orientation.

Durand de Gevigney proved that for every k ≥ 3 it is NP-complete to decide whether a given input graph
has a k-strong orientation. Hence for k ≥ 3 it is NP-complete even to decide whether there is any set of
arcs whose reversal makes a given digraph k-strong.

Thomassen proved that a graph G = (V,E) has a 2-strong orientation if and only if it is 4-edge-connected
and G− v is 2-edge-connected for every v ∈ V . Together with the remark above this implies that we can
check in polynomial time whether a given digraph D has a set of arcs whose reversal makes the resulting
digraph 2-strong.

Question: Is the problem (i.e., the minimization version) solvable in polynomial time for k = 2?

O. Durand de Gevigney: On Frank’s conjecture on k-connected orientations. J. Comb. Theory, Ser. B
141: 105-114 (2020)

J. Edmonds and R. Giles. A min-max relation for submodular functions on graphs. In Studies in
integer programming (Proc. Workshop, Bonn, 1975), pages 185–204. Ann. of Discrete Math., Vol. 1.
North-Holland, Amsterdam, 1977.

C. Thomassen, Strongly 2-connected orientations of graphs. J. Comb. Theory, Ser. B 110: 67-78 (2015)

Open Problem #6 (posed by Fedor V. Fomin):

We define the Detour problem, where we are given a directed graph G and s, t ∈ V (G) and we ask if
there is an (s, t)-path in G of length strictly greater than distG(s, t)?

Question: Is Detour NP-complete? Is it in P? If we ask for an (s, t)-path of length at least distG(s, t)+
k, is the problem FPT parameterized by k?
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The variant of the problem where we ask for an (s, t)-path of length exactly distG(s, t) + k is FPT
parameterized by k. Also, for the undirected variant, the problem parameterized by k is FPT.

Open Problem #7 (posed by Nacim Oijid):

We define the following game: given a hypergraph H = (V,E), Alice and Bob play by selecting, one after
the other, a vertex of the hypergraph. Alice wins if she occupies all vertices in a hyperedge, otherwise Bob
wins (i.e., vertices selected by Bob are a hitting set of all hyperedges). Rahman and Watson [STACS 2021]
proved that determining the winner is PSPACE-complete on 6-uniform hypergraphs. Galliot, Gravier,
and Sivignon proved that it is polynomial on 3-uniform hypergraphs.

Question: What is the complexity of the problem for 4-uniform and 5-uniform hypergraphs?

Open Problem #8 (posed by Christophe Paul & Frédéric Havet):

The following problem originates in the work of Pouzet on Tournaments. It is motivated by the problem
of Sorting by Reversal, where we are given a permutation of a set of integers, and we ask to sort
them by reversing intervals of the permutation.

We can also consider the k-Tournament Inversion problem: Given a tournament T , one aims to turn
T to a transitive tournament. The operation allowed is to select a set of vertices S and reverse the arcs
of T [S] (i.e., reverse all arcs of T with both endpoints in S).

This problem is FPT parameterized by the number of reversals (Belkhechine, Bouaziz, Boudabbous, and
Pouzet, 2010).

Question: Is Tournament Inversion NP-complete or not, when k is part of the input?

We also consider the k-Inversion problem, where we are given a directed graph D and we ask whether
the inversion number of D is at most k. It is known that 1-Inversion and 2-Inversion are NP-complete
(Bang-Jensen, Ferreira da Silva, and Havet, arXiv 2021). The following was conjectured by Bang-Jensen,
Ferreira da Silva, and Havet [arXiv 2021].

Conjecture: k-Inversion is NP-complete for every k ∈ N.

Open Problem #9 (posed by Marco Caoduro):

Axis-parallel rectangles on the plane have the Helly property, hence any set of pairwise intersecting
rectangles can be hit by one point. Allowing the rectangles to rotate this property is lost and it is
possible to construct families of pairwise intersecting rectangles where an arbitrarily large number of hit
points is needed.

The situation changes by restricting the attention to squares on the plane (either all units or with different
sizes). We ask the following question:

Question: Determine the minimum number of points needed to hit any finite set of pairwise intersecting
(unit or not) squares.

In Caoduro and Sebő [ArXiv 2022], it is observed that the optimal values lie in the set {3, 4} for unit
squares, and {4, . . . , 10} for squares of different sizes. The analogous problem for disks is settled: three
points (resp. four points) are always sufficient and sometimes necessary to hit any finite set of pairwise
intersecting unit (not unit) disks on the plane [Hadwiger, Debrunner, and Klee, 1964; Danzer, 1956].
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