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General idea

@ WDM (Wavelength Division Multiplexing) networks

e 1 wavelength (or frequency) = up to 40 Gb/s
o 1 fiber = hundreds of wavelengths = Tb/s
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General idea

@ WDM (Wavelength Division Multiplexing) networks

e 1 wavelength (or frequency) = up to 40 Gb/s
o 1 fiber = hundreds of wavelengths = Tb/s

@ Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

— we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

@ Objectives:

o Better use of bandwidth
o Reduce the equipment cost (mostly given by electronics)
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@ Request (/. )): two vertices (/, /) that want to exchange
(low-speed) traffic
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@ Request (/. )): two vertices (/, /) that want to exchange
(low-speed) traffic

@ Grooming factor C:

_ Capacity of a wavelength
~ Capacity used by a request

* Typical values of the grooming factor:
SDH: 4,16, 64,256, . ..
SONET: 3,12,48, ...

Example:
Capacity of one wavelength = 2.5 Gb/s

Capacity used by a request = 640 Mb/s = C=4
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@ Request (/. )): two vertices (/, /) that want to exchange
(low-speed) traffic

@ Grooming factor C:

_ Capacity of a wavelength
~ Capacity used by a request

* Typical values of the grooming factor:
SDH: 4,16, 64,256, . ..
SONET: 3,12,48, ...

Example:
Capacity of one wavelength = 2.5 Gb/s
Capacity used by a request = 640 Mb/s = C=4

@ load of an arc in a wavelength: number of requests using this arc
in this wavelength (< C)
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ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber
@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength
OADM OADM OADM
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@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber
@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength
OADM OADM OADM
————
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| | | |
|
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@ We want to minimize the number of ADMs
@ We need to use an ADM only at the endpoints of a request
(lightpaths) in order to save as many ADMs as possible
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@ Model:
Topology graph G
Request set graph R
Grooming factor integer C

Wavelength
Requests in a wavelength
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Subgraph of R
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@ A fundamental case is when G = 8,7 (unidirectional ring)
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@ Model:
Topology graph G
Request set graph R
Grooming factor integer C

Wavelength
Requests in a wavelength
ADM in a wavelength

Subgraph of R
edges in a subgraph of R
vertex in a subgraph of R

I A

@ A fundamental case is when G = 8,7 (unidirectional ring)

@ It is also natural to consider symmetric requests

Ignasi Sau Valls (Mascotte — MA4) Ph.D defense October 16, 2009 6/54



Unidirectional ring with symmetric requests

@ Symmetric requests: whenever there is the request (i, ), there is
also the request (j, /).

(i)
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Unidirectional ring with symmetric requests

@ Symmetric requests: whenever there is the request (i, ), there is
also the request (j, /).

(i)

@ W.l.o.g. requests (/,j) and (j, /) are in the same subgraph
— each pair of symmetric requests induces load 1
— grooming factor C < each subgraph has < C edges.

Ignasi Sau Valls (Mascotte — MA4) Ph.D defense October 16, 2009 7154



Statement of the problem

Traffic Grooming in Unidirectional Rings (with symmetric requests)

Input An undirected graph R on n nodes (request set);
A grooming factor C.

Output A partition of E(R) into subgraphs
Ry, ..., Rw with |E(R))| < C, i=1,...,W.

Objective Minimize S, |V(R))|.
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Example (unidirectional ring with symmetric requests)

0 1
n=4
R=K,
C=3

3 2
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Example (unidirectional ring with symmetric requests)

0 1
0 1 / ‘ 8 ADMs
n=4
3 2

o
[

3 2
R—K4 \ 0 1 0 1
Cc=3
3 2 7 ADMs
2 3 2
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Preliminaries: approximation algorithms

@ Given a (typically NP-hard) minimization problem M, ALG is an
a~approximation algorithm for I (with o > 1) if for any instance / of I,

ALG(l) < a- OPT(I).
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Preliminaries: approximation algorithms

@ Given a (typically NP-hard) minimization problem I1, ALG is an
a~approximation algorithm for I (with o > 1) if for any instance / of I,

ALG(l) < a- OPT(I).

@ Class APX (Approximable):

an NP-hard optimization problem is in ApPX if it can be approximated
within a constant factor.

Example: MINIMUM VERTEX COVER has a 2-approximation.
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Preliminaries: approximation algorithms

@ Given a (typically NP-hard) minimization problem I1, ALG is an
a~approximation algorithm for I (with o > 1) if for any instance / of I,

ALG(l) < a- OPT(I).

@ Class APX (Approximable):

an NP-hard optimization problem is in ApPX if it can be approximated
within a constant factor.

Example: MINIMUM VERTEX COVER has a 2-approximation.

@ Class PTAS (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be approximated
within a constant factor 1 + ¢, foralle > 0
(the best one can hope for an NP-hard problem).

Example: MAXIMUM KNAPSACK.
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Hardness of RING TRAFFIC GROOMING
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Hardness of RING TRAFFIC GROOMING

@ NP-complete if C is part of the input
[Chiu and Modiano. IEEE JLT00]
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Hardness of RING TRAFFIC GROOMING

@ NP-complete if C is part of the input

[Chiu and Modiano. IEEE JLT00]
© Notin Apx if C is part of the input

[Huang, Dutta, and Rouskas. IEEE JSAC’06]
© Remains NP-complete for fixed C > 1

(the proof assumes a bounded number of wavelengths)

[Shalom, Unger, and Zaks. FUN'07]

% Open problem: inapproximability for fixed C?
\Conjecture: Not in PTAS for fixed C. \
[Wan, Calinescu, Liu, and Frieder. IEEE JSAC’00]
[Chow and Lin. Networks’04]
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Hardness of RING TRAFFIC GROOMING

@ NP-complete if C is part of the input

[Chiu and Modiano. IEEE JLT00]
© Notin Apx if C is part of the input

[Huang, Dutta, and Rouskas. IEEE JSAC’06]
© Remains NP-complete for fixed C > 1

(the proof assumes a bounded number of wavelengths)

[Shalom, Unger, and Zaks. FUN'07]

v Open-preblem: inapproximability for fixed C?
\Conjecture: Not in PTAS for fixed C. \
[Wan, Calinescu, Liu, and Frieder. IEEE JSAC’00]
[Chow and Lin. Networks’04]

Theorem (Amini, Pérennes, and S.)
RING TRAFFIC GROOMING is not in PTAS for any fixed C > 1.
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Hardness of RING TRAFFIC GROOMING

@ NP-complete if C is part of the input

[Chiu and Modiano. IEEE JLT00]
© Notin Apx if C is part of the input

[Huang, Dutta, and Rouskas. IEEE JSAC’06]
© Remains NP-complete for fixed C > 1

(the proof assumes a bounded number of wavelengths)

[Shalom, Unger, and Zaks. FUN'07]

v Open-preblem: inapproximability for fixed C?
\Conjecture: Not in PTAS for fixed C. \
[Wan, Calinescu, Liu, and Frieder. IEEE JSAC’00]
[Chow and Lin. Networks’04]

Theorem (Amini, Pérennes, and S.)

RING TRAFFIC GROOMING is not in PTAS for any fixed C > 1.
PATH TRAFFIC GROOMING is not in PTAS for any fixed C > 2.
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Approximation of RING TRAFFIC GROOMING
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@ O(log C)-approximation algorithm, with running time O(n®)
[Flammini et al. ISAAC’05, JDA'08]

© But in backbone networks, it is usually the case that C > n.

% Open problem: approximation algorithm in poly-time in both C
and n, and with approximation factor independent of C.
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Approximation of RING TRAFFIC GROOMING

@ /C-approximation is trivial (in poly-time in both n and C)

@ O(log C)-approximation algorithm, with running time O(n®)
[Flammini et al. ISAAC’05, JDA'08]

© But in backbone networks, it is usually the case that C > n.

v Open-preblem: approximation algorithm in poly-time in both C
and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates
RING TRAFFIC GROOMING within a factor O(n'/3log? n) for any C > 1.
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@ O(log C)-approximation algorithm, with running time O(n®)
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and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates
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@ partition the requests into groups of similar length
@ in each group, extract “dense” subgraphs greedily using an algorithm for
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Approximation of RING TRAFFIC GROOMING

@ /C-approximation is trivial (in poly-time in both n and C)

@ O(log C)-approximation algorithm, with running time O(n©)
[Flammini et al. ISAAC’05, JDA'08]

© But in backbone networks, it is usually the case that C > n.

v Open-preblem: approximation algorithm in poly-time in both C
and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates
RING TRAFFIC GROOMING within a factor O(n'/3log® n) for any C > 1.

Outline of the algorithm:
@ partition the requests into groups of similar length [factor log n]
@ in each group, extract “dense” subgraphs greedily using an algorithm for
the DENSE k-SUBGRAPH problem [factor log n] [factor n'/?]
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New model of traffic grooming

@ In the literature so far:
place ADMs at nodes for a fixed request graph.
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@ New model [With Xavier Munoz]:

place the ADMs at nodes such that the network can support any
request graph with maximum degree at most A.
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@ In the literature so far:
place ADMs at nodes for a fixed request graph.
— placement of ADMs a posteriori.

@ New model [With Xavier Munoz]:
place the ADMs at nodes such that the network can support any
request graph with maximum degree at most A.
— placement of ADMs a priori.

@ As the network must support any degree-bounded graph, due to
symmetry we place the same number of ADMs at each node.
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New model of traffic grooming

@ In the literature so far:
place ADMs at nodes for a fixed request graph.
— placement of ADMs a posteriori.

@ New model [With Xavier Munoz]:
place the ADMs at nodes such that the network can support any
request graph with maximum degree at most A.
— placement of ADMs a priori.

@ As the network must support any degree-bounded graph, due to
symmetry we place the same number of ADMs at each node.

@ The objective is then to minimize this number.
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The parameter M(C, A)

@ A-graph: graph with maximum degree at most A.
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The parameter M(C, A)

@ A-graph: graph with maximum degree at most A.

@ C-edge partition of G: partition of E(G) into subgraphs with < C edges.

@ The problem is equivalent to determining the following parameter:

M(C,A): smallest integer M s.t. any A-graph has a C-
edge-partition s.t. each vertex appears in < M subgraphs.
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The parameter M(C, A)

@ A-graph: graph with maximum degree at most A.

@ C-edge partition of G: partition of E(G) into subgraphs with < C edges.

@ The problem is equivalent to determining the following parameter:

M(C,A): smallest integer M s.t. any A-graph has a C-
edge-partition s.t. each vertex appears in < M subgraphs.

@ Therefore, we focus on determining M(C, A).
@ W.l.o.g. we can assume that R has regular degree A.

Proposition (Lower Bound — Munoz and S.)
ForallC,A>1,M(C.A) > |%515].
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Theorem (Li and S.)

Let A > 2 be even. Then forany C > 1, M(C,A) = {% %W
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Theorem (Liand S.)
Let A > 2 be even. Then forany C > 1, M(C,A) = {% %W

v

@ We have just seen the lower bound. Construction:

o Orient the edges of G = (V, E) in an Eulerian tour.
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Let A > 2 be even. Then forany C > 1, M(C,A) = {% %W
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o Orient the edges of G = (V, E) in an Eulerian tour.

o Assign to each vertex v € V its A/2 out-edges, and partition them
into [ £ | stars with (at most) C edges centered at v.
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Theorem (Liand S.)
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@ We have just seen the lower bound. Construction:
o Orient the edges of G = (V, E) in an Eulerian tour.

o Assign to each vertex v € V its A/2 out-edges, and partition them
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e Each vertex v appears as a leaf in stars centered at other vertices
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Case A > 3 odd

Proposition (Upper Bound — Li and S.)

Let A > 3 be odd. Then for any C > 1, M(C,A) < {C%%M%]
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Proposition (Upper Bound — Li and S.)

Let A > 3 be odd. Then for any C > 1, M(C,A) < {C%%M%]

Corollary (Liand S.)

Let A > 3 be odd. Then forany C > 1, M(C,A) < {%ﬂ

o[>

] +1-

Question: is the lower bound {% %W always attained?
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Case A > 3 odd

Proposition (Upper Bound — Li and S.)

Let A > 3 be odd. Then for any C > 1, M(C,A) < {C%%M%]

Corollary (Liand S.)

Let A > 3 be odd. Then forany C > 1, M(C,A) < {%ﬂ

o[>

] +1-

Question: is the lower bound {% %W always attained?  NO!!

Theorem (Liand S.)

Let A >3 be odd. If A = C (mod 2C), then M(C, A) = [ 514 + 1.
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Open cases

Summarizing, we established the value of M(C, A) for “almost” all
values of C and A,
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Summarizing, we established the value of M(C, A) for “almost” all
values of C and A, leaving open only the case where:

@ A > 5isodd; and
@ C>4;and

@ 3<A (mod2C)<C-1;and
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Open cases

Summarizing, we established the value of M(C, A) for “almost” all
values of C and A, leaving open only the case where:

@ A > 5isodd; and
@ C>4;and
@ 3<A (mod2C)<C-1;and

@ the request graph does not contain a perfect matching.
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Bidirectional rings

@ Most of the research had been done for unidirectional rings.
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* all-to-all requests.
* shortest path routing.

@ We provide:

@ Statement of the problem and general lower bounds.
@ Exhaustive study of the cases C < {1,2,3}.
© Optimal solutions for some infinite families when C = k(k + 1)/2.
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Bidirectional rings

@ Most of the research had been done for unidirectional rings.

@ We consider the bidirectional ring with

* all-to-all requests.
* shortest path routing.

@ We provide:

@ Statement of the problem and general lower bounds.
@ Exhaustive study of the cases C < {1,2,3}.
© Optimal solutions for some infinite families when C = k(k + 1)/2.

© Asymptotically optimal or approximated solutions.
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2-period traffic grooming in unidirectional rings

@ We consider a pseudo-dynamic scenario in unidirectional rings:
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nodes, each request using 1/C’ of the bandwidth, with C’ < C.

@ The problem consists in finding a C-edge-partition of K, that
embeds a C’-edge-partition of K.
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@ We consider a pseudo-dynamic scenario in unidirectional rings:

e in the 1st period of time, there is all-to-all traffic among n nodes,
each request using 1/C of the bandwidth.

@ in the 2nd period, there is all-to-all traffic among a subset of " < n
nodes, each request using 1/C’ of the bandwidth, with C’ < C.

@ The problem consists in finding a C-edge-partition of K, that
embeds a C’-edge-partition of K.

@ Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks’08].
They solved the cases C =2 and C =3 (C' € {1,2}).
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@ We consider a pseudo-dynamic scenario in unidirectional rings:

e in the 1st period of time, there is all-to-all traffic among n nodes,
each request using 1/C of the bandwidth.

@ in the 2nd period, there is all-to-all traffic among a subset of " < n
nodes, each request using 1/C’ of the bandwidth, with C’ < C.

@ The problem consists in finding a C-edge-partition of K, that
embeds a C’-edge-partition of K.

@ Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks’08].
They solved the cases C =2 and C =3 (C' € {1,2}).

@ We solve the case C = 4 (thatis, C' € {1,2,3}).
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2-period traffic grooming in unidirectional rings

@ We consider a pseudo-dynamic scenario in unidirectional rings:

e in the 1st period of time, there is all-to-all traffic among n nodes,
each request using 1/C of the bandwidth.

@ in the 2nd period, there is all-to-all traffic among a subset of " < n
nodes, each request using 1/C’ of the bandwidth, with C’ < C.

@ The problem consists in finding a C-edge-partition of K, that
embeds a C’-edge-partition of K.

@ Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks’08].
They solved the cases C =2 and C =3 (C' € {1,2}).

@ We solve the case C = 4 (thatis, C' € {1,2,3}).

@ In addition, we provide the optimal cost under the constraint of using the
minimum number of wavelengths.
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From to

@ Remember from the first subpart:

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates
RING TRAFFIC GROOMING within a factor O(n'/3log? n) for any C > 1.
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@ Remember from the first subpart:

Theorem (Amini, Pérennes, and S.)
There is a polynomial-time approximation algorithm that approximates
RING TRAFFIC GROOMING within a factor O(n'/3log? n) for any C > 1.

@ partition the requests into groups of similar length [factor log n]
@ in each group, extract subgraphs greedily using an algorithm for
the DENSE k-SUBGRAPH problem [factor logn]  [factor n'/3]

DENSE k-SUBGRAPH (DkS)
Input: An undirected graph G = (V, E) and a positive integer k.
Output: A subset S C V, with |S| = k, such that |E(G[S])| is maximized.
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From to

@ Remember from the first subpart:

Theorem (Amini, Pérennes, and S.)
There is a polynomial-time approximation algorithm that approximates
RING TRAFFIC GROOMING within a factor O(n'/3log? n) for any C > 1.

@ partition the requests into groups of similar length [factor log n]
@ in each group, extract subgraphs greedily using an algorithm for
the DENSE k-SUBGRAPH problem [factor logn]  [factor n'/3]

DENSE k-SUBGRAPH (DkS)
Input: An undirected graph G = (V, E) and a positive integer k.
Output: A subset S C V, with |S| = k, such that |E(G[S])| is maximized.

@ Summarizing, a [5-approximation for the DkS problems yields a
(5 - log® n)-approximation for RING TRAFFIC GROOMING.
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Finding dense subgraphs is difficult...

@ Unfortunately, the DkS problem is a very “hard” problem:

e Best approximation algorithm: O(n'/3~<)-approximation.
[Feige, Kortsarz, and Peleg. Algorithmica’01]

@ Best hardness result: No PTAS, unless P=NP.
[Khot. SIAM J. Comp’06]

Ignasi Sau Valls (Mascotte — MA4) Ph.D defense October 16, 2009 26 /54



Finding dense subgraphs is difficult...

@ Unfortunately, the DkS problem is a very “hard” problem:

e Best approximation algorithm: O(n'/3~<)-approximation.
[Feige, Kortsarz, and Peleg. Algorithmica’01]

@ Best hardness result: No PTAS, unless P=NP.
[Khot. SIAM J. Comp’06]

@ What about trying to find dense subgraphs differently?
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Finding dense subgraphs is difficult...

@ Unfortunately, the DkS problem is a very “hard” problem:

e Best approximation algorithm: O(n'/3~<)-approximation.
[Feige, Kortsarz, and Peleg. Algorithmica’01]

@ Best hardness result: No PTAS, unless P=NP.
[Khot. SIAM J. Comp’06]

@ What about trying to find dense subgraphs differently?
@ In DKS, the objective is to maximize the average degree

@ What about the minimum degree...?
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Broad family of problems

A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
@ a (weighted or unweighted) graph G, and
@ an integer d.
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Input:
@ a (weighted or unweighted) graph G, and
@ an integer d.
Output:
@ a (connected) subgraph H of G,
@ satisfying some degree constraints (A(H) < d or 6(H) > d),

@ and optimizing some parameter (|V(H)| or |[E(H)|).
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Broad family of problems

A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
@ a (weighted or unweighted) graph G, and
@ an integer d.
Output:
@ a (connected) subgraph H of G,
@ satisfying some degree constraints (A(H) < d or 6(H) > d),
@ and optimizing some parameter (|V(H)| or |[E(H)|).

@ Several problems in this broad family are classical widely studied
NP-hard problems.

@ They have a number of applications in interconnection networks,
routing algorithms, chemistry, ...
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First problem

MINIMUM SUBGRAPH OF MINIMUM DEGREE > d (MSMD,):

Input: an undirected graph G = (V, E) and an integer d > 3.
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Input: an undirected graph G = (V, E) and an integer d > 3.

Output: a subset S C V with 6(G[S]) > d, s.t. |S| is minimum.
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First problem

MINIMUM SUBGRAPH OF MINIMUM DEGREE > d (MSMD,):

Input: an undirected graph G = (V, E) and an integer d > 3.

Output: a subset S C V with 6(G[S]) > d, s.t. |S| is minimum.

@ For d =2 itis exactly the GIRTH problem, which is in P.

@ Therefore, it can be seen as a generalization of GIRTH.
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First problem

MINIMUM SUBGRAPH OF MINIMUM DEGREE > d (MSMD,):

Input: an undirected graph G = (V, E) and an integer d > 3.

Output: a subset S C V with 6(G[S]) > d, s.t. |S| is minimum.

@ For d =2 itis exactly the GIRTH problem, which is in P.
@ Therefore, it can be seen as a generalization of GIRTH.

@ Isitalsoin Pford >37?
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Hardness and approximation

@ MSMDy is not in Apx for any d > 3,

Ignasi Sau Valls (Mascotte — MA4) Ph.D defense October 16, 2009 30/54



Hardness and approximation

@ MSMDy is not in Apx for any d > 3, using the error amplification
technique:

o first we prove that MSMDy is not in PTAS (unless P=NP).

o then we prove that MSMD, does not accept any constant factor
approximation.
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Hardness and approximation

@ MSMDy is not in Apx for any d > 3, using the error amplification
technique:
o first we prove that MSMDy is not in PTAS (unless P=NP).

o then we prove that MSMD, does not accept any constant factor
approximation.

@ O(n/log n)-approximation algorithm for minor-free classes of
graphs, using dynamic programming techniques and a known
structural result on graph minors.

(In particular, this applied to planar graphs and graphs of bounded genus.)
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Second problem

MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS,):
Input:

@ anundirected graph G = (V, E),
@ aninteger d > 2, and

@ a weight functionw : E — R™.
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MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS,):
Input:

@ anundirected graph G = (V, E),
@ aninteger d > 2, and
@ a weight functionw : E — R™.

Output:
a subset of edges E’ C E of maximum weight, s.t. G' = (V,E’)

@ is connected (except isolated vertices), and

@ satisfies A(G') < d.
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MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS,):
Input:

@ anundirected graph G = (V, E),
@ aninteger d > 2, and
@ a weight functionw : E — R™.

Output:
a subset of edges E’ C E of maximum weight, s.t. G' = (V,E’)

@ is connected (except isolated vertices), and
@ satisfies A(G') < d.

@ Itis one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].
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Second problem

MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS,):
Input:

@ anundirected graph G = (V, E),
@ aninteger d > 2, and

@ a weight functionw : E — R™.

Output:
a subset of edges E’ C E of maximum weight, s.t. G' = (V,E’)

@ is connected (except isolated vertices), and
@ satisfies A(G') < d.

@ Itis one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].

@ If the output subgraph is not required to be connected, the problem is in
P for any d (using matching techniques). [Lovasz, 70’s]
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Second problem

MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS,):
Input:

@ anundirected graph G = (V, E),
@ aninteger d > 2, and
@ a weight functionw : E — R™.

Output:
a subset of edges E’ C E of maximum weight, s.t. G' = (V,E’)

@ is connected (except isolated vertices), and
@ satisfies A(G') < d.

@ Itis one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].

@ If the output subgraph is not required to be connected, the problem is in
P for any d (using matching techniques). [Lovasz, 70’s]

@ For fixed d = 2 it corresponds to the LONGEST PATH problem.
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Example with d = 3, w(e) = 1 for all e € E(G)

> NWAVAVAN
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Example with d = 3, w(e) = 1 for all e € E(G)

23
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Hardness and approximation

@ not in Apx for any fixed d > 2.
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Hardness and approximation

@ not in Apx for any fixed d > 2.

@ if there is a polynomial time algorithm for MDBCS,, d > 2, with
performance ratio 2°(v1097 then NP C DTIME(20(10¢° m),

© min{m/logn, nd/(2log n)}-approximation algorithm for
unweighted graphs. (n=|V(G)| and m = |E(G)))

© min{n/2, m/d}-approximation algorithm for weighted graphs.

@ if G has a low-degree spanning tree (in terms of d) it can be
approximated within a small constant factor.
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Some words on parameterized complexity
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see if the problem gets more “tractable”.
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Some words on parameterized complexity

@ |dea: given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

@ Given a (NP-hard) problem with input of size n and a parameter k,
a fixed-parameter tractable (FPT) algorithm runs in

f(k) - n°1). for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.

@ Barometer of intractability:

FPTC W] C W2l W[3]C--- C XP
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Parameterized complexity of finding

degree-constrained subgraphs

@ We have studied the parameterized complexity of finding
degree-constrained subgraphs, with

parameter = number of vertices of the desired subgraph
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Parameterized complexity of finding

degree-constrained subgraphs

@ We have studied the parameterized complexity of finding
degree-constrained subgraphs, with

parameter = number of vertices of the desired subgraph

@ Namely, given two integers d and k, the problems of finding
@ a d-regular subgraph (induced or not) with at most < k vertices.

@ a subgraph with at most < k vertices and of minimum degree > d.

@ We prove that
@ these problems are W([1]-hard in general graphs.

@ We then provide explicit FPT algorithms to solve both problems in
graphs with bounded local treewidth and graphs with excluded
minors, using a dynamic programming approach.
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FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k:

@ A fixed-parameter tractable (FPT) algorithm runs in
f(k) - n°M for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.
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FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k:

@ A fixed-parameter tractable (FPT) algorithm runs in
f(k) - n°M for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.

6k
@ Problem: f(k) can be huge!ll  (for instance, f(k) = 03¢ )

@ A subexponential parameterized algorithm is a FPT algo s.t.

f(k) = 2000,

e Typically f(k) = 20(VK),
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General idea / meta-algorithmic framework

Given a parameter P defined in a planar graph G, P(G) < k ?
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General idea / meta-algorithmic framework

Given a parameter P defined in a planar graph G, P(G) < k ?
First we compute bw(G). [Seymour and Thomas. Combinatorica’94]

(A) Combinatorial bounds via Graph Minor theorems:

bw(G) is “big” = P is also “big” (typically, P = Q(bw?)).

» Bidimensionality: use square grids as “certificates”.
[Demaine, Fomin, Hajiaghayi, Thilikos. SODA’04, J ACM'05]

(B) Dynamic programming which uses graph structure:
‘ If bw(G) is “small”, we decide P by “fast” dynamic programming.

» Catalan structures.
[Dorn, Fomin, Thilikos. ICALP’07, SODA’08]

* With D.M. Thilikos we have adapted this framework to MDBCSy,
as well as for a few variants, introducing some general techniques
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Surfaces

@ Surface: connected compact 2-manifold.
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Genus of a surface

@ The surface classification Theorem: any compact, connected and
without boundary surface can be obtained from the sphere S? by
adding handles and cross-caps.
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Genus of a surface

@ The surface classification Theorem: any compact, connected and
without boundary surface can be obtained from the sphere S? by
adding handles and cross-caps.

@ Orientable surfaces: obtained by adding g > 0 handles to the
sphere S2, obtaining the g-torus T4 with Euler genus eg(Ty) = 2g.

@ Non-orientable surfaces: obtained by adding h > 0 cross-caps to
the sphere S?, obtaining a non-orientable surface P, with Euler
genus eg(Py) = h.
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Graphs on surfaces

@ An embedding of a graph G on a surface ¥ is a drawing of Gon ©
without edge crossings.

@ An embedding defines vertices, edges, and faces.
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Graphs on surfaces

@ An embedding of a graph G on a surface ¥ is a drawing of Gon ©
without edge crossings.

@ An embedding defines vertices, edges, and faces.

@ The Euler genus of a graph G, eg(G), is the least Euler genus of
the surfaces in which G can be embedded.
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Dynamic programming for graphs on surfaces

@ Let G be a graph on n vertices with branchwidth at most k.
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Dynamic programming for graphs on surfaces

@ Let G be a graph on n vertices with branchwidth at most k.

@ We consider graph problems for which dynamic programming
uses tables encoding vertex partitions (“Category (C)”).

For instance, our approach applies to MAXIMUM d-DEGREE-BOUNDED CONNECTED
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Dynamic programming for graphs on surfaces

@ Let G be a graph on n vertices with branchwidth at most k.

@ We consider graph problems for which dynamic programming
uses tables encoding vertex partitions (“Category (C)”).

For instance, our approach applies to MAXIMUM d-DEGREE-BOUNDED CONNECTED
SUBGRAPH, MAXIMUM d-DEGREE-BOUNDED CONNECTED INDUCED SUBGRAPH and
several variants, CONNECTED DOMINATING SET, CONNECTED r-DOMINATION,
CONNECTED FVS, MAXIMUM LEAF SPANNING TREE, MAXIMUM FULL-DEGREE SPANNING
TREE, MAXIMUM EULERIAN SUBGRAPH, STEINER TREE, MAXIMUM LEAF TREE, ...

@ For general graphs, the best known algorithms for such problems
run in kK . n steps.
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From to cut decompositions

@ We build a framework for the design of 2°(¥) . n step dynamic
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From to cut decompositions

@ We build a framework for the design of 2°(¥) . n step dynamic
programming algorithms on surface-embedded graphs.

@ In particular, our results imply and improve all the results in
[Dorn, Fomin, and Thilikos. SWAT06]

@ Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

@ Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]
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Nooses

@ Let G be a graph embedded in a surface ¥. A noose is a subset of
homeomorphic to S that meets G only at vertices.

P
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Sphere cut decompositions

@ Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
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Sphere cut decompositions

@ Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.

@ The size of the tables of a dynamic programming algorithm
depend on how many ways a partial solution can intersect mid(e).

@ In how many ways we can draw polygons inside a circle such that they
touch the circle only on its vertices and they do not intersect?

SN )

@ Exactly the number of non-crossing partitions over £ elements, which is
given by the ¢-th Catalan number:

1 (2 4! .
CN() = £+1<6) ~ o mEr st
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Surface cut decompositions (simpiiied version)

Let G be a graph embedded in a surface ¥, with eg(X) = g.
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Surface cut decompositions (simpiiied version)

Let G be a graph embedded in a surface ¥, with eg(X) = g.

A surface cut decomposition of G is a branch decomposition (T, 1) of
G and a subset A C V(G), with |A| = O(9g), s.t. forall e € E(T)

@ either Imid(e) \ A| < 2,

@ or
= the vertices in mid(e) \ A are contained in a set A of O(g) nooses;
* these nooses intersect in O(g) vertices;

* L\ Unen N contains exactly two connected components.
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How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:
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Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) < k, one can construct in 23k+©(°9%) . 13 time a surface cut
decomposition (T, i) of G of width at most 27k + O(g).
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bw(G) < k, one can construct in 23k+©(°9%) . 13 time a surface cut
decomposition (T, i) of G of width at most 27k + O(g).

The main result is that if dynamic programming is applied on surface cut
decompositions, then the time dependence on branchwidth is single
exponential:

Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a
surface of Euler genus g, with bw(G) < k, the size of the tables of a dynamic
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How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:
Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) < k, one can construct in 23k+©(°9%) . 13 time a surface cut
decomposition (T, i) of G of width at most 27k + O(g).

The main result is that if dynamic programming is applied on surface cut
decompositions, then the time dependence on branchwidth is single
exponential:

Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a
surface of Euler genus g, with bw(G) < k, the size of the tables of a dynamic
programming algorithm to solve P on a surface cut decomposition of G is
bounded above by 2°) . O(9) . g©(a)

This fact is proved using topological graph theory and analytic combinatorics,

generalizing Catalan structures to arbitrary surfaces.
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Further research

@ Open problems and conjectures in each chapter of the manuscript.

@ Traffic grooming:

o Close the complexity gap when C is part of the input.
@ Inrings, determine the best routing for each request graph.

e Consider other physical topologies.
@ Where is the limit of generalization? algorithmic meta-theorems

@ Better understand the structure and the algorithmic properties of
sparse families of graphs.

@ Graph coloring, probabilistic method, . ..
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1"/ Gracies!
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