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Simple random walks

Let G = (V ,E ) be a connected graph, |V | = n and |E | = m.

I Given an initial vertex v0, select “at random” an adjacent
vertex v1, and move to this neighbour.

I Then select “at random” a neighbor v2 of v1, and move to it;
etc.



Simple random walks

v0 = 3



Simple random walks

3→ 4



Simple random walks

3→ 4→ 1



Simple random walks

3→ 4→ 1→ 3



Simple random walks

3→ 4→ 1→ 3→ 2→ · · ·



Simple random walks

The sequence of vertices v0, v1, v2, . . . , vk , . . . selected in this way
is a simple random walk on G .

At each step k , we have a random variable Xk taking values on V .

Hence, the random sequence

X0,X1,X2, . . . ,Xk , . . .

is a discrete time stochastic process defined on the state space V .



Simple random walks

What does “at random” mean?

If at time k we are at vertex i , choose uniformly an adjacent vertex
j ∈ Γ(i) to move to.

Let d(i) denote the degree of vertex i .

pij = P(Xk+1 = j | Xk = i) =


1

d(i)
, if ij ∈ E

0, otherwise

These transition probabilities do not depend on “time” k .



Simple random walks
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Figure: Transition probabilities



Random walks and Markov chains

The Markov property holds: conditional on the present, the future
is independent of the past.

P(Xk+1 = j | Xk = i ,Xk−1 = ik−1, . . . ,X0 = i0)

= P(Xk+1 = j | Xk = i) = pij

The random sequence of vertices visited by the walk,

X0,X1, . . . ,Xn, . . .

is a Markov chain with state space V and matrix of transition
probabilities

P = (pij )i ,j∈V



Random walks and Markov chains

P =
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Random walks and Markov chains

P is a stochastic matrix, ∑
j∈V

pij = 1

Let D be the diagonal matrix with (D)ii = 1/d(i) and A be the
adjacency matrix of G . Then

P = DA

In particular, if G is d-regular,

P =
1

d
A



Random walks and Markov chains

Let ρk be the row vector giving the probability distribution of Xk ,

ρk (i) = P(Xk = i), i ∈ V

The rule of the walk is expressed by the simple equation

ρk+1 = ρk P

That is, if ρ0 is the initial distribution from which the starting
vertex v0 is drawn,

ρk = ρ0 P
k , k ≥ 0



The stationary distribution

Since G is connected, the random walk on G corresponds to an
irreducible Markov chain.

The Perron-Frobenius theorem for nonnegative matrices implies the
existence of a unique probability distribution π, which is a positive
left eigenvector of P associated to its dominant eigenvalue λ = 1.

π = πP,

π(i) > 0 for all i ∈ V ,
∑
i∈V

π(i) = 1



The stationary distribution

If the initial vertex of the walk is drawn from π, then the
probability distribution at time k is

ρk = πPk = π

Hence, for all time k ≥ 0,

P(Xk = i) = π(i), i ∈ V

The random walk is a stationary stochastic process.



Detailed balance condition

If we find a probability distribution π which satisfies the detailed
balance condition,

π(i) pij = π(j) pji , for all i , j ∈ V ,

then it is the stationary distribution.

Certainly, if this condition is satisfied, we have for all i ∈ V ,

π(i) = π(i)
∑
j∈V

pij =
∑
j∈V

π(i) pij =
∑
j∈V

π(j) pji

that is,
π = πP



Detailed balance condition

For a random walk on G , it is straightforward to find a probability
vector satisfying the detailed balance condition,

π(i)

d(i)
=

π(j)

d(j)
= k , ij ∈ E

But
1 =

∑
i∈j

π(i) = k
∑
i∈V

d(i) = k 2m

Hence,

k =
1

2m



Detailed balance condition

Therefore,

The stationary probabilities are proportional to the degrees of the
vertices,

π(i) =
d(i)

2m
, for all i ∈ V

In particular, if G is d-regular,

π(i) =
d

2m
=

1

n
, for all i ∈ V

and π is the uniform distribution.



Time-reversibility

The detailed balance condition implies time-reversibility.

Suppose that the random walk has the stationary distribution and
consider the reversed walk

Yn = Xm−n, n = 0, 1, . . . ,m

Then,

P(Yn+1 = j | Yn = i)

=
P(Yn = i | Yn+1 = j)π(j)

π(i)
=

pji π(j)

π(i)
= pij

The reversed walk is also a Markov chain and looks the same as X .



Expected return times

The property of time-reversibility means

π(i) pij = π(j) pji

Hence, a stationary walk steps as often from i to j as from j to i .

Moreover,

π(i) pij =
1

2m
for all ij ∈ E

A random walk moves along every edge, in every given direction,
with the same frequency 1/2m.

If the random walk just passed through an edge, then the expected
number of steps before it traverses again the same edge in the
same direction is 2m.



Expected return times

A similar fact holds for vertices:

If the random walk just visited vertex i , then the expected number
of steps before it returns to i is

1

π(i)
=

2m

d(i)

When G is regular this return time is just n, the number of nodes.



Convergence to the limiting distribution

When G is non-bipartite, the Markov chain is aperiodic.

In this case, the stationary distribution is also a limiting
distribution.

If G is non-bipartite, then for any i , j ∈ V

P(Xk = j | X0 = i)→ π(j), as k →∞,

The convergence to π(j) does not depend on the initial vertex i .



Convergence to the limiting distribution

Hence,

P(Xk = j) =
∑
i∈V

P(Xk = j | X0 = i) P(X0 = i)→ π(j),

that is,
ρk → π,

independently of the initial distribution.

This is equivalent to
Pk → Π,

where Π is a stochastic matrix with all its rows equal to π.



Convergence to the limiting distribution

To prove this result, let us bring P to a symmetric form. Recall
that P = DA. Consider the symmetric matrix

N = D1/2AD1/2 = D−1/2PD1/2

which has the same eigenvalues as P,

λ1 ≥ λ2 ≥ · · · ≥ λn

Write N in spectral form

N =
n∑

r=1

λrv
T
r vr

(The row eigenvectors vr are unitary and orthogonal.)



Convergence to the limiting distribution

It is easily checked that w =
(√

d(1), . . . ,
√

d(n)
)

is a positive

eigenvector of N with eigenvalue 1.

It follows from the Perron-Frobenius Theorem that

λ1 = 1 > λ2 ≥ · · · ≥ λn ≥ −1

Moreover, if G is non-bipartite λn > −1.

Notice that v1 must be vector w normalized

v1 =
1√
2m

w =
(√

π(1), . . . ,
√
π(n)

)



Convergence to the limiting distribution

We have

Pk = D1/2 Nk D−1/2 =
n∑

r=1

λk
r D

1/2 vT
r vr D

−1/2

Notice that(
D1/2 vT

1 v1 D
−1/2

)
ij

=

√
π(i)√
d(i)

√
π(j)

√
d(j) =

d(j)

2m
= π(j)

Thus,
D1/2 vT

1 v1 D
−1/2 = Π

Then,

Pk = Π +
n∑

r=2

λk
r D

1/2 vT
r vr D

−1/2



Convergence to the limiting distribution

Hence, (
Pk
)

ij
= π(j) +

n∑
r=2

λk
r vki vkj

√
d(j)

d(i)

If G is non-bipartite, |λr | < 1 for r = 2, . . . , n. Therefore, as
k →∞,

P(Xk = j | X0 = i) =
(
Pk
)

ij
→ π(j)

Or, for any initial distribution,

P(Xk = j)→ π(j)



Convergence to the limiting distribution

Let
λ = max{|λ2|, |λn|}

Theorem

For a random walk starting at node i

|P(Xk = j)− π(j)| ≤

√
d(j)

d(i)
λk

When G is non-bipartite the convergence to the stationary
distribution is geometric with ratio λ.



Mixing rate

The mixing rate is a measure of how fast the random walk
converges to its limiting distribution,

µ = lim sup
k→∞

max
i ,j

∣∣∣∣(Pk )ij −
d(j)

2m

∣∣∣∣1/k

The number of steps before the distribution of Xk will be close to
the limiting distribution is about log n/(1− µ).

This mixing time may be much less than the number of nodes. For
an expander graph, this takes only O(log n) steps.



Mixing rate

From

|P(Xk = j)− π(j)| ≤

√
d(j)

d(i)
λk

we see that the mixing rate is at most λ.

Indeed, equality holds.

Theorem

The mixing rate of a random walk on a non-bipartite graph is

λ = max{|λ2|, |λn|}



Hitting and commute times

The access time or hitting time H(i , j) is the expected number of
steps before node j is visited, starting from node i .

In general
H(i , j) 6= H(j , i)

The commute time is

κ(i , j) = H(i , j) + H(j , i)

κ(i , j) is a symmetric parameter.



Access times for a path

Let us determine the access time for 2 vertices of a path on nodes
0, 1, . . . , n

H(k − 1, k) is one less than the expected return time of a random
walk on a path of length k , starting at the last node.

H(k − 1, k) = 2k − 1



Now, consider H(i , k), 0 ≤ i < k ≤ n.

In order to reach k, we have to reach node k − 1. From here, we
have to get to k.

H(i , k) = H(i , k − 1) + 2k − 1



Access times for a path

Hence,

H(i , k) = H(i , k − 1) + 2k − 1

= H(i , k − 2) + (2k − 3) + (2k − 1)

= · · · · · ·
= H(i , i + 1) + (2i + 3) + · · ·+ (2k − 1)

= (2i + 1) + (2i + 3) + · · ·+ (2k − 1) = k2 − i2

In particular,
H(0, k) = k2



Symmetry properties of the access times

If a graph has a vertex-transitive automorphism group, then
H(i , j) = H(j , i) for all nodes i and j .

Coppersmith, Tetali and Winkler (1993): For any three nodes i , j
and k,

H(i , j) + H(j , k) + H(k , i) = H(i , k) + H(k , j) + H(j , i)

The nodes of any graph can be ordered so that if i precedes j then
H(i , j) ≤ H(j , i).



A hitting probability

Let Ti be the first time when a random walk starting at i returns
to i and Tij the first time when it returns to i after visiting j .

Observe that Ti ≤ Tij .

Let
p = P(Ti = Tij )

be the probability that a random walk starting at i visits j before
returning to i .

Notice that

E(Ti ) =
1

π(i)
=

2m

d(i)
, E(Tij ) = κ(i , j)



A hitting probability

We have

E(Tij )− E(Ti ) = E(Tij − Ti )

= p E(Tij − Ti | Ti = Tij ) + (1− p) E(Tij − Ti | Ti < Tij )

= (1− p) E(Tij ) = E(Tij )− p E(Tij )

Hence,

p =
E(Ti )

E(Tij )
=

2m

d(i)κ(i , j)

Theorem

The probability that a random walk starting at i visits j before
returning to i is

2m

d(i)κ(i , j)



Access times and spectra

A firs-step analysis gives, for i 6= j ,

H(i , j) =
∑

k∈Γ(i)

(1 + H(k , j)) pik = 1 +
1

d(i)

∑
k∈Γ(i)

H(k , j)

and, for any i ∈ V ,

2m

d(i)
= 1 +

1

d(i)

∑
k∈Γ(i)

H(k , i)



Access times and spectra

These two equations can be put together in matrix notation.

Let H be a square matrix such that (H)ij = H(i , j) and (H)ii = 0.

Then,
H + 2mD = J + PH

That is,
(I− P)H = J− 2mD

We can not solve for H because I− P is singular.



Access times and spectra

Let
Z = (I− P + Π)−1

It is easily checked that

H = J− 2mZD + ΠH

Hence,

H(i , j) = 1− 2m

d(j)
(Z)ij + (πH)j

0 = 1− 2m

d(j)
(Z)jj + (πH)j



Access times and spectra

Thus, we can compute the access times from the fundamental
matrix Z:

H(i , j) = 2m
(Z)jj − (Z)ij

d(j)

Diagonalizing N = D−1/2PD1/2 as above we get

Theorem

H(i , j) = 2m
n∑

k=2

1

1− λk

(
v 2

kj

d(j)
−

vki vkj√
d(i)d(j)

)



Access times and spectra

Two corollaries are

Corollary

κ(i , j) = 2m
n∑

k=2

1

1− λk

(
vkj√
d(j)

− vki√
d(i)

)2

m

(
1

d(i)
+

1

d(j)

)
≤ κ(i , j) ≤ 2m

1− λ2

(
1

d(i)
+

1

d(j)

)

The difference 1− λ2 is called the spectral gap.



Cover time

The cover time (starting from a given distribution) is the expected
number of steps to reach every node.

For instance, if we start from an endnode, the cover time of the
path of length n is

H(0, n) = n2

(It suffices to reach the other endnode.)



Cover time for a complete graph

Consider a complete graph on nodes {0, . . . , n − 1}.

If we start at 0, the probability that we first reach vertex 1 in the
k-th step is (

n − 2

n − 1

)k−1 1

n − 1

This is a geometric distribution with parameter 1/(n − 1). Hence,
the expected time to reach 1 is

H(0, 1) = n − 1

(Of course, H(i , j) = H(0, 1) for any i 6= j .)



Cover time for a complete graph

Now, let Ti be the first time when i vertices have been visited,

T1 = 0 < T2 = 1 < T3 < . . . < Tn

Notice that Ti+1 − Ti is the number of steps while we wait for a
new vertex. This is an event with probability (n − i)/(n − 1).

Hence,

E(Ti+1 − Ti ) =
n − 1

n − i

Thus, the cover time is

E(Tn) =
n−1∑
i=1

E(Ti+1 − Ti ) =
n−1∑
i=1

n − 1

n − i
≈ n log n



Bounds for the cover time

It is conjectured that the graph with smallest cover time is the
complete graph.

Aldous (1989): There exists a constant c > 0 such that for every
graph with n vertices, the cover time τn satisfies

τn ≥ c n log n

provided that the starting vertex is selected at random from the
stationary distribution.



Bounds for the cover time

Feige (1995): The cover time τn from any starting node in a graph
with n nodes satisfies

τn ≥ (1− o(1)) n log n

τn ≤
(

4

27
+ o(1)

)
n3

Feige (1993): For a regular graph on n vertices,

τn ≤ 2n2



Why τn ≤ O(n3) ?

Let ij ∈ E . A firs-step analysis gives

2m

d(i)
=

1

d(i)

∑
k∈Γ(i)

(1 + H(k , i))

Hence,
2m =

∑
k∈Γ(i)

(1 + H(k , i)) ≥ 1 + H(j , i)

Therefore, the access time between the endvertices i , j of an edge
satisfies

H(j , i) < 2m



Why τn ≤ O(n3) ?

Now, consider a spanning tree T with a distinguished vertex v .

The number of steps to traverse T (starting from v), and so
covering all the vertices of G is at most 2n.

Now, start from v a random walk on G . To walk (in G ) from one
endvertex of an edge of T to its other endvertex, the expected
number of steps is at most 2m.

Therefore,

The cover time starting from any vertex v is at most 4nm. Hence,

τn ≤ 4nm



Random walks and harmonic functions

Let G = (V ,E ) be a connected graph and S ⊆ V .

A function φ : V → R is a harmonic function with boundary S if

1

d(i)

∑
j∈Γ(i)

φ(j) = φ(i)

holds for every i ∈ V \ S



Random walks and fair games

For a random walk, a harmonic function has the following
interpretation.

Suppose at a given time k the random walk is visiting vertex i .

E(φ(Xk+1) | Xk = i)

=
∑
j∈V

φ(j) pij =
1

d(i)

∑
j∈Γ(i)

φ(j) = φ(i)

Thus, the stochastic process

φ(X0), φ(X1), . . . , φ(Xk ), . . .

is a martingale with respect to X . (We are playing a fair game.)



Example: hitting probabilities

Let S = {s, t}.

Let φ(i) denote the probability that a random walk starting at i
hits s before it hits t.

By conditioning on the first step we have for every i ∈ V \ S

φ(i) =
∑
j∈V

φ(j) pij =
1

d(i)

∑
j∈Γ(i)

φ(j)

Also,
φ(s) = 1, φ(t) = 0

That is, φ is harmonic with boundary {s, t}.



Example: hitting probabilities

More generally,

Let S ⊆ V and suppose we have a function φ0 : S −→ R.

Let φ(i) be the expected valued of φ0(s), where s is the random
vertex where the random walk started at i first hits S .

Again

φ(i) =
1

d(i)

∑
j∈Γ(i)

φ(j)

and φ is harmonic with boundary S .



Random walks and electrical networks

Consider the graph G as an electrical network, where each edge
represents a unit resistance.

Suppose that an electric current is flowing through G , entering at
s and leaving at t.

This current flow is described by Kirchhoff laws.

Let φ(i) be the voltage of node i and fij be the current flowing
from node i to an adjacent node j . Ohm’s law implies

fij = φ(i)− φ(j)



Random walks and electrical networks

Kirchhoff’s current law states that the total current flowing out of
any vertex i ∈ V \ {s, t} is zero.

0 =
∑

j∈Γ(i)

fij =
∑

j∈Γ(i)

(φ(i)− φ(j)) = d(i)φ(i)−
∑

j∈Γ(i)

φ(j)

Again,

φ(i) =
1

d(i)

∑
j∈Γ(i)

φ(j)

and φ is a harmonic function with boundary {s, t}.

Harmonic functions provide an interesting connection between
random walks on graphs and electrical networks.



Properties of harmonic functions

φ(i) lies between the minimum and maximum of φ over S .

Given S ⊆ V and φ0 : S −→ R, there is a unique harmonic
function on G with boundary S extending φ0.

I existence: follows by construction.

I uniqueness: consider the maximum of the difference of two
such functions.

Uniqueness implies that the functions φ of the previous examples
(the hitting probabilities for the random walk and the potential in
the electric network) are the same.



Commute time and effective resistance

Let φ(i) be the potential of node i when we put a current through
G from s to t, where φ(s) = 1 and φ(t) = 0.

The total current entering G by s is equal to the total current
leaving it by t ∑

i∈Γ(t)

φ(i)

Thus, let

Rst =

∑
i∈Γ(t)

φ(i)

−1

be the effective resistance between nodes s and t.



Commute time and effective resistance

On the other hand, φ(i) is the probability that a random walk
starting at i visits s before t.

Therefore, the probability that a random walk starting at t hits s
before returning to t is

1

d(t)

∑
i∈Γ(t)

φ(i) =
1

d(t)Rst

But this probability is also equal to

2m

d(t)κ(s, t)



Commute time and effective resistance

Equating the two expressions,

Theorem

Consider G as an electrical network and let Rst denote the effective
resistance between nodes s and t. Then the commute time
between s and t is

κ(s, t) = 2m Rst

Adding any edge to G does not increase any resistance Rst .

Thus, by adding and edge no commute time is increased by more
than a factor (m + 1)/m.



Commute time and spanning trees

Using topological formulas from the theory of electrical networks,
we get

Corollary

Let G ′ be the graph obtained from G by identifying s and t, and
let τ(G ) denote the number of spanning trees of G . Then

κ(s, t) = 2m
τ(G ′)

τ(G )



Random walks on weighted graphs

Random walks can be generalized to graphs with weighted edges:

w : E −→ (0,∞)
e = ij 7→ wij

Let w(i) =
∑

j∈Γ(i) wij .

Now, the transition probabilities are

pij = P(Xk+1 = j | Xk = i) =


wij

w(i)
, if ij ∈ E

0, otherwise



Random walks on weighted graphs

The detailed balance condition implies

π(i)
wij

w(i)
= π(j)

wji

w(j)

But, wij = wji . Hence,

π(i)

w(i)
= k , ij ∈ E



Random walks on weighted graphs

Since
∑

i∈V π(i) = 1, we have k = 1/W , where W =
∑

i∈V w(i).

The stationary distribution is given by

π(i) =
w(i)

W
, for all i ∈ V

In the regular case, w(i) = d(i) and W = 2m.

Any reversible Markov chain on the set V can be represented by a
(general) random walk on G .



P =
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Connection with electrical networks

We may build an electrical network with diagram G , in which the
edge e has conductance we (or, equivalently, resistance 1/we).

Let s, t ∈ V be distinct vertices termed sources.

Connect a battery across the pair s, t. A current flows along the
“wires” of the network. The flow is described by Kirchhoff laws.

We can use electrical networks to analyze any reversible Markov
chain.



Infinite Markov chains: recurrence and resistance

Let G be an infinite connected graph with finite vertex-degrees and
conductances given by w .

Consider a random walk on G started from a distinguished vertex,
say vertex 0.

We want to compute the probability p that the random walk will
eventually return to 0.

If p = 1, we say that vertex 0 is recurrent. Otherwise, if p < 1, it
is transient.



Recurrence and resistance

Let
Bn = {i ∈ V : d(0, i) ≤ n}

and
∂Bn = Bn \ Bn−1 = {i ∈ V : d(0, i) = n}



Consider Gn = G [Bn] and let G n be the graph obtained from Gn by
identifying all vertices in ∂Bn in a single vertex sn.

Regard G n as an electrical network with sources sn and 0, and let
Rs0(n) be the effective resistance between these two nodes.



Recurrence and resistance

Observe that G n may be obtained from G n+1 by identifying all
vertices lying in ∂Bn and sn+1.

The identification of two vertices of a network amounts to the
addition of a resistor with 0 resistance.

Thus, it can be proved that (Rayleigh principle)

Rs0(n + 1) ≥ Rs0(n)

Therefore, the limit
Reff = lim

n→∞
Rs0(n)

exists.



Recurrence and resistance

Let

φn(i) = P(the randow walk on Gn hits ∂Bn before 0 | X0 = 0)

= P(the randow walk on G n hits sn before 0 | X0 = 0)

φn is is the unique harmonic function on Gn satisfying

φn(0) = 0, φn(j) = 1 for j ∈ ∂Bn

φn is also the potential function on G n viewed as an electrical
network with sources {sn, 0}.



Recurrence and resistance

Thus,

P(return to 0 before reaching ∂Bn | X0 = 0)

= 1−
∑

i∈Γ(0)

p0i φn(i) = 1− 1

w(0)

∑
i∈Γ(0)

w0i φn(i)

= 1− 1

w(0)
(current leaving the network at 0)

= 1− 1

w(0)Rs0(n)



Recurrence and resistance

Hence, as n→∞

P(return to 0 before reaching ∂Bn | X0 = 0)→ 1− 1

w(0)Reff

On the other hand, by the continuity of probability measures.

P(return to 0 before reaching ∂Bn | X0 = 0)

→ P(ultimate retun to 0 | X0 = 0)



Recurrence and resistance

Theorem

The probability of ultimate return to 0 is

P(Xn = 0 for some n ≥ 1 | X0 = 0) = 1− 1

w(0)Reff

As in an irreducible Markov chain all the states are either recurrent
or transient, the following result holds

Corollary

The random walk is recurrent if and only if Reff =∞.



Random walks in algorithm design

The application of random walks in algorithm design makes use of
the fact that (for connected, non-bipartite graphs) the distribution
of Xk tends to the stationary distribution π as k →∞.

Moreover, when G is regular π is the uniform distribution.

After sufficiently many steps, a node of a random walk in a regular
graph is essentially uniformly distributed.

Application to sampling from large sets with complicated structure.



Metropolis algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)
proposed a simple way to modify the random walk, so that it
converges to an arbitrary prescribed probability distribution.

Let G be a regular graph and let F : V → R+.

Suppose that at time k we are visiting vertex i .

Choose a random j ∈ Γ(i).

If F (j) ≥ F (i) then we move to j.

Else flip a biased coin and move to j only with probability
F (j)/F (i) (and stay at i with probability 1− F (j)/F (i)).



Metropolis algorithm

This modified random walk is again a reversible Markov chain. (It
can be considered as a random walk in a graph with edge-weights)

Theorem

The stationary distribution πF of the random walk on G filtered by
a function F is given by

πF (i) =
F (i)∑

j∈V F (j)
, i ∈ V



Random spanning trees

Aldous (1990) and Broader (1989) proposed a very elegant
method to select at random (with uniform distribution) a spanning
tree on a given graph G .

Start a random walk on G from an initial vertex i .

For each j ∈ V , j 6= i , mark the edge through which j is first
entered.

Let T be the set of marked edges.

Theorem

With probability 1, T is a spanning tree, and every spanning tree
occurs with the same probability.
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