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What is a expander

G = (V ,E ) a graph with n = |V | vertices and m = |E | edges.

E (X ,Y ) = {xy ∈ E : x ∈ X , y ∈ Y }, e(X ,Y ) = |E (X ,Y )|.
Isoperimetric number of G : i(G ) = min|X |≤n/2

e(X )
|X | .

A graph G is a c–expander, c > 0, if i(G ) ≥ c .

{Gk , k ∈ N} is a (d , c)–expander family if each graph is d–regular and
i(Gk) ≥ c for all k .

An expander graph is a sparse graph that has strong connectivity properties,
quantified using vertex, edge or spectral expansion.
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Existence of expanders (a bipartite version)

A random bipartite graph is a (c , d) one sided expander (superconcentrator) with
high probability.

X ,Y two sets with |X | = |Y | = n.

Choose d neighbours in Y independently at random for each vertex in X .

For S ⊂ X , |S | ≤ n/2 and T ⊂ Y , |T | ≤ c |S |, the probability that
N(X ) ⊂ Y is small.

Union bound for all (S ,T ): small probability that the graph is not a
(c , d)–expander.

O. Serra (UPC) Expanders JCALM 4 / 10



Why expanders are useful

Complexity of computation of linear transformations in finite fields by a
circuit (e.g. Fast Fourier Transform)
Leslie Valiant (1976): Superconcentrators with linear number of edges.

Error Correcting Codes
Construction of (n, k)–linear codes with minimum distance n/3d and rate
1/3d .

De–randomization of random algorithms: Design Random Polynomial
Algorithms (e.g. primality test, Rabin (1980))
Probability of failure 1/3d (Ajtai, Komlos, Szemeredi, 1987)

Network design
high connectivity and small diameter

Rapidly mixing Markov chains.

Bounds on treewidth (via separator Lemma)

...
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The eigenvalue connection
G connected d–regular graph.
L = L(G ) = dI − A Laplacian matrix of G .
0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2d Laplacian spectrum.

vTLv =
∑
ij∈E

(vi − vj)
2.

S ⊂ V → 1T
S L1S =

∑
ij∈E (1S(vi )− 1S(vj))2 = e(S).

Rayleigh-Ritz (Courant–Fisher) inequalities: µ1 = minv⊥1,|v |=1 v
TLv

vS(i) =

{
|V \ S |, vi ∈ S
|S |, vi ∈ V \ S , → µ1 ≤ e(S)|V |

|S||V\S| .

Every connected d–regular graph is a (µ1/2)–expander.

Every c–expander satisfies µ1 ≥ c2/2d .

O. Serra (UPC) Expanders JCALM 6 / 10



The eigenvalue connection
G connected d–regular graph.
L = L(G ) = dI − A Laplacian matrix of G .
0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2d Laplacian spectrum.

vTLv =
∑
ij∈E

(vi − vj)
2.

S ⊂ V → 1T
S L1S =

∑
ij∈E (1S(vi )− 1S(vj))2 = e(S).

Rayleigh-Ritz (Courant–Fisher) inequalities: µ1 = minv⊥1,|v |=1 v
TLv

vS(i) =

{
|V \ S |, vi ∈ S
|S |, vi ∈ V \ S , → µ1 ≤ e(S)|V |

|S||V\S| .

Every connected d–regular graph is a (µ1/2)–expander.

Every c–expander satisfies µ1 ≥ c2/2d .

O. Serra (UPC) Expanders JCALM 6 / 10



The eigenvalue connection
G connected d–regular graph.
L = L(G ) = dI − A Laplacian matrix of G .
0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2d Laplacian spectrum.

vTLv =
∑
ij∈E

(vi − vj)
2.

S ⊂ V → 1T
S L1S =

∑
ij∈E (1S(vi )− 1S(vj))2 = e(S).

Rayleigh-Ritz (Courant–Fisher) inequalities: µ1 = minv⊥1,|v |=1 v
TLv

vS(i) =

{
|V \ S |, vi ∈ S
|S |, vi ∈ V \ S , → µ1 ≤ e(S)|V |

|S||V\S| .

Every connected d–regular graph is a (µ1/2)–expander.

Every c–expander satisfies µ1 ≥ c2/2d .

O. Serra (UPC) Expanders JCALM 6 / 10



The eigenvalue connection
G connected d–regular graph.
L = L(G ) = dI − A Laplacian matrix of G .
0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2d Laplacian spectrum.

vTLv =
∑
ij∈E

(vi − vj)
2.

S ⊂ V → 1T
S L1S =

∑
ij∈E (1S(vi )− 1S(vj))2 = e(S).

Rayleigh-Ritz (Courant–Fisher) inequalities: µ1 = minv⊥1,|v |=1 v
TLv

vS(i) =

{
|V \ S |, vi ∈ S
|S |, vi ∈ V \ S , → µ1 ≤ e(S)|V |

|S||V\S| .

Every connected d–regular graph is a (µ1/2)–expander.

Every c–expander satisfies µ1 ≥ c2/2d .

O. Serra (UPC) Expanders JCALM 6 / 10



The eigenvalue connection
G connected d–regular graph.
L = L(G ) = dI − A Laplacian matrix of G .
0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2d Laplacian spectrum.

vTLv =
∑
ij∈E

(vi − vj)
2.

S ⊂ V → 1T
S L1S =

∑
ij∈E (1S(vi )− 1S(vj))2 = e(S).

Rayleigh-Ritz (Courant–Fisher) inequalities: µ1 = minv⊥1,|v |=1 v
TLv

vS(i) =

{
|V \ S |, vi ∈ S
|S |, vi ∈ V \ S , → µ1 ≤ e(S)|V |

|S||V\S| .

Every connected d–regular graph is a (µ1/2)–expander.

Every c–expander satisfies µ1 ≥ c2/2d .

O. Serra (UPC) Expanders JCALM 6 / 10



The eigenvalue connection
G connected d–regular graph.
L = L(G ) = dI − A Laplacian matrix of G .
0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2d Laplacian spectrum.

The Cheeger inequality

v eigenvector of µ1, u = v+ = (max(vi , 0), 1 ≤ i ≤ n), supp(v+) ≤ n/2.∑
ij∈E (u(i)2 − u(j)2) ≤

√
2d |u|

√
uTLu.∑

ij∈E (u(i)2 − u(j)2) ≥ i(G )|u|2.

Lu(i) ≤ Lv(i) = µ1v(i) → uTLu =
∑

i∈V u(i)(Lu(i)) ≤ µ1|u|.

Every connected d–regular graph is a (µ1/2)–expander.

Every c–expander satisfies µ1 ≥ c2/2d .

O. Serra (UPC) Expanders JCALM 6 / 10



The eigenvalue connection
G connected d–regular graph.
L = L(G ) = dI − A Laplacian matrix of G .
0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2d Laplacian spectrum.

The Cheeger inequality

v eigenvector of µ1, u = v+ = (max(vi , 0), 1 ≤ i ≤ n), supp(v+) ≤ n/2.∑
ij∈E (u(i)2 − u(j)2) ≤

√
2d |u|

√
uTLu.∑

ij∈E (u(i)2 − u(j)2) ≥ i(G )|u|2.

Lu(i) ≤ Lv(i) = µ1v(i) → uTLu =
∑

i∈V u(i)(Lu(i)) ≤ µ1|u|.

Every connected d–regular graph is a (µ1/2)–expander.

Every c–expander satisfies µ1 ≥ c2/2d .

O. Serra (UPC) Expanders JCALM 6 / 10



The eigenvalue connection
G connected d–regular graph.
L = L(G ) = dI − A Laplacian matrix of G .
0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2d Laplacian spectrum.

The Cheeger inequality

v eigenvector of µ1, u = v+ = (max(vi , 0), 1 ≤ i ≤ n), supp(v+) ≤ n/2.∑
ij∈E (u(i)2 − u(j)2) ≤

√
2d |u|

√
uTLu.∑

ij∈E (u(i)2 − u(j)2) ≥ i(G )|u|2.

Lu(i) ≤ Lv(i) = µ1v(i) → uTLu =
∑

i∈V u(i)(Lu(i)) ≤ µ1|u|.

Every connected d–regular graph is a (µ1/2)–expander.

Every c–expander satisfies µ1 ≥ c2/2d .

O. Serra (UPC) Expanders JCALM 6 / 10



The eigenvalue connection
G connected d–regular graph.
L = L(G ) = dI − A Laplacian matrix of G .
0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2d Laplacian spectrum.

Algebraic definition of expanders

A family {Gk : k ∈ N} of d–regular graphs is a (d , β)–expanding if µ1(Gk) ≥ β
for all k.

Every connected d–regular graph is a (µ1/2)–expander.

Every c–expander satisfies µ1 ≥ c2/2d .
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The spectral gap
How large can be µ1 (i.e., how small can be λ1 second largest eigenvalue of A)

For a connected d–regular graph G

λ1(G ) ≥ 2
√
d − 1− 2

√
d − 1− 1

b
,

where D(G ) ≥ 2b + 2 ≥ 4. (Alon, 1991)
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For a connected d–regular graph G

λ1(G ) ≥ 2
√
d − 1− 2

√
d − 1− 1

b
,

where D(G ) ≥ 2b + 2 ≥ 4. (Alon, 1991)

Choose x , y ∈ V , d(x , y) = 2b + 2.

Define u(z) =

 ai , d(z , x) = i ≤ b;
bi , d(z , y) = i ≤ b;
0, otherwsie.

,

ai = α/(d − 1)(i−1)/2, bi = β/(d − 1)(i−1)/2 and u ⊥ 1.

d−λ1

Courant−Fisher
≤ 1

|u|u
TLu

L−formula
≤ 1+(d−1)−2

√
d − 1+(2

√
d − 1−1)b.
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For a connected d–regular graph G

λ1(G ) ≥ 2
√
d − 1− 2

√
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b
,

where D(G ) ≥ 2b + 2 ≥ 4. (Alon, 1991)

For every family {Gk , k ∈ N} of d–regular graphs

lim inf
k→∞

λ1(Gk) ≥ 2
√
d − 1.

(Alon, Boppana (1990))

A Ramanujan graph is a d–regular graph with

λ1 ≤ 2
√
d − 1.

(Lubotzky, Phillips, Sarnak, 1988)
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Some additional properties

G connected nonbipartite d-regular graph with n vertices

Spectral bound on the diameter

D ≤ log(n − 1)

log(d/λ)
, λ = max{|λ1|, |λn−1|}

(Chung, 1989)
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G connected nonbipartite d-regular graph with n vertices

Spectral bound on the diameter

D ≤ log(n − 1)

log(d/λ)
, λ = max{|λ1|, |λn−1|}

(Chung, 1989)

Am > 0⇒ D ≤ m.

A =
∑n−1

i=0 λiuiu
T
i spectral decomposition with orthonormal spectral basis.

Am(x , y) =
∑n−1

i=0 λi (uiu
T
i )(x , y) ≥ dm/m − |

∑
i≥1 λiui (x)uTi (y)|.

|
∑

i≥1 λiui (x)uTi (y)| ≤ λm(
∑

i≥1 ui (x)2)1/2(
∑

i≥1 ui (y)2)1/2 ≤ λm(1− 1/n).
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Some additional properties

G connected nonbipartite d-regular graph with n vertices

Spectral bound on the diameter

D ≤ log(n − 1)

log(d/λ)
, λ = max{|λ1|, |λn−1|}

(Chung, 1989)

Expander families have D = O(log n)
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Some additional properties

G connected nonbipartite d-regular graph with n vertices

The Expander Mixing Lemma

For every S ,T ⊂ V

|e(S ,T )− d |S ||T |
n
| ≤ λ

√
|S ||T |
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G connected nonbipartite d-regular graph with n vertices

The Expander Mixing Lemma

For every S ,T ⊂ V

|e(S ,T )− d |S ||T |
n
| ≤ λ

√
|S ||T |

e(S ,T ) = 1SA1T =
∑

i λiaibi = d |S||T |n +
∑

i≥1 λiaibi .

|e(S ,T )− d |S||T |n | ≤ λ|a||b| = λ
√
|S ||T |
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Some additional properties

G connected nonbipartite d-regular graph with n vertices

The Expander Mixing Lemma

For every S ,T ⊂ V

|e(S ,T )− d |S ||T |
n
| ≤ λ

√
|S ||T |

Expander families are close to random
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Explicit constructions

Ramanujan graphs with unbounded degree:
Kn(λ = 1),Payley(p) (λ =

√
p), ...

Margulis; Gabber and Galil (1981): 8–regular graphs with m2 vertices and
λ < 8.

Margulis (1988), Lubotzky, Phillips, Sarnak (1988): Appropriate quotients of
infinite d–ary tree.

Reingold, Vadhan, Widgerson (2003): Combinatorial iterative construction
(the zigzag product)

Friedman (1991): A random d–regular graph has
λ ≤ 2

√
d − 1 + 2 log d + O(1).
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(the zigzag product)

Friedman (1991): A random d–regular graph has
λ ≤ 2

√
d − 1 + 2 log d + O(1).

V = Zm × Zm, (x , y)→


(x ± y , y),
(x ± (y + 1), y),
(x , y ± x),
(x , y ± (x + 1)),
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Fix p ≡ 1 (mod 4) and let q ≡ 1 (mod 4) primes.

S =

{(
a + ub c + ud
−c + ud a− ub

)
,

a2 + b2 + c2 + d2 = p, a > 0;
u2 ≡ −1 (mod q).

}
Cay(PGL2(Z/qZ),S) is a Ramanujan graph with degree p + 1.
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Explicit constructions
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G (n,m, α)
H(m, d , β)0

→ G
zz
× H(nm, d2, α + β)

G1 = H2, H(d2, d , 1/2)

Gn+1 = G 2
n

zz
× H

Gn, (4n, d2, 1/2)
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