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Abstract
Several algorithmic meta-theorems on kernelization have appeared in the last years, starting with the
result of Bodlaender et al. [FOCS 2009] on graphs of bounded genus, then generalized by Fomin et al.
[SODA 2010] to graphs excluding a fixed minor, and by Kim et al. [ICALP 2013] to graphs excluding a
fixed topological minor. Typically, these results guarantee the existence of linear or polynomial kernels
on sparse graph classes for problems satisfying some generic conditions but, manly due to their generality,
it is not known how to derive from them constructive kernels with explicit constants.

In this paper we make a step toward a fully constructive meta-kernelization theory on sparse graphs.
Our approach is based on a more explicit protrusion replacement machinery that, instead of expressibility
in CMSO logic, uses dynamic programming, which allows us to find an explicit upper bound on the size of
the derived kernels. We demonstrate the usefulness of our techniques by providing the first explicit linear
kernels for r-Dominating Set and r-Scattered Set on apex-minor-free graphs, and for Planar-F-
Deletion and Planar-F-Packing on graphs excluding a fixed (topological) minor in the case where
all the graphs in F are connected.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and Problems.
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1 Introduction

Motivation. Parameterized complexity deals with problems whose instances I come equipped with
an additional integer parameter k, and the objective is to obtain algorithms whose running time is of
the form f(k) · poly(|I|), where f is some computable function (see [16, 18] for an introduction to
the field). We will be only concerned with problems defined on graphs. A fundamental notion in
parameterized complexity is that of kernelization, which asks for the existence of polynomial-time
preprocessing algorithms that produce equivalent instances whose size depends exclusively (preferably
polynomially or event linearly) on k. Finding kernels of size polynomial or linear in k (called linear
kernels) is one of the major goals of this area.

An influential work in this direction was the linear kernel of Alber et al. [2] for Dominating Set
on planar graphs, which was generalized by Guo and Niedermeier [22] to a family of problems on
planar graphs. Several algorithmic meta-theorems on kernelization have appeared in the last years,
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starting with the result of Bodlaender et al. [7] on graphs of bounded genus. After that, similar
results have been obtained on larger sparse graph classes, such as graphs excluding a minor [20] or a
topological minor [25].

Typically, the above results guarantee the existence of linear or polynomial kernels on sparse
graph classes for a number of problems satisfying some generic conditions but, mainly due to their
generality, it is hard to derive from them constructive kernels with explicit constants. The main
reason behind this non-constructibility is that the proofs rely on a property of problems called Finite
Integer Index (FII) that, roughly speaking, allows to replace large “protrusions” (i.e., large subgraphs
with small boundary to the rest of the graph) with “equivalent” subgraphs of constant size. This
substitution procedure is known as protrusion replacer, and while its existence has been proved, so
far, there is no generic way to construct it. Using the technology developed in [7], there are cases
where protrusion replacements can become constructive given the expressibility of the problem in
Counting Monadic Second Order (CMSO) logic. This approach is essentially based on extensions of
Courcelle’s theorem [12] that, even when they offer constructibility, it is hard to extract from them
any explicit constant that upper-bounds the size of the derived kernel.

Results and techniques. In this article we tackle the above issues and make a step toward a
fully constructive meta-kernelization theory on sparse graphs with explicit constants. For this, we
essentially substitute the algorithmic power of CMSO logic with that of dynamic programming on
graphs of bounded decomposability (i.e., bounded treewidth). Our approach provides a dynamic
programming framework able to construct a protrusion replacer for a wide variety of problems.

Loosely speaking, the framework that we present can be summarized as follows. First of all, we
propose a general definition of a problem encoding for the tables of dynamic programming when
solving parameterized problems on graphs of bounded treewidth. Under this setting, we provide
general conditions on whether such an encoding can yield a protrusion replacer. While our framework
can also be seen as a possible formalization of dynamic programming, our purpose is to use it for
constructing protrusion replacement algorithms and linear kernels whose size is explicitly determined.

In order to obtain an explicit linear kernel for a problem Π, the main ingredient is to prove that
when solving Π on graphs of bounded treewidth via dynamic programming, we can use tables such
that the maximum difference between all the values that need to be stored is bounded by a function
of the treewidth. For this, we prove in Theorem 13 that when the input graph excludes a fixed graph
H as a (topological) minor, this condition is sufficient for constructing an explicit protrusion replacer
algorithm, i.e., a polynomial-time algorithm that replaces a large protrusion with an equivalent one
whose size can be bounded by an explicit constant. Such a protrusion replacer can then be used, for
instance, whenever it is possible to compute a linear protrusion decomposition of the input graph
(that is, an algorithm that partitions the graph into a part of size linear in O(k) and a set of O(k)
protrusions). As there is a wealth of results for constructing such decompositions [7,19,20,25], we
can use them as a starting point and, by applying dynamic programming, obtain an explicit linear
kernel for Π.

We demonstrate the usefulness of this general strategy by providing the first explicit linear kernels
for four distinct families of problems on sparse graph classes. On the one hand, for each integer
r > 1, we provide a linear kernel for r-Dominating Set and r-Scattered Set on graphs excluding
a fixed apex graph H as a minor. Moreover, for each finite family F of connected graphs containing
at least one planar graph, we provide a linear kernel for Planar-F-Deletion on graphs excluding
a fixed graph H as a topological minor, and for Planar-F-Packing on graphs excluding a fixed
graph H as a minor. We chose these families of problems as they are all tuned by a secondary
parameter that is either the constant r or the size of the graphs in the family F . That way, we not
only capture a wealth of parameterized problems, but we also make explicit the contribution of the
secondary parameter in the size of the derived kernels.
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Organization of the paper. For the reader not familiar with the background used in previous
work on this topic [7,20,25], some preliminaries can be found in Appendix A, including graph minors,
parameterized problems, (rooted) tree-decompositions, boundaried graphs, the canonical equivalence
relation ≡Π,t for a problem Π and an integer t, FII, protrusions, and protrusion decompositions. In
Section 2 we introduce the basic definitions of our framework and present an explicit protrusion
replacer. In Section 3 we show how to apply our methodology to various problems, and we conclude
with some directions for further research in Section 4. Due to space limitations, the proofs of the
results marked with ‘[?]’ have been moved to the appendix.

2 An explicit protrusion replacer

In this section we present our strategy to construct an explicit protrusion replacer via dynamic
programming. For a positive integer t, we define Ft as the class of all t-boundaried graphs of
treewidth at most t− 1 that have a rooted tree-decomposition with all boundary vertices contained
in the root-bag. We will restrict ourselves to parameterized graph problems such that a solution can
be certified by a subset of vertices.

I Definition 1 (Vertex-certifiable problem). A parameterized graph problem Π is called vertex-
certifiable if there exists a language LΠ (called certifying language for Π) defined on pairs (G,S),
where G is a graph and S ⊆ V (G), such that (G, k) is a Yes-instance of Π if and only if there exists
a subset S ⊆ V (G) with |S| 6 k (or |S| > k, depending on the problem) such that (G,S) ∈ LΠ.

Many graph problems are vertex-certifiable, like r-Dominating Set, Feedback Vertex Set,
or Treewidth-t Vertex Deletion. This section is structured as follows. In Subsection 2.1 we
define the notion of encoder, the main object that will allow us to formalize in an abstract way
the tables of dynamic programming. In Subsection 2.2 we use encoders to define an equivalence
relation on graphs in Ft that, under some natural technical conditions, will be a refinement of the
canonical equivalence relation defined by a problem Π (see Definition 22 in Appendix A). This refined
equivalence relation allows us to provide an explicit upper bound on the size of its representatives
(Lemma 11), as well as a linear-time algorithm to find them (Lemma 12). In Subsection 2.3 we use
the previous ingredients to present an explicit protrusion replacement rule (Theorem 13), which
replaces a large enough protrusion with a bounded-size representative from its equivalence class, in
such a way that the parameter does not increase.

2.1 Encoders
The Dominating Set problem, as a vertex-certifiable problem, will be used hereafter as a running
example to illustrate our general framework and definitions. Let us start with a description of
dynamic programming tables for Dominating Set on graphs of bounded treewidth.

Running example: Let B be a bag of a rooted tree-decomposition (T,X ) of width t− 1 of a graph
G ∈ Ft. The dynamic programming (DP) tables for Dominating Set can be defined as follows.
The entries of the DP-table for B are indexed by the set of tuples R ∈ {0, ↑ 1, ↓ 1}|B|, so-called
encodings. The coordinates of each |B|-tuple are in one-to-one correspondence with the vertices of B.
For a vertex v ∈ B, we denote by R(v) its corresponding coordinate in the encoding R. A subset
S ⊆ V (GB) is a partial dominating set satisfying R if the following conditions are satisfied:
∀v ∈ V (GB) \B, dGB

(v, S) 6 1; and
∀v ∈ B: R(v) = 0 ⇒ v ∈ S, and R(v) =↓ 1 ⇒ dGB

(v, S) 6 1.
Observe that if S is a partial dominating set satisfying R, then {v ∈ B | R(v) = 0} ⊆ S, but S may
also contain vertices with R(v) 6= 0. Likewise, the vertices that are not (yet) dominated by S are
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contained in the set {v ∈ B | R(v) =↑ 1}. �

The following definition considers the tables of dynamic programming in an abstract way.

I Definition 2 (Encoder). An encoder E is a pair (C, LC) where
(i) C is a function that, for each (possibly empty) finite subset I ⊆ N+, outputs a (possibly empty)

finite set C(I) of strings over some alphabet. Each R ∈ C(I) is called a C-encoding of I; and
(ii) LC is a computable language whose strings encode triples (G,S,R), where G is a boundaried

graph, S ⊆ V (G), and R ∈ C(Λ(G)). If (G,R, S) ∈ LC , we say that S satisfies the C-encoding R.

Running example: Each rooted graph GB can be naturally viewed as a |B|-boundaried graph
such that B = ∂(GB) with I = Λ(GB). Let EDS = (CDS, LCDS) be the encoder described above
for Dominating Set. The tables of the dynamic programming algorithm to solve Dominating
Set are obtained by assigning to every CDS-encoding (that is, DP-table entry) R ∈ CDS(I), the
size of a minimum partial dominating set satisfying R, or +∞ if such a set of vertices does not
exist. This defines a function fEDS

G : CDS(I) → N ∪ {+∞}. Observe that if B = ∂(GB) = ∅, then
the value assigned to the encodings in CDS(∅) is indeed the size of a minimum dominating set of GB . �

For a general minimization problem Π, we will only be interested in encoders that permit to
solve Π via dynamic programming. More formally, we define a Π-encoder and the values assigned
to the encodings as follows. (Maximization problems are treated similarly, see Appendix B for the
corresponding definitions of the functions fEG and fE,g

G defined below. The other definitions of this
section remain unchanged.)

I Definition 3 (Π-encoder and its associated function). Let Π be a vertex-certifiable minimization
problem.
(i) An encoder E = (C, LC) is a Π-encoder if C(∅) consists of a single C-encoding, namely R∅, such that

for every 0-boundaried graph G and every S ⊆ V (G), (G,S,R∅) ∈ LC if and only if (G,S) ∈ LΠ.
(ii) Let G be a t-boundaried graph with Λ(G) = I. We define the function fEG : C(I)→ N∪{+∞} as

fEG(R) = min{k : ∃S ⊆ V (G), |S| 6 k, (G,S,R) ∈ LC}. (1)

In Equation (1), if such a set S does not exist, we set fEG(R) := +∞. We define C∗G(I) := {R ∈
C(I) | fEG(R) 6= +∞}.

Condition (i) in Definition 3 guarantees that, when the considered graph G has no boundary, the
language of the encoder is able to certify a solution of problem Π. In other words, we ask that the
set {(G,S) | (G,S,R∅) ∈ LC)} is a certifying language for Π. Observe that for a 0-boundaried graph
G, the function fEG(R∅) outputs the minimum size of a set S such that (G,S) ∈ LΠ.

The following definition provides a way to control the number of possible distinct values assigned
to encodings. This property will play a similar role to FII or monotonicity in previous work [7,20,25].

I Definition 4 (Confined encoding). An encoder E is g-confined if there exists a function g : N→ N

such that for any t-boundaried graph G with Λ(G) = I it holds that either C∗G(I) = ∅ or

max
R∈C∗

G
(I)
fEG(R) − min

R∈C∗
G

(I)
fEG(R) 6 g(t). (2)

See Fig. 1 in Appendix C for a schematic illustration of a confined encoder. In this figure, each
column of the table corresponds to a C-encoder R, which is filled with the value fEG(R).

Running example: It is easy to observe that the encoder EDS described above is g-confined for
g(t) = t. Indeed, let G be a t-boundaried graph (corresponding to the graph GB considered before)
with Λ(G) = I. Consider an arbitrary encoding R ∈ C(I) and the encoding R0 ∈ C(I) satisfying
R0(v) = 0 for every v ∈ ∂(G). Let S0 ⊆ V (G) be a minimum-sized partial dominating set satisfying
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R0, i.e., such that (G,S0, R0) ∈ LCDS . Observe that S0 also satisfies R, i.e., (G,S0, R) ∈ LCDS . It
then follows that fEDS

G (R0) = maxR f
EDS
G (R). Moreover, let S ⊆ V (G) be a minimum-sized partial

dominating set satisfying R, i.e., such that (G,S,R) ∈ LCDS
. Then note that R0 is satisfied by the

set S ∪ ∂(G), so we have that for every encoding R, fEDS
G (R) + |∂(G)| > fEDS

G (R0). It follows that
fEDS

G (R0)−minR f
EDS
G (R) 6 |∂(G)| 6 t, proving that the encoder is indeed g-confined. �

For some problems and encoders, we may need to “force” the confinement of an encoder E that
may not be confined according to Definition 4, while still preserving its usefulness for dynamic
programming, in the sense that no relevant information is removed from the tables (for example, see
the encoders for r-Scattered Set and Planar-F-Packing in the appendix). To this end, given a
function g : N→ N, we define the function fE,g

G : C(I)→ N ∪ {+∞} as

fE,g
G (R) =

{
+∞, if fEG(R)− g(t) > minR∈C(I) f

E
G(R)

fEG(R), otherwise. (3)

Intuitively, one shall think as the function fE,g
G as a “compressed” version of the function fEG,

which stores only the values that are useful for performing dynamic programming.

2.2 Equivalence relations and representatives
An encoder E together with a function g : N→ N define an equivalence relation ∼E,g,t on graphs in
Ft as follows.

I Definition 5 (Equivalence relation ∼E,g,t). Let E be an encoder, let g : N→ N, and let G1, G2 ∈ Ft.
We say that G1 ∼E,g,t G2 if and only if Λ(G1) = Λ(G2) =: I and there exists an integer c, depending
only on G1 and G2, such that for every C-encoding R ∈ C(I) it holds that

fE,g
G1

(R) = fE,g
G2

(R) + c. (4)

Note that if there exists R ∈ C(I) such that fE,g
G1

(R) 6=∞, then the integer c satisfying Equation (4)
is unique, otherwise every integer c satisfies Equation (4). We define the following function ∆E,g,t :
Ft ×Ft → Z, which is called, following the terminology from Bodlaender et al. [7], the transposition
function for the equivalence relation ∼E,g,t.

∆E,g,t(G1, G2) =


c, if G1 ∼E,g,t G2 and Eq. (4) holds for a unique integer c;
0, if G1 ∼E,g,t G2 and Eq. (4) holds for every integer; and

undefined otherwise
(5)

If we are dealing with a problem defined on a graph class G, the protrusion replacement rule has
to preserve the class G, as otherwise we would obtain a bikernel instead of a kernel. That is, we
need to make sure that, when replacing a graph in Ft ∩ G with one of its representatives, we do not
produce a graph that does not belong to G anymore. To this end, we define an equivalence relation
∼E,g,t,G on graphs in Ft ∩ G, which refines the equivalence relation ∼E,g,t of Definition 5.

I Definition 6 (Equivalence relation ∼E,g,t,G). Let G be a class of graphs and let G1, G2 ∈ Ft ∩ G.
(i) G1 ∼G,t G2 if and only if for any t-boundaried graph H, G1 ⊕H ∈ G if and only if G2 ⊕H ∈ G.
(ii) G1 ∼E,g,t,G G2 if and only if G1 ∼E,g,t G2 and G1 ∼G,t G2.

It is well-known by Büchi’s theorem that regular languages are precisely those definable in Monadic
Second Order logic (MSO logic). By Myhill-Nerode’s theorem, it follows that if the membership in a
graph class G can be expressed in MSO logic, then the equivalence relation ∼G,t has a finite number
of equivalence classes (see for instance [16,18]). However, we do not have in general an explicit upper
bound on the number of equivalence classes of ∼G,t, henceforth denoted by rG,t. Fortunately, in
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the context of our applications in Section 3, where G will be a class of graphs that exclude some
fixed graph as a (topological) minor1, this will always be possible, and in this case it holds that
rG,t 6 2t log t · ht · 2h2 .

For an encoder E = (C, LC), we let sE(t) := maxI⊆{1,...,t} |C(I)|, where |C(I)| denotes the number
of C-encodings in C(I). The following lemma gives an upper bound on the number of equivalence
classes of ∼E,g,t,G , which depends also on rG,t.

I Lemma 7. Let G be a graph class whose membership can be expressed in MSO logic. For
any encoder E, any function g : N → N, and any positive integer t, the equivalence relation
∼E,g,t,G has finite index. More precisely, the number of equivalence classes of ∼E,g,t,G is at most
r(E , g, t,G) := (g(t) + 2)sE(t) · 2t · rG,t.

Proof: Let us first show that the equivalence relation ∼E,g,t has finite index. Indeed, let I ⊆ {1, . . . , t}.
By definition, we have that for any graph G ∈ Ft with Λ(G) = I, the function fE,g

G can take at most
g(t) + 2 distinct values (g(t) + 1 finite values and possibly the value +∞). Therefore, it follows
that the number of equivalence classes of ∼E,g,t containing all graphs G in Ft with Λ(G) = I is at
most (g(t) + 2)|C(I)|. As the number of subsets of {1, . . . , t} is 2t, we deduce that the overall number
of equivalence classes of ∼E,g,t is at most (g(t) + 2)sE(t) · 2t. Finally, since the equivalence relation
∼E,t,G is the Cartesian product of the equivalence relations ∼E,g,t and ∼G,t, the result follows from
the fact that G can be expressed in MSO logic. �

In order for an encoding E and a function g to be useful for performing dynamic programming on
graphs in Ft that belong to a graph class G, we introduce the following definition, which captures
the natural fact that the tables of a dynamic programming algorithm should depend exclusively
on the tables of the descendants in a rooted tree-decomposition. Before moving to the definition,
we note that given a graph G ∈ Ft and a rooted tree-decomposition (T,X ) of G such that ∂(G) is
contained in the root-bag of (T,X ), the labels of ∂(G) can be propagated in a natural way to the
bags of (T,X ). Therefore, for any node x of T , the graph Gx can be naturally seen as a graph in Ft.
(A brief discussion can be found in Appendix F, and we refer to [7] for more details.)

I Definition 8 (DP-friendly equivalence relation). An equivalence relation ∼E,g,t,G is DP-friendly if
for any graph G ∈ Ft and any rooted tree-decomposition (T,X ) of G such that ∂(G) is contained in
the root-bag of (T,X ), and for any descendant x of the root r of T , if G′ is the graph obtained from
G by replacing the graph Gx ∈ Ft with a graph G′x ∈ Ft such that Gx ∼E,g,t,G G

′
x, then G′ satisfies

the following conditions:
(i) G ∼E,g,t,G G

′; and
(ii) ∆E,g,t(G,G′) = ∆E,g,t(Gx, G

′
x).

In Definition 8, as well as in the remainder of the article, when we replace the graph Gx with the
graph G′x, we do not remove from G any of the edges with both endvertices in the boundary of Gx.
That is, G′ = (G− (V (Gx)− ∂(V (Gx))))⊕G′x.

Recall that for the protrusion replacement to be valid for a problem Π, the equivalence relation
∼E,g,t,G needs to be a refinement of the canonical equivalence relation ≡Π,t (note that this implies, in
particular, that if ∼E,g,t,G has finite index, then Π has FII). The next lemma states a sufficient condi-
tion for this property, and furthermore it gives the value of the transposition constant ∆Π,t(G1, G2),
which will be needed in order to update the parameter after the replacement.

1 A particular case of the classes of graphs whose membership can be expressed in MSO logic. We would like to
stress here that we rely on the expressibility of the graph class G in MSO logic, whereas in previous work [7,20,25]
what is used in the expressibility in CMSO logic of the problems defined on a graph class.
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I Lemma 9. [?] Let Π be a vertex-certifiable problem. If E is a Π-encoder and ∼E,g,t,G is a DP-
friendly equivalence relation, then for any two graphs G1, G2 ∈ Ft such that G1 ∼E,g,t,G G2, it holds
that G1 ≡Π,t G2 and ∆Π,t(G1, G2) = ∆E,g,t(G1, G2).

The following definition will be important to guarantee that, when applying our protrusion
replacement rule, the parameter of the problem under consideration does not increase.

I Definition 10 (Progressive representatives of ∼E,g,t,G). Let C be some equivalence class of ∼E,g,t,G
and let G ∈ C. We say that G is a progressive representative of C if for any graph G′ ∈ C it holds
that ∆E,g,t(G,G′) 6 0.

In the next lemma we provide an upper bound on the size of a smallest progressive representative
of any equivalence class of ∼E,g,t,G .

I Lemma 11. [?] Let G be a graph class whose membership can be expressed in MSO logic. For any
encoder E, any function g : N→ N, and any t ∈ N such that ∼E,g,t,G is DP-friendly, every equivalence
class of ∼E,g,t,G has a progressive representative of size at most b(E , g, t,G) := 2r(E,g,t,G)+1 · t, where
r(E , g, t,G) is the function defined in Lemma 7.

The next lemma states that if one is given an upper bound on the size of the progressive
representatives of an equivalence relation defined on t-protrusions (that is, on graphs in Ft)2, then a
small progressive representative of a t-protrusion can be explicitly calculated in linear time. In other
words, it provides a generic and constructive way to perform a dynamic programming procedure
to replace protrusions, without needing to deal with the particularities of each encoder in order to
compute the tables. Its proof uses some ideas taken from [7,20].

I Lemma 12. [?] Let G be a graph class, let E be an encoder, let g : N → N, and let t ∈ N such
that ∼E,g,t,G is DP-friendly. Assume that we are given an upper bound b on the size of a smallest
progressive representative of any equivalence class of ∼E,g,t,G. Then, given an n-vertex t-protrusion
G, we can output in time O(n) a t-protrusion H of size at most b such that G ∼E,g,t,G H and the
corresponding transposition constant ∆E,g,t(H,G) with ∆E,g,t(H,G) 6 0, where the hidden constant
in the “O” notation depends only on E , g, b,G, and t.

2.3 Explicit protrusion replacer
We are now ready to piece everything together and state our main technical result, which can be
interpreted as a generic constructive way of performing protrusion replacement with explicit size
bounds. For our algorithms to be fully constructive, we restrict G to be the class of graphs that
exclude some fixed graph H as a (topological) minor.

I Theorem 13. Let H be a fixed graph and let G be the class of graphs that exclude H as a (topological)
minor. Let Π be a vertex-certifiable parameterized graph problem defined on G, and suppose that
we are given a Π-encoder E, a function g : N → N, and an integer t ∈ N such that ∼E,g,t,G is
DP-friendly. Then, given an input graph (G, k) and a t-protrusion Y in G, we can compute in time
O(|Y |) an equivalent instance ((G − (Y − ∂(Y ))) ⊕ Y ′, k′), where k′ 6 k and Y ′ is a t-protrusion
with |Y ′| 6 b(E , g, t,G), where b(E , g, t,G) is the function defined in Lemma 11.

Proof: By Lemma 7, the number of equivalence classes of the equivalence relation ∼E,g,t,G is finite,
and by Lemma 11 the size of a smallest progressive representative of any equivalence class of ∼E,g,t,G
is at most b(E , g, t,G). Therefore, we can apply Lemma 12 and deduce that, in time O(|Y |), we can

2 Note that we slightly abuse notation when identifying t-protrusions and graphs in Ft, as protrusions are defined
as subsets of vertices of a graph. Nevertheless, this will not cause any confusion.
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find a t-protrusion Y ′ of size at most b(E , g, t,G) such that Y ∼E,g,t,G Y
′, and the corresponding

transposition constant ∆E,g,t(Y ′, Y ) with ∆E,g,t(Y ′, Y ) 6 0. Since E is a Π-encoder and ∼E,g,t,G is
DP-friendly, it follows from Lemma 9 that Y ≡Π,t Y

′ and that ∆Π,t(Y ′, Y ) = ∆E,g,t(Y ′, Y ) 6 0.
Therefore, if we set k′ := k + ∆Π,t(Y ′, Y ), it follows that (G, k) and ((G− (Y − ∂(Y )))⊕ Y ′, k′) are
indeed equivalent instances of Π with k′ 6 k and |Y ′| 6 b(E , g, t,G). �

The general recipe to use our framework on a parameterized problem Π defined on a class of
graphs G is as follows: one has just to define the tables to solve Π via dynamic programming on
graphs of bounded treewidth (that is, the encoder E and the function g), check that E is a Π-encoder
and that ∼E,g,t,G is DP-friendly, and then Theorem 13 provides a linear-time algorithm that replaces
large protrusions with graphs whose size is bounded by an explicit constant, and that updates the
parameter of Π accordingly. This protrusion replacer can then be used, for instance, whenever one is
able to find a linear protrusion decomposition of the input graphs of Π on some sparse graph class G.
In particular, Theorem 13 yields the following corollary.

I Corollary 14. Let H be a fixed graph, and let G be the class of graphs that exclude H as a
(topological) minor. Let Π be a vertex-certifiable parameterized graph problem on G, and suppose
that we are given a Π-encoder E, a function g : N→ N, and an integer t ∈ N such that ∼E,g,t,G is
DP-friendly. Then, given an instance (G, k) of Π together with an (α · k, t)-protrusion decomposition
of G, we can construct a linear kernel for Π of size at most (1 + b(E , g, t,G)) ·α · k, where b(E , g, t,G)
is the function defined in Lemma 11.

Proof: For 1 6 i 6 `, we apply the polynomial-time algorithm given by Theorem 13 to replace
each t-protrusion Yi with a graph Y ′i of size at most b(E , g, t,G), and to update the parameter
accordingly. In this way we obtain an equivalent instance (G′, k′) such that G′ ∈ G, k′ 6 k, and
|V (G′)| 6 |Y0|+ ` · b(E , g, t,G) 6 (1 + b(E , g, t,G))α · k . �

Notice that once we fix the problem Π and the class of graphs G where Corollary 14 is applied, a
kernel of size c · k can be derived with a concrete upper bound for the value of c. Notice that such a
bound depends on the problem Π and the excluded (topological) minor H. In general, the bound
can be quite big as it depends on the bound of Lemma 11, and this, in turn, depends on the bound
of Lemma 7. However, as we see in the next section, more moderate estimations can be extracted for
particular families of parameterized problems.

3 Application to concrete problems

In this section we demonstrate the applicability of our framework by providing linear kernels for
several problems on graphs excluding a fixed graph as a (topological) minor. Due to space limitations,
we focus here on r-Dominating Set and Planar-F-Deletion. The linear kernels for r-Scattered
Set and Planar-F-Packing can be found in Appendices I and N, respectively.

The following result will be fundamental in order to find linear protrusion decompositions when
a treewidth-modulator X of the input graph G is given, with |X| = O(k). It is a consequence
of [25, Lemma 3, Proposition 1, and Theorem 1].

I Theorem 15 (Kim et al. [25]). Let c, t be two positive integers, let H be an h-vertex graph, let G be
an n-vertex H-topological-minor-free graph, and let k be a positive integer (typically corresponding to
the parameter of a parameterized problem). If we are given a set X ⊆ V (G) with |X| 6 c ·k such that
tw(G−X) 6 t, then we can compute in time O(n) an ((αH · t · c) ·k, 2t+h)-protrusion decomposition
of G, where αH is a constant depending only on H, which is upper-bounded by 40h225h log h.

As mentioned in Subsection 2.2, if G is a graph class whose membership can be expressed in
MSO logic, then ∼G,t has a finite number of equivalence classes, namely rG,t. In our applications,
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we will be only concerned with families of graphs G that exclude some fixed h-vertex graph H as a
(topological) minor. In this case, using standard dynamic programming techniques, it can be shown
that rG,t 6 2t log t · ht · 2h2 . The details can be found in Appendix K.

An explicit linear kernel for r-Dominating Set. Let r > 1 be a fixed integer. We define the
r-Dominating Set problem as follows.

r-Dominating Set
Instance: A graph G = (V, E) and a non-negative integer k.

Parameter: The integer k.
Question: Does G have a set S ⊆ V with |S| 6 k and such that every vertex

in V \ S is within distance at most r from some vertex in S?

For r = 1, the r-Dominating Set problem corresponds to Dominating Set. Our encoder for
r-Dominating Set is strongly inspired by the work of Demaine et al. [14], and it generalizes to one
given for Dominating Set in the running example of Section 2. It can be found in Appendix G,
and we call it ErDS = (CrDS, LCrDS).

I Lemma 16. [?] The encoder ErDS is a rDS-encoder. Furthermore, if G is an arbitrary class of
graphs and g(t) = t, then the equivalence relation ∼ErDS,g,t,G is DP-friendly.

We now proceed to construct a linear kernel for r-Dominating Set when the input graph
excludes a fixed apex graph H as a minor. Toward this end, the following theorem will play an
important role. It follows mainly from the results of Fomin et al. [20], but also uses the explicit
combinatorial bound of Kawarabayashi and Kobayashi [23] on the relation between the treewidth
and the largest grid minor on H-minor-free graphs, and the algorithmic results of Kawarabayashi
and Reed [24] in order to obtain the claimed set X.

I Theorem 17 (Fomin et al. [20]). Let r > 1 be an integer, let H be an h-vertex apex graph, and
let rDSH be the restriction of the r-Dominating Set problem to input graphs which exclude H as
a minor. If (G, k) ∈ rDSH , then there exists a set X ⊆ V (G) such that |X| = r · 2O(h log h) · k and
tw(G−X) = r · 2O(h log h). Moreover, given an instance (G, k) of rDSH with |V (G)| = n, there is
an algorithm running in time O(n3) that either finds such a set X or correctly reports that (G, k) is
a No-instance.

We are now ready to present the linear kernel for r-Dominating Set.

I Theorem 18. Let r > 1 be an integer, let H be an h-vertex apex graph, and let rDSH be the
restriction of the r-Dominating Set problem to input graphs which exclude H as a minor. Then
rDSH admits a constructive linear kernel of size at most f(r, h) · k, where f is an explicit function
depending only on r and h, defined in Equation (6) below.

Proof: Given an instance (G, k) of rDSH , we run the cubic algorithm given by Theorem 17 to either
conclude that (G, k) is a No-instance or to find a set X ⊆ V (G) such that |X| = r · 2O(h log h) · k and
tw(G−X) = r · 2O(h log h). In the latter case, we use the set X as input to the algorithm given by
Theorem 15, which outputs in linear time a (r2 · 2O(h log h) · k, r · 2O(h log h))-protrusion decomposition
of G. We now consider the encoder ErDS = (CrDS, LCrDS) defined in Appendix G. By Lemma 16, ErDS
is an rDS-encoder and ∼ErDS,g,t,G is DP-friendly, where G is the class of H-minor-free graphs and
g(t) = t. By Equation (11) in Appendix G, we have that sErDS(t) 6 (2r + 1)t. Therefore, we are in
position to apply Corollary 14 and obtain a linear kernel for rDSH of size at most

r2 · 2O(h log h) · b
(
ErDS, g, r · 2O(h log h),G

)
· k , (6)
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where b
(
ErDS, g, r · 2O(h log h),G

)
is the function defined in Lemma 11. �

It can be easily checked that the multiplicative constant involved in the upper bound of Equation (6)

is 222r·log r·2O(h·log h)

, that is, depends triple-exponentially on the integer r.

An explicit linear kernel for Planar-F-Deletion. Let F be a finite set of graphs. We define
the F-Deletion problem as follows.

F-Deletion
Instance: A graph G and a non-negative integer k.

Parameter: The integer k.
Question: Does G have a set S ⊆ V (G) such that |S| 6 k

and G− S is H-minor-free for every H ∈ F?

When all the graphs in F are connected, the corresponding problem is called Connected-F-
Deletion, and when F contains at least one planar graph, we call it Planar-F-Deletion. When
both conditions are satisfied, the problem is called Connected-Planar-F-Deletion. Note that
Connected-Planar-F-Deletion encompasses, in particular, Vertex Cover and Feedback
Vertex Set. The description of the encoder can be found in Appendix K. We obtain a linear kernel
for the problem using two different approaches. The first one (see also Appendix K) follows the same
scheme as the one used in the previous sections, that is, we first find a treewidth-modulator X in
polynomial time, and then we use this set X as input to the algorithm of Theorem 15 to find a
linear protrusion decomposition of the input graph. In order to find the treewidth-modulator X, we
need that the input graph G excludes a fixed graph H as a minor. With our second approach, that
can be found in Appendix M, we obtain a linear kernel on the larger class of graphs that exclude
a fixed graph H as a topological minor. We provide two variants of this second approach. One
possibility is to use the randomized constant-factor approximation for Planar-F-Deletion by
Fomin et al. [19] as treewidth-modulator, which yields a randomized linear kernel that can be found
in uniform polynomial time. The second possibility consists in arguing just about the existence of a
linear protrusion decomposition in Yes-instances, and then greedily finding large protrusions to be
reduced by the protrusion replacer given by Theorem 13. This yields a deterministic linear kernel
that can be found in time nf(H,F), where f is a function depending on H and F .

Our encoder for the F-Deletion problem uses the dynamic programming machinery developed
by Adler et al. [1], and can be found in Appendix K. We prove that this encoder is indeed an
F-Deletion-encoder and that the corresponding equivalence relation is DP-friendly, under the
constraint that all the graphs in F are connected. Interestingly, this phenomenon concerning the
connectivity seems to be in strong connection with the fact that the F-Deletion problem has FII if
all the graphs in F are connected [7, 19], but for some families F containing disconnected graphs,
F-Deletion has not FII (see [25] for an example of such family).

I Theorem 19. [?] Let F be a finite set of connected graphs containing at least one r-vertex planar
graph F , let H be an h-vertex graph, and let CPFDH be the restriction of the Connected-Planar-
F-Deletion problem to input graphs which exclude H as a minor. Then CPFDH admits a
constructive linear kernel of size at most f(r, h) · k, where f is an explicit function depending only
on r and h, defined in Equation (16) in Appendix L.

4 Further research

The methodology for performing explicit protrusion replacement via dynamic programming that we
have presented is quite general, and it could also be used to obtain polynomial kernels (not necessarily
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linear). We have restricted ourselves to vertex-certifiable problems, but is seems plausible that our
approach could be also extended to edge-certifiable problems or to problems on directed graphs.

The linear kernels for Planar-F-Deletion and Planar-F-Packing require that all graphs
in the family F are connected. It would be interesting to get rid of this assumption. In our linear
kernel for Connected-Planar-F-Deletion on H-topological-minor-free graphs (Theorem 31), the
randomization appears because we use the randomized constant-factor approximation for Planar-
F-Deletion on general graphs [19], but for our kernel to be deterministic, it would be enough with
a constant-factor approximation on H-topological-minor-free graphs, which is not known.

All the applications examined in this paper concerned parameterized problems tuned by a
secondary parameter, i.e., r for the case of r-Dominating Set and r-Scattered Set and the size
of the graphs in F for the case of F-Deletion and F-Packing. In all kernels derived for these
problems, the dependency on this secondary parameter is triple-exponential, while the dependency
on the choice of the excluded graph H is one exponent higher. Two questions arise:

Extend our results to larger graph classes and more general problems. Also, improve the
dependency of the size of the kernels on the “meta-parameters” associated with the problems
(that is, r, F , and H). Probably the recent results of Chekuri and Chuzhoy [11] can be used
in this direction. Moreover, provide refinements of this framework that can lead to reasonable
explicit bounds for the kernels for particular problems.
Examine to what extent this exponential dependency is unavoidable under some assumptions based
on automata theory or (parameterized) complexity theory. We suspect that the unification between
dynamic programming and kernelization that we propose in this paper might offer a common
understanding of the lower bounds in the running time of dynamic programming algorithms for
certain problems (see [28,29]) and the sizes of their corresponding kernels (see [5,6,8,13]). Finally,
we refer the reader to [3] for constructibility issues of algebraic graph reduction.
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A Preliminaries

Graphs and minors. We use standard graph-theoretic notation (see [15] for any undefined
terminology). Given a graph G, we let V (G) denote its vertex set and E(G) its edge set. For X ⊆
V (G), we let G[X] denote the graph (X,EX), where EX := {xy | x, y ∈ X and xy ∈ E(G)}, and we
define G−X := G[V (G) \X]. The open (resp. closed) neighborhood of a vertex v is denoted by N(v)
(resp. N [v]), and more generally, for an integer r > 1, we denote by Nr(v) the set of vertices that
are at distance at most r from v. The neighborhoods of a set of vertices S are defined analogously.
The distance between a vertex v and a set of vertices S is defined as d(v, S) = minu∈S d(v, u), where
d(v, u) denotes the usual distance. A graph G = (E, V ) is an apex graph if there exists v ∈ V such
that G − v is planar. Given an edge e = xy of a graph G, we let G/e denote the graph obtained
from G by contracting the edge e, which amounts to deleting the endpoints of e, introducing a new
vertex vxy, and making it adjacent to all vertices in (N(x)∪N(y)) \ {x, y}. A minor of G is a graph
obtained from a subgraph of G by contracting zero or more edges. A topological minor of G is a
graph obtained from a subgraph of G by contracting zero or more edges, such that each edge that is
contracted has at least one endpoint with degree at most two. A graph G is H-(topological-)minor-free
if G does not contain H as a (topological) minor.

Parameterized problems, kernels and treewidth. A parameterized graph problem Π is a set
of pairs (G, k), where G is a graph and k ∈ Z, such that for any two instances (G1, k1) and (G2, k2)
with k1, k2 < 0 it holds that (G1, k1) ∈ Π if and only if (G2, k2) ∈ Π. If G is a graph class, we define
Π restricted to G as ΠG = {(G, k) | (G, k) ∈ Π and G ∈ G} . A kernelization algorithm, or just kernel,
for a parameterized graph problem Π is an algorithm that given an instance (G, k) outputs, in time
polynomial in |G| + k, an instance (G′, k′) of Π such that (G, k) ∈ Π if and only if (G′, k′) ∈ Π
and |G′|, k′ 6 g(k), where g is some computable function. The function g is called the size of the
kernel. If g(k) = kO(1) or g(k) = O(k), we say that Π admits a polynomial kernel and a linear kernel,
respectively.

Given a graph G = (V,E), a tree-decomposition of G is an ordered pair (T,X = {Bx | x ∈ V (T )}),
where T is a tree and such that the following hold:
(i)

⋃
x∈V (T )Bx = V (G);

(ii) for every edge e = uv in G, there exists x ∈ V (T ) such that u, v ∈ Bx; and
(iii) for each vertex u ∈ V (G), the set of nodes {x ∈ V (T ) | u ∈ Bx} induces a subtree.
The vertices of the tree T are usually referred to as nodes and the sets Bx are called bags. The width
of a tree-decomposition is the size of a largest bag minus one. The treewidth of G, denoted tw(G), is
the smallest width of a tree-decomposition of G. A rooted tree-decomposition is a tree-decomposition
(T,X = {Bx | x ∈ V (T )}) in which a distinguished node r ∈ V (T ) has been selected as the root.
The bag Br is called the root-bag. Note that the root defines a child/parent relation between every
pair of adjacent nodes in T , and ancestors/descendants in the usual way. A node without children is
called a leaf.

For the definition of nice tree-decompositions, we refer to [26]. A set of vertices X of a graph G is
called a treewidth-modulator if tw(G−X) 6 t, where t is some fixed constant.

Given a bag B of a tree-decomposition with tree T , we denote by TB the subtree rooted at the
node corresponding to bag B, and by GB := G[

⋃
x∈TB

Bx] the subgraph of G induced by the vertices
appearing in the bags corresponding to the nodes of TB . If a bag B is associated with a node x of T ,
we may interchangeably use GB or Gx.

Boundaried graphs and canonical equivalence relation. The following two definitions are
taken from [7].
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I Definition 20 (Boundaried graphs). A boundaried graph is a graph G with a set B ⊆ V (G) of
distinguished vertices and an injective labeling λ : B → N+ . The set B is called the boundary ofG and
the vertices in B are called boundary vertices. Given a boundaried graph G, we denote its boundary
by ∂(G), we denote its labeling by λG, and we define its label set by Λ(G) = {λG(v) | v ∈ ∂(G)}.
We say that a boundaried graph is a t-boundaried graph if Λ(G) ⊆ {1, . . . , t}.

Note that a 0-boundaried graph is just a graph with no boundary.

I Definition 21 (Gluing operation). Let G1 and G2 be two boundaried graphs. We denote by G1⊕G2
the graph obtained by taking the disjoint union of G1 and G2 and identifying vertices with the same
label of the boundaries of G1 and G2. In G1 ⊕G2 there is an edge between two labeled vertices if
there is an edge between them in G1 or in G2.

Following [7], we introduce a canonical equivalence relation on boundaried graphs.

IDefinition 22 (Canonical equivalence on boundaried graphs). Let Π be a parameterized graph problem
and let t ∈ N+. Given two t-boundaried graphs G1 and G2, we say that G1 ≡Π,t G2 if Λ(G1) = Λ(G2)
and there exists a transposition constant ∆Π,t(G1, G2) ∈ Z such that for every t-boundaried graph
H ∈ G and every k ∈ Z, it holds that (G1 ⊕H, k) ∈ Π if and only if (G2 ⊕H, k+ ∆Π,t(G1, G2)) ∈ Π.

We define in Section 2 another equivalence relation on boundaried graphs that refines this
canonical one (cf. Definitions 5 and 6), and that will allow us to perform a constructive protrusion
replacement with explicit bounds.

The notion of Finite Integer Index was originally defined by Bodlaender and van Antwerpen-de
Fluiter [9, 32]. We would like to note that FII does not play any role in the framework that we
present for constructing explicit kernels, but we present its definition for completeness, as we will
sometimes refer to it throughout the article.

I Definition 23 (Finite Integer Index (FII)). A parameterized graph problem Π has Finite Integer
Index (FII for short) if for every positive integer t, the equivalence relation ≡Π,t has finite index.

Protrusions and protrusion decompositions. Given a graph G = (V,E) and a set W ⊆ V , we
define bd(W ) as the vertices in W that have a neighbor in V \W . A set W ⊆ V (G) is a t-protrusion
if |bd(W )| 6 t and tw(G[W ]) 6 t− 1. We would like to note that a t-protrusion W can be naturally
seen as a t-boundaried graph by arbitrarily assigning labels to the vertices in bd(W ). In this case,
it clearly holds that ∂(W ) = bd(W ). Note also that if G is a t-boundaried graph of treewidth
at most t − 1, we may assume that the boundary vertices are contained in any specified bag of a
tree-decomposition, by increasing the width of the given tree-decomposition to at most 2t− 1.

An (α, t)-protrusion decomposition of a graph G is a partition P = Y0 ] Y1 ] · · · ] Y` of V (G)
such that:
(i) for every 1 6 i 6 `, N(Yi) ⊆ Y0;
(ii) max{`, |Y0|} 6 α; and
(iii) for every 1 6 i 6 `, Yi ∪NY0(Yi) is a t-protrusion of G.
When G is the input of a parameterized graph problem with parameter k, we say that an (α, t)-
protrusion decomposition of G is linear whenever α = O(k).

B Definitions of Subsection 2.1 for maximization problems

For encoders E ′ = (C′, LC′) that will be associated with problems where the objective is to find a set
of vertices of size at least some value, the corresponding function fE′G : C′(I)→ N ∪ {−∞} is defined
as

fE
′

G (R) = max{k : ∃S ⊆ V (G), |S| > k, (G,S,R) ∈ LC′}. (7)
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Similarly, in Equation (7), if such a set S does not exist, we set fEG(R) := −∞. We define
C∗G(I) := {R ∈ C(I) | fEG(R) 6= −∞}.

For encoders E ′ = (C′, LC′) associated with maximization problems, given a function g : N→ N,
we define the function fE

′,g
G : C(I)→ N ∪ {−∞} as

fE
′,g

G (R) =
{

−∞, if fE′G (R) + g(t) < maxR∈C(I) f
E′
G (R)

fE
′

G (R), otherwise.
(8)

C Schematic illustration of a confined encoding

∂(G)

G

C

fE
G

R0 R1
. . .





{
N
O

0

|G|

Y
E
S

g(t)

fEG(R0)

fEG(R1)

Figure 1 Schematic illustration of a g-confined encoding.

D Proof of Lemma 9

Assume without loss of generality that Π is a minimization problem, and let E = (C, LC). We need
to prove that for any t-boundaried graph H and any integer k, (G1 ⊕ H, k) ∈ Π if and only if
(G2 ⊕H, k + ∆E,g,t(G1, G2)) ∈ Π. Suppose that (G1 ⊕H, k) ∈ Π (by symmetry the same arguments
apply starting with G2). This means that there exists S1 ⊆ V (G1 ⊕ H) with |S1| 6 k such that
(G1 ⊕H,S1) ∈ LΠ. And since G1 ⊕H is a 0-boundaried graph and E is a Π-encoder, we have that
(G1 ⊕H,S1, R∅) ∈ LC , where C(∅) = {R∅}. This implies that

fEG1⊕H(R∅) 6 |S1| 6 k. (9)

As ∼E,g,t,G is DP-friendly and G1 ∼E,g,t,G G2, it follows that (G1 ⊕H) ∼E,g,t,G (G2 ⊕H) and that
∆E,g,t(G1 ⊕H,G2 ⊕H) = ∆E,g,t(G1, G2). Since G2 ⊕H is also a 0-boundaried graph, the latter
property and Equation (9) imply that

fEG2⊕H(R∅) = fEG1⊕H(R∅) + ∆E,g,t(G1, G2) 6 k + ∆E,g,t(G1, G2). (10)

From Equation (10) it follows that there exists S2 ⊆ V (G2 ⊕H) with |S2| 6 k + ∆E,g,t(G1, G2) such
that (G2⊕H,S2, R∅) ∈ LC . Since G2⊕H is a 0-boundaried graph and E is a Π-encoder, this implies
that (G2 ⊕H,S2) ∈ LΠ, which in turn implies that (G2 ⊕H, k + ∆E,g,t(G1, G2)) ∈ Π, as we wanted
to prove.
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E Proof of Lemma 11

Let C be an arbitrary equivalence class of ∼E,g,t,G , and we want to prove that there exists in C a
progressive representative of the desired size. Let us first argue that C contains some progressive
representative. We construct an (infinite) directed graph DC as follows. There is a vertex in DC for
every graph in C, and for any two vertices v1, v2 ∈ V (DC), corresponding to two graphs G1, G2 ∈ C

respectively, there is an arc from v1 to v2 if and only if ∆E,g,t(G1, G2) > 0. We want to prove that
DC has a sink, that is, a vertex with no outgoing arc, which by construction is equivalent to the
existence of a progressive representative in C. Indeed, let v be an arbitrary vertex of DC, and grow
greedily a directed path P starting from v. Because of the transitivity of the equivalence relation
∼E,g,t,G and by construction of DC, it follows that DC does not contain any finite cycle, so P cannot
visit vertex v again. On the other hand, since the function fEG takes only positive values (except
possibly for the value −∞), it follows that there are no arbitrarily long directed paths in DC starting
from any fixed vertex, so in particular the path P must be finite, and therefore the last vertex in P is
necessarily a sink. (Note that for any two graphs G1, G2 ∈ C such that their corresponding vertices
v1, v2 ∈ V (DC) are sinks, it holds by construction of DC that ∆E,g,t(G1, G2) = 0.)

Now let G ∈ Ft ∩ G be a progressive representative of C with minimum number of vertices. We
claim that G has size at most 2r(E,g,t,G)+1 · t. (We would like to stress that at this stage we only need
to care about the existence of such representative G, and not about how to compute it.) Indeed, let
(T,X ) be a nice rooted tree-decomposition of G of width at most t− 1 such that ∂(G) is contained
in the root-bag (such a nice tree-decomposition exists by [26]), and let r be the root of T .

We first claim that for any node x of T , the graph Gx is a progressive representative of its
equivalence class with respect to ∼E,g,t,G , namely A. Indeed, assume that it is not the case, and
let H be a progressive representative of A, which exists by the discussion in the first paragraph of
the proof. Since H is progressive and Gx is not, ∆E,g,t(H,Gx) < 0. Let GH be the graph obtained
from G by replacing Gx with H. Since ∼E,g,t,G is DP-friendly, it follows that G ∼E,g,t,G GH and that
∆E,g,t(GH , G) = ∆E,g,t(H,Gx) < 0, contradicting the fact that G is a progressive representative of
the equivalence class C.

We now claim that for any two nodes x, y ∈ V (T ) lying on a path from r to a leaf of T , it
holds that Gx �E,g,t,G Gy. Indeed, assume for contradiction that there are two nodes x, y ∈ V (T )
lying on a path from r to a leaf of T such that Gx ∼E,g,t,G Gy. Let A be the equivalence class of
Gx and Gy with respect to ∼E,g,t,G . By the previous claim, it follows that both Gx and Gy are
progressive representatives of A, and therefore it holds that ∆E,g,t(Gy, Gx) = 0. Suppose without loss
of generality that Gy ( Gx (that is, Gy is a strict subgraph of Gx), and let G′ be the graph obtained
from G by replacing Gx with Gy. Again, since ∼E,g,t,G is DP-friendly, it follows that G ∼E,g,t,G G

′

and that ∆E,g,t(G′, G) = ∆E,g,t(Gy, Gx) = 0. Therefore, G′ is a progressive representative of C with
|V (G′)| < |V (G)|, contradicting the minimality of |V (G)|.

Finally, since for any two nodes x, y ∈ V (T ) lying on a path from r to a leaf of T we have
that Gx �E,g,t,G Gy, it follows that the height of T is at most the number of equivalence classes
of ∼E,g,t,G , which is at most r(E , g, t,G) by Lemma 7. Since T is a binary tree, we have that
|V (T )| 6 2r(E,g,t,G)+1 − 1. Finally, since |V (G)| 6 |V (T )| · t, it follows that |V (G)| 6 2r(E,g,t,G)+1 · t,
as we wanted to prove.

F Proof of Lemma 12

Let E = (C, LC) be the given encoder. We start by generating a repository R containing all the graphs
in Ft with at most b+ 1 vertices. Such a set of graphs, as well as a rooted nice tree-decomposition of
width at most t− 1 of each of them, can be clearly generated in time depending only on b and t. By
assumption, the size of a smallest progressive representative of any equivalence class of ∼E,g,t,G is at
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most b, so R contains a progressive representative of any equivalence class of ∼E,g,t,G with at most b
vertices. We now partition the graphs in R into equivalence classes of ∼E,g,t,G as follows. For each
graph H ∈ R and each C-encoding R ∈ C(Λ(G)), as LC is a computable language, we can compute
the value fE,g

G (R) in time depending only on E , g, t, and b. Therefore, for any two graphs H1, H2 ∈ R,
we can decide in time depending only on E , g, t, b, and G whether H1 ∼E,g,t,G H2, and if this is the
case, we can compute the transposition constant ∆E,g,t,G(H1, H2) within the same running time.

Given a t-protrusion G on n vertices with boundary ∂(G), we first compute a rooted nice tree-
decomposition (T,X ) of G such that ∂(G) is contained in the root bag in time f(t) · n, by using the
linear-time algorithm of Bodlaender [4]. Such a t-protrusion G equipped with a tree-decomposition
can be naturally seen as a graph in Ft by assigning distinct labels from {1, . . . , t} to the vertices in
the root-bag. These labels from {1, . . . , t} can be transferred to the vertices in all the bags of (T,X )
by performing a standard shifting procedure when a vertex is introduced or removed from the nice
tree-decomposition (see [7] for more details). Therefore, each node x ∈ V (T ) defines in a natural
way a graph Gx ⊆ G in Ft with its associated rooted nice tree-decomposition. Let us now proceed
to the description of the replacement algorithm.

We process the bags of (T,X ) in a bottom-up way until we encounter the first node x in V (T )
such that |V (Gx)| = b + 1. (Note that as (T,X ) is a nice tree-decomposition, when processing
the bags in a bottom-up way, at most one new vertex is introduced at every step.) Let C be the
equivalence class of Gx according to ∼E,g,t,G . As |V (Gx)| = b+ 1, the graph Gx is contained in the
repository R, so in constant time we can find in R a progressive representative F of C with at most b
vertices and the corresponding transposition constant ∆E,g,t(F,Gx) 6 0, where the inequality holds
because F is a progressive representative. Let G′ be the graph obtained from G by replacing Gx

with F , so we have that |V (G′)| < |V (G)|. (Note that this replacement operation directly yields a
rooted nice tree-decomposition of width at most t− 1 of G′.) Since ∼E,g,t,G is DP-friendly, it follows
that G ∼E,g,t,G G

′ and that ∆E,g,t(G′, G) = ∆E,g,t(F,Gx) 6 0.
We recursively apply this replacement procedure on the resulting graph until we eventually obtain

a t-protrusion H with at most b vertices such that G ∼E,g,t,G H. The corresponding transposition
constant ∆E,g,t(H,G) can be easily computed by summing up all the transposition constants given
by each of the performed replacements. Since each of these replacements introduces a progressive
representative, we have that ∆E,g,t(H,G) 6 0. As we can assume that the total number of nodes in a
nice tree-decomposition of G is O(k) [26, Lemma 13.1.2], the overall running time of the algorithm is
O(n), where the constant hidden in the “O” notation depends indeed exclusively on E , g, b,G, and t.

G The encoder for r-Dominating Set

Let G be a boundaried graph with boundary ∂(G) and let I = Λ(G). The function CrDS maps I to a
set CrDS(I) of CrDS-encodings. Each R ∈ CrDS(I) maps I to an |I|-tuple in {0, ↑ 1, ↓ 1, . . . , ↑ r, ↓ r}|I|,
and thus the coordinates of the tuple are in one-to-one correspondence with the vertices of ∂(G).
For a vertex v ∈ ∂(G) we denote by R(v) its coordinate in the |I|-tuple. For a subset S of vertices
of G, we say that (G,S,R) belongs to the language LCrDS (or that S is a partial r-dominating set
satisfying R) if :

for every vertex v ∈ V (G) \ ∂(G), either dG(v, S) 6 r or there exists w ∈ ∂(G) such that
R(w) =↑ j and dG(v, w) + j 6 r; and
for every vertex v ∈ ∂(G): R(v) = 0 implies that v ∈ S, and if R(v) =↓ i for 1 6 i 6 r, then there
exists either w ∈ S such that dG(v, w) 6 i or w ∈ ∂(G) such that R(w) =↑ j and dG(v, w) + j 6 i.

Observe that if S is a partial r-dominating set satisfying R, then S ∩ ∂(G) contains the set of
vertices {v ∈ ∂(G) | R(v) = 0}, but it may also contain other vertices of ∂(G). As the optimization
version of r-Dominating Set is a minimization problem, by Equation (1) the function fCrDS

G (R)
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associates with a CrDS-encoding R the minimum size of a partial r-dominating set S satisfying R.
By definition of ErDS, it is clear that

sErDS(t) 6 (2r + 1)t. (11)

H Proof of Lemma 16

Before providing the proof of Lemma 16, we will first state a general fact, which will be useful in
order to prove that an encoder is DP-friendly.
I Fact 1. To verify that an equivalence relation ∼E,g,t,G satisfies Definition 8, property (i) can be
replaced with G ∼E,g,t G

′. That is, if G ∼E,g,t G
′, then G ∼E,g,t,G G

′ as well.
Proof: Assume that G ∼E,g,t G

′, and we want to deduce that G ∼E,g,t,G G′, that is, we just
have to prove that G ∼G,t G′. Let H be a t-boundaried graph, and we need to prove that
G ⊕ H ∈ G if and only if G′ ⊕ H ∈ G. Let G− such that G = Gx ⊕ G−, and note that
G′ = G′x ⊕ G−. We have that G ⊕ H = (Gx ⊕ G−) ⊕ H = Gx ⊕ (G− ⊕ H), and similarly we
have that G′x ⊕ (G− ⊕ H) = (G′x ⊕ G−) ⊕ H = G′ ⊕ H. Since Gx ∼G,t G′x, it follows that
G⊕H = Gx ⊕ (G− ⊕H) ∈ G if and only if G′x ⊕ (G− ⊕H) = G′ ⊕H ∈ G. �

We will use the shortcut rDS for r-Dominating Set.

Proof of Lemma 16: Let us first prove that ErDS = (CrDS, LCrDS) is a rDS-encoder. Note that
there is a unique 0-tuple R∅ ∈ CrDS(∅), and by definition of LCrDS , (G,S,R∅) ∈ LCrDS if and only if S
is an r-dominating set of G. Let us now prove that the equivalence relation ∼ErDS,g,t,G is DP-friendly
for g(t) = t.

Let G be a t-boundaried graph with boundary A, and consider a tree-decomposition of G of
width at most t − 1 rooted at A. Let B be any bag of the tree-decomposition. Each such bag B
defines a subgraph GB of G (recall that GB can be viewed as a t-boundaried graph with boundary
B). We define H to be the t-boundaried graph induced by V (G) \ (V (GB) \B), and with boundary
B (that is, we forget boundary A) labeled as in GB. Let G′B be a t-boundaried graph such that
GB ∼ErDS,g,t,G G

′
B . Let G′ := H ⊕G′B with boundary A. See Fig. 2 for an illustration.

AA

B

G

B

H

B

B

GB G′
B

∼E,g,t,G

A

G′

B

Figure 2 Graphs G and G′ in the proof of Lemma 16.

We claim that the encoder ErDS is g-confined for g(t) = t. Indeed, consider an arbitrary encoding
RA ∈ CrDS(Λ(G)) and the encoding R0 satisfying R0(v) = 0 for every v ∈ A. Let S0 ⊆ V (G) be a
minimum-sized partial r-dominating set satisfying R0, i.e., such that (G,S0, R0) ∈ LCrDS . Observe
that S0 also satisfies RA, i.e., (G,S0, RA) ∈ LCrDS . It then follows that fErDS

G (R0) = maxRA
fErDS

G (RA).
Moreover, let S ⊆ V (G) be a minimum-sized partial r-dominating set satisfying RA, i.e., such that
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G′

B
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v1

v2

G
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0
↓3
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↑5

↑2

↓2

(b)

↑1

(a)

Figure 3 Illustration of the proof of Lemma 16. Black vertices belong to the solution: (a) construction of
the CrDS-encoding RB ∈ CrDS(Λ(GB)); and (b) construction of the corresponding paths.

(G,S,RA) ∈ LCrDS . Then R0 is also satisfied by S∪A. It follows that fErDS
G (R0)−minRA

fErDS
G (RA) 6

|A| 6 t, proving that the encoder is indeed g-confined.
We want to show that G ∼ErDS,g,t,G G

′ and that ∆ErDS,g,t(G,G′) = ∆ErDS,g,t(GB , G
′
B). According

to Fact 1, we can consider the relation ∼ErDS,g,t (that is, we do not need to consider the refinement
with respect to the class of graphs G), and due to the g-confinement it holds that fErDS,g

G = fErDS
G

for g(t) = t. Hence it suffices to prove that fErDS
G (RA) = fErDS

G′ (RA) + ∆ErDS,g,t(GB , G
′
B) for all

RA ∈ CrDS(Λ(G)).
Let RA ∈ CrDS(Λ(G)) be a CrDS-encoding defined on A. First assume that fErDS

G (RA) 6= +∞, that
is, RA ∈ C∗rDS,G. Let S = D∪DH be a partial r-dominating set of size fErDS

G (RA) of G satisfying RA,
with D ⊆ V (GB) and DH ⊆ V (H) \B. We use S to construct a CrDS-encoding RB ∈ CrDS(Λ(GB))
defined on B, satisfied by D as follows. Let v ∈ B:

if v ∈ S, then RB(v) = 0;
otherwise, if there is either a shortest path from v to S of length i or a path from v to any a ∈ A
such that RA(a) =↑ j of length i− j, in both cases with its first edge in GB , then RB(v) =↓ i;
otherwise, RB(v) =↑ i where i = dG(v, S) or i = dG(v, a) + j such that RA(a) =↑ j (the first
edge of any shortest path from v to S is not in GB).

See Fig. 3(a) for an illustration of the construction of the CrDS-encoding RB ∈ CrDS(Λ(GB))
described above.

Observe that by construction of RB, |D| > fErDS
GB

(R). Let D′ be a subset of vertices of G′B of
minimum size such that (G′B , D′, RB) ∈ LCrDS , that is, |D′| = fErDS

G′
B

(RB). As GB ∼ErDS,g,t G
′
B, we

have |D′| = fErDS
GB

(RB)+∆ErDS,g,t(GB , G
′
B) and therefore |D′∪DH | = fErDS

GB
(RA)+∆ErDS,g,t(GB , G

′
B)+

|DH | 6 fErDS
G (RA) + ∆ErDS,g,t(GB , G

′
B).

Let us now prove that S′ = D′ ∪DH is a partial r-dominating set of G′ satisfying RA. According
to the definition of ErDS, we distinguish vertices in V (G′) \A and in A.

We start with vertices not in A. For any vertex v ∈ V (G′) \ (A ∪ S′), we consider the following
iterative process that builds a path of length at most r from v to S′ or a path of length at most
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r − i from v to a ∈ A such that R(a) =↑ i. At step j > 0, we identify a vertex vj ∈ B. We initially
set v0 = v. If v0 ∈ V (G′B), we can assume that dG′

B
(v0, D

′) > r, as otherwise we are done. As D′
satisfies RB , this implies that B contains a vertex v1 such that RB(v1) =↑ i1 and dG′

B
(v0, v1)+ i1 6 r.

Similarly, if v0 ∈ V (H) \B, we can assume that dH(v0, DH) > r and dH(v0, a) > r− i for any a ∈ A
such that RA(a) =↑ i, as otherwise we are done. As S = D ∪DH is a partial r-dominating set of G
satisfying RA, any shortest path P (of length at most r) between v0 and S and any path (of length
r − i) between v0 and a ∈ A such that RA(a) =↑ i, contains a vertex of B incident to an edge of
GB. Let v1 be the first such vertex of P . By definition of RB, we have that RB(v1) =↓ i1 with
dH(v0, v1) + i1 6 r. Let us now consider vj with j > 1, and denote by lj the length of the path we
discovered from v0 to vj . We need to prove that lj + ij 6 r (or lj + ij 6 r− i in the other case) is an
invariant of the process. As we argued, it is true for j = 1, so assume it holds at step j. We consider
two cases:
1. RB(vj) =↓ ij : We can assume that dG′

B
(vj , D

′) > ij , otherwise we are done as by construction
it holds that lj + ij 6 r (or lj + ij 6 r − i in the other case). So as D′ is a partial r-
dominating set satisfying RB, there exists a vertex vj+1 ∈ B such that RB(vj+1) =↑ ij+1 and
dG′

B
(vi, vj+1) + ij+1 6 ij . As lj+1 = lj + dG′

B
(vi, vj+1), it follows that lj+1 + ij+1 6 r (or

lj+1 + ij+1 6 r − i in the other case). See Fig. 3(b) for an illustration of this case.
2. RB(vj) =↑ ij : We can assume that dH(vj , DH) > ij and dH(vj , a) > ij − i for any a ∈ A

such that RA(a) =↑ i, otherwise we are done as by construction it holds that lj + ij 6 r (or
lj + ij 6 r − i in the other case). As by definition of the encoding RB, dG(vj , S) = ij , any
shortest path P between vj and S (or a ∈ A) uses a vertex of B incident to an edge of GB . Let
vj+1 be the first such vertex of P . Then RB(vj+1) =↓ ij+1 with dH(vj , vj+1) + ij+1 6 ij . As
lj+1 = lj + dH(vi, vj+1), it follows that lj+1 + ij+1 6 r (or lj + ij 6 r − i in the other case).

Observe that the process ends, since the parameter r − (lj + ij) is strictly decreasing.
We now consider vertices of A. Note that as we consider a tree-decomposition and ∂(GB) = ∂(G′B),

it holds that ∂(G) = ∂(G′) as well. In particular, any vertex v ∈ A is also in H. If RA(v) = 0 since
S = D ∪DH satisfies A, v ∈ DH and hence, v ∈ S′ = D′ ∪DH . If RA(v) =↓ i, the iterative process
above built a path from v to S′ of length at most r, or from v to a ∈ A with RA(a) =↑ j of length at
most r − i− j.

It follows that S′ = D′ ∪ DH is a partial r-dominating set of size at most fErDS
G (RA) +

∆ErDS,g,t(GB , G
′
B) satisfying RA, as we wanted to prove.

Finally, assume that fErDS
G (RA) = +∞. Then it holds that fErDS

G′ (RA) = +∞ as well. Indeed,
suppose that fErDS

G′ (RA) is finite. Then, given a partial r-dominating set of G′ satisfying RA, by the
argument above we could construct a partial r-dominating set of G satisfying RA, contradicting that
fErDS

G (RA) = +∞.
Therefore, we can conclude that G ∼ErDS,g,t G

′, and hence the equivalence relation ∼ErDS,g,t,G is
DP-friendly for g(t) = t. �

I An explicit linear kernel for r-Scattered Set

Let r > 1 be a fixed integer. Given a graph G and a set S ⊆ V (G), we say that S is an r-independent
set if any two vertices in S are at distance greater than r in G. We define the r-Scattered Set
problem, which can be seen as a generalization of Independent Set, as follows.

r-Scattered Set
Instance: A graph G and a non-negative integer k.

Parameter: The integer k.
Question: Does G have a 2r-independent set of size at least k?
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Our encoder for r-Scattered Set (or equivalently, for r-Independent Set) is inspired from the
proof of Fomin et al. [7] that the problem has FII, and can be found in Appendix J. For constructing a
linear kernel, we use the following observation, also noted in [7]. Suppose that (G, k) is a No-instance
of r-Scattered Set. Then, if for 1 6 i 6 k we greedily choose a vertex vi in G−

⋃
j<i N2r[vj ], the

graph G−
⋃

16i6k N2r[vi] is empty. Thus, {v1, . . . , vk} is a 2r-dominating set.

I Lemma 24 (Fomin et al. [7]). If (G, k) is a No-instance of the r-Scattered Set problem, then
(G, k) is a Yes-instance of the 2r-Dominating Set problem.

I Theorem 25. Let r > 1 be an integer, let H be an h-vertex apex graph, and let rSSH be the
restriction of the r-Scattered Set problem to input graphs which exclude H as a minor. Then
rSSH admits a constructive linear kernel of size at most f(r, h) · k, where f is an explicit function
depending only on r and h, defined in Equation (12) below.

Proof: Given an instance (G, k) of rSSH , we run on it the algorithm given by Theorem 17 for
the r′-Dominating Set problem with r′ := 2r. If the algorithm is not able to find a set X of
the claimed size, then by Lemma 24 we can conclude that (G, k) ∈ rSSH . Otherwise, we use
again the set X as input to the algorithm given by Theorem 15, which outputs in linear time
a (r2 · 2O(h log h) · k, r · 2O(h log h))-protrusion decomposition of G. We now consider the encoder
ErIS = (CrIS, LCrIS) defined in Appendix J. By Lemma 26 in Appendix J, ErIS is an rIS-encoder and
∼ErDS,g,t,G is DP-friendly, where G is the class of H-minor-free graphs and g(t) = 2t, and furthermore
by Equation (13) it satisfies sErIS(t) 6 (r + 2)t(t+1). Therefore, we are again in position to apply
Corollary 14 and obtain a linear kernel for rSSH of size at most

r2 · 2O(h log h) · b
(
ErIS, g, r · 2O(h log h),G

)
· k , (12)

where b
(
ErIS, g, r · 2O(h log h),G

)
is the function defined in Lemma 11. �

J The encoder for r-Scattered Set

Equivalently, we proceed to present an encoder for the r-Independent Set problem, which we
abbreviate as rIS. Let G be a boundaried graph with boundary ∂(G) and denote I = Λ(G). The
function CrIS maps I to a set CrIS(I) of CrIS-encodings. Each R ∈ CrIS(I) maps I to an |I|-tuple the
coordinates of which are in one-to-one correspondence with the vertices of ∂(G). The coordinate
R(v) of vertex v ∈ ∂(G) is a (|I| + 1)-tuple in (dS , dv1 , . . . , dv|I|) ∈ {0, 1, . . . , r, r + 1}|I|+1. For a
subset S of vertices of G, we say that (G,S,R) belongs to the language LCrIS (or that S is a partial
r-independent set satisfying R) if:

for every pair of vertices v ∈ S and w ∈ S, dG(v, w) > r;
for every vertex v ∈ ∂(G): dG(v, S) > dS and for every w ∈ ∂(G), dG(v, w) > dw.

As r-Independent Set is a maximization problem, by Equation (7) the function fErIS
G associates

to each encoding R the maximum size of a partial r-independent set S satisfying R. By definition of
ErIS it is clear that

sErIS(t) 6 (r + 2)t(t+1). (13)

I Lemma 26. The encoder ErIS = (CrIS, LCrIS) described above is an rIS-encoder. Furthermore, if G
is an arbitrary class of graphs and g(t) = 2t, then the equivalence relation ∼ErIS,g,t,G is DP-friendly.

Proof: We first prove that ErIS = (CrIS, LCrIS) is a rIS-encoder. There is a unique 0-tuple R∅ ∈ CrIS(∅),
and by definition of LCrIS , (G,S,R∅) ∈ LCrIS if and only if S is an r-independent set of G.
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Let G,G′ with boundary A and H,GB , G
′
B with boundary B be the graphs as defined in the

proof of Lemma 16 (see Fig. 2).
Let R0 be the encoding satisfying R0(v) = (0, 0, . . . , 0) for every v ∈ B. Observe that if S is a

maximum partial r-independent set satisfying an encoding RB ∈ CrIS(Λ(GB)), then S also satisfies
R0. It follows that fErIS

G (R0) = maxRB
fErIS

G (RB) (and thus fErIS
G (R0) = fErIS,g

G (R0)).
We want to show that G ∼ErIS,g,t,G G

′ and that ∆ErIS,g,t(G,G′) = ∆ErIS,g,t(GB , G
′
B). According

to Fact 1, it is enough to consider the relation ∼ErIS,g,t. To that aim, we will prove that fErIS,g
G (RA) =

fErIS,g
G′ (RA) + ∆ErIS,g,t(GB , G

′
B) for all RA ∈ CrIS(Λ(G)) and for g(t) = 2t.

Let RA ∈ CrIS(Λ(G)) be a CrIS-encoding defined on A. First assume that fErIS,g
G (RA) 6= −∞,

that is, RA ∈ C∗rIS,G. Let S = I ∪ IH be a partial r-independent set of size fErIS,g
G (RA) of G, with

I ⊆ V (GB) and IH ⊆ V (H) \B. An encoding RB ∈ CrIS(Λ(GB)), satisfied by S is defined as follows.
Let v ∈ B, then RB(v) = (dS , dv1 , . . . , dv|B|) where

dS = dGB
(v, I); and

for i ∈ {1, . . . , |B|}, dvi
= min{dGB

(v, vi), r + 1} (remind that vi ∈ ∂(G)).

Claim. For the RB defined above, it holds that fErIS,g
GB

(R) 6= −∞, where g(t) = 2t.
Let I0 ⊆ V (GB) be a maximum partial r-independent set satisfying R0, i.e., (GB , I0, R0) ∈ LCrIS .
Let us define I∗ = I \ Nr/2(B), I∗0 = I0 \ Nr/2(B) and I∗H = IH \ Nr/2(B). By the pigeon-hole
principle, it is easy to see that |I∗0 | > |I0| − t (otherwise B would contain a vertex at distance at
most r/2 from two distinct vertices of I0). Likewise, |I∗H | > |IH | − t. Now observe that I∗0 ∪ I∗H
is an r-independent set of G and therefore |I∗0 | + |I∗H | 6 |S| (1) (as S was chosen as a maximum
r-independent set of G). As S is the disjoint union of I and IH , we also have that |S| 6 |I|+ |I∗H |+ t

(2). Combining (1) and (2), we obtain that |I∗0 | 6 |I|+ t and therefore |I0| 6 |I|+ 2t. It follows that
fErIS

GB
(RB) = fErIS,g

GB
(RB), proving the claim.

Observe that by construction of RB, |I| 6 fErIS,g
GB

(RB). Consider a subset of vertices I ′ of G′B
of maximum size such that (G′B , I ′, RB) ∈ LCrIS , that is |I ′| = fErIS,g

G′
B

(RB). As GB ≡ErDS,t G
′
B,

by the above claim, we have |I ′| = fErIS,g
GB

(RB) + ∆ErIS,g,t(GB , G
′
B) and therefore |I ′ ∪ IH | =

fErIS,g
GB

(RB) + ∆ErIS,g,t(GB , G
′
B) + |IH | > fErIS,g

G (RA) + ∆ErIS,g,t(GB , G
′
B).

Let us prove that S′ = I ′ ∪ IH is a partial r-independent set of G′ satisfying RA. Following the
definition of ErIS, we have to verify two kinds of conditions: those on vertices in S′ and those on
vertices in A. We start with vertices in S′. Let P be a shortest path in G between two vertices v ∈ S′
and w ∈ S′. We partition P into maximal subpaths P1, . . . , Pq such that Pj (for 1 6 j 6 q) is either
a path of G′B (called a G′B-path) or of H (called an H-path). An illustration of these paths can be
found in Fig. 4. If q = 1, then dG′(v, w) > r follows from the fact that IH and I ′ are respectively
r-independent sets of H and G′B (a partial r-independent set is an r-independent set). So assume
that q > 1. Observe that every H-subpath is a path in G. By the choice of S′, observe that the
length of every G′B-subpath is at least the distance in GB between its extremities. We consider three
cases:

v, w ∈ V (H) \B: By the observations above, the length of P is at least dG(v, w). As v, w ∈ IH ,
we obtained that dG′(v, w) > dG(v, w) > r.
v ∈ V (H) \ B and w ∈ V (G′B): Let u be the last vertex of Pq−1. By the same argument
as in the previous case we have dG′(v, u) > dG(v, u). Now by the choice of S′, observe that
dG′

B
(u,w) > dGB

(u, I). So the length of P is at least the distance in G from v to a vertex w′ ∈ I,
we can conclude that dG′(v, w) > r.
v, w ∈ V (G′B): Let u1 and uq be respectively the last vertex of P1 and the first vertex of Pq.
By the same argument as above, we have that dG′(u1, uq) > dG(u1, uq). By the choice of S′,
we have that dG′

B
(u1, v) > dGB

(u1, I) and dG′
B

(uq, w) > dGB
(uq, I). So the length of P is a
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Figure 4 Illustration in the proof of Lemma 26. The black vertices belong to the solution.

least the distance in G between two vertices v′ ∈ I and w′ ∈ I. We can therefore conclude that
dG′(v, w) > r.

We now consider vertices of A. Let v ∈ A such that RA(v) = (dS , dv1 , . . . , dv|A|). Let P be a
shortest path in G′ between vertices v ∈ A and w ∈ S′, similarly to the previous argumentation (two
first items) dG′(v, w) > dS . Now let P be a a shortest path in G′ between vertices v ∈ A and vi ∈ A
similarly to the previous argumentation (first item) dG′(v, w) > dvi

.
It follows that S′ = I ′ ∪ IH is a partial r-independent set of size at least fErIS,g

G (RA) +
∆ErIS,g,t(GB , G

′
B) satisfying RA, as we wanted to prove.

Finally, assume that fErIS
G (RA) = −∞. Then it holds that fErIS

G′ (RA) = −∞ as well. Indeed,
suppose that fErIS

G′ (RA) is finite. Then, given a partial r-independent set of G′ satisfying RA, by the
argument above we could construct a partial r-independent set of G satisfying RA, contradicting
that fErIS

G (RA) = −∞.
Therefore, we can conclude that G ∼ErIS,g,t G

′, and hence the equivalence relation ∼ErIS,g,t,G is
DP-friendly for g(t) = 2t. �

K The encoder for F-Deletion and the index of ∼G,t

In this section we define an encoder EFD = (CFD, LCFD) for F-Deletion, and along the way we will
also prove that when G is the class of graphs excluding a fixed graph on h vertices as a minor, then
the index of the equivalence relation ∼G,t is bounded by 2t log t · ht · 2h2 .

Recall first that a model of a graph F in a graph G is a mapping φ, that assigns to every edge
e ∈ E(F ) an edge φ(e) ∈ E(G), and to every vertex v ∈ V (F ) a non-empty connected subgraph
φ(v) ⊆ G, such that
(i) the graphs {φ(v) | v ∈ V (F )} are mutually vertex-disjoint and the edges {φ(e) | e ∈ E(F )} are

pairwise distinct;
(ii) for e = {u, v} ∈ E(F ), φ(e) has one end-vertex in V (φ(u)) and the other in V (φ(v)).
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Assume first for simplicity that F = {F} consists of a single connected graph F . Following [1],
we introduce a combinatorial object called rooted packing. These objects are originally defined for
branch decompositions, but we can directly translate them to tree decompositions. Loosely speaking,
rooted packings capture how “potential models” of F intersect the separators that the algorithm is
processing. It is worth mentioning that the notion of rooted packing is related to the notion of folio
introduced by Robertson and Seymour in [31], but more suited to dynamic programming. See [1] for
more details.

Formally, let S∗F ⊆ V (F ) be a subset of the vertices of the graph F , and let SF ⊆ S∗F . Given
a bag B of a tree decomposition (T,X ) of the input graph G, we define a rooted packing of B as
a quintuple rp = (A, S∗F , SF , ψ, χ), where A is a (possible empty) collection of mutually disjoint
non-empty subsets of B (that is, a packing of B), ψ : A → SF is a surjective mapping (called the
rooting) assigning vertices of SF to the sets in A, and χ : SF × SF → {0, 1} is a binary symmetric
function between pairs of vertices in SF .

The intended meaning of a rooted packing (A, S∗F , SF , ψ, χ) is as follows. In a given separator B,
a packing A represents the intersection of the connected components of the potential model with
B. The subsets S∗F , SF ⊆ V (F ) and the function χ indicate that we are looking in the graph GB

for a potential model of F [S∗F ] containing the edges between vertices in SF given by the function χ.
Namely, the function χ captures which edges of F [S∗F ] have been realized so far in the processed
graph. Since we allow the vertex-models intersecting B to be disconnected, we need to keep track of
their connected components. The subset SF ⊆ S∗F tells us which vertex-models intersect B, and the
function ψ associates the sets in A with the vertices in SF . We can think of ψ as a coloring that
colors the subsets in A with colors given by the vertices in SF . Note that several subsets in A can
have the same color u ∈ SF , which means that the vertex-model of u in GB is not connected yet, but
it may get connected in further steps of the dynamic programming. Again, see [1] for the details.

It is proved in [1] that rooted packings allow to carry out dynamic programming in order to
determine whether an input graph G contains a graph F as a minor. It is easy to see that the
number of distinct rooted packings at a bag B is upper-bounded by f(t, F ) := 2t log t · rt · 2r2 , where
t = tw(G) and r = |V (F )|. In particular, this proves that when G is the class of graphs excluding a
fixed graph H on h vertices as a minor, then the index of the equivalence relation ∼G,t is bounded
by 2t log t · ht · 2h2 .

Nevertheless, in order to solve the F-Deletion problem, we need a more complicated data
structure. The intuitive reason is that it is inherently more difficult to cover all models of a graph F
with at most k vertices, rather than just finding one. We define CFD as the function which maps
I ⊆ {1, . . . , t} to a subspace of {0, 1}f(|I|,F ). That is, each CFD-encoding R ∈ C(I) is a vector of
f(|I|,F) bits, which when interpreted as the tables of a dynamic programming algorithm at a given
bag B such that Λ(GB) = I, prescribes which rooted packings exist in the graph GB once the
corresponding vertices of the desired solution to F-Deletion have been removed. More precisely,
the language LCFD contains the triples (G,S,R) (recall from Definition 2 that here G is a boundaried
graph with Λ(G) ⊆ I, S ⊆ V (G), and R ∈ C(I)) such that the graph G− S contains precisely the
rooted packings prescribed by R (namely, those whose corresponding bit equals 1 in R), and such
that the graph G− (∂G ∪ S) does not contain F as a minor.

When the family F = {F1, . . . , F`} may contain more than one graph, let f(t,F) =
∑`

i=1 f(t, Fi),
and we define CFD as the function which maps I ⊆ {1, . . . t} to a subspace of {0, 1}f(|I|,F). The
language is defined LCFD is defined accordingly, that is, such that the graph G− S contains precisely
the rooted packings of Fi prescribed by R, for each 1 6 i 6 `, and such that the graph G− (∂G ∪ S)
does not contain any of the graphs in F as a minor. By definition of EFD, it clearly holds that

sEFD(t) 6 2f(t,F1) · 2f(t,F2) · · · 2f(t,F`) = 2f(t,F). (14)

Assume henceforth that all graphs in the family F are connected. This assumption is crucial because
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for a connected graph F ∈ F and a potential solution S, as the graph G− (∂G∪S) does not contain
F as a minor, we can assume that the packing A corresponding to a potential model of F rooted at
∂G \S is nonempty. Indeed, as F is connected, a rooted packing which does not intersect ∂G \S can
never be extended to a (complete) model of F in G⊕K for any t-boundaried graph K. Therefore, we
can directly discard these empty rooted packings. We will use this property in the proof of Lemma 27
below. Note that this assumption is not safe if F contains more than one connected component. As
mentioned in Section 3, this phenomenon seems to be in strong connection with the fact that the
F-Deletion problem has FII if all the graphs in F are connected [7,19], but for some families F
containing disconnected graphs, F-Deletion has not FII (see [25] for an example of such family).

I Lemma 27. The encoder EFD is a Connected-F-Deletion-encoder. Furthermore, if G is an
arbitrary class of graphs and g(t) = t, then the equivalence relation ∼EFD,g,t,G is DP-friendly.

Proof: The fact that EFD = (CFD, LCFD) is a Connected-F-Deletion-encoder follows easily from
the above discussion, as if G is a 0-boundaried graph, then CFD(∅) consists of a single CFD-encoding
R∅, and (G,S,R∅) ∈ LCFD if and only if the graph G − S contains none of the graphs in F as a
minor. It remains to prove that the equivalence relation ∼EFD,g,t,G is DP-friendly for g(t) = t.

The proof is similar to the proofs for r-Dominating Set and r-Scattered Set, so we will
omit some details. As in the proof of Lemma 16, we start by proving that the encoder EFD for
Connected-F-Deletion is g-confined for the identity function g(t) = t. Similarly to the encoder
we presented for r-Dominating Set, EFD = (CFD, LCFD) has the following monotonicity property.
For R1, R2 ∈ CF (I) such that fCFD

G (R1) <∞ and fCFD
G (R2) <∞,

if R−1
1 (0) ⊆ R−1

2 (0), then fCFD
G (R1) 6 fCFD

G (R2), (15)

where for i ∈ {1, 2}, R−1
i (0) denotes the set of rooted packings whose corresponding bit equals 0 in

Ri. Indeed, Equation (15) holds because any solution S in G that covers all the rooted packings
forbidden by R2 also covers those forbidden by R1 (as by hypothesis R−1

1 (0) ⊆ R−1
2 (0)), so it holds

that fCFD
G (R1) 6 fCFD

G (R2). Let R0 = {0, 0, . . . , 0} be the CFD(I)-encoding will all the bits set to 0.
The key observation is that, since each graph in F is connected, by the discussion above the lemma
we can assume that each packing A in a rooted packing is nonempty. This implies that if R ∈ CFD(I)
such that (G,S,R) ∈ LCFD for some set S ⊆ V (G), then (G,S ∪ ∂G,R0) ∈ LCF . In other words,
any solution S for an arbitrary CFD-encoder R can be transformed into a solution for R0 by adding
a set of vertices of size at most |∂(G)| 6 t. As by Equation (15), for any CFD-encoding R with
fCFD

G (R) <∞, it holds that fCFD
G (R) 6 fCFD

G (R0), it follows that for any graph G with Λ(G) = I,

max
R∈C∗FD,G

(I)
fEFD

G (R) − min
R∈C∗FD,G

(I)
fEFD

G (R) 6 t, as we wanted to prove.

Once we have that EFD = (CFD, LCFD) is g-confined, the proof goes along the same lines of that
of Lemma 16. That is, the objective is to show that, in the setting depicted in Fig. 2, G ∼EFD,g,t,G G

′

(due to Fact 1) and ∆EFD,g,t(G,G′) = ∆EFD,g,t(GB , G
′
B). Due to the g-confinement, it suffices to prove

that fEFD
G (RA) = fEFD

G′ (RA) + ∆EFD,g,t(GB , G
′
B) for all RA ∈ CFD(Λ(G)). Since GB ∼EFD,g,t G

′
B,

the definition of EFD it implies that the graphs GB and G′B contain exactly the same set of rooted
packings, so their behavior with respect to H (see Fig. 2) in terms of the existence of models
of graphs in F is exactly the same. For more details, it is proved in [1] that using the encoder
EFD = (CFD, LCFD), the tables of a given bag in a tree- or branch-decomposition can indeed be
computed from the tables of their children. Therefore, we have that G ∼EFD,g,t,G G′. Finally,
the fact that fEFD

G (RA) = fEFD
G′ (RA) + ∆EFD,g,t(GB , G

′
B) can be easily proved by noting that any

set S ∈ V (G) satisfying RA can be transformed into a set S′ ∈ V (G′) satisfying RA such that
|S′| 6 |S| −∆EFD,g,t(GB , G

′
B) (by just replacing S ∩ V (GB) with the corresponding set of vertices in

V (G′B), using that GB ∼EFD,g,t G
′
B), and vice versa. �



26 Explicit Linear Kernels via Dynamic Programming

L Proof of Theorem 19

We first need a powerful theorem, which follows mainly from the results of Fomin et al. [20], and
uses also [23,24].

I Theorem 28 (Fomin et al. [20]). Let F be a finite set of graphs containing at least one r-vertex
planar graph F , let H be an h-vertex graph, and let PFDH be the restriction of the Planar-F-
Deletion problem to input graphs which exclude H as a minor. If (G, k) ∈ PFDH , then there
exists a set X ⊆ V (G) such that |X| = r · 2O(h2) · k and tw(G−X) = r · 2O(h2). Moreover, given an
instance (G, k) of PFDH with |V (G)| = n, there is an algorithm running in time O(n3) that either
finds such a set X or correctly reports that (G, k) is a No-instance.

We are ready to present a linear kernel for Connected-Planar-F-Deletion when the input
graph excludes a fixed graph H as a minor.

Proof of Theorem 19: The proof is very similar to the one of Theorem 18. Given an instance (G, k),
we run the cubic algorithm given by Theorem 28 to either conclude that (G, k) is a No-instance
or to find a set X ⊆ V (G) such that |X| = r · 2O(h2) · k and tw(G − X) = r · 2O(h2). In the
latter case, we use the set X as input to the algorithm given by Theorem 15, which outputs in
linear time a (r2 · 2O(h2) · k, r · 2O(h2))-protrusion decomposition of G. We now consider the encoder
EFD = (CFD, LCFD) defined in Appendix K. By Lemma 27, EFD is a CPFDH -encoder and ∼EFD,g,t,G
is DP-friendly, where g(t) = t and G is the class of H-minor-free graphs. An upper bound on sEFD(t)
is given in Equation (14). Therefore, we are in position to apply Corollary 14 and obtain a linear
kernel for CPFDH of size at most

r2 · 2O(h2) · b
(
EFD, g, r · 2O(h2),G

)
· k , (16)

where b
(
EFD, g, r · 2O(h2),G

)
is the function defined in Lemma 11. �

M Linear kernels for Planar-F-Deletion on graphs excluding a topological
minor

In this section we explain how to obtain linear kernels for Planar-F-Deletion on graphs excluding a
topological minor. We first describe a uniform randomized kernel and then a nonuniform deterministic
one. We would like to note that in the case that G is the class of graphs excluding a fixed h-vertex
graph H as a topological minor, by using a slight variation of the rooted packings described in
Appendix K it can be proved, using standard dynamic techniques, that the index of the equivalence
relation ∼G,t is also upper-bounded by 2t log t · ht · 2h2 .

Before presenting the uniform randomized kernel, we need the following two results.

I Theorem 29 (Fomin et al. [19]). The optimization version of the Planar-F-Deletion problem
admits a randomized constant-factor approximation.

I Theorem 30 (Leaf and Seymour [27]). For every simple planar graph F on r vertices, every
F -minor-free graph G satisfies tw(G) 6 215r+8r log r.

I Theorem 31. Let F be a finite set of connected graphs containing at least one r-vertex planar graph
F , let H be an h-vertex graph, and let CPFDH-top be the restriction of the Connected-Planar-
F-Deletion problem to input graphs which exclude H as a topological minor. Then CPFDH-top
admits a linear randomized kernel of size at most f(r, h) ·k, where f is an explicit function depending
only on r and h, defined in Equation (17) below.
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Proof: Given an instance (G, k) of CPFDH-top, we first run the randomized polynomial-time
approximation algorithm given by Theorem 29, which achieves an expected constant ratio cF .
If we obtain a solution X ⊆ V (G) such that |X| > cF · k, we declare that (G, k) is a No-
instance. Otherwise, if |X| 6 cF · k, we use the set X as input to the algorithm given by The-
orem 15. As by Theorem 30 we have that tw(G − X) 6 215r+8r log r, we obtain in this way a(
cF · 40h2 · 215r+8r log r+5h log h · k, 215r+8r log r+1 + h

)
-protrusion decomposition of G. We now con-

sider again the encoder EFD = (CFD, LCFD) defined in Appendix K, and by Corollary 14 we obtain a
kernel of size at most(

1 + b
(
EFD, g, 215r+8r log r+1 + h,G

))
·
(
cF · 40h2 · 215r+8r log r+5h log h

)
· k , (17)

where b
(
EFD, g, 215r+8r log r+1 + h,G

)
is the function defined in Lemma 11 and G is the class of

H-topological-minor-free graphs. �

We finally present a deterministic kernel, whose drawback is that the running time is nonuniform
on F and H.

I Theorem 32. Let F be a finite set of connected graphs containing at least one r-vertex planar graph
F , let H be an h-vertex graph, and let CPFDH-top be the restriction of the Connected-Planar-
F-Deletion problem to input graphs which exclude H as a topological minor. Then CPFDH-top
admits a linear kernel of size at most f(r, h) · k, where f is an explicit function depending only on r
and h, defined in Equation (18) below.

Proof: The main observation is that if (G, k) ∈ CPFDH-top, then there exists a set X ⊆ V (G)
with |X| 6 k such that G − X is F-minor-free. In particular, by Theorem 30 it holds that
tw(G−X) 6 215r+8r log r. Therefore, we know by Theorem 15 that if (G, k) ∈ CPFDH-top, then G
admits a (40 · h2 · 215r+8r log r+5h log h · k, 215r+8r log r+1 + h)-protrusion decomposition. Nevertheless,
we do not have tools to efficiently find such linear decomposition. However, we use that, as observed
in [7], a t-protrusion of size more than a prescribed number x in an n-vertex graph can be found
in nO(t) steps, it if exists. Our kernelization algorithm proceeds as follows. We try to find a
(215r+8r log r+1 + h)-protrusion Y of size strictly larger than x := b(EFD, g, 215r+8r log r+1 + h,G),
where EFD is the encoder for F-Deletion described in Appendix K, b

(
EFD, g, 215r+8r log r+1 + h,G

)
is the function defined in Lemma 11, and G is the class of H-topological-minor-free graphs. If we
succeed, we apply the protrusion replacement algorithm given by Theorem 13 and replace Y with
another t-boundaried graph Y ′ such that |Y ′| 6 b

(
EFD, g, 215r+8r log r+1 + h,G

)
. The algorithm

continues as far as we are able to find such large protrusion. At the end of this procedure, we either
obtain an equivalent instance of size at most

b
(
EFD, g, 215r+8r log r+1 + h,G

)
· 40 · h2 · 215r+8r log r+5h log h · k , (18)

or otherwise we can correctly declare that (G, k) is a No-instance. This kernelization algorithm runs
in time nO(215r+8r log r+1+h). �

To conclude this section, we would like to note that the recent results of Chekuri and Chuzhoy [11]
show that in Theorem 30, the inequality tw(G) 6 215r+8r log r can be replaced with tw(G) = rO(1).
This directly implies that in Equations (17) and (18), as well as in the running time of the algorithm
of Theorem 32, the term 215r+8r log r can be replaced with rO(1). Nevertheless, we decided to keep
the current bounds in order to be able to give explicit constants.

N An explicit linear kernel for Planar-F-Packing

Let F be a finite set of graphs. We define the F-Packing problem as follows.
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F-Packing
Instance: A graph G and a non-negative integer k.

Parameter: The integer k.
Question: Does G have k vertex-disjoint subgraphs G1, . . . , Gk such that

each of them contains some graph from F as a minor?

Similarly to F-Deletion, we define the Connected-F-Packing, Planar-F-Packing, and
Connected-Planar-F-Packing problems accordingly. We obtain a linear kernel for Connected-
Planar-F-Packing when the input graph excludes a fixed graph H as a minor by using the
Erdős-Pósa property. The description of the encoder can be found in Appendix O.

I Theorem 33. Let F be a finite family of connected graphs containing at least one planar graph
on r vertices, let H be an h-vertex graph, and let CPFPH be the restriction of the Connected-
Planar-F-Packing problem to H-minor-free input graphs. Then CPFPH admits a constructive
linear kernel of size at most f(r, h) · k, where f is an explicit function depending only on r and h,
defined in Equation (19) below.

Before proving Theorem 33, we need some preliminaries. A class of graphs H satisfies the
Erdős-Pósa property (see [17] for the article that motivated this notion) if there exists a function f
such that, for every integer k and every graph G, either G contains k vertex-disjoint subgraphs each
isomorphic to a graph in H, or there is a set S ⊆ V (G) of at most f(k) vertices such that G−S has no
subgraph in H. Given a connected graph F , letM(F ) be the class of graphs that can be contracted
to F . Robertson and Seymour [30] proved thatM(F ) satisfies the Erdős-Pósa property if and only
if F is planar (see [15, Corollary 12.4.10]) for a simple proof of the ‘if’ direction). A significant
improvement on the function f(k) has been recently provided by Chekuri and Chuzhoy [10]. When
G belongs to a proper minor-closed graph family, Fomin et al. [21] proved that f can be taken to
be linear for any planar graph F . It is not difficult to see that these results also hold if instead of
a connected planar graph F , we consider a finite family F of connected graphs containing at least
one planar graph. This discussion can be summarized as follows, with a precise upper bound on the
desired linear constant.

I Theorem 34 (Fomin et al. [21]). Let F be a finite family of connected graphs containing at least
one planar graph on r vertices, and let H be an h-vertex graph. There exists a constant c such that if
(G, k) is a No-instance of the Connected-Planar-F-Packing problem restricted to H-minor free
graphs, then (G, c · r · 215h+8h log h · k) is a Yes-instance of the Connected-Planar-F-Deletion
problem restricted to H-minor free graphs.

We are now ready to provide a linear kernel for Connected-Planar-F-Packing.

Proof of Theorem 33: Given an instance (G, k) of CPFPH , we run the algorithm given by
Theorem 28 for the Connected-Planar-F-Deletion problem with input (G, c · r · 215h+8h log h · k).
If the algorithm is not able to find a set X of the claimed size, then by Theorem 34 we can conclude
that (G, k) ∈ CPFPH . Otherwise, we use again the set X as input to the algorithm given by
Theorem 15, which outputs in linear time a (r2 · 2O(h2) · k, r · 2O(h2))-protrusion decomposition of G.
We now consider the encoder EFP = (CFP, LCFP) defined in Appendix O. By Lemma 35, EFP is a
CPFPH -encoder and ∼EFP,g,t,G is DP-friendly, where g(t) = t and G is the class of H-minor-free
graphs. An upper bound on sEFP(t) is given in Equation (20). Therefore, we are in position to apply
Corollary 14 and obtain a linear kernel for CPFPH of size at most

r2 · 2O(h2) · b
(
EFP, g, r · 2O(h2),G

)
· k , (19)



V. Garnero, C. Paul, I. Sau, and D. M. Thilikos 29

where b
(
EFP, g, r · 2O(h2),G

)
is the function defined in Lemma 11. �

Again, by using the recent results of Chekuri and Chuzhoy [11], it can be shown that the factor
215h+8h log h in Theorem 34 can be replaced with hO(1). However, in this case this would not directly
translate into an improvement of the size of the kernel given in Equation (19), as the term hO(1)

would be dominated by the term 2O(h2).

O The encoder for F-Packing

Our encoder EFP = (CFP, LCFP) for F-Packing also uses the notion of rooted packing defined in [1]
and already used in Appendix K, and is inspired by the results on Cycle Packing in [7]. Let G be
a boundaried graph with boundary ∂(G) and let I = Λ(G). The function CFP maps I to a set CFP(I)
of CFP-encodings. Each R ∈ CFP(I) maps I to a rooted packing (A, S∗F , SF , φ, χ), where each such
rooted packing encodes a potential model of the disjoint union of at most |I| minors in the set F
(multiple copies of the same graph are allowed). Note that in Appendix K a rooted packing was
associated with one potential model, whereas here it is associated with a set of at most |I| potential
models.

For a set S ⊆ V (G) of vertices inducing a set of potential models of F in G, we say that (G,S,R)
belongs to the language LCFP (or that S is a set of vertex-disjoint potential models satisfying R) if:

all the models of subgraphs in F entirely realized by S indeed exist in G and are pairwise
vertex-disjoint; and
besides these entire models, the vertices in S also induce in G the set of vertex-disjoint potential
models prescribed by the rooted packing R.

Note that we allow the entirely realized models to intersect ∂G − A arbitrarily. Let g(t) = t.
The function fEFP,g

G (R) associates with a CFP-encoding R the maximum cardinality of a set of
vertex-disjoint models of F in G (in terms of number of entirely realized models, not of number of
vertices) such that the potential models in S (that is, those that are not entirely realized) satisfy
the conditions imposed by the rooted packing R (or −∞ according to the definition in Equation (8)
in Appendix B). Note also that this definition of fEFP,g

G (R) does not completely fit into the general
definition for maximization problems given of Equation (8), as here we count the number of (complete)
models rather than the size of S. This is fortunately not a problem, as far as we can guarantee that
with this definition of fEFP,g

G (R) the encoder EFP is a Connected-F-Packing-encoder and that
the corresponding equivalence relation is DP-friendly.

By definition of EFP, if we let r := maxF∈F |V (F )|, it holds that

sEFP(t) 6 2t log t · (t · r)t · 2t·r2
. (20)

I Lemma 35. The encoder EFP is a Connected-F-Packing-encoder. Furthermore, if G is an
arbitrary class of graphs and g(t) = t, then the equivalence relation ∼EFP,g,t,G is DP-friendly.

Proof: To prove that EFP = (CFP, LCFP) is a Connected-F-Packing-encoder, we first need to take
into account that Connected-F-Packing is not exactly a vertex-certifiable problem according to
Definition 1. We can overcome this as follows. If Π stands for the Connected-F-Packing problem,
we modify Definition 2 and say that an encoder E = (C, LC) is a Π-encoder if C(∅) consists of a single
C-encoding, namely R∅, such that for every 0-boundaried graph G and any integer k, (G, k) ∈ Π if
and only if fEG(R∅) > k. It can be easily seen that Lemma 9 still holds with this modified definition
of Π-encoder, and therefore the protrusion replacement given by Theorem 13 is still safe. Let us
now see that the encoder EFP = (CFP, LCFP) is a Connected-F-Packing-encoder. Indeed, if G is
a 0-boundaried graph, then CFP(∅) consists of a single CFP-encoding R∅, and fEFP

G (R∅) > k if and
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only if the graph G contains at least k vertex-disjoint models of graphs in F , that is, if and only
if (G, k) is a Yes-instance of Connected-F-Packing. In other words, fEFP

G (R∅) indeed gives the
maximum number of vertex-disjoint models of graphs in F contained in G.

It remains to prove that the equivalence relation ∼EFD,g,t,G is DP-friendly for g(t) = t. As the
proof is similar to the ones for the encoders and equivalence relations of the preceding sections, we
will again omit some details.

The proof goes along the same lines of that of Lemma 26. That is, the objective is to show that,
in the setting depicted in Fig. 2, G ∼EFD,g,t G

′ (relying again on Fact 1) and that ∆EFD,g,t(G,G′) =
∆EFD,g,t(GB , G

′
B).

Let RA be a CFP-encoding defined on A. Assume that RA ∈ C∗FP,G (the case where fEFP,g
G (RA) =

−∞ can be easily handled as in the proof of Lemma 26). Let S = M ∪MB ∪MH be a set of
fEFP,g

G (RA) models (recall that fEFP,g
G does not take in account the partial models rooted at A) of

graphs of F in G, with M being the set of models entirely contained in GB , MH the set of models
and partial models entirely contained in V (H) \B, and MB the set of remaining models and partial
models that cross B. A CFP-encoding RB = (A, S∗F , SF , ψ, χ) ∈ CFP(Λ(GB)), satisfied by S is
defined as follows:
A is the set of connected components of the intersection between B and the models in MB ;
ψ maps each connected component of a model to its corresponding vertex in F ;
S∗F , SF , and χ correspond to the potential models defined by the intersection between M and the
models in MB .

We now prove that fEFP,g
GB

(RB) 6= −∞ (and hence G′B have a partial solution of size fEFP,g
GB

(RB) +
∆EFD,g,t(GB , G

′
B)). Consider an arbitrary encoding R and the encoding R0 = (∅, S∗F , ∅, ψ∅, χ∅)

defined on B. Since there are no conditions imposed by R0 on the (non-realized) potential models,
it holds that fEFP,g

GB
(R0) > fEFP,g

GB
(R), and therefore fEFP,g

GB
(R0) = maxR f

EFP,g
GB

(R). Let M0 be a
set of potential models in GB of maximum cardinality (in terms of number of models) such that
(GB ,M0, R0) ∈ LCFP . Assume for contradiction that |M0| > |M | + t. It can be checked that
M0 ∪ MH is a set of models with size |M0 ∪ MH | > |M ∪ MH | + t > |S| + t. It follows that
maxR f

EFP
G (R)− fEFP

G (RA) > t, and hence fEFP,g
G (RA) = −∞, contradicting our assumption. Thus,

we have that |M0| 6 |M |+ t, that is, fEFP
GB

(R0)− fEFP
GB

(RB) 6 t. Therefore, fEFP,g
GB

(RB) 6= −∞, as
we wanted to prove.

Observe that by construction of RB, it holds that |M | 6 fEFP,g
GB

(RB). Let M ′ be a set of
models of F in G′B of maximum cardinality such that (G′B ,M ′, R) ∈ LCFP , that is, such that
|M ′| = fEFP,g

G′
B

(RB). Let also M ′B be the set of models obtained by gluing the partial models
in H ∩ MB with the partial models in G′B associated with RB (note that |MB | = |M ′B |). As
GB∼EFP,g,tG

′
B and fEFP,g

GB
(RB) 6= −∞, we have that |M ′| = fEFP,g

GB
(R)+∆EFD,g,t(GB , G

′
B), and there-

fore |M ′∪M ′B∪MH | = fEFP,g
GB

(RB)+∆EFD,g,t(GB , G
′
B)+|M ′B∪MH | > fEFP,g

GB
(RA)+∆EFD,g,t(GB , G

′
B).

We already have that MH (resp. M ′) is a set of models in H (resp. G′B). By definition of M ′B , since
M ′ satisfies RB, the models of M ′B and M ′ are vertex-disjoint, and since MB ∪MH was a set of
vertex-disjoint models, the models of MH and M ′B are vertex-disjoint as well. It follows that G′ has
a set of (partial) models satisfying RA of size fEFP,g

G (RA) + ∆EFD,g,t(GB , G
′
B), that is G ∼EFD,g,t G

′

(relying again on Fact 1) and ∆EFD,g,t(G,G′) = ∆EFD,g,t(GB , G
′
B). �
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