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Every planar graph is a subgraph of H ⊠ P for some graph H

with treewidth ⩽ 8 and some path P
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How to decompose planar graphs?
Separator:

S

≤ n/2
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�
	Lipton & Tarjan ’79

Every n-vertex planar graph has a O(
√
n)-size separator



Baker’s technique (’94)
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Fact: Union of ℓ consecutive layers has treewidth O(ℓ)



Baker’s technique (’94)
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Remove all layers numbered i

mod k

Choose i so that ⩽ n/k vertices

are removed

Solve problem on remaining

graph, which has treewidth

O(k)
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i = 1, k = 3

Remove all layers numbered i

mod k

Choose i so that ⩽ n/k vertices

are removed

Solve problem on remaining

graph, which has treewidth

O(k)
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Baker’s technique (’94)

2
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i = 1, k = 3

Remove all layers numbered i

mod k

Choose i so that ⩽ n/k vertices

are removed

Solve problem on remaining

graph, which has treewidth

O(k)

E.g. with k = log n, this gives a
(

1− c
log n

)
-approximation

algorithm for Max Independent Set



Baker ⇒ Lipton-Tarjan
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i = 1, k = 3

Take k =
√
n, choose i so that ⩽ n/k =

√
n vertices are removed

Remaining graph has treewidth O(k) = O(
√
n)

Take a separator S ′ of size O(
√
n) in remaining graph

Union of vertices removed and S ′ is a separator of size O(
√
n)



A new way of decomposing planar graphs�
�

�
�

Mi. Pilipczuk & Siebertz ’18

Every planar graph G has a vertex partition P into geodesics

such that G/P has treewidth ⩽ 8

geodesic = shortest path (between its endpoints)

G/P = graph obtained by contracting each path in P into a

vertex
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Product structure ⇒ Baker

� =

Union of ℓ consecutive layers has treewidth ⩽ 9ℓ− 1
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G connected planar graph, T rooted spanning tree ⇒ ∃ vertex

partition P of G into vertical paths of T s.t. tw(G/P) ⩽ 8

Theorems above follow by taking

T = BFS tree
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Proof setup
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G connected planar graph, T rooted spanning tree ⇒ ∃ vertex

partition P of G into vertical paths of T s.t. tw(G/P) ⩽ 8



Proof setup�
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Dujmović, J., Micek, Morin, Ueckerdt, Wood ’19

G plane triangulation, T rooted spanning tree ⇒ ∃ vertex par-

tition P of G into tripods of T s.t. tw(G/P) ⩽ 3

Tripod: facial triangle sending out 3 disjoint vertical paths

Degenerated cases: an edge (a vertex) sending 2 (1) disjoint

vertical paths



Setting: Region bounded by 3 tripods, root on boundary or

outside
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Setting: Region bounded by 3 tripods, root on boundary or

outside
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vertical path towards root of T
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Setting: Region bounded by 3 tripods, root on boundary or

outside
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Setting: Region bounded by 3 tripods, root on boundary or

outside

Sperner’s lemma:
∃ facial triangle
colored RGB
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Sperner’s lemma:
∃ facial triangle
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Setting: Region bounded by 3 tripods, root on boundary or

outside



Setting: Region bounded by 3 tripods, root on boundary or

outside

in G/P:



Product structure: Summary
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Every planar graph is

▶ a subgraph of H ⊠ P for some graph H with tw(H) ⩽ 8

and some path P

▶ a subgraph of H ⊠ P ⊠ K3 for some graph H with

tw(H) ⩽ 3 and some path P
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Graphs on surfaces

(Figure: Felix Reidl)

Euler genus of sphere + g handles = 2g

Euler genus of sphere + g crosscaps = g

'

&

$

%

DJMMUW ’19

Every graph of Euler genus g ⩾ 1 is

▶ a subgraph of H ⊠ P for some graph H with

tw(H) ⩽ 2g + 8 and some path P

▶ a subgraph of H ⊠ P ⊠ Kmax{2g,3} for some graph H with

tw(H) ⩽ 4 and some path P

�
�

�
�

Distel, Hickingbotham, Huynh, Wood ’21

Every graph of Euler genus g ⩾ 1 is a subgraph of H ⊠ P ⊠
Kmax{2g,3} for some graph H with tw(H) ⩽ 3 and some path P
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Apex-minor free graphs

G is apex if G − v is planar for some v ∈ V (G )
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DJMMUW ’19

For every apex graph X there exists c ⩾ 1 s.t. every X -minor

free graph is a subgraph of H ⊠ P for some graph H with

tw(H) ⩽ c and some path P

No such theorem holds if X is not apex
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Dujmović, Esperet, Morin, Walczak, Wood ’20

For every graph X there exists c ⩾ 1 s.t. for every ∆ ⩾ 1, every

X -minor free graph with maximum degree ⩽ ∆ is a subgraph

of H ⊠ P for some graph H with tw(H) ⩽ c∆ and some path

P



k-Planar graphs
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Dujmović, Morin, Wood ’19

Every k-planar graph is

▶ a subgraph of H ⊠ P for some graph H with treewidth

O(k5) and some path P

▶ a subgraph of H ⊠ P ⊠ Kℓ for some graph H with

treewidth O(k3), for some path P, and some ℓ ∈ O(k2)�
�

�
�

Dujmović, Morin, Wood ’19

Every 1-planar graph is a subgraph of H ⊠ P ⊠ K7 for some

graph H with treewidth 3 and some path P



Application: Queue-numbers

Rainbow in a vertex ordering v1, . . . , vn:

Size of rainbow = number of edges

Queue-number qn(G ) = smallest k s.t. there is a vertex ordering

where every rainbow has size ⩽ k

�
�

�
Conjecture (Heath, Leighton, Rosenberg ’92)

Planar graphs have bounded queue-number

�



�
	DJMMUW ’19

Planar graphs have queue-number ⩽ 49



Bounded queue-number: Sketch of proof�



�
	Dujmović, Morin, Wood ’05

If H has treewidth k then qn(H) ⩽ f (k)

�



�
	Wiechert ’17

If H has treewidth k then qn(H) ⩽ 2k − 1

Lemma

qn(H ⊠ P) ⩽ 3 qn(H) + 1 for every path P

Corollary

If G planar then G ⊆ H ⊠ P for some H with tw(H) ⩽ 8 and

some path P, thus

qn(G ) ⩽ qn(H ⊠ P) ⩽ 3 qn(H) + 1 ⩽ 3 · (28 − 1) + 1 = 766



Application: Nonrepetitive colorings

k k
repetitively colored path

Vertex coloring nonrepetitive if ∄ repetitively colored paths

�
�

�
Conjecture (Alon, Grytczuk, Ha luszczak, Riordan ’02)

Planar graphs have bounded nonrepetitive chromatic number

�



�
	Dujmović, Esperet, J., Walczak, Wood ’19

Planar graphs have nonrepetitive chromatic number ⩽ 768



Application: p-Centered colorings

p-Centered coloring of G : Vertex coloring s.t. in every connected

subgraph X of G , either some color appears exactly once on X ,

or more than p distinct colors appear on X

χp(G ) := min. number of colors in a p-centered coloring of G

�
�

�
Mi. Pilipczuk & Siebertz ’18

If G planar then χp(G ) = O(p
19)

�
�

�
Debski, Felsner, Micek, Schröder ’19

If G planar then χp(G ) = O(p
3 log p)

Best known lower bound: Ω(p2 log p)



Application: Fractional treedepth-fragility

Given G and a ⩾ 1, let r(G , a) be smallest positive integer s.t. ∃
probability distribution on 2V (G) satisfying:

1. Each v ∈ V (G ) has probability ⩽ 1
a of belonging to a

random subset

2. G − X has treedepth ⩽ r(G , a) for each X in support of the

distribution

Class of graphs G is fractionally treedepth-fragile at rate f if

r(G , a) ⩽ f (a) for all G ∈ G and a ⩾ 1

�
�

�
�

Dvǒrák & Sereni ’20

Planar graphs are fractionally treedepth-fragile at rate f (a) =
O(a3 log a)

Best known lower bound: Ω(a2 log a)



Application: Vertex rankings

Vertex ℓ-ranking of G : Coloring ϕ : V (G )→ N s.t. for every path

v1, v2, . . . , vk of length between 1 and ℓ,

ϕ(v1) ̸= ϕ(vk) or ϕ(v1) < max{ϕ(v2), . . . , ϕ(vk−1)}
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Bose, Dujmović, Javarsineh, Morin ’20

For fixed ℓ ⩾ 2, every n-vertex planar graph has an ℓ-ranking

with O(log n/ log log log n) colors, and this is best possible

Improves earlier O(log n) bound (Karpas-Neiman-Smorodinsky

’15)



Application: Twin-width
Reduction sequence of G : Pairs of vertices are successively

identified until only one vertex left

(image credit: Twin-width I)

When identifying u and v , each edge incident to exactly one of u

and v is colored red

Twin-width of G : Min. k s.t. ∃ reduction sequence where every

vertex has red degree ⩽ k at all times�



�
	Bonnet, Kim, Thomassé, Watrigant ’20

Planar graphs have twin-width O(1)



Using tripod decomposition:
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�
	Bonnet, Kwon, Wood ’22

Planar graphs have twin-width ⩽ 583
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	Jacob and Ma. Pilipczuk ’22

Planar graphs have twin-width ⩽ 183

�



�
	Bekos, Da Lozzo, Hliněný, Kaufmann ’22

Planar graphs have twin-width ⩽ 37

Using a variant, fine-tuned for twin-width:�



�
	Hliněný (June ’22)

Planar graphs have twin-width ⩽ 9
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	Hliněný (June ’22)

Planar graphs have twin-width ⩽ 9



Application: Induced-universal graphs
G is induced-universal for a set F of graphs if G contains every

member of F as an induced subgraph

What is the minimum number of vertices in an induced-universal

graph for n-vertex planar graphs?

A.k.a. adjacency labeling schemes for planar graphs

▶ O(n6) (Muller 1988)
▶ O(n4+o(1)) (Kannan, Naor, Rudich 1988)
▶ O(n2+o(1)) (Gavoille & Labourel 2007)
▶ O(n4/3+o(1)) using product structure (Bonamy, Gavoille, Mi.

Pilipczuk 2019)

�
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�

Dujmović, Esperet, J., Gavoille, Micek, Morin ’20

Induced-universal graphs with O(n1+o(1)) vertices for n-vertex

planar graphs



Application: Universal graphs

G is universal for a set F of graphs if G contains every member

of F as a subgraph (not necessarily induced)

�
�

�
What is the minimum number of edges in a universal graph for

n-vertex planar graphs?

▶ O(n3/2) (Babai, Chung, Erdős, Graham, Spencer 1982)

�
�
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�

Esperet, J., Morin ’20

Universal graphs with O(n1+o(1)) edges for n-vertex planar

graphs



Research direction 1: Improve bounds
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Dujmović, J., Micek, Morin, Ueckerdt, Wood ’19

Every planar graph is a subgraph of H ⊠ P for some graph H

with treewidth ⩽ 8 and some path P

�
�

�
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Ueckerdt, Wood, Yi ’21

Every planar graph is a subgraph of H ⊠ P for some graph H

with treewidth ⩽ 6 and some path P

What is the smallest possible bound t on the treewidth of H?

3 ⩽ t ⩽ 6



Research direction 2: Product structure for other classes
Are there other graph classes of interest that satisfy some form

of a product structure? E.g.

H ⊠ P ⊠ P ⊠ · · ·⊠ P︸ ︷︷ ︸
d

with H of bounded treewidth, P path, and d bounded

�

�

�

�
Krauthgamer-Lee ’07

Let c ⩾ 1. If ∀r all radius-r balls in a graph G have size O(r c)
then G ⊆ P ⊠ P ⊠ · · ·⊠ P︸ ︷︷ ︸

d

with d = O(c log c)

�

�

�

�
Conjecture (Wood )

If G k-nearest neighbor graph in Rd then G ⊆ H ⊠
P ⊠ P ⊠ · · ·⊠ P︸ ︷︷ ︸

d−1

for some graph H of treewidth f (k , d)

True for d = 2 (Dujmović-Morin-Wood ’19), open for d ⩾ 3
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True for d = 2 (Dujmović-Morin-Wood ’19), open for d ⩾ 3



Research direction 3: New applications

Are there other open problems about planar graphs that can be

solved using the product structure?

What about algorithmic applications?

For approximation algorithms, could the product structure lead to

better approximation ratios than, say, Baker’s technique?



Thank you!


