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Abstract

We prove Wagner’s conjecture, that for every infinite set of finite graphs, one of its members is
isomorphic to a minor of another.
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1. Introduction

A famous conjecture of Wagng8] asserts that for any infinite set of graphs, one of its
members is isomorphic to a minor of another (all graphs in this paper are finite). It has been
one of the main goals of this series of papers to prove the conjecture, and in this paper the
proof is completed.

Our method is roughly as follows. KG1, G2, ...} is a counterexample to Wagner’s
conjecture then none @i, Gs, . .. has aminorisomorphic t61, and so to prove Wagner's
conjecture it suffices to show the following.

1.1. For every graph H and every infinite set of graphs each with no minor isomorphic to
H, some member of the set is isomorphic to a minor of another member of the set.
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It was shown ir[3] that

1.2. For every graph Hif G has no minor isomorphic to Hhen every highly connected
componeritof G can“almost be drawn on a surface on which H cannot be drawn.

(The meanings of “highly connected component” and “almost” here are complicated and
we shall postpone the exact statement of this theorem as long as poSsitiezesare
connected and compact.)

We may assume the surfacelir? is without boundary; and since up to homeomorphism
there are only finitely many such surfaces in whitltannot be drawn, to prove1 and
hence Wagner's conjecture it suffices to show that

1.3.If Xq,...,2, are surfaces then for every infinite sétof graphs if every highly
connected component of every membefFafan almost be drawn in one a@fy, ..., X,
then some member &f is isomorphic to a minor of another member/6f

To provel.3we use the main results of two other papers of this sptig§ The main result
of [4] asserts that, ifF is an infinite set of graphs and all the highly connected components
of all members ofF have a certain “well-behaved” structure, then some membef of
is isomorphic to a minor of another member Bf It therefore suffices to show that the
hypothesis ofl..3implies that all these highly connected components have a well-behaved
structure. To show this, we apply the main resu[&§f which asserts that for any infinite set
of hypergraphs all drawable in a fixed surface (where the edges of the hypergraphs all have
two or three ends, and each edge is labeled from a fixed well-quasi-order), some member
of the set is isomorphic to a minor of another (with an appropriate definition of “minor” for
hypergraphs).

In Sections 2—-10 we finish the proof of Wagner’s conjecture, and in Section 11 we prove
a slight strengthening.

2. Hypergraphs and tangles

For the purposes of this papemwgpergraph Ceonsists of a finite set (G) of vertices
a finite setE (G) of edgesand an incidence relation between them. The vertices incident
with an edge are thendsof the edge (A hypergraph is thus a graph if every edge has one
or two ends.) A hypergrapH is asubhypergraptof a hypergrapltG (written H C G) if
V(H) C V(G), E(H) C E(G), and for every € V(G) ande € E(H), eis incident with
vin Gifand only ifv € V(H) andeis incident withvin H. If G1, G2 are subhypergraphs
of Gwe denote byG1U G2, G1N G2 the subhypergraphs with vertex s&teG1) UV (G2),
V(G1)NV(Gy) and edge setB(G1) U E(G2), E(G1) N E(G2), respectively. Aseparation
of Gisanordered pailG1, G2) of subhypergraphs with1UG2 = G andE(G1NG2) = @,
and itsorderis |V (G1 N G)|.

A central idea in our approach is that abaglein a hypergraph, which was introduced in
[2]. Intuitively, a tangle of ordef is a “0-connected component” of the hypergraph, which
therefore resides on one side or the other of every separation of -er@ldFormally, letG



N. Robertson, P.D. Seymour / Journal of Combinatorial Theory, Series B 92 (2004) 325—- 35327

be a hypergraph an@l>> 1 an integer. Aangle of orderd in G is a set] of separations of
G, each of ordek 0, such that
o for every separatiofA, B) of G of order< 6, 7 contains one ofA, B), (B, A),
o if (Aj,B))eT (i=1,23) thenA1UA,U Az # G,
e if (A, B) € T thenV(A) # V(G).
Let us mention one lemma that we shall need later.

2.1. Let G be a hypergrapHet G’ € G and let7”’ be a tangle inG’ of order6. Let T be
the set of all separation&A, B) of G of order< 0 such thatA N G’, BN G’) € T'. Then
T is atangle in G of ordef.

The proof is clear.

A tie-breakerin a hypergrapl@ is a functionZ which maps each separation, B) of G
to some membei(A, B) of a linearly ordered set1, <) (we callA(A, B) the A-order of
(A, B)) in such a way that for all separatiots, B), (C, D) of G,

e /(A, B) = A(C, D)ifand onlyif (A, B) = (C, D) or (A, B) = (D, C),

e either/(AUC, BN D)<A(A,B)orA(ANC, BUD) < AC, D),

e if V(AN B)| < |V(C N D)|theni(A, B) < A(C, D).

Let A be a tie-breaker in a hypergra@hIf 71, 7> are tangles it with 71Z 7> andT2Z 71,
then there is a uniqued, B) € 71 such that(B, A) € 72 of minimum J-order, called the
(71, T2)-distinction

A marchin a setV is a finite sequence of distinct elementsvpfand if = is the march
v1, ..., Vg, we denote the sdby, ..., vy} by 7. We denote the null march by 0. woted
hypergraph Gis a pair(G~, n(G)) whereG~ is a hypergraph and(G) is a march in
V(G™).We defineV (G) = V(G™), E(G) = E(G™). If Gis arooted hypergraphtangle
in Gis atangle inG—, and atie-breakerin G is a tie-breaker irG .

A separationof a rooted hypergrap& is a pair(A, B) of rooted hypergraphs such that
(A—, B7) is a separation o, m(A) = V(A N B), andn(B) = n(G). If G, A are rooted
hypergraphs, we writd C G if A~ C G~. If A C G, we sayA is complemented there
existsB C G such that(A, B) is a separation o6, and we defingG \ A = B. A rooted
locationin a rooted hypergrap is a setC of complemented rooted hypergraphsvith
A C GsuchthatE(A] NAS) =@ andV (A] NA;) = m(A) N7(Ap) for all distinctAy,
Ao € L. Itsorderis max|m(A)| : A € £),or0if L = @. If L is arooted location iiG, we
defineL™ = {(A7,(G\A)7) : A € L},andwe defind/ (G, L)tobeNn((G\A)™ : A € L)
if £L¢ @, andtobeG™ if L =40.

Let G be a rooted hypergraph, It be a tangle irG, and let/ be a tie-breaker is. A
rooted locationl in G is said tof-isolate7 if 0>1, £ has order< 0, L~ < 7T, and for
eachA e £, and for every tangl§” in G of order >0 with (G \ A)~, A7) € T/, the
(T, T)-distinction(C, D) satisfiesC € A~ and(G \ A)~ C D.

3. Patchworks

If Vis afinite set we denote by the complete graph ow that is, the simple graph with
vertex seV and edge set the set of all subset¥ of cardinality 2, with the natural incidence
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relation. Agroupingin V is a subgraph oKy every component of which is complete. A
pairing in Vis a grouping irV every component of which has most two vertices. A pairing
Kin Vis said topair X, Yif X, Y C V are disjoint and

e every 2-vertex component &f has one vertex iXX and the other ity, and

e every vertex ofX U Y belongs to some 2-vertex componenkof

A patch4 inV consists of a subsé&t(4) € V, and a collection of groupings W, each with

the same vertex sét(4) C V. We denote the collection of groupings by the same symbol
A. A patch4 is freeif it contains every grouping iW with vertex setV (4); and it isrobust

if for every choice ofX, Y C V(4) with | X| = |Y|andX N Y = ¢, there is a pairing in
which pairsX, Y.

A patchworkis a triple P = (G, u, 4), where
e Gis arooted hypergraph,

e s afunction with domaidom(u) € E(G); and for eacte € dom(u), u(e) is a march

with ji(e) the set of ends adin G,

e /A is afunction with domairk (G), and for eacle € E(G), 4(e) is a patch withV (4(e))
the set of ends of; and for eacle € E(G) \ dom(u), 4(e) is free.

The patchwork isobustif eachA(e) (e € E(G)) isrobust (Thisis automatic fer¢ dom(u),

since free patches are robust.) Itastlessif ©(G) = @.

A quasi-orderQ is a pair(E(£2), <), whereE (Q) is a set and< is a reflective transitive
relation onE (). It is awell-quasi-ordeiif for every countable sequeneg (i = 1,2, ...)
of elements oft (Q2) there existj > i > 1 such thak; <x;. If 21, Q, are quasi-orders with
E(Q1)NE(Q2) = ¥ we denote by2; U Q5 the quasi-ordeR2 with E(Q) = E(Q1)U E(£22)
in whichx <y ifforsomei (i = 1,2)x,y € E(Q2;) andx <y in Q;. If Q1, Q, are quasi-
orders we write21 C Q, if E(Q1) C E(Q22) and forx, y € E(21), x <y in Q1 if and only
if x<yin Q.

If Qis a quasi-order, partial Q-patchworkis a quadrupléG, p, 4, ¢), where(G, u, 4)
is a patchwork andp is a function from a subsedom¢) of E(G) into E(Q). It is
an Q-patchworkif dom(¢) = E(G). It is robustif (G, u, A) is robust. It isrootlessif
n(G) = 0.

If Vis afinite setNy denotes the graph with vertex 82and no edges. fealizationof
a patchwork(G, u, 4) is a subgraph oKy ) expressible in the form

NvioyU | b
ecE(G)

whered, € A(e) for eache € E(G). A realizationof a partialQ-patchwork(G, u, 4, ¢)
is a realization of(G, u, 4). If uy, u, are marches with the same length, we denote by
Uy — uo the bijection frompy onto zi; that mapsy, onto p,. Let P = (G, u, 4, ¢),
P = (G, A, ¢") beQ-patchworks. Arexpansiorof Pin P’ is a functiony with domain
V(G) U E(G) such that
e for eachv € V(G), n(v) is a non-empty subset df (G’), and for eacke ¢ E(G),
ne) € E(G'),
e for distinctvy, vo € V(G), n(v1) Ny(v2) = 9,
e for distinctey, e2 € E(G), n(e1) # n(e2),
e for eache € E(G), e € dom(p) if and only if 7(e) € dom(y),
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e for eache € E(G) \ dom(w), if vis an end ok in G thenz(v) contains an end af(e)

in G/,

o for eache € dom(p), u(e) andp’(n(e)) have the same lengtk,say, and for X <k,

n(v) contains theth term ofy/(17(e)) wherev is theith term ofu(e),
¢ 7(G) andn(G’) have the same lengtk say, and for Xi <k, n(v) contains theth term

of n(G") wherev is theith term ofz(G),

o for eache € dom(u), 4’(n(e)) is the image ofd(e) underu(e) — ' (n(e)),
e for eache € E(G), ¢(e) <P’ (n(e)).

If Gis a hypergraph and’ € E(G), G\F denotes the subhypergraph with the same
vertex setand edge sBtG)\ F. If Gisarooted hypergrapls;\ F denotesG ~\ F, n(G)). If
P = (G, u, 4, ¢)isanQ-patchworkand” C E(G), P\ F denotes th&-patchwork G\ F,
WA, @) wherey, A’, ¢’ are the restrictions qi, 4, ¢ to dom(u) N E(G\F), E(G\F),
E(G\F), respectively. Let; be an expansiona? = (G, u, 4, ¢p)in P’ = (G', /', 4, §).
A realizationH of P'\n(E(G)) is said torealizey if for everyv € V(G), n(v) is the vertex
set of some component bf; and if there is such a realizationjs said to beealizable Let
us say thaP is simulatedn P’ if there is a realizable expansion®fin P’.

If P = (G, u, 4) is patchwork and\ is a rooted hypergraph with C G, we denote by
P|A the patchwork A, 1/, A4"), wherey’, A are the restrictions qf, 4 to E(A) Nndom(u),
E(A), respectively. IfP = (G, u, 4, ¢) is a partialQ-patchwork,P|A is the partialQ2-
patchwork(A, i/, A, ¢') wherey, A’ are as before angl’ is the restriction ofh to E(A) N
dom(¢).

Let P = (G, u, 4) be a patchwork. A grouping is feasiblein P if V(K) = n(G) and
there is a realizatiohl of P such that for distinck, y € V(K), x andy belong to the same
component o if and only if they are adjacent iK.

Let P = (G, u, A) be a patchwork and lef be a rooted location i. For eachA € £
lete(A) be a new element, and 16t be the rooted hypergraph with

V(G')=V(M(G, L)),
E(GY=EM(G, L)) U{e(A): A e L},
n(G") =n(G),

where fore € E(M(G, £)) its ends are as i —, and forA € L the ends ok(A) are
the vertices int(A). Fore € E(M(G, £)) Ndom(u) let i'(e) = p(e), and forA € L let

W (e(A)) = m(A). Fore € E(M(G, L)) let A'(e) = A(e), and forA € L let A’ (e(A)) be
the set of all groupings feasible iP|A, with V (4’ (e(A))) = w(A). Then(G’, i/, A"y is a
patchwork which we call keartof (P, £) (Itis unique up to the choice of the new elements
e(A).)

Now let P" = (G, u, 4, ¢) be anQ-patchwork, and letP = (G, u, 4) and L be as
before. Fore € E(M(G, L)) let ¢'(e) = ¢(e); then, withG', i/, A’ defined as before,
(G', 1/, A, ¢') is a partialQ-patchwork which we call &eartof (P’, £).

Let P = (G, u, 4, ¢) be a partial2-patchwork, and le®’ be a quasi-order witk € Q'.

By an€’-completionof P we mean a2’ -patchwork(G, u, 4, ¢) such thatp’(e) = ¢(e)
for eache € dom(¢). A setC of partial Q-patchworks iswell-behavedf Q is a well-
quasi-order and for every well-quasi-orderwith Q € Q" and every countable sequence
P! (i =1,2,...) of @-completions of members & there existj > i >1 such thatP/

1

is simulated inP/’.. Let 21 € Q, be well-quasi-orders, and I€t be a set of partiaf2;-
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patchworks. Theg is also a set of partidP,-patchworks; and it is an easy exercise to show
thatCis well-behaved takin@ = @4, if and only if it is well-behaved wittf2 = Q5. Thus,
our terminology suppressing the dependenc&as not misleading.

The following is Theorem 6.7 d#].

3.1. Let Q be a well-quasi-orderlet F be a well-behaved set of rootless parti@t
patchworks and let0>1 be an integer. Let?; = (G, w;, 4;, ¢;) (i = 1,2,...) be a
countable sequence of rootless rob@spatchworks. For each> 1 let /; be a tie-breaker
in G;; and suppose that for every tandlein G; of order > 6 there is a rooted location
L in G; such thatl 0-isolates7 and (P;, £) has a heart inF. Then there exisf > i >1
such thatP; is simulated inP;.

4. Well-behaved sets of patchworks

The previous resul8.1, combined with the main result ¢8] (seel0.3 of the present
paper), almost proves Wagner’s conjecture. Not quite, however; although the rooted lo-
cations provided by3] have hearts in a well-behaved set, they do not giiolate the
corresponding tangles and 8dlL cannot be applied to them. In the next few sections we
prove a strengthening 3of 3.1, that bridges the gap. We show that the location8péan
be modified such that the new locations still have hearts in a (new) well-behaved set and do
' -isolate the corresponding tangles, for an appropfiat&he main problem is that there
are a bounded number of vertices that need to be removed; and in egsxam@resses the
problems caused by removing these vertices.

To prove7.3, we first need to develop ways of constructing new well-behaved sets of
patchworks from old ones, and that is the object of this section. Incidentally, the rooted
locations. provided by[3] have the property th&t)(A~ : A € £) = G—, which has two
desirable consequences; that their hearts have no “isolated vertices”, and that their hearts
have no edges labeled frofy and hence are more naturally regarded as patchworks than
as partialQ-patchworks. This motivates the following.

If P = (G, u, 4) is a patchwork and? is a quasi-order, we call evei@-patchwork
(G, 1, 4, ¢) an Q-completion of PA set F of patchworks iswell-behavedf for every
well-quasi-ordei2 and every countable sequenBe(i = 1, 2, ...) of Q-completions of
members ofF there existj > i >>1 such thatP; is simulated inP;.

4.1. If F is well-behavedthen there exist®V >0 such that if(G, u, 4) € F ande €
dom(w) then|i(e)| < N.

Proof. LetQ be the well-quasi-order with (Q) = {w1, w2} say, wherev, w, are incompa-
rable (thatisg; L w2 L w1). Suppose that there is Nbas in the theorem. Then there exist
integersn; and P; = (G, i;, 4;) € F ande; € E(G;) Ndom(uqg) with |i; (e;)| = n; for
i=12,...,suchthati; < nz <....Fori >1, definep; : E(G;) — E(Q) by ¢;(e;) =
w2 ande¢; (e) = w1(e # ¢;). Then(G, ., 4i, ¢;) (= Q;, say) is an2-completion ofP;.
SinceF is well-behaved, there exigt> i > 1 such that there is a realizable expansjari
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Q, in Q. Consequently
w2 = ¢;(ei)) <P (ner))

and so¢j (n(e;)) = wp, thatis,n(e;) = ej. Bute; € dom(u;), and sy, (¢;) and,uj(n(e,»))
have the same length; that is,

ni = [(ep)l = ij(me))| = lplep)l =nj,
a contradiction. The result follows.[]

Let Q1, Q, be quasi-orders, and Ig§ be a set of2;-patchworks(i = 1, 2). A function
y . Fo — JF1is anencodingof F, in Fy if P is simulated inP’ for all P, P’ € F> such
thaty(P) is simulated iny(P"). The following is a convenient lemma for producing new
well-behaved sets of patchworks.

4.2. Let F1, F» be sets of patchworks whefg is well-behaved. Suppose that for every
well-quasi-orderQ, there is a well-quasi-ordef2; and an encoding of the set of &l-
completions of members &b in the set of all21-completions of members &f. ThenF;

is well-behaved.

The proof is clear.

4.3. Let 1 be a well-behaved set of patchworks. |7t be the set of all patchworks
P> = (G2, u, A) such that there exisiG1, u, 4) € F1 andv € V(G1) \ #(G1) such that
G, = G; andn(Gy) is the concatenation of(G1) with a new last term v and v is incident
with some edge € dom(w). ThenF; is well-behaved.

Proof. ChooseN as in4.1(with F replaced byF). For 1<r < N, letC” be the set of those
patchworksP, = (G2, u, 4) € F» such thatv, e may be chosen as above wittthe rth
term of u(e). SinceF, = FLU--- U FN and the union of finitely many well-behaved sets
is well-behaved, it suffices to show th&t is well-behaved for each

LetQ, be awell-quasi-order. L&23 be an isomorphic copy @&, with E(22)NE (23) =
@, and let. = Qo — Q3 be anisomorphism. Le&2; = Qo U Q3. Let Q2 = (G2, i, 4, ¢5)
be an(2;-completion of a membeP, = (G2, i, 4) of F". Letv be the last term ok(G>),
and letG; be the hypergraph witt; = G, andn(G1) the sequence obtained franiG)
by deletingv. ThenP1 = (G1, i, 4) € C1. Choosef € dom(u) such that is therth term
of u(f). Define anQ;-completionQ1 = (G1, i, 4, ¢1) of Py as follows:

Pr(e) = ¢yle) (e € E(G) \ {f)),
D1(f) = Ao f)).

We define/i(Q2) = Q1, and claim thay is an encoding. For suppose thap}) = 07,
where Q) = (G, 1/, 4', §5), etc., andy is a realizable expansion @ in Q). Then
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n(f) = f’, sincef’ is the only edge of 0, with ¢3(e) € E(23). Sincef € dom(u) and
f" e dom(y) it follows thatv” € 5(v), and hence is a realizable expansion @f; in 05,
as required. Thugis an encoding, and the theorem follows frdm2. [

4.4. Let 1 be a well-behaved set of patchwarlesd let 7> be the set of all rootless
patchworksP, = (G2, u, 4) such that there exist&G1, u, 4) € F1 with G; = G, . Then
F> is well-behaved.

The proofis clear (for any realization expansion of one patchwork in anotheris arealizable
expansion of the corresponding patchworks with roots forgotten).
A patchwork(G, u, 4) is activeif every vertex ofG is incident with some € dom (u).

4.5. Let 71 be a well-behaved set of active patchworlkes £ >0 and let 7> be the set
of all patchworks(G2, i, 4) such that|z(G2)| <k and there exist$G1, u, 4) € F1 with
G = G, .ThenF; is well-behaved.

Proof. It suffices to prove tha(G2, u, 4) € F> : |t(G2)| = k'} is well-behaved, for each
k" with 0< k' <k. Fork’ = 0 this follows from4.4, and in general by induction dri from
43 O

4.6. Let 71 be a well-behaved set of patchwarksd let 7> be a set of patchworks such
that for eachP, = (G2, p,, 42) € F> there existsf € E(G») such thatPo\{ f} € F1 and
every end of f belongs t(G2). ThenF; is well-behaved.

The proof is clear.

Let P1 = (G1, uq, 41) be apatchwork and € dom (). Take a new vertexand letG2
be the rooted hypergraph withG2) = n(G1), E(G2) = E(G1), V(G2) = V(G1) U {v}
wheref is incident withv but otherwise the incidence relation is the same a&fhet u,( f)
be an arbitrary march and letx(f) be an arbitrary patch, except thatf), V(42(f))
are both the set of ends 6fin Go. Fore € dom(uy) \ {f} let uo(e) = pq(e), and for
e € E(G)\ {f} letda(e) = A1(e). Then(Ga, u,, 42) is a patchwork, which we say is a
1-vertex extensioof (G1, pq, 41).

4.7. Let 71 be a well-behaved set of patchworks andfetbe a set of patchworks each
of which is al-vertex extension of a member®f. ThenF; is well-behaved.

Proof. Let 2, be a well-quasi-order, and le¥ >0 be an integer such that for every
(G, u, A) € Fy and everye € dom(u), e has <N ends. LetQ be the well-quasi-order

with E(Q) the set of all2,-patchworkg G, u, 4, ¢) with |[E(G)| = 1and|V(G)| <N +1,
ordered by simulation (Evidently, this is indeed a well-quasi-order.) We may assume that
E@QNE) =0.LetQ = QU Qy.
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LetQ2 = (G, 1y, 42, ¢,) be an22-completion of amember of2. Choos&G1, iy, 41)
€ Frand f € dom(uy) andv € V(Gy), as in the definition of 1-vertex extension. Let
01 = (G1, uq, 41, ¢,) be theQi-completion of(G1, 4, 41) where

P1(e) = ¢a(e) (e € E(GD\{[f},
$1(f) = Q2lH,

whereH is the rooted hypergraph such thdt< G, n(H) = uy(f), E(H) = {f}, and
V(H) is the set of ends dfin G,. Let us defineD1 = A(Q2); then it is easy to see that
is an encoding, and the result follows freh2. [

4.8. Let 71 be a well-behaved set of patchworket k >0, and let 7> be the set of all
patchworksP, such that there exis®; € F; and a sequence

P1=PO,P1,...,Pk/=P2

wherek’ <k and forl<i <k, P is al-vertex extension a?’~1. Then/, is well-behaved.

Proof. Let us expres§, = FOU FLU ... U F*, where forP, € F! thek’ above can be
chosen witht’ = i. By repeated use af.7, 7~ is well-behaved for eackl, and hencer,
is well-behaved. O

If Gis a hypergraph an® C V(G), G/ W denotes the hypergragh’ with V(G’) =
V(G)\ W andE(G') = E(G), in whichv € V(G) \ W ande € E(G) are incident if
and only if they are incident i®. If = is a march in aséf andW < V, n/ W denotes the
march obtained by omitting all terms W. If G is a rooted hypergraph ariéd € V(G),
G/ W denotesG~ /W, n(G), W).If P = (G, u, A) is a patchwork and C V(G), P/ W
denotes the patchworlG/ W, i/, A') where fore € dom(w), 1/(e) = u(e)/ W, and for
e € E(G), if Zdenotes the set of endseiin G thenA’(e) consists of all grouping&” with
vertex setZ \ W such thatk’ U Nynz € 4(e). If P = (G, u, 4, ¢) is anQ-patchwork and
W C V(G), P/ W denotes th&-patchwork(G/ W, i/, 4, ¢), wherey/, A" are as before.

4.9. Let 71 be a well-behaved set of patchworlet 0 >0, and let 7, be the set of all
patchworksPs = (G2, u,, 42) such thatdom (u,) = E(G2) and there exist®/ < V(G2)
with [W| <0 and P,/ W € Fi. ThenF, is well-behaved.

Proof. It suffices (by induction ofiW|) to prove this when foreach, = (G2, uy, 42) € F2
there existew € V(G») such thatP,/{v} € F1. Let Q, be a well-quasi-order and define
N, Q, Q1 as in the proof of4.7. Let Q2 = (G2, uy, 42, ¢,) be anQ,-completion of a
member P, of F,, and choose € V(G2) such thatP>/{v} = P1 € F1. Let P, =
(G1, 119, 41) and letQ1 be theQ;-completion(G1, u4, 41, ¢,) of P1 where

¢1(e) = Po(e) if e € E(G1) is not incident withv in G2,
¢1(e) = O2|H if e € E(G) is incident withv in G2,
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where in the second cadd,is the rooted hypergraph such thatC Ga, n(H) = uy(e),
E(H) = {e} andV (H) is the set of ends & in Go. Let us define/(Q2) = Q1; thenitis
easy to see thatis an encoding and the result follows frah2. [

Let P1 = (G1, g, 41) and P2 = (G2, iy, 42) be patchworks. We say thd is a
condensatiof P, if V(G1) = V(G2), 1(G1) = 1(G2), dom(uy) = E(G1), dom(up) =
E(G»), for eache € E(G1) there is a rooted subhypergragh € G with the following
properties:

e V(A,)isthe set of ends &din G1, andn(A,) = pq(e),
e U E(A)=E(G),
¢cE(G1)
o for distincte, ¢’ € E(G1), E(A,) N E(A,) =,
e foreache € E(G1) andK € 41(e), Kis feasible inP;|A,.
A patchworkP = (G, u, A) is removabldf for everye € E(G), 4(e) containsNy where
V is the set of ends d&.

4.10. Let 71 be a well-behaved set of removable patchworks anéidie a set of patch-
works such that for eacl?, € F, someP; € F; is a condensation of,. ThenF; is
well-behaved.

Proof. ChooseN >0 (by4.1) such that for everyG, u, 4) € F1 and every € dom(u), €
has< N ends. Now lef2, be a well-quasi-order. L&21 be the well-quasi-order with (1)
the set of all2,-patchworks(G, u, 4, ¢) where|V(G)|< N, and(G, u, 4) is removable,
ordered by simulation (Th#?; is a well-quasi-order is proved in the same way as theorem
8.4 of[1] and we omit the proof.)

Now let Q2 = (G2, uy, 42, ¢,) be anQ2z-completion of someP, € F,. ChooseP; =
(G1, uq, 41) € F1 such thatPy is a condensation aP,, and choose the rooted subhyper-
graphsA, (e € E(G1)) as in the definition of condensation. Ley = (G1, pq, 41, ¢1)
be theQ2;-completion of P; where¢,(e) = Q2|A, for eache € dom(u;) = E(G1). Let
01 = y(Q2); then theorem 5.7 d#] implies thaty is an encoding, and the result follows.

O

4.11. Let F; be a well-behaved set of active patchwor&sd let 7, be the set of all
patchworksP> = (G2, i, 42) such that there exist®; = (G1, uq, 41) € F1 with G2 <
G1,1(G2) = n(G1), G2 complemented ir1 and P, = P1|G2. ThenF; is well-behaved.

Proof. Let Q5 be a well-quasi-order. Let ¢ E(£22) be a new element and |€X; be the
well-quasi-order with2, € Q1 and E(Q21) = E(£2) U {x}, where ifx <x or x<x then
x = x. Now let Q2 = (G2, iy, 42, ¢») be anQz-completion ofP, = (G2, u,, 42) € Fo.
ChooseP1 = (G1, iq, 41) € F1sothatGy € G1, n(G2) = n(G1), G2 is complemented
in G1,andP2 = P1|G2. Let Q1 = (G1, Uy, 41, ¢1) be theQ-completion ofP; where

P1(e) = Pa(e) (e € E(G2))
=% (e € E(G1) \ E(G2)).

Lety(Q2) = Q1; we claim thaty is an encoding.
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Let Q! = (G}, i, 4}, ¢;) (i = 1,2), such thaty(Q%) = Q, and letyy be a realizable
expansion ofQ1 in Q). We shall show that there is a realizable expansio@gfn Q5.
Definen, by

n2(v) =n() N V(GY) (v € V(G2),
n2(e) =n(e) (e € E(G2)).

(1) For eache € E(G2), 11,(¢) € E(Gj) and,(e) < dh(115(e)).

Subproof:Certainly ¢4 (e) < ¢} (n(e)) and sogy(n(e)) # x, sinced,(e) # *; hence
n(e) € E(G5) and the claim follows.

(2) For eachv € V(G2), no(v) # 9.

Subproof:If v € 7(G1) andv is theith term of z(G1) say, thery(v) contains thath
term of 7(GY), which belongs td/(G5) sincen(G}) = n(G5). Thus we may assume that
v ¢ w(G1). SinceG1 is active, there is an edge € E(G1) incident withv, and then
e € E(Gy) sincev ¢ n(G2) andGy is complemented id/1. Theng(e) is incident with a
vertex ofy(v); but every end ofi(e) is in V (G5) by (1), and say,(v) # #. This proves (2).

From (1) and (2) it is easy to verify thgb is an expansion 00> in Q5. Now let Hy
be a realization oD’ \n(E(G1)) realizingn. Let G5 = G| \ G5. ThenH; = Hp U H3
whereH,; is a realization of Q) \n(E(GD)|(G; \ (E(G)) Nn(E(G1)))) (i =2,3). Now
fore € E(G1)

e ¢ E(G2) & ¢1(e) = x & ¢o(n(e)) = x & n(e) ¢ E(Gy)
and sap(E(G1)) N E(G/z) =n(E(G2)). Hence

(Q1\N(E(GD)N)I(G,\ (E(Gy) Nn(E(G1))) = Q5\N(E(G2))

and soH; is arealization oD’ \n(E(G2)). We claim that, realizes),. For letv € V(G2).
We must show that,(v) is the vertex set of a component Hp. Let C1 be a component
of Hy with V(C1) = 5(v). ThenV(C1) contains at most one vertex a{G?5), since
n(G%) = n(G’) andy is an expansion of)1 in Q7. ChooseC> € Hp, C3 € Hz such that
C1=CoUC3,WithV(C;)) = V(C1) NV(H;) (i = 2,3).SinceCs contains at most one
vertex of(G5) andGy is a complement of7, it follows that|V (C2 N C3)| <1 and hence
C, is connected, and is therefore a componerf/gfsince

V(C2) = V(C1) NV (Hp) = ny(v) # 0.

This proves thatd realizes),, and completes the proof of the theoreni]

4.12. Let 7, be a well-behaved set of active patchwotksk >0, and letF» be a set of
patchworks such that for eacky = (G2, py, 42) € F there existsf € dom(uy,) with
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<k ends andP; = (G1, uq, 41) € F1 so thatGa\ f = G1\ A andn(A) = puy(f) for
some complemented rooted hypergrapkt G1, and Po\{f} = P1|(G2\{f}). ThenF; is
well-behaved.

Proof. Let F3 be the set of all patchwork&5s, 3, 43) such thatn(Gs)| <k and there
exists a marchr such that((G; , n), ug, 43) € F1. By 4.5 F3 is well-behaved. LetF,

be related taFs; as F> is to 71 in 4.11 By 4.11, F, is well-behaved. LefFs be related

to F4 asF» is to F1 in 4.6. By 4.6, F5 is well-behaved. We claim that, < Fs; for

let P, = (G2, Uy, 42) € F2, and letf, P, be as in the statement of the theorem. Then
((G1, up(f)), g, 41) € F3, and soP; \ f € F4, and therefore’; € Fs. This proves that
F» C Fs, and the result follows. (I

By w applications o#.12 we deduce

4.13. Let F; be a well-behaved set of active patchwoitks k, w >0 and letF» be a set
of patchworks such that for ead? = (G2, uy, 42) € F> there existsF € dom (i) with
|FI<w and Py = (G, py, 41) € F1, and a rooted locatiorC = {Ay : f € F}in Gy,
such that

e G)\F =G N((G1\A) 1 A€,

e P)\F = P1|(G2\F), and

e foreachf € F, n(Ay) = up(f) and f has<k ends.

ThenZ; is well-behaved.

5. Isolation modulo a subset

In the previous section we gave several ways to construct new well-behaved sets from
old. Now, we use these constructions to begin to bridge the gap between what is given by
the theorem of3] and what is required b$.1

If Gis a hypergraph or rooted hypergraph, we denot€) U E(G) by Z(G). Let T be
a tangle in a hypergrapB, let A be a tie-breaker if5, let 6> 1, and letW C Z(G). We
define M (T, W, 0) to be the set of all separationd, B) € 7 such that
e (A, B) has order< 0 andW £ Z(B),

e (A, B)isthe(T, T)-distinction for some tanglg&”,
e thereis no(A’, B") € T with (A’, B") # (A, B) satisfying the first two conditions with

A C A'andB’ C B.

5.1. Let(C, D) € M(T, W, 0),and let(A, B) be the(T, T')-distinction for some tangle
T'.Then eitherA € CandD € B,orAC DandC € B,orC € AandB C D, and if
(A, B) has order< 0 then one of the first two alternatives holds.

Proof. By theorems 9.4 and 10.2 [#], either one of these three alternatives holdBar A
andB C C; and this last is impossible sin€d, B), (C, D) € T. If (A, B) has order< 0
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then the third alternative also is impossible, because of the third condition in the definition
of M(T, W, 0),unless(A, B) = (C, D) when the first alternative holds as wellJ

5.2.If (A, B), (A’, B") € M(T, W, 0) are distinct thenA € B’; and M (T, W, 0) has
cardinality <|W/|.

Proof. Suppose thatZ B’. By 5.1, A € A’ and B’ C B, since(A, B) has order< 0
and (A, B) is the (T, T')-distinction for some7”. Similarly, with (A, B) and (A’, B)
exchanged, it follows that’ € A andB € B’. Butthen(A, B) = (A’, B’), acontradiction.
This proves the first claim.

From this, it follows that

E(A)UV(G)\V(B)) ((A,B) e M(T,W,0)

are mutually disjoint, and each contains a memb#v.df follows that| M (7, W, 0)| < |W|,
as required. [

If T isatangleinG, 0>1is an integer is a tie-breaker irs andW C Z(G), a rooted
location in Gis said tof-isolate’7 modulo Wif £ has order< 0, L~ € 7T, and for each
A € L and every tangld” in G of order >0 with (G \ A)~, A~) € T/, if (C, D) is the
(T, T')-distinction then eithe€ € A~ and(G \ A)~ € D, or WZZ(D).

A rooted locationZ in a rooted hypergrapt is fineif | J(A™ : A € £) = G™. Let
0>1 be an integer, leP = (G, u, 4) be a patchwork, let be a tie-breaker i, let 7
be a tangle irG of order > 02, and letw < Z(G) with |[W| < 0. In these circumstances, a
rooted locationC in G is said to baN-suitableif
e Lisfine, andC~ < T, and£ has order< 02,

o for each tanglg” in G of order >0, if (C, D) € £ and(D, C) € T’ and(A, B) is the

(T, T")-distinction then eithed € C andD C B, or A C A* andB* C B for some

(A*, B¥) € M(T, W, 0).

5.3. LetF be awell-behaved set of patchworks andllietl. Then there is a well-behaved
set of patchworkg™ with the following property. LeP = (G, u, A) be a patchworklet 1
be a tie-breaker in Glet 7 be a tangle in G of ordep> 0%, letw C Z(G) with |W| <0, let
L be afine rooted location in G th&tisolates7 modulo Wand letF contain a heart of
(P, £). Then there is a rooted locatioff in G andW’ € W such that
e [’ is W’-suitable andF’ contains a heart of P, £'),

o foreach(A, B) e M(T, W', 0),

o V(AN B)NV(C) C n(C) foreachC € £/, and
o thereisno(C, D) € £/~ withA € CandD C B.

Proof. Let.F’ be related toF asF> is to.F; in 4.8, wherek = 0. By 4.8, F' is well-behaved,
and we claim that it satisfies the theorem. ForRet= (G, u, 4), 4, T, W € Z(G) andL
satisfy the hypotheses of the theorem. Chod$ec W minimal such that’ 0-isolatesT
moduloW’.
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(1) For each(A, B) € M(T, W’, 0),thereisno(C, D) € L~ withA C C andD C B.

Subproof:Let (A, B) € M(T, W', 0) and suppose that there is sucli@ D). Since
(A, B) € M(T,W’,0) there is a tanglg” such that(A, B) is the (T, 7")-distinction,
and there exists € W'\ Z(B). Now from the minimality ofW’, £ does not)-isolate7
modulo W’ \ {z}, and so there exist&’, D') € £~ and a tangleJ” in G of order >0
with (D', C") € T” with the property thaW’ \ {z} € Z(B’) and not bothA’ € C’ and
D’ C B’, where(A’, B') is the(T, T")-distinction. Sincel doesf-isolate7 moduloW’,
it follows thatW’¢ Z(B’) and sz ¢ Z(B’). HenceBU B’ # G. Moreover, SincgA, B) €
M(T, W', 0), it follows that not bothA € A’ andB’ € B, from the third condition in the
definition of M (7, W', 0). From5.1, A’ € AandB € B’.NowA C C andD C B, and so
A’ € CandD C B’; and henc&C, D) # (C’, D'), since not botld’ € C’ andD’ C B'.
Moreover,(B’, A") e T”,andA’ € C andD C B’, and soD, C) € 7" since(D, C) has
order< 0 and7” has order> 0. SinceL is a rooted location an¢C, D), (C’, D’) € L~
it follows thatD U D' = G~. But(D, C), (D', C") € T” contrary to the second axiom for
tangles. This proves (1).

LetX = | J(V(ANB) : (A, B) € M(T, W', 0)).Since M(T, W, 0)|<|W'|<|W|<0
by 5.2, it follows that| X| <6(0 —1). For eachC € L, let f(C) be arooted hypergraph with
£(C)~ = C~ andn(f(C)) = #(C)U(XNV(C)), taking f(C) = Cif XNV (C) € 7(C).
Let £/ = {f(C) : C € L}. Then/' is a fine rooted location, and’ has order at most
0(0 — 1) more than the order of, and hence at mo$t — 1. We observe

(2) For each(C’, D) € £~ there existdC, D) € L~ withC = C’and D € D’; and
E(D') = E(D),andV (D) \ V(D) = X N (V(C) \ 7(C)).

Since|X|<0(0 — 1) and eachx € X belongs toV (C) \ #(C) for at most oneC € L,
we see thafF’ contains a heart ofP, £), from the definition ofF’. Since7 has order
>0? and£~ < T it follows from (2) thatZ'~ < T. To verify that£’ is W’-suitable, let
T’ be atangle of ordep 0%, let(C’, D') € £'~ with (D', C') € T, and let(A, B) be the
(T, T)-distinction. We may assume that:

(3) There is no(A*, B¥) € M(T, W/, 0) such thatA € A* andB* C B.

We must therefore show thatC C” andD’ € B. Choos€C, D) asin (2). TherA, B)
has order at most that 6€, D), and hence: 0. If W' ¢ Z(B), then from the definition of
M(T, W', 0), there exists somea*, B*) € M(T, W’, 0) violating (3); soW’ C Z(B).
Since L 0-isolates7 moduloW’ and (D, C) € T, it follows thatA € C andD C B.
SinceC = C’ it remains to show thab’ € B. Letv € V(D) \ V(D). Thenv € X, and
sov € V(A* N B*) for some(A*, B*) ¢ M(T, W’, ). By 5.1, (3) and the third condition
in the definition of M (7, W', 0), it follows thatA € B* andA* C B; and in particular
v € V(B). Consequently/ (D) \ V(D) C V(B); and sinceE(D’) = E(D) andD C B,
it follows that D’ C B as required. This proves thét is W’-suitable. The final statement
holds because of (1) and the definition&if [

If x, y are vertices of a grapH, we say they areonnected in Hf they belong to the
same connected componenthf
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5.4. LetF be awell-behaved set of patchwaorliad letd > 1. Then there is a well-behaved
set of patchworks™” with the following property. LeP = (G, u, 4) be a patchworklet 1
be atie-breaker in Get7 be atangle in G of ordep 02, and letW < Z(G) with |W|<0.
Suppose that
e P isremovablg
e L is a W-suitable rooted location in,Guch thatF contains a heart of P, £),

e for each(A*, B*) ¢ M(T, W, 0),

o V(A*N B*)NV(C) € w(C) foreachC € L, and

o thereis no(C, D) € L~ with A* C C andD C B*.
Then there is a W-suitable rooted locatighin G such that*’ contains a heart of P, £'),
and for eachC € £’ and each(A*, B*) € M(T,W,0), eitherC~ € A* and B* C
(G\C)~,orC~ C B*andA*C (G\ ().

Proof. Let 7’ be the set of all removable patchworks such that someP? € F is a
condensation oP’. By 4.10, F’ is well-behaved, and we claim the theorem is satisfied. For
let P = (G,u, A), 4, T, W C Z(G), L be as in the theorem. Let

M(T, W, 0) ={(A;, B) : 1<i<k}.

LetAp=G NB1N---NBr, Bop=A1U---UA;. Then(Ag, Bo) is a separation off .
For eachC € £ and 0<i <k let f;(C) be a rooted hypergraph with)(C)~™ = C~ N A;
andz(f;(C)) = (C) N V(A)).

(1) For eachC € L,

C™ = fo(CO)" U f1(C)" U---U fi (),

T(C) = m(Ag) UT(A1) U - Tt(Ak),

for 1<i <k, fi(C)~ C A;andB; C (G )\ f;(C))~,and

for 0<i < j <k, V(fi(C) NV (f;(C)) € (£ (C) N(f;(C)).

Subproof:The first two statements follow sincg;, U A] U---U A, = G~. For the
third, let 1<i <k. Then(f;(C))~ C A; by definition, and sa&(B;) € E(G \ f;(C));
it remains to prove the same inclusion for vertex sets.iLet V(B;), and suppose for
a contradiction that ¢ V(G \ f;(C)). Thusv € V(f;(C)) \ n(f;(C)). Consequently
v € V(A; N B;) € 7(C), and yetV (f;(C)) N n(C) = =(f;(C)), a contradiction. This
proves the third statement. For the fourth, lef0 < j <k, and letv € V(f;(C)) N
V(f;(C)). Thenv € V(C)NV(A;) N V(Aj) € V(C)NV(A; N B;), and sincej >1 it
follows from the hypothesis that € 7(C). Consequently € 7(f;(C)) N a(f;(C)). This
proves (1).

(2) LetC € £ andletK be a grouping feasible iR|C. Then there are groupings; feasible
in P|f;(C) (0<i <k) such that for distinct xy € 7(C), x and y are adjacent in K if and
only if x and y are connected iKip U K1 U - - - U K.

Subproof:Let H be a realization of?|C such that for distinck, y € n(C), x andy are
adjacentirKifand only ifxandyare connected iH. ThenH = HoUH1U- - -UH; whereH;
isarealizationofP| f; (C) (0<i <k) by (1). LetK; be the grouping witlV (K;) = 7(f; (C))
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such that distinck, y € 7(f;(C)) are adjacent irK; if and only if they are connected in
H;. By k + 1 applications of (1) and theorem 5.1[d{, distinctx, y € n(C) are connected
in H if and only if they are connected ikip U K1 U - - - U K. This proves (2).

Let L' = {fi(C) : C € L, 0<i<k}. Then by (1),£' is a fine rooted location i, and
£/ € T, andL’ has order at most that af, and hence< 6°.

To verify thatZ’ isW-suitable, take amember 8, say( /3 (C), G\ f,(C)) whereC € L
and 0< i <k. Let 77 be a tangle irG of order > 67 such thatG \ fn(C), fr(C)) € T,
and let(A’, B’) be the(T, T7)-distinction. We will show that either
e h=0andA’ C fp(C)andG \ fo(C) € B’, or
e A’ C A; andB; C B’ for somei with 1<i <k.

Since(G \ fr(C), f,(C)) € T it follows that (G \ C)~,C™) € T’ since7’ has order
>0? and|7(C)| < 0°. We may assume that € C~ and(G \ C)~ < B/, since otherwise
the second alternative above holds becalisgW-suitable. For Xi <k it is not true that

A; C A’andB’ C B;, since thatwould imply that; € C~ and(G\ C)~ C B; contrary to

the hypothesis. We may also assume itis not trueshat A; andB; C B’, since otherwise
we are done. B¥.1it follows thatA; € B’ andA’ C B; for 1<i <k, and hencel’ C Ag
andBg C B’. Since(B’, A'), (G \ fn(C), fn(C)) € T, itfollows that f;,(C) £ B’, and so
fn(C) € Bo. Consequently: = 0, and the first alternative above holds, as required. This
proves that’’ is W-suitable.

From (2) and the facts th& is removable andZ, £’ are both fine (and hence their
hearts(G1, uq, 41), (G2, up, 42) satisfydom(y;) = E(G;) (i = 1, 2)), it follows that
F’ contains a heart of P, £/). Let C € £ and 0<i<k. For 1< j<k, if i = j then
filC)” €A, =AjandB; = B; C (G \ fi(C))";andifi # jthenf;(C)~ € A; € B;
andA; € B; € (G \ fi(C))~. This provess.4 [

5.5. LetF be a well-behaved set of patchworks andlletl. Then there is a well-behaved
set of patchworkg” with the following property. LeP = (G, u, 4) be a patchworklet /
be atie-breaker in Get7 be atangle in G of ordep 0%, and letw < Z(G) with |W|<0.
Suppose that
e Pisrootless
e L is a W-suitable rooted location in G such thatcontains a heart of P, £), and
e foreachC € £ and each(A*, B*) ¢ M(T, W, 0), either

o CTCA*andB* C (G\C)™ or

o C~ C B*andA* C (G\C).
Then there is a fine rooted locatiagf such thatZ’ 6-isolates7 and F’ contains a heart
of (P, L)).

Proof. Let F; be the set of active members &t and letF, be defined as id.13 taking

k = w = 0. We claim thatF, satisfies the theorem. For |& = (G, u, ), A, T, W, L

be as above. Lef = £; U £, whereC € L belongs toL; if and only if there exists
(A*, B*) € M(T,W,0) with C~ € A*andB* C (G\ C)",andL1 = L\ L». For

each(A, B) e M(T, W, 0), let f(A, B) be arooted hypergraph with(A, B)~ = A and

(f(A, B)) = V(AN B). LetL' = L1 U {f(A*, B*) : (A*, B*) € M(T, W, 0)}.
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(1) £’ is a fine rooted location.
SubproofCertainly£y and{ f (A*, B*) : (A*, B*) € M(T, W, 0)} are rooted locations
(by 5.2, and sinceP is rootless), and so to check thatis a rooted location it suffices to

show that for eacl € £1 and eachA*, B*) € M(T, W, 0),

V(C™ N f(A*, B¥)™
E(C™ N f(A*, B¥)™

(C) NT(f (A%, BY),

cr
=0.

)
)
Suppose, therefore, thé&t € £ and (A*, B*) € M(T, W, 0). Then sinceC ¢ Ly it

follows that not bothC~ € A* and B* C (G \ C)~. Hence from the hypothesis of the
theoremC~ € B*andA* C (G \ C)~. Sincef(A*, B*)~ = A*, and

VICTNAH CV(IC N(G\C)T) N V(A" N B*) =7(C)Na(f(A*, BY)),
E(CTNA*) CE(A*NB")=4¢

it follows that £’ is a rooted location. To see that it is fine, we observe that

e :cer)y = Jc :ceLnul i, B : (A%, BY)
e M(T, W, 0)
= | Jc:cecyul J@ar: A%, B*) e M(T. W, 0))

o | Jic:ceLpul Jcm:CeLy) =G~

the inclusion holding since i€ € £, thenC~ C A* for some(A*, B*) € M(T, W, 0).
This proves (1).

(2) £’ 6-isolatesT.

Subproof:Now £/~ € T and its members have order¢?. Let 7’ be a tangle of order
>02 let (A’, B') € £/~ with (B’, A") € T7, and let(A, B) be the(T, T’)-distinction.
Suppose firstthatd’, B') € £ . Then sinceC is W-suitable, eithed € A" andB’ € B or
A € A*andB* C Bforsome(A*, B*) € M(T, W, 6). Thefirstis the desired conclusion,
and we assume the second. TH&t, A*) ¢ T’ sinceA € A* and(B, A) € 7' and7”’
has order> 0? and (B*, A*) has order< 0< 0% Since(A’, B') ¢ L, , it follows as in the
proof of (1) thatA’” € B*, and soB* U B’ = G, a contradiction to the second tangle
axiom since(B’, A"), (B*, A*) € T'. We may assume then thed’, B’) ¢ L7 ; and so
(A’, By € M(T,W,0), and thereforgA’, B’) has order< 0. Since(B’, A") € T' it
follows that (A, B) has order at most that gfA’, B’) and hence< 0. From5.1, either
A C A'andB’ € B,orA C B’ andA’ C B. The first is the desired conclusion and the
second is impossible sing®’, A’), (B, A) € T'. This proves (2).

Now |7(f (A, B))| < 0 for each(A, B) € M(T, W, 0), and the heart ofP, £) in F
is active (sinceC is fine) and hence belongs #. Consequently P, £') has heart inF,.
This provess.5. O
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By applying5.3-5.5in turn, we deduce:

5.6. LetF be awell-behaved set of patchwaorénad letd > 1. Then there is a well-behaved
set of patchworkg&” with the following property. LeP = (G, u, 4) be arootless removable
patchworklet 1 be atie-breakerin et 7 be atanglein G of ordek 02, andletW < Z(G)
with |W| < 0. Suppose thaf is a fine rooted location in G such thAt0-isolates7T modulo
W, and F contains a heart of P, £). Then there is a fine rooted locatidii in G such that
L 6%-isolatesT and 7 contains a heart of P, £/).

From3.1and5.6we deduce the main result of this section:

5.7. LetQ be a well-quasi-ordetlet F be a well-behaved set of patchworkiad letd > 1.
Let P, = (Gi, ;, 4i, ;) (i = 1,2,...) be a countable sequence of rootless robst
patchworks. For each>1 let /; be a tie-breaker inG;; and suppose that for each tangle
T in G; of order > 0, there existW C Z(G;) with |W|<6 and a fine rooted locatiod in
Gi, such that’ 6-isolatesT modulo Wand F contains a heart of(G;, u;, 4;), £). Then
there existi > i >1 such thatp; is simulated inP;.

Proof. Define 7' as in5.6, and letF” be the set of all rootless parti@-patchworks
(G, u, 4, ¢) with dom(¢p) = @ andG, u, 4) € F'. ThusF”’ is a well-behaved set of
partial Q-patchworks. We claim that the hypothesis3of are satisfied, witl¥#, 0 replaced
by F”, 6°. For leti >1, let Q@ = (G;, u;, 4;), and letT be a tangle irG; of order > 62,
ThenT has order> 0, and so there exis¥, £ as in the hypothesis &.7. HenceQ, 4;, 7;,

W, L satisfy the hypothesis &.6 (in particularQ is removable, since it is robust), and so
there is a fine rooted locatiaff in G; which 0°-isolatesT, such that’ contains a heart of
(Q, L. Sincel’ is fine andQ s rootless, the heart ¢P;, £') belongs taF”. Consequently
the hypotheses .1 are satisfied, and the result follows fr@. [

6. Eliminating the tie-breaker

Our next objective is to prove a form 6f7 with no tie-breakers. Le6 be a hypergraph
and letf € E(G). For eachw € Z(G) let v(x) > 0 be a real number, such that the
numbersi(x) (x € Z(G)) are rationally independent. For each separatibnB) of G with
f € E(A), we define

MA,B) = (VAN B)|, Z(v(x) : x € Z(G) \ Z(A)), E((x) : x € V(AN B))).

Thus eachi(A, B) is a triple of real numbers. We ord&3 lexicographically, that is,
(a1, az, az) < (b1, by, b3) if for somek € {1, 2,3}, a; = b; for 1<i < k anda; < by. If
(A, B) is a separation withf € E(B), we definel(A, B) = A(B, A).

6.1. 1is atie-breaker.
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Proof. We must verify the three axioms. Suppose first t#atB), (C, D) are separations
andi(A, B) = A(C, D). We may assume thagt € E(A) and f € E(C). Hence|V(A N
B)| = |V(C N D)|,andZ(G) \ Z(A) = Z(G) \ Z(C), thatis,A = C, since thev's are
rationally independent; and for the same reaso N B) = V(C N D). SinceE(A) =
E(C) it follows that E(B) = E(D); and sinceV(A N B) = V(C N D), it follows that
B = D.Thus(A, B) = (C, D). This proves the first axiom, for the “if” part of the first
axiom is clear.

For the second axiom, I€¢#A, B), (C, D) be separations, and suppose that U C, BN
D) > A(A,B) andA(ANC,BUD)>AC, D). Now (AU C, BN D) has order at least
that of (A, B), and(A N C, B U D) has order at least that ¢, D). But the sum of the
orders of(AU C, BN D) and(A N C, B U D) equals the sum of the orders@f, B) and
(C, D), and so we have equality; that (¢} U C, B N D) has the same order &4, B), and
(AN C, BU D) has the same order &6, D).

Suppose first thaf € E(A). Sincei(A U C, BN D) > A(A, B), it follows that

SO(x):x € ZAUCHKEO(x) : x € Z(A))

and soC C A (sincev(x) > 0 forallx). HenceV ((AUC)N (BN D)) € V(AN B), and so
equality holds since these two sets have the same cardinality. ButthenC, BN D) =
A(A, B), a contradiction.

Thusf € E(B). Suppose thaf € E(D). SinceA(ANC, BUD)>J(C, D) we deduce,
as above,thaB € DandV(ANC)N(BUD)) =V(CND),andsol(ANC,BUD) =
A(C, D). By the first axiom(A N C, BU D) = (C, D) or (D, C), and sincef € E(D) it
follows that(ANC, BUD) = (C, D). ThusC € AandB € D,andsqAUC, BN D) =
(A, B).But A(AuU C, BN D) # A(A, B), a contradiction.

We have shown then that ¢ E(A) and f ¢ E(D), and sof € E(B N C). Since
J(AUC, BN D) > A(A, B) it follows that

2v(x):x e Z(AUC)KL2Z(v(x) : x € Z(B)).
SinceA(AN C, BU D) > A(C, D) it follows that
S((x):x € Z(BUD)<Z(W(x) : x € Z(C)).

ButZ(AUC) 2 Z(C)andZ(B U D) 2 Z(B), and so we have equality throughout, that
isZ(AUC) = Z(C) andZ(B U D) = Z(B); and consequentip € C andD < B.
Moreover,

2v(x):x € Z(B) =2(v(x):x € Z(0))

and soB = C. Since(A, B) is a separation and C C = B, it follows thatB = G.
From comparing the third components of the tie-breaker, we deduce

2v(x):x e V(AUC)NBND)) >2(v(x):x € V(AN B)),
that is,

2(v(x) :x e V(D)) > 2(v(x) : x € V(A))
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and

2(x):x e V(ANC)U(BUD))=Z2(v(x):x € V(CN D)),
that s,

2v(x):x e V(A)) Z2(v(x) : x € V(D)),

a contradiction. This proves the second axiom.
The third axiom is clear because of the lexicographical ordé& his proves$.1. [0

We call a tie-breaket as in6.1the tie-breakedefined by fv; we call tie-breakers of this
form edge-based

Let G be a rooted hypergraph, and fEtbe a tangle irG. A rooted locationC is linked
to 7T if L~ € T and for each € L there isnaA’, B") € T of order less thaiz(A)| with
A~ C A’andB’ € (G\ A)".If T isatangle in a hypergraghof order, andW < V(G)
with |W| < 0, we define

T/W ={(A/W,B/W):(A,B)eT,W C V(AN B)}.

It is shown in theorem 6.2 2] that7 /W is a tangle inG/ W of orderf — |W/|.
If £ is arooted location in a rooted hypergraphandW C V(G), andW < 7(A) for
all A e £,then{A/W : A € L} is arooted location iz / W which we denote by./ W.

6.2. Let G be a rooted hypergraphnd let7 be a tangle in G of ordef > 1. Let A be an
edge-based tie-breaker in G defined py $ay. LetZ be a rooted location in G with order
< 0,and letW C V(G) be such that¥ C 7(A) forall A € L. Let L/W be linked to
T /W.ThenL O-isolatesT moduloW U { f}.

Proof. Let A € £, and letB = G \ A. SinceL/W is linked to7 /W, it follows that
(A=/W,B~ /W) € T/W,and so(A~, B7) € T. Let T’ be a tangle irG of order >0
with (B—, A7) € 7', and let(C, D) be the(T, T”)-distinction. We must show that either
C C A~ andB~ C D, or W U{f}¢Z(D). We assume that/ U {f} € Z(D), and in
particularf € E(D).

(1) A(A~ N C, B~ U D)= A(C, D)

SubproofWe may assume that the separatiam N C, B~ U D) has order at most that
of (C, D), for otherwise the desired inequality holds. Bat, D) has order at most the
order of(A~, B7), since(A—,B~) € 7T and(B—, A™) € 7/, and hencéC, D) has order
< 0. ConsequentlfA~ N C, B~ U D) has order< 0, and so(A"NC,B~UD) € T
since(A~,B7) e T.But(A—NC,B~UD) ¢ T since(B~,A"), (D,C) € 7' and
(ATNC)UB~UD = G~. ConsequentlyB~UD, A~ NC) € T'. Since(C, D) is the
(T, T")-distinction it follows thati(A~ N C, B~ U D) > A(C, D). This proves (1).
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By (1) and the second tie-breaker axiom &t A(A~UC, B N D)<A(A~,B7).In
particular,(A~ U C, B~ N D) has order< 0, and so(A~ U C, B~ N D) € T (because
(BTN D,A~UC) ¢ T by the second tangle axiom, sin¢ga—, B™), (C, D) € T).
ButW C V(A~ N B7) sinceW C w(A); andW C V((A~ UC) N (B~ N D)) since
W C V(D) by our previous assumption. Siné¢ W is linkedto7/W,andA/W € L/ W,
and((A—UC)/W,(B—ND)/W) e T/W,itfollows that the order ofA=/W, B~ /W) is
at mostthatof (A~ U C)/W, (B~ N D)/ W); thatis, the order ofA~, B™) is at most that
of (A—UC,B N D).Sincel(A-UC,B- ND)<A(A™, B7), itfollows that(A—, B™)
has the same order 88— U C, B~ N D).

Now the sum of the orders ¢4~ U C, B~ N D) and(A~ N C, B~ U D) equals the sum
of the orders ofA—, B™) and(C, D); and so(A~ N C, B~ U D) has the same order as
(C, D). SinceA(A—NC,B~UD)>(C, D),andf € E(D), it follows that

2v(x):x € Z(B-UD)KZ(v(x):x € Z(D))
and soB~ C D. Hence
V(AT NC)U (B~ UD)) CV(CND);

but these two sets have the same cardinality, and so equality holds. Consequéntty
C,B~UD) = A(C, D),and scA~ NC = C by the firsttie-breaker axiom (ft—NC # D
sincef € E(D)). HenceC € A~. This proves.2 [

By combining6.2 and5.7 we obtain a form 06.7 which does not involve tie-breakers,
the following.

6.3. LetQ2 be a well-quasi-orderet F be a well-behaved set of patchworkiad let) > 1.
Let P, = (Gi, i;, 4i, ¢;) (i = 1,2,...) be a countable sequence of rootless robist
patchworks. Suppose that for each tang@lén G; of order >0, there existW C V(G;)
with |W| < 6 and a fine rooted locatiod in G;, such that

e WC (A forall AeL,

e L/Wislinked to7 /W, and

e F contains a heart of(G;, u;, 4;), £).

Then there exisf > i > 1 such thatp; is simulated inP;.

Proof. If P, P’ are two rootles€2-patchworks withE (P) = E(P") = @, then one o,
P’ is simulated in the other. We may therefore assumelfitiat;) # ¢ for eachi > 1. For
i>1, let 4; be an edge-based tie-breakerGn defined by f;, v; say. We claim that the
hypotheses d5.7 are satisfied. For l&f be a tangle irG; of order > 6, and let7”’ be the
setof all(A, B) € T of order< 6. Then7" is a tangle inG; of orderf). ChooseN, L as
in 6.3 (with 7 replaced by7”). Since£/W is linked to 7’/ W, it follows that £/ W has
order< 0 — |W|, and soL has order< 6. SinceL/W is linked to7’/ W, it follows that
L/ W islinkedto7/W. By 6.2, L 0-isolates]T moduloW U{ f;}. Since|W U{ f;}| <0, the
hypotheses 05.7 are satisfied. The result follows from7. [
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7. Another adjustment

Before we apply6.3to Wagner’s conjecture, it is convenient to make one further small
adjustmentto it. We begin with the following lemma. A patchwask u, 4) or Q-patchwork
(G, u, 4, ¢) isfreeif A(e) is free for alle € E(G).

7.1. Let P = (G, u, 4) be a free patchwork an®¥ C 7(G). Let K be a grouping with
V(K) = n(G) \ W.Then K is feasible ir?/ W if and only if K U Ny is feasible in P

Proof. If Kis feasible inP/ W, let

H' = Ny@enw U &, : e € EG))

be arealization o/ W such that for distinck, y € ©(G) \ W, xandy are connected iHl
if and only if they are adjacent id. For eache € E(G) there exist®), € 4(e) such that
the vertices ob, in W are isolated vertices @f, and their removal yieldé/e. Let

H =Ny U| J©. : e € E(G)).

Then for distincix y € n(G), x andy are connected iHl if and only if they are adjacent in
K U Ny, as required.
For the converse, l&t U Ny be feasible irP, and choose a corresponding realization

H = Ny U|_J©. € E(G)).

SinceP is free, we may choogd and thed,'s such that for each € E(G)) every vertex of
Win V (J,) is an isolated vertex af,. ThenH /W is a realization o? / W with the required
properties. This proves. 1 [

7.2. LetF be awell-behaved set of patchworks andlletl. Then there is a well-behaved
set of patchworkg” with the following property. LeP = (G, u, 4) be a free patchwork
let 7 be atangle in G of orde= 0, let W C V(G) with |W| < 6, and let£ be a fine rooted
location inG/ W such thatC is linked to7 / W, and.F contains a heart ofP/ W, £). Then
there is a fine rooted locatiod’ in G such that
e WCrm(A)forall A e L
e L'/W = L and hence is linked t@ / W, and
e F’ contains a heart of P, L').

Proof. Let ' be related taF as.F; is related toF; in 4.9. By 4.9, 7' is well-behaved,

and we claim it satisfies the theorem. Forfet7, W, £ be as above. Lef’ be the rooted
location inG such thatW < w(A) for everyA € £ andL'/W = L. We claim that’’

has the desired properties. Certainly the first two statements holds. To see the third, let
P' = (G, i/, A") be aheart of P, £'). ThenP’/ W is defined. We claim thaP’/ W is a
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heart of(P/ W, L). To show this, it suffices to show thatdf ¢ £’ andK is a grouping with
V(K) = w(A) \ W, thenK is feasible in(P/W)|(A/ W) if and only if K U Ny is feasible
in P|A. But this follows from7.1, since(P/W)|(A/W) = (P|A)/W, andP|A is free.
HenceP’/W is a heart of P/ W, L) as claimed. Sinc& contains a heart ofP/ W, L),

we may chooseé’ such thatP’/W € F. Butdom(u') = E(G’) since no edge o/’ is an
edge ofG, and soP’ € F'. This proves that the third statement holds, as requiréd.

Incidentally, the hypothesis thBtbe free in7.2is not really necessary, but it makes the
proof slightly easier, and our only application is to a free patchwork anyway. Frdand
6.3we obtain another variant 81, as follows.

7.3. Let Q be a well-quasi-orderlet F be a well-behaved set of patchwaorlesd let
0=1.LetP; = (Gi, i;, 4i, ¢;) (i = 1,2,...) be a countable sequence of free rootless
Q-patchworks. Suppose that for each tanglén G; of order > 0, there existW < V(G;)
with |W| < 6 and a fine rooted locatiof in G/ W, such that_ is linked to7 /W, and F
contains aheartof(G;, p;, 4;)/ W, £). Then there exist > i > 1 such thatP; is simulated

in Pj.

Proof. Let 7’ be as ir7.2 We claim that the hypotheses@Bare satisfied (witlf replaced
by F'). For letT be a tangle inG; of order > 0. LetW, £ be as in the hypotheses 813,
and choos&’ as in the proof of7.2 Thus the hypotheses 6f3 hold (with £ replaced by
L") and the result follows froms.3. [

8. Surfaces and paintings

Now we come to the second part of the paper, where we shall @gitydeduce Wagner’s
conjecture from a theorem about hypergraphs drawn on a fixed surface. In this paper, by a
surfacewe mean a compact connected 2-manifold with (possibly null) boundakyidfa
surface, its boundary is denoted &y(2), and each component bfl(2) is acuffof ~. An
O-arcin 2 is a subset o homeomorphic to a circle; every cuff is thus@rarc. A line is
a subset homeomorphic to the closed interval [0,1X IE X the closure o is denoted
by X andX \ X by X.

A paintingI’ in a surfaceX is a triple(U, N, y), whereU C X'is closed N C U is finite,
and
e bd(2) C U,andU \ N has only finitely many arc-wise connected components, called

cells
e for each celk, cisaclosed discand =2or3andc NN = ¢ C bd(¢),

e for each cellc, if ¢ N bd(X) # ¢ then|¢| = 2, andc N bd(2) is a line and its ends are
the members of,
e for each celk, y(c¢) is a marchu with it = ¢,

We writeU(I') = U, N(I') = N, yp = v, and denote the set of cells bfby C(I'). The

members ofV (I") are callechodesIf ¢ € C(I') and 1<i <|¢|, we call theith term ofy(c)
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theith node of ¢and in particular, the first node dfis itstail. A cell ¢ is aborder cellif

cNbd(X) # ¢, and otherwise i;iternal. Nodes inbd () areborder nodesand the others

areinternal. If @ is a cuff, we say a cett or noden borders@ if cN© # orn € ©. The
sizeof a cellcis |¢|. The components of \ U (I') are theregionsof I'. A subsetX C X' is

I'-normalif X NU(I') € N(I'). A paintingI" is 3-connectedf

e for everyI'-normal O-ard= in X with |F N N(I')| <2 there is a closed dis¢ C X with
bd(A) = F which includes at most one cell éfand withA N N(I') C F,

e for everyI'-normal lineF in X with |FF N N(I")| <2 and with both ends ihd(X) and
with no other pointirbd (2), there is a closed dist C > with F C bd(A) € FUbd(X)
which includes at most one cell éfand withA " N(I") C F.

Let I be a painting inx. We define itsskeletorsk (1) to be the subgraph dof y ) with
vertex setV (I") in which for distinctny, np € N(I'), n1 andny are adjacent ink(I') if and
only if there isa celt € C(I') with n1, np € .

Let I', I'" be paintings inX. Let { be a function with domaig(I") U N (I") and with the
following properties:

e ((c) e C(I") for eachc € C(I'), and{(c) has the same size asand for each cuf®, c
borders® if and only if {(¢) does (and henceis internal if and only if{(¢) is),

e {(c1) # {(cp) for all distinctcy, c2 € C(I),

e for each cuff@, if ¢ € C(I") borders® and we orient? so that the tail ot immediately
precedes N O, then the tail of{(c¢) immediately precede&(c) N ® under the same
orientation of@®,

e foreachn € N(I'), {(n) is a non-null induced connected subgraphiafl™),

e {(n1) and{(n») are disjoint for distincti1, no € N(I'),

e foralln € N(I') andc € C(I') and 1<i <|¢|, nis theith node ofc if and only if {(r)
contains theth node ofl(c),

o for every border cell’ € C(I"), if ¢’ ¢ {(C(I")) then the nodes af are adjacent i(n)
for somen € N(I').

We call such a functiod alinear inflationof I in I'” (There are no “nonlinear” inflations

in this paper, but there were [B6].) Theorem 2.1 of5] implies the following (Note that

there is a minor discrepancy between the meanings of “painting” in these two papers; in
this paper, ific| = 2 then the closure af is a disc, while in5], the closure ot is a line.

But it is easy to convert from one version to the other; make the discs narrow and the lines

thick.)

8.1. Let X be a surface and le® be a well-quasi-order. For each>1 let I'; be a3-
connected painting i’ and let¢; : C(I';) — E(£) be a function. Then there exigt>
i >1and a linear inflation] of I'; in I'; such thatp, (c) gqu(C(c)) for eachc € C(I)).

The objective of the next two sections is to deduce Wagner's conjecturesfiioand the
main theorem of3].
9. Patchworks from a surface

We wish now to discuss certain patchworks associated with paintings in a surfage. Let
be a surface, and for each cdiflet p(©) > 0 be an integer. We call, p) agraded surface
Let I" be a 3-connected painting Xy and letG be a hypergraph withv (I") € V(G) and
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(C(I') = E(G), suchthatforeach € N(I')andc € C(I'),n € ¢ ifand only ifnis incident

with cin G. For each border nodee N (I'), let f(n) € V(G), such that

e foreachn € N(I') Nbd(X), f(n) N N(I') = @ and|f(n)| = p(O), where® is the cuff
bordered byn; for nodes:s, n2 bordering distinct cuffsf(n1) N f(n2) = ¥; and

V(G) = NI U JB@m) :n e N(I') Nbd(2)),

e for each internal celt, the set of ends afin G is ¢; and for each border cetlwith n1,
np the setof ends af in Gis ff(n1) U f(n2) U {n1, na},

e ifni,no,n3,nq € N(I') borderthe same cuffinorder, thBtm1)Np(nz) C f(n2)Up(ng).
In these circumstanced, f§) is said to be &2, p)-hull for G. Now let P = (G, u, 4)

be a patchwork. We say thBtis (2, p)-hulledif there is a(X, p)-hull (I', ) for G~ such

that

o for each internal celt € C(I'), A(c) is free,

o for each border celt € C(I') with ¢ = {n1, n2}, there is a pairing//, with V(M.) =
p(n1) U B(n2) U{n1, no}, such thains, n, are adjacent i/, andM, has|fi(n1)| + 1 =
|f(n2)|+1 components, each containing one verte&@f ) U{n1} and one ofi (n2) U{nz}
(possibly the same), and either

o M. € A(c) or
o M.\ ninz € A(c) (wherenin, denotes the edge @f. joining n1, n2) and there is
an internal celt’ of I" with nq, ns € ¢.

e 7(G) = 0 anddom(u) = E(G); and for each internal cetl, and for 1<i <|¢| theith
term of u(c) is theith node ofc.

The main result of this section is the following.

9.1. For every graded surfacé€X, p), the set of all(X, p)-hulled patchworks is well-
behaved.

Proof. Let Q be a well-quasi-order. Let = max p(@), taken over all cuffs®, and
r = 0if bd(2) = . Let Qg be the well-quasi-order witlk (g) the set of all 7-tuples
(u, ®o, ™1, 2, 4, w, t) where

wis a march with< 2r + 3 terms,

o, 1, T2 are marches i,

Ais a patch withV (4) = p,

w € E(Q),

t=0orl1,

where we say thaiu, mo, w1, 12, 4, 0, ) < (W, iy, wy, 1o, A, o 1) if 1 =1, o<, 1
andy’ have the same lengksay, and the bijection from to i’ mappingu to 1/ also maps
miton, (i =0, 1, 2) and mapsi to A", Itis easy to see th& is indeed a well-quasi-order.
We may assume thdt(Qp) N E(Q) = ¢; let Q1 = Q U Qo.

Now let P = (G, u, 4, ¢) be anQ-completion of a2, p)-hulled patchwork. Letl’, f)
be a(2, p)-hull for P. For each cufi® let cg be a cell ofl" bordering®. For each node
bordering® let us choose a mareti(n) with 7(n) = f(n), such that for each cell # cg
bordering® with nodesu1, np and for 1<i < p(0), theith term ofz(n1) and theith term
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of n(n2) belong to the same component M. (whereM, is as in the second part of the
definition of (X, p)-hulled patchwork).

For eachr € C(I') we define//(c) as follows. Ifcis internal we let)(c) = ¢(c), and so
we assume that borders a cuf®, with nodesu1, no, wheren is the first node ot. We
define

Y(c) = (u(c), (n1, n2), n(ny), n(n2), 4(c), ¢(c), 1),

wheret =0if c #cg andr =1 if ¢ = cq.

In view of 8.1, to complete the proof it suffices (&f.3) to show thatifP = (G, u, 4, ¢)
and(I', f) is a(Z, p)-hull for P with groupings denoted by!, as before, ang is defined
as above, and alsB’ = (G', /. 4, "), I, f)), M/,, y' are related similarly (with the
same graded surface and same well-quasi-ode% ) and{ is a linear inflation of"in I’
such thaty(c) <y/'({(c)) for eachc € C(I'), thenP is simulated inP’. Let z(n) (for each
border noden) be defined as before, and (') be defined analogously for each border
noden’ of I

(1) For each cufi®, {(cp) = cy-

SubproofiLet {(cg) = ¢’. Thenc’ borders® (since( is a linear inflation) and/(cg) <
V' ("), and so the seventh termwf(c’) is 1. This proves (1).

Forv € V(G) \ N(I') we definen(v) to be the set of all vertices € V(G’) such that
there exist a cuff andn € N(I') N © andn’ € V({(n)) N © and an integei > 0 such
thatv is theith term of z(n) andv’ is theith term of #'(n’). Forn € N(I') we define
nn) = V({(@m)). Forc € CI") we definen(c) = {(c). Our next objective is to show that
is an expansion d? in P’.

(2) For eachv € V(G), n(v) # 0.

Subproof:lf v € N(I') then{(v) is not null and soj(v) # @. If v € f(n) for some
n € N(I') N ©@ where@ is a cuff, letv be theith term ofn(n), letn’ € V({(n)) N O, and
let v be theith term of 7’ (n’). Thenv’ € 5(v) and son(v) # @. This proves (2).

(3) Letv € V(G)\ N(I') and letv’ € n(v). For eachn € N(I') N bd(X) andn’ €
V({(n)) Nbd (), if v is the ith term oft’ (n’) then v is the ith term ot (n).

Subproof:By the third condition in the definition of &, p)-hull, there is a lineF € ©
for some cuff@, such that for each’ € N(I') N bd(2),v' € f'(n’) ifand only ifn’ € F.
Let us say that’ € N(I"') N F is goodif for somei > 0,v’ is theith term ofr’(n) andvis
theith term ofr(n) wheren’ € V({(n)). Certainly some node iv(I"") N F is good since
v’ € n(v); and we wish to prove that all are good. It suffices therefore to show that if
n, € N(I'")N F are consecutive and is good then so i8),. Letv’ be theith term ofr’(n))
and thejth term of7’(n5); and letn) € V({(n1)), n,, € V({(n2)). Thenv is theith term
of n(n1), and we must show that it is th#h term ofn(n2). Let¢’ € C(I") border® with
nodesny, nj. If ny = np thene’ ¢ {(C(IN) and soc’ # ¢}, by (1); hence = j because
theith term ofn’'(n)) and thejth term ofn’(n5) are equal and hence belong to the same
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component o/, and the claim is trivial. We assume then that# nz. Hencec’ = {(c)

for somec € C(I') (because otherwisg, n’, would be adjacent in and hence both belong
to somel(n) for n € N(I'), contrary tony # ny). Sincey(c) <y/'(¢’) and theith term of

' (n}) is thejth term of7’(n}) it follows that theith term ofn(ny) is thejth term ofn(n>),
that is,v is thejth term ofno. This proves (3).

(4) For distinctvy, vz € V(G), n(v1) N n(v2) = 0.

SubproofLetv’ € n(v))Nn(ve). If v/ € N(I'') thenvy, vo € N(I') and hence ({(v1))N
V((v2) # @ and sovy = vp. If v/ ¢ NI”) thenvy, vo ¢ N(I') and there exist; ¢
N(I') Nbd(2) andn € V({(n1)) Nbd(2) andi > 0 such thavy is theith term ofn’(n})
andv’ is theith term of’(n7). Sincev” € n(v) it follows from (3) thatw; is theith term
of n(n1) and hence; = vy. This proves (4).

(5) Foreachc € C(I'), u(c) and ' (n(c)) have the same length k say, and et <k, n(v)
contains the ith term o’ ((c)) where v is the ith term qi(c).

SubproofiLetc’ = 5(c). Sincey(c) <Y/ (c’) and|é| = || it follows thatu(c) andy/(c’)
have the same lengthsay. Let 1<i <k, letv be theith term of u(c), and letv’ be theith
term of i/ (¢"). We must show that’ € n(v). If cis internal then so ig’, andv is theith
node ofc and hencey(v) = V ({(v)) contains theéth node of¢/, that is,v” as required. (We
are using here the third condition in the definition(af p)-hulled.) We assume then that
c and hence’ are border cells. I € N(I') thenv € ¢; let v be thejth node ofc. Then
sincey(c) <yY'(c), v’ is thejth node ofc’, and hence belongs igv) = V ({(v)) sincel
is a linear inflation. We assume then thag N (I"). Choose: € ¢ with v € f(n), and letv
be thejth term ofn(n). Letn’ be the corresponding node df(that is, the first node af
if and only if nis the first node o€). Sincey (¢) <y/'(¢"), v’ is thejth term ofr’(n’) and so
v’ € n(v). This proves (5).

(6) For eachc e C(I'), ¢(c) <@’ (n(c)) and the bijection fronf(c) to 7' (17(c)) mapping
p(e) to i (n(c)) also mapsA(c) to 4'(5(c)).

Subproof:If cis internal thenp(c) = Y(c) <Y (n(c)) = ¢'((c)) and A(c), 4'(n(c))
are both free. It is a border cell the claim follows singe(c) <y’ (5(c)). This proves (6).

From (2)—(6) we deduce
(7) n is an expansion of P i®’.

Foreach’ e C(I")\ {(C(I") we choos&. € A(c") as follows. If¢’ is a border cell and
M/, € A(c), letés = M), If ¢’ is a border cell and?), ¢ A(c'), letd, = M., \ e, where
eis the edge o/, joining the two nodes of’. If ¢’ is internal leté,s be the grouping
with V(K) = ¢’ in which distinctny, np € ¢’ are adjacent it if and only if there exists
n € N(I') with ny, np € V({(n)). Thend. € A(c’) sinced(c’) is free. Let

H =Ny Ul J©e : ¢ e\ LC)).

ThenH is a realization of?"\n(E(G)). We shall show that it realizes
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(8) For eachn € N(I') there is a component J of H withi(J) = V ({(n)); and for every
component J of H not of this form withi(J) # @ there is a cuff® such thatV (J) C

UBm) :ne NI O).

Subproof:Every edge oH either joins two nodes itV (I'"") or joins two vertices both
in JBm) : n € N(I') N O) for some cuff@. Letn), n,, € N(I"); we claim that they
are connected il if and only if they both belong td&/ ({(n)) for somen € N(I'). First
we prove the “only if” portion. Ifn}, n}, are connected il then they are joined by a path
of H, all the vertices of which belong t¥ ("), and so it suffices to prove the claim when
n’y, n%, are adjacent irtH. Choosec’” € C(I") \ {(C(I")) such that the edge df joining
n’, n’ belongs tod.. If ¢’ is internal, then it follows from the definition @¥. that there
existsn € N(I') with n1, np € V({(n)) as required. I’ is a border cell then from the
seventh condition in the definition of “linear inflation”, it follows thaf, »’, are adjacent
in V({(n)) for somen, and again the claim holds. This proves “only if”. Now for the “if”
portion, assume thaty, n, € V({(n)). Since{(n) is a connected subgraph of(I"), we
may assume thaty, n’, are adjacent ink(I") and hence irV ({(n)). Let¢’ be a cell of[”
such thati, n, € ¢’. Since{(n) contains two different nodes ef, it follows (from the
sixth condition in the definition of “linear inflation”) that ¢ {(C(I")). If ¢’ is internal, it
follows thatn’, n’, are adjacent itd from the definition 0%, so we may assume theitis
a border cell, and there is no internal aélle C(I") \ {(C(I')) with n, n), € ¢”. But then
again it follows thai, n’, are adjacent il from the definition of,.. This proves the “if”
assertion, and thereby proves (8).

(9) Letn € N(I') N O, for some cuf®. Letn, n, € V({(n)) N O and letl<i <p(O).
Then the ith terms of (n}) andn’(n’) are connected in H.

SubproofSince there is aling” € © suchthatfon’ e NI")NO,n" € V({(n))ifand
onlyif n" € F, we may assume that, n/, are both nodes of some celle C(I') bordering
0. Sincen, n, € V({(n)) it follows thatc” ¢ n(C(I")) and soc’ # ¢y, by (1). Hencevy,

v, are connected i/, from the defining property of’, and hence they are connected in
H. This proves (9).

(10) Letny, np € N(I') N © for some cuf®, leti > 0, and let the ith term oft(n1) be
the ith term ofz(n). Letn} € V({(n1)) N © andn), € V({(n2)) N ©. Then the ith term of
©'(n) and the ith term oft’(rn’,) are connected in H.

Subproof:By (9) the result holds ifiy = ny. Letv be theith term ofz(n1). Since there
isalineF C © suchthatfom € N(I') N ©,v € f(n) ifand only if n € F, we may
assume (by the argument used in the proof of (3))that, are both nodes of some cell
bordering®. By (9) we may replace) by any other element df ({(n1)) N @, for the result
holds for the old element if and only if it holds for the new; and hence we may assume that
n’, and similarlyn’, are nodes of’ = (c). Sincey(c) <y'(c’) and theith term of (n1)
is thejth term ofr(n2) we deduce that thieh term ofz’(n}) is thejth term ofn’(n5). This
proves (10).
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(11) For eachv € V(G) every two members gfv) are connected in H.
Subproofilf v € N(I') then this follows from (8). Ifv ¢ N(I') it follows from (10).
(12) If v}, v are adjacent in H then there existse V(G) with v}, v5 € (v).

Subproof:Lete € E(H) have ends), vj,. From (8) we may assume thelt € f'(n}),
v, € ﬂ’(n’z) wheren’, n), are the nodes of some border aéle C(I") withe € E(M/,)and
¢’ ¢ n(C(I). Letv; be theith term ofr’(n}); then since’ # ¢, by (1) it follows from the
property ofrn’ thatv, is theith term ofn’(n5). Sincec” ¢ n(C(I")) there exists: € N(I')
with ), n, € V({(n)); letv be theith term ofn(n). Thenv}, v € #(v). This proves (12).

From (11) and (12) it follows that realizes;. This completes the proof &1 [J

10. Excluding a minor

If Gis a hypergraph, its $keletorsk(G) is the subgraph oKy () with vertex set (G)
in which distinctvy, v2 € V(G) are adjacent if there is an edge®@incident with bothvy
andvy.

10.1. Let P = (G, u, A) be a free patchworkand let C be a subgraph 6k (G). Then
there is a realization H of P such that for all x € V (C), x and y are connected in C if and
only if they are connected in H.

Proof. For eaclte € E(G), choose, € 4(e) such that for distinct, y € V (d.), xandy are
adjacent ind, if and only if they belong td/ (C) and are connected i@ (This is possible
sinceP is free.) Let

H =Ny U|_J©. : e € E(G))).

Clearly ifx, y € V(C) are connected iHl then they are connected @ On the other hand,
Cis a subgraph ofl; for if x, y € V(C) are adjacent iiC, chooser € E(G) such thak, y
are ends o€, thenx, y are adjacent itd. The result follows. [J

Let (2, p) be a graded surface, I1& = (G, p, 4) be a free rootless patchwork, and let
L be arooted location is. We say that P, £) is (X, p)-shelledif £ is fine and there is a
heartP’ of (P, £) whereP’ = (G, i/, A") andE(G’) = {e(A) : A € L}, and there is a
(2, p)-hull (I, p) for G'~ such that
o if c € C(I) isinternal and: = ¢(A) whereA € L, then theith node ofc is theith term

of n(A), for 1<i <|¢|, and for every groupin$ with V(K) = ¢ there is a subgrap@

of sk(A™) such that for distinck, y € ¢, x andy are connected i€ if and only if they

are adjacent i
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e if ¢ € C(I') borders a cuf®, with nodesny, n2, andp(®) = r, andc = e¢(A) where
A € L, then there are mutually disjoint pathsPy, ..., P, of sk(A7) \ {n1, n2} from
f(n1) to f(n2), and either there is another path of sk(A™) from ny, ny disjoint from
PLU---U P,, or there is an internal cetl of I" with nq, ns € ¢

10.2. Let (P, £) be (X, p)-shelled. Then it has a heart which(, p)-hulled.

The proof is immediate frori0.1
Let 7 be a tangle in a hypergragh, and letH be a graph. We say th&t controls an

H-minor ofsk(G) if there is a function: with domainV (H) U E(H), such that

e foreachv € V(H), a(v) is a non-null connected subgraphséfG), ando(u) ando(v)
are disjoint for all distinci., v € V(H)

e da(e) € E(sk(G)) for eache € E(H), andua(e) # a(f) for all distincte, f € E(H)

e for eache € E(H) with distinct ends, v, a(e) € E(sk(G)) with one end inV (a(u))
and the other iV («)v))

e foreach loop € E(H) with endv, V (a(v)) contains both ends of(e) ande ¢ E (o(v))

e there do not existA, B) € T of order< |V(H)| andv € V(H) such thatV («(v)) C
V(A).
Next, we convert a theorem {8] into the language of this paper.

10.3. For every graph H there exi$t> 1 and a setS of graded surfacedinite up to home-
omorphismwith the following property. LeP = (G, u, A) be a rootless free patchwark
and let7 be a tangle in G of ordee> 0 controlling no H-minor ofsk(G). Then there exist
W C V(G) with |W| < 0 and a fine rooted locatiod in G/ W, such that
e (P/W,L)is (X, p)-shelled for soméX, p) € S, and
e Lislinked to7/W.

Proof. By theorem 14.2 df3], there are integers, ¢, z >0 andl > z with the property that,
for every hypergrapls and tangleT in G of order > 6, if 7 controls noH-minor of sk(G),
then there exist® C V(G) with |W| <z and a7 / W-central portrayak = (X, I, o, f3, v)
of G/ W with warp < p, such tha® has at most| cuffs andH cannot be drawn i, and
7 is true and(2p + 7)-redundant (We omit the definitions of these terms;[8¢eNote in
particular that “paintings” ifi3] are defined slightly differently, in that they are not equipped
with the march functiory as in this paper.) Le$ be the set of all graded surfaces, p)
such that” has the property just mentioned (thatishas at most| cuffs andH cannot be
drawn inY), andp(®) < p for each cuff® of X. ThusS is finite up to homeomorphism.
We claim that) andS satisfy the theorem.

For letP = (G, u, 4) be a rootless free patchwork, and Tetbe a tangle irG of order
> 0 controlling noH-minor of sk(G). By the theorem just quoted, applied@we deduce
that there existVandr = (X, I', «, 8, v) as above. Thug¥V|<z < 0. Now I is a painting
in the sense dB3], but not yet a painting in the sense of this paper, because it lacks a function
v, choose such a function, arbitrarily, and therefore we may refas a painting in our
sense. By theorems 8.3 and 8.33Yf, it follows thatI" is 3-connected. By replacingwith
a homeomorphic surface, we may assumeithat = n for everyn € N(I) (this is just to
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simplify notation a little). LetG’ be the hypergraph with
V(G)=NT)U U(ﬁ(n) :ne NI)Nbd(2))

andE(G") = C(I"), in whichc € C(I') is incident withv € V(G’) if and only if either
v € ¢,orcisabordercelland € f(n) forsomen € ¢. Itfollows that(I", f) isa(X, p)-hull
for G’, for some(X, p) € S.

For each celt of I', let A, be a rooted hypergraph with. = «(c), and withn(A.) as
follows. If cis internal, lett(A.) = yr(c), and ifcis a border cell with nodes;, n, say,
let t(A.) be some march witlt(A.) = {v(n1), v(n2)} U f(n1) U f(n2). Let L be the set
{Ac : c € C(IN}. ThenL is a fine rooted location iF/ W, andG’ is a heart of G/ W, L). It
follows from theorems 9.1 and 9.8 [#] (and from the definition of “warp”) thatP/ W, £)
is (2, p)-shelled.

It remains to check thaf is linked to7/W. Letc € C(I'), and suppose tha#, B) €
T /W with A7 C A. By theorem 11.7 of3], (A, B) has order at least(A.)|; and soL is
linked to7/W. This provesl0.3 [

We deduce

10.4. LetQ be a well-quasi-order and lgt >0. Let P; = (G;, y;, 4i, ¢;) (i =1,2,...)
be a countable sequence of free rootl@spatchworks such that for all>> 1, sk(G;") has
no K, minor. Then there exist > i > 1 such thatp; is simulated inP;.

Proof. Takef andS such thafl0.3holds (withH = K ). LetF be the set of all patchworks
which are(Z, p)-hulled for somg 2, p) € S. SinceS is finite, F is well-behaved bp.1
Foralli >1, if 7 is a tangle of ordeZ> 0 in G;, thenT controls noK ,-minor of sk(G,"),
because there is n6,-minor ofsk(G;"). By 10.3 there exist$Vand£ as in10.3 By 10.2
(Gi, y;, 4))/ W, L) has a heart itF. The result follows fronv.3. [

As a corollary, we deduce the following form of Wagner’s conjecture for directed graphs
(which immediately implies the standard form of the conjecture for undirected graphs). A
directed graph is aninor of another if the first can be obtained from a subgraph of the
second by contracting edges.

10.5. LetG; (i =1, 2,...) be a countable sequence of directed graphs. Then there exist
Jj > i>1such thatG; is isomorphic to a minor of ;.

Proof. Let p = 2|E(G1)| + |V (G1)|; then every tournament with vertices has a minor
isomorphic toG1. We may therefore assume for each? that the (undirected) graph’
underlyingG; has no minor isomorphic t& ,, for otherwiseG; has a minor isomorphic
to G1. Takef = 1, and letQ be the well-quasi-order witt' (Q) = {0}. For each >2 let
H; be the rooted hypergragli’;, 0). Let P; = (H;, u, 4, ¢) where fore € E(G;), u(e) is
the one- or two-vertex sequence enumerating the endsno€; (tail first), 4(e) is {Ny,
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Kx} whereXis the set of ends of, and¢(e) = 0. ThenP; is a freeQ-patchwork. The
hypotheses af0.4are satisfied by the sequenge(i = 2, 3, ...) because nek(G;) has a
minor isomorphic takK ,. Thus there exisf > i > 2 such thatp; is simulated inP;. By the
discussion in Section 7 ¢2], it follows thatG; is isomorphic to a minor of7 ;, as required.
O

11. A refinement

The reader will see that we threw away a great deal in the prob®@fand10.5 If we
repeat essentially the same argument a little more conservatively, we can obtain a stronger
result which will be of use in the proof of Nash—-Williams’ “immersions” conjecture. That
is our next objective.

11.1. For everyp >0, there exist) > 0 and a well-behaved set of patchworkswith the
following property. LetP = (G, u, 4) be a rootless free patchwar&nd let7 be a tangle
in G of order > 0, controlling noK ,-minor ofsk(G ™). Then there is a fine rooted location
L in G such that
e (P, L) has a heart inF, and
e L O-isolatesT for every edge-based tie-breaker of G

Proof. Take0; andS such thatl0.3holds (withH = K, and0 replaced by,). Let 71 be
the set of all patchworks which at&, p)-hulled for somg X, p) € S. SinceS is finite, 7
is well-behaved b¥.1 Let F, be related taF; asF' is related taF in 7.2 (with 0 replaced
by 01). Let F be related taF, asF is related taF in 5.6, with 6 replaced byd; + 1. Let
0 = (01 + 1)2.

We claim that), F satisfy the theorem. For &t = (G, u, A) be arootless free patchwork,
and let7 be a tangle irG of order > 0, controlling noK ,-minor of sk(G™). From10.3
applied to the sefy of all (A, B) € T of order< 61, and10.2 we deduce that there exists
W C V(G) with |W| < 01 and a fine rooted locatiofi; in G/ W such tha{ P/ W, L1) has
a heart inF, and£; is linked to7,/ W.

By 7.2it follows that there is a fine rooted locatidly in G such thatW C 7(A) for all
A € Lo, L2/ W islinked to71/ W and(P, L) has a heart idF». In particular,C2 has order
< 01, andLy/ W is linked to7/W.

Choosef € E(G) and let/ be a tie-breaker defined Wylt follows that £, 61-isolates
(and hence6; + 1)-isolates)7 moduloW U {f}, by 6.2 By 5.6, there is a fine rooted
location£3 in G such thatCs (01 + 1)%-isolates]” and(P, £3) has a heart itF, as required.

O

11.2. Let Q2 be a well-quasi-orderet F be a well-behaved set of partigl-patchworks
andlet0>1andp>0.Let P, = (G;, y;, 4i, ¢;) (i =1,2,...) be a countable sequence
of free rootless2-patchworks. For each> 1, let /; be an edge-based tie-breaker G .
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Suppose that for each> 1 and each tanglg” in G; of order > 0 which controls & ,-minor
of sk(G; ), there is a rooted locatiorf in G; which 0-isolates7 such that(P;, £) has a
heart in 7. Then there exist > i > 1 such thatp; is simulated inP; .

Proof. Choosef; and F; such thatl1l.1holds (with@, F replaced byd;, F1). Let 7, be
the set of partial2-patchworks(G, u, 4, ¢) with dom(¢) = @ and(G, u, A) € F1. Then
F» is well-behaved. LefF3 = F U F»; thenF3 is well-behaved. Moreover, for eacke 1

and each tanglg in G; of order >0, = max(0, 1), there is a rooted locatiof in G;

such thatC 0,-isolates7 and(P;, £) has a heart itf3; for if 7> controls aK ,-minor of
sk(G;), this is true by hypothesis, and if not then this is trueltlyl. The result follows
from3.1 O
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