
Reverse Engineering Reusable Software
Components from Object-Oriented APIs

Anas Shatnawi1, Abdelhak-Djamel Seriai1, Houari Sahraoui2, and Zakarea
Al-Shara1

1 UMR CNRS 5506, LIRMM, University of Montpellier, Montpellier, France
shatnawi, seriai, alshara@lirmm.fr

2 DIRO, University of Montreal, Montreal, Canada
sahraoui@iro.umontreal.ca

Abstract. Object-oriented Application Programing Interfaces (APIs)
support software reuse by providing pre-implemented functionalities. Due
to the huge number of included classes, reusing and understanding large
APIs is a complex task. Otherwise, software components are accepted to
be more reusable and understandable entities than object-oriented ones.
Thus, in this paper, we propose an approach for reengineering object-
oriented APIs into component-based ones. We mine components as a
group of classes based on the frequency they are used together and their
ability to form a quality-centric component. To validate our approach,
we experimented on 100 Java applications that used Android APIs.

Keywords: Reuse· reusability· understandability· reengineering· reverse engineering·
component· API· object-oriented· frequent usage pattern.

1 Introduction

Nowadays, the development of large and complex software applications is based
on reusing pre-existing functionalities instead of developing them from scratch
[1, 2]. Application Programming Interfaces (APIs) are recognized as the most
commonly used repositories supporting software reuse [1]. APIs provide a pre-
implemented, tested and high quality set of functionalities [2, 3]. Consequently,
they increase software quality and reduce the effort spent on coding, testing and
maintenance activities [2].

In the case of object-oriented APIs, e.g. Standard Template Libraries in C++
or Java SDK, the functionalities are implemented as object-oriented classes. It
is well known that reusing and understanding large APIs, such as Java SDK
which contains more than 7.000 classes, is not an easy task [4, 5]. On the other
hand, classes of an API are used following specific usage patterns, in order to
provide services to software applications [6–8]. For example, in the Android API,
Activity, GroupView, Context, LayoutInflater and View are the classes needed
to create a simple activity which contains an empty view [9]. Consequently,
many approaches have been proposed, such as [7, 10, 11], to facilitate the under-
standability and the reusability of APIs by discovering Frequent Usage Patterns

(FUPs) of APIs. This is based on the API usage history of software applications
(i.e. API clients). Despite the value of FUPs, these are not sufficient to provide
a high degree of API reusability and understandability. These are used as guides
for reusing API classes and are not themselves reusable entities [12].

Otherwise, software components are admitted to be more reusable and un-
derstandable entities than object-oriented ones [13]. It is because components
are considered coarse-grained software entities, while object-oriented classes are
considered fine-grained ones. In addition, components define their required and
provided interfaces. This means that the component dependencies are more un-
derstandable compared to the dependencies among objects. Consequently, many
approaches have been proposed to identify components from object-oriented soft-
ware applications such as [14–16]. These approaches aim at mining components
by analyzing the source code of software applications. In this context, dependen-
cies between classes are only realized via calls between methods, sharing types,
etc. Nevertheless, no approach has been proposed to identify components from
object-oriented APIs. In this context, we distinguish two kinds of dependencies.
The first one is that classes are structurally dependent. The second one is that
some classes need to be reused together to implement a functionality. This kind
of dependencies can not be identified by only analyzing the source code, but
also needs the analysis of how software applications use the API classes. For
example, in the Android API, Activity and Context classes are structurally and
behaviorally independent, but they have to be used together to build android
applications. This means that classes frequently used together are more favorable
to belong to the same component.

In this paper, we propose an approach that aims at recovering software com-
ponents from object-oriented APIs. This does not only improve the reusability
of APIs themselves, but also supports component-based reuse techniques by pro-
viding component based APIs. The approach exploits specificity of API entities
by statically analyzing the source code of both APIs and their software clients
to identify groups of API classes that are able to form components. Our as-
sumption is based on the probability of classes to be reused together by API
clients on the one hand, and on the structural dependencies between classes on
the other hand. In order to validate the proposed approach, we experimented it
on a set of 100 Java applications that use three Android APIs. The evaluation
shows that structuring object-oriented APIs as component-based ones improves
the reusability and the understandability of these APIs.

This journal paper is an extended version of our conference paper published
in [17]. The extension includes providing better analysis of the problem, more
explanation about the proposed solution (i.e. algorithms, figures and examples),
structuring component interfaces, more related works, discussions and threats
to validity.

The rest of this paper is organized as follows. Section 2 presents the back-
ground needed to understand our approach. Section 3 shows the foundation
of our approach. Then, in Section 4 we present the identification of classes
composing component interfaces. Section 5 presents how APIs are organized

as component-based libraries. Experimentation and results of our approach are
discussed through three APIs case studies in Section 6. Next, related works are
discussed in Section 7. Finally, concluding remarks and future directions are
presented in Section 8.

2 Background

2.1 Component Quality Model: the ROMANTIC Approach

In this paper, we rely on the component quality model proposed in our previous
works related to the ROMANTIC3 approach [15, 18]. In ROMANTIC, we have
proposed a set of metrics to measure the ability of a group of classes in a software
application to form a component. These metrics are defined based on the com-
ponent quality characteristics that are driven from the component definitions:
Composability, Autonomy and Specificity. Composability of a component refers
to its ability to be composed through its interfaces without any modification.
Autonomy means that a component can be reused in an autonomous way be-
cause it encapsulates the strongly dependent functionalities. Specificity refers to
the fact that a component implements a limited number of closed functionalities,
which makes it a coarse-grained entity.

Similar to the software quality model ISO 9126 [19], we proposed to re-
fine the characteristics of the component into sub-characteristics. Next, the sub-
characteristics are refined into the properties of the component (e.g. number of
required interfaces). Then, these properties are mapped to the properties of the
group of classes from which the component is identified (e.g. group of classes
coupling). Lastly, these properties are refined into object-oriented metrics (e.g.
coupling metric). This quality refinement model is shown in Figure 1. According
to this model, a quality function has been proposed to measure the component
quality. This quality function is used as a similarity metric for a hierarchal clus-
tering algorithm [15, 18] as well as in search-based algorithms [20] to partition the
object-oriented classes into groups; where each group represents a component.

2.2 Frequent Usage Patterns

In the domain of data mining, a Frequent Usage Pattern (FUP) is defined as a
set of items, subsequences or substructures that are frequently used together by
customers [21]. It provides information that helps decision makers (e.g. customer
shopping behavior) by mining associations and correlations among a set of items
in a huge data set. An example of FUP mining is a market basket analysis. In
this example, the customer buying habits are analyzed to identify items that are
frequently bought together in the customer shopping baskets, for instance, milk
and bread form a FUP when they bought frequently together. The identification

3 ROMANTIC: Re-engineering of Object-oriented systeMs by Architecture extractioN
and migraTIon to Component based ones.

Fig. 1. From component characteristics to object-oriented metrics

of FUP is based on Support quality metric that is used to measure the inter-
estingness of a set of items. Support refers to the probability of finding a set of
items in the transactions. For example, the value of 0.30 Support, means that
30% of all the transactions contain the target item set. The following equation
refers to Support :

S(E1, E2) = P (E1 ∪ E2) (1)

Where E1, E2 are sets of items; S refers to Support ; P refers to the probability.

3 The Proposed Approach Foundations

The goal of our approach is at reengineering object-oriented APIs to component-
based ones. This is done in two directions. The first one is the identification of
groups of classes that can be considered as the object-oriented implementation
of the API components. The second one is the identification of how these com-
ponents can be organized as component-based APIs.

3.1 Component Identification

We view a component as a group of API classes that provides coarse grained
services to clients of an API. Classes that have direct links (e.g. method call,
attribute access) with classes implementing other components compose the in-
terfaces of the component. Provided interfaces of a component are defined as a

group of methods implemented by classes composing these interfaces. Required
interfaces of a component are defined as a group of methods invoked by the
component and provided by other components.

The identification of groups of classes composing components is based on two
kinds of dependencies; usage-pattern-based and source-code-based ones. Usage-
pattern-based is related to the way that software applications use these groups
of classes. It refers to observations made based on the analysis of previous usages
of APIs. We consider that classes frequently used together are more favorable
belonging to a single or a few number of components. This is realized through
Frequent Usage Patterns (FUPs) that identify recurring patterns, composed of
classes frequently used together. Classes composing FUPs represent the gateways
to access the API services. Thus, they are used to guide the identification of
classes composing the provided interfaces of components. Classes composing a
FUP may be related to different services that have been used together. Therefore,
they can be mapped to be a part of different component interfaces. Classes of a
component interface can be very dependent on other classes that are not directly
used by clients of the API. These are identified based on source-code-based
dependencies. It implies that the component identification process is driven by
the identification of its provided interfaces. To this end, the analysis of structural
dependencies between classes is used to identify classes forming the core of the
component. It is used to form a quality-centric component. This is achieved
based on the three quality characteristics that should be satisfied by the group
of classes forming the component; Composability, Autonomy and Specificity. To
this end, we rely on the component quality model presented by the ROMANTIC
approach [15, 18].

Fig. 2. Multi-layers component-based API

3.2 API as a Library of Components

We organize the API in layers of components. These layers describe how API
components are vertically and horizontally organized. We consider that each
layer contains components providing services to components of the layer above
and requiring services from components of the layer below.

Classes constituting an API can be categorized into two types. The first one
is made up of classes that are directly reused by software applications. These
represent the implementation of accessible-services of the API (provided to soft-
ware applications). Thus, components that are identified corresponding to these
classes constitute the first layer of the API (i.e. the layer accessed by software
applications). The second one is composed of classes representing the rest of
API classes. These can also be divided into two categories. The first includes
classes providing services to the first layer components. These represent the im-
plementation of components constituting the second layer. In the same manner,
components composing the other layers are identified. Based on that, we orga-
nize component-based APIs as a set of layers describing how their components
are organized. Figure 2 shows our point of view regarding the API organization.

3.3 Principles and Mapping Model

Based on the observations made in the previous sub-sections, the proposed ap-
proach can be summarized according to the following principles:

– In object-oriented APIs, a component is identified as a group of classes.
– To reengineer the entire object-oriented API into a component-based one,

each class of the API is mapped to be part of at least one component. Each
class is mapped either as a class of the component interfaces or as a part of
the internal classes of the component.

– Classes frequently used together by software applications provide accessible-
user services of the API. Thus, they are used to guide the identification of
classes composing the provided interfaces of components. These are identified
based on FUPs.

– As a FUP can be composed of classes providing multiple services, its classes
can be mapped to be a part of different component interfaces.

– A class of an API can be a part of several FUPs and can participate in
implementing multiple services. Consequently, a class can be mapped into
multiple component interfaces.

– The identification of classes forming the core of the components is driven by
the identification of its provided interfaces.

– The analysis of structural dependencies between classes is used to identify
classes forming the core of the component.

– Classes that are not used by software applications are used to structure
components of the API layers.

– In a component-based API, the components are vertically and horizontally
organized in terms of layers based on the required and provided services
between the components.

Based on these principles, we propose a mapping model, shown in Figure 3,
that maps class-to-component through FUPs.

Fig. 3. Mapping class to component through FUP

3.4 Identification Process

We propose the following process to identify components from object-oriented
APIs (see Figure 4):

– Identification of frequent usage patterns. FUPs are identified by ana-
lyzing the interactions between the API and its application clients.

– Identification of the interfaces of components. We partition the set of
classes of each FUP into subgroups, where each one is considered as related
to the provided interfaces of one component (c.f. Figure 5). The partitioning
is based on criteria related to structural dependencies, lexical similarity and
the frequency of simultaneous reuse.

– Identification of internal classes of components driven by their pro-
vided interfaces. Classes composing the provided interfaces of a component
form the starting point for identifying the rest of the component classes. To
identify these classes we rely on the analysis of structural dependencies be-
tween classes in the API with those forming the interfaces. We check if these
classes are able to form a quality-centric component.

– Organizing API as Layers of Components. As each class of the API
must be a part of at least one component, we associate classes that do not
compose any of the already identified components to new ones. According to
that, we organize component-based APIs as a set of layers. This organization
is use-driven. The first layer is composed of components that are used by

the software clients, while the second layer is composed of components that
provide services used by components of the first layer, and so on. As a result,
the API is structured in N layers of components.

Fig. 4. The process of mining components from an object-oriented API

Fig. 5. Identification of provided interfaces of API components from FUPs

4 Identification of Component Interfaces

The identification of classes forming an API component is driven by the identi-
fication of classes composing the provided interfaces of this component. Classes
composing these interfaces are those directly accessed by the clients of the API.
Classes belonging to the same interface are those frequently used together. There-
fore, they are identified from frequent usage patterns. Classes of the API com-
posing frequent usage patterns are identified based on the analysis of how API
classes were used by the API clients. API classes used together constitute trans-
actions of usage.

4.1 Extracting Transactions of Usage

A transaction of usage is a set of interactions between an API and a client of
this API. These interactions consist of calling methods, accessing attributes,
inheritance or creating an instance object based on a class of the API. They are
identified by statically analyzing the source code of both the API and its clients.
Transactions are different depending on the choice of which are the API clients.
This choice directly affects the type of the resulting patterns. Multiple options are
possible, a client can be either a class, a group of classes or the whole application.
Figure 6 illustrates these situations. Firstly, if we consider that a transaction
corresponding to a class composing a client application, then {C2, C5}, {C3},
{C5}, {C7} and {C7} are the set of transactions that will be identified based
on the first client application. Secondly, if a transaction corresponds to a group
of classes from the client application, then {C2, C5, C3}, {C5, C7} and {C7}
are the set of transactions that will be identified considering the first client
application. Thirdly, if a transaction corresponds to the whole client application,
then {C2, C5, C3, C7} is the transaction that will be identified considering the
first client application.

In our approach, we consider as an API client a group of classes related to the
same application functionality. The idea is that classes corresponding to the same
application functionality use API classes related to correlated API functionali-
ties. We identify groups of classes related to the same application functionalities
as components of this application. This is done thanks to ROMANTIC approach
defined in our previous work [15]. As a result, a transaction is a set of API classes
such that each one is used by at least one class of the client component classes.
Figure 7 shows an example. Algorithm 1 shows the process of transaction iden-
tification. It starts by partitioning each software client into components. Then,
for each component, it identifies API classes that are reused by the component
classes.

4.2 Mining Frequent Usage Patterns of Classes

In the previous step, the interactions of application clients with the API are
identified as transactions. Based on these transactions, we identify FUPs. A
FUP is defined as a set of API classes that are frequently used together by

Fig. 6. Transactions based on clients

Algorithm 1: Identifying Transactions
Input: Source Code of a Set of Software Clients(Clients), API Source

Code(API)
Output: A Set of Transactions(trans)
for each client ∈ Clients do

components.add(ROMANTIC(client.sourceCode));
end
for each com ∈ components do

transaction = ∅;
for each class ∈ com do

transaction.add(class.getUsedClasses(API.sourceCode));
end
trans.add(transaction);

end
return trans;

Fig. 7. Client components and corresponding transactions

client components. A group of classes is considered as a frequent pattern if it
reaches a predefined threshold of interestingness metric. This metric is known
as Support. The Support refers to the probability of finding a set of API classes
in the transactions.

FUPs Mining Algorithms: an Analysis The identification of groups of
classes forming FUPs can be done based on several algorithms. One of them is
the Brute-Force algorithm [21] that identifies all possible groups of classes. Then,
it prunes groups that do not reach the predefined Support threshold value. How-
ever, this algorithm is computationally prohibitive since that the identification of
all groups, corresponding to N classes, needs 2N time complexity [21]. Another
algorithm is the Apriori algorithm that utilizes the property of anti-monotone
[21], which means that if a group of classes is considered as infrequent, then
all of its supersets must be infrequent as well. Thus, they do not need to be
generated. However, this algorithm still has to generate the candidate groups
of classes. For instance, suppose that we have 104 frequent groups of classes of
size 1, it requires to generate about 107 groups of size 2. Furthermore, it needs
to generate about 1030 groups of size 10. Thus, this algorithm does not work
in the situation where low Support threshold values are selected [22]. Another

algorithm is the Frequent-Pattern Growth (FP Growth) algorithm [22]. In this
algorithm, there is no need to produce the candidate groups. Instead, it uses
a divide-and-conquer technique to mine FUPs. It firstly builds a special data
structure called Frequent-Pattern tree (FP-tree). This tree is used to compress
information of class associations. Then, FP Growth divides the FP-tree into a
collection of databases, such that each one is related to one frequent group of
classes.

Table 1. An example of transactions composed of API classes

Transaction ID List of Classes
T1 C1, C2, C5
T2 C2, C4
T3 C2, C3
T4 C1, C2, C4
T5 C1, C3
T6 C2, C3
T7 C1, C3
T8 C1, C2, C3, C5
T9 C1, C2, C3

Table 2. Classes ordering inside the transactions

Transaction ID Ordered Classes
T1 C2, C1, C5
T2 C2, C4
T3 C2, C3
T4 C2, C1, C4
T5 C1, C3
T6 C2, C3
T7 C1, C3
T8 C2, C1, C3, C5
T9 C2, C1, C3

Frequent-Pattern Growth Algorithm Among the presented algorithms, FP
Growth is the best one since that it outperforms the others in terms of time and
space complexity [21]. Thus, we mine FUPs based on the FP Growth. To better
understand how FP Growth works, we provide an illustrative example. In this
example, we have 9 transactions presented in Table 1. The algorithm starts by
building the FP-tree corresponding to these transactions. To this end, it first
scans the transactions to find the frequency of each API class. In our example,
the frequencies of C1, C2, C3, C4 and C5 are respectively 6, 7, 6, 2 and 2.

Then, the classes are sorted in a descending order according to their frequency
values. That is C2, C1, C3, C4, C5. Next, the classes inside the transactions
are ordered according to their frequency values (see Table 2). Then, the tree is
built based on the ordered transactions as follows: starting from the root of the
tree, which is labeled by a NULL value, each transaction is added as a branch
in the tree, such that the class which has the highest frequency is added first
and so on. In the example, the order is C2, C1, C5 for the first transaction.
Whenever a branch shares a common prefix with an already added branch, we
only increment the frequency of the shared nodes. Figure 8 explains the process
of building the FP-tree.

Based on the FP-tree, the algorithm extracts conditional pattern bases and
a conditional FP-tree for each frequent class. Conditional pattern bases consist
of the collection of paths that co-located with the suffix pattern, while the con-
ditional FP-trees are the subtrees that generate the pattern. For example, the
conditional pattern bases corresponding to C5 is {{C2:1, C1:1}, {C2:1, C1:1,
C3: 1} }, thus the conditional FP-tree is 〈C2 : 2, C1 : 2〉. Paths that do not
reach the predefined threshold value are rejected. For example, if the threshold
is 2, the path 〈C2 : 2, C1 : 2, C31〉 is excluded since its frequency is 1. The set of
FUPs identified from our example is {{C2, C1, C5}, {C2, C4}, {C2, C1, C3},
{C2, C1}}.

Less Commonly Used Classes The use of the Support threshold separates
the classes of API used by application clients into two groups according to
whether they belong to at least one FUP or not. Classes that do not belong
to any of the identified FUPs are the less commonly used classes. As each API
class that belongs to a transaction is a class that has been accessed by the clients
of the API, therefore it must be a part of the classes composing the interfaces of
at least one component. We propose assigning each class of the less commonly
used classes to the pattern holding the maximum Support value when they are
merged together.

4.3 Identifying Classes Composing Component Interfaces from
Frequent Usage Patterns

We identify classes composing component interfaces from those composing FUPs.
Each FUP is partitioned into a set of groups, where each group represents a
component interface.

FUP Partitioning Fitness Function Classes are grouped together according
to three heuristics that measure the probability of a set of classes to be a part
of the same interface.

1. Frequency of simultaneous use: classes composing a FUP are regarded
differently depending on the frequency of their simultaneous reuse by soft-
ware applications. As much as classes are reused together, the probability

Fig. 8. Process of building the FP-tree

that these classes providing related services is higher. Therefore, we rely on
Support metric to measure the association frequency of a set of classes.

2. Cohesion: a group of classes that accesses and shares the same data (e.g.
attributes) is probably related to the same service. Thus, we consider that
the cohesion of a group of classes is an indication of their functional prox-
imity. To this end, we use LCC metric [23] to measure the cohesion of a
set of classes. We select LCC since it measures both direct and indirect
dependencies between the classes.

3. Lexical similarity: in most cases, classes of an API are well-documented
(i.e. the identifier names are meaningful). Thus, their identifier names in-
dicate to the offered services. Therefore, a group of classes having similar
identifier names is likely to belong to the same service. To this end, we uti-
lize Conceptual Coupling metric [24] to measure classes’ lexical similarity
based on the semantic information obtained from the source code, encoded
in identifiers and comments.

Based on the above heuristics, we propose a fitness function, given below,
measuring the ability of a group of classes to form a component interface.

IQ(E) =
1∑
i λi
· (λ1 · LCC(E) + λ2 · CC(E) + λ3 · S(E)) (2)

Where:

– E is a set of object-oriented classes
– LCC(E) is the Cohesion of E
– CC(E) is Conceptual Coupling of E
– S(E) is the Support of E
– λ1, λ2, and λ3 are weight values, situated in [0-1]. These are used by the

API expert to weight each characteristic as needed.

FUP Partitioning Algorithm The fitness function defined in the previous
section is used to partition each FUP into groups of classes using a hierarchical
clustering algorithm. This algorithm consists of two steps. The first one aims to
build a binary tree, called dendrogram. This dendrogram provides a set of can-
didate clusters by presenting a hierarchical representation of classes’ similarity.
Figure 9 shows an example of a dendrogram tree, where Ci refers to Classi. The
second step aims at traveling through the built dendrogram, in order to extract
the best clusters, representing a partition.

To build a dendrogram, the algorithm starts by considering each individual
class as an initial leaf node in a binary tree. Next, the two most similar nodes are
grouped into a new one, i.e. as a parent of them. For example, in Figure 9, the
C2 and C3 classes are grouped. This is continued until all nodes are grouped in
the root of the dendrogram. Algorithm 2 presents the procedure used to gather
similar classes onto a dendrogram. It takes a set of classes as an input. The result
of this algorithm is a hierarchical tree representation of candidate clusters.

To identify the best clusters, a depth first search algorithm is used to travel
through the dendrogram tree. It starts from the tree root to find the cut-off
points. It compares the similarity of the current node with its children. If the
current node has a similarity value exceeding the average similarity value of
its children, then the cut-off point is in the current node where the children
minimize the quality function value. Otherwise, the algorithm continues through
its children. Algorithm 3 presents the procedure used to extract clusters of classes
from a dendrogram. The result of this algorithm is a set of clusters, where each
contains classes corresponding to a component interface.

Fig. 9. An example of a dendrogram tree

Algorithm 2: Building Dendrogram
Input: A Set of Classes Composing FUP(FUP)
Output: Dendrogram Tree (dendrogram)
BinaryTree dendrogram = FUP ;
while (|dendrogram| > 1) do

c1, c2 = mostLexicallySimilarNodes(dendrogram);
c = newNode(c1, c2);
remove(c1, dendrogram);
remove(c2, dendrogram);
add(c, dendrogram);

end
return dendrogram;

4.4 Structuring Component Interfaces

An interface provided by an API component is composed of public methods se-
lected from classes which are identified in the previous step as composing the
component interfaces. However, methods of required interfaces of an API com-
ponent are those called inside one of its classes and defined in classes of other
components. These two sets of methods constitute the initial search-space to
identify component interfaces. The identification process is based on the follow-
ing heuristics to partition this search-space into sub-groups; where each repre-
sents an interface:

Algorithm 3: Dendrogram Traversal
Input: Dendrogram Tree(dendrogram)
Output: A Set of Clusters of Component Interfaces(clusters)
Stack traversal;
traversal.push(dendrogram.getRoot());
while (! traversal.isEmpty()) do

Node father = traversal.pop();
Node left = dendrogram.getLeftSon(father);
Node right = dendrogram.getRightSon(father);
if similarity(father) > (similarity(left) + similarity(right) / 2) then

clusters.add(father)
else

traversal.push(left);
traversal.push(right);

end
end
return clusters;

– Methods that belong to the same interface have a high probability of be-
ing used together. Consequently, we consider that methods frequently called
together have a higher probability of belonging to the same component in-
terface.

– A group of methods belonging to the same object-oriented interface has a
higher probability of belonging to the same component interface.

– A group of methods having a high cohesion and a high lexical similarity has
a high probability of belonging to the same component interface.

Based on these heuristics, we define a similarity function that measures the
quality of a set of methods to form a component interface. We use Support, LCC
[23] and Conceptual Coupling [24] metrics to respectively measure the frequency
of use, cohesion and lexical similarity of a set of methods. This function is defined
as follows:

Interface(M) =
1∑
i λi
· (λ1 ·LCC(M)+λ2 ·CS(M)+λ3 ·S(M)+λ4 ·SOI(M))

(3)

Where:

– M is a set of methods.
– LCC(M), CS(M), S(M), and SOI(M) respectively refers to the cohesion,
Cosine similarity, support and the association with the same object-oriented
interface(1 if yes, else 0) of M .

– λ1, λ2, λ3 and λ4 are weight values, situated in [0-1]. These are used by the
API expert to weigh each characteristic as needed.

Based on this similarity function, we partition methods of the above search-
space into clusters based on a hierarchical clustering algorithm. Each cluster
contains a set of methods forming an interface.

5 API as Library of Components

5.1 Identifying Classes Composing Components

As we mentioned before, the component identification process is driven by the
identification of its provided interfaces. This means that API classes forming a
component are identified in relation to their structural dependencies with the
classes forming provided interfaces of the component. Thus, classes having either
direct or indirect links with the interface ones compose the search-space of classes
that may be added to the component. The selection of a group of classes, from
the search-space, is based on the measurement of the quality of the component,
when they are included.

To identify the best group of classes that can serve as the implementation
of a component providing the identified interfaces, we investigate all subsets
of candidate classes. Then, the set that maximizes the component quality is
selected. However, this requires an exponential time complexity to identify all
subsets (i.e. NP-hard problem). Thus, we present a heuristic-based technique
that identifies near-optimal groups of classes of the corresponding optimal ones.

The identification of these classes is done gradually. In other words, we start
to form the group of classes composing the interface ones, and then we add
other classes to form a component based on the component quality measure-
ment model. Classes having either direct or indirect links with the interface
ones represent the candidate classes to be added to the component. At each

Fig. 10. Identifying Classes Composing Components

step, we add a new API class. This is selected based on the quality value of the
component, formed by adding this class to the ones already selected. The class
that maximizes the quality value is selected in this step. This is done until all
search-space classes are investigated.

Each time we add a class, we evaluate the component quality. Then, we select
the peak quality value to decide which classes form the component. This means
that we exclude classes added after the peak value. As an example, Class7 and
Class8 in Figure 10 are excluded from the resulting component because they
were added after the quality value reached the peak. Algorithm 4 illustrates the
process of identifying classes composing a component. In this algorithm, Q refers
to the quality fitness function.

Algorithm 4: Identifying classes composing components
Input: Sets of Provided Interface Classes(interfaces), API Source Code(API)
Output: A Set of Components(components)
for each inter in interfaces do

comp = inter.getClasses();
bestComp = comp;
searchSpace = API.getConnectedClasses(inter);
while (|searchClasses| > 1) do

c = Q.getMaximizeClass(searchSpace, comp);
searchSpace.remove(c);
comp = comp ∪ c;
if Q(comp)) > Q(bestComp) then

bestComp = comp;
end

end
components.add(bestComp);

end
return components;

5.2 Organizing API as Layers of Components

As we previously mentioned, the API is structured in N layers of components.
To identify components of layer L, we rely on components of layer L − 1. We
proceed similarly to the identification of the components of the first layer. We
use required interfaces of the components already identified in layer L − 1 to
identify the interfaces provided by components in layer L. This continues until
reaching a layer where its components either do not require any interface or they
require ones already identified. Figure 11 shows an example that illustrates how
the components composing each layer are identified, where Figure 11.a presents
an object oriented API, Figure 11.b shows how the first layer components are
identified, Figure 11.c explains the second layer component identification and
Figure 11.d shows the resulting component-based API.

Fig. 11. Identifying component-based API as layers of components

Each interface that is defined as required for a component of layer L − 1 is
considered as provided by a component of layer L except ones provided by the
already identified components. The identification of these interfaces is similar to
the identification of provided interfaces of the first layer. Thus, we consider that
each component (already identified) in layer L− 1 is a client of the rest of API
classes. This means that we collect a set of transactions, such that each transac-
tion consists of classes that are used by a component in layer L−1. These trans-
actions are used to identify FUPs based on the FP Growth algorithm. Similar
to the first layer, each FUP is divided into groups of classes composing provided
interfaces of components in layer L. The partitioning is based on (i) the cohesion
of classes, (ii) the lexical similarity of these classes and (iii) the frequency of their
simultaneous use. Analogously to the identification of the components of the first
layer, the other classes composing each component are identified starting from
classes composed of its already identified provided interfaces. Algorithm 5 shows
the procedure that identifies component-based API as a set of layers composed
of components.

Algorithm 5: Organizing API as Layers of Components
Input: Source Code of a Set of Application Clients(AppClients), API Source

Code(API)
Output: Component-Based API as Layers of Components(CBAPI)
clients = AppClients;
layerIndex = 1;
while (|API| > 1) do

transactons = extractTransactions(clients, API);
FUPs = FPGrowth(transactons, SupportThreshold);
for each pattern ∈ FUPs do

.IQ refers to Equation 2
ProvideInterfaces = ProvideInterfaces∪clustering(pattern, IQ);

end
.Identifying classes composing components
components = Algorithm4(providedInterfaces,API);
CBAPI.addLayer(layerIndex, components);
layerIndex = layerIndex + 1;
API = API - components.getClasses();
clients = components;

end
return CBAPI;

6 Experimentation and Results

6.1 Experimental Design

Data Collection We collected a set of 100 Android− Java applications from
open-source repositories4. The average size of these applications in terms of
number of classes is 90. Table 3 presents the names of these applications. These
applications are developed based on classes of the android APIs5. In our exper-
imentation, we focus on three of these APIs. The first one is the android.view
composed of 491 classes. This API provides services related to the definition and
management of the user interfaces in android applications. The second API is
the android.app composed of 361 classes. This API provides services related to
creating and managing android applications. The last API is the android that
is composed of 5790 classes. This API includes all of the android services.

Table 3. The selected android applications

ADW Launcher APV ARMarker ARviewer Alerts
Alogcat AndorsTrail AndroMaze AndroidomaticKeyer AppsOrganizer

AripucaTracker AsciiCam Asqare AugmentRealityFW AussieWeatherRadar
AutoAnswer Avare BansheeRemote BiSMoClient BigPlanetTracks
BinauralBeats Blokish BostonBusMap CH-EtherDroid CVox
CalendarPicker CamTimer ChanImageBrowser CidrCalculator ColorPicker

CompareMyDinner ConnectBot CorporateAddressBook Countdown CountdownTimer
CrossWord CustomMaps DIYgenomics Dazzle Dialer2
DiskUsage DistLibrary Dolphin Doom DriSMo
DroidLife DroidStack Droidar ExchangeOWA FeedGoal

FileManager FloatingImage Gcstar GeekList GetARobotVPNFrontend
GlTron GoHome GoogleMapsSupport GraphView HeartSong
Hermit Historify Holoken HotDeath Introspy

LegoMindstroms Lexic LibVoyager LiveMusic LocaleBridge
Look LookSocial MAME4droid Macnos Mandelbrot

Mathdoku MediaPlayer Ministocks MotionDetection NGNStack
NewspaperPuzzles OnMyWay OpenIntents OpenMap OpenSudoku

Pedometer Phoenix PhotSpot Prey PubkeyGenerator
PwdHash QueueMan RateBeerMobile AlienbloodBath SuperGenPass

SwallowCatcher Swiftp Tumblife VectorPinball WordSearch

Research Questions and Evaluation Method The approach is evaluated
on the collected software applications and APIs. We identify client components
independently for each software application. Each component in software is con-
sidered as a client of the APIs to form a transaction of classes. Then, we mine
Frequent Usage Patterns (FUPs) from the identified transactions. Next, from
classes composing each FUP, we identify classes composing a set of component
interfaces. Then, we identify all component classes starting from ones composing

4 sourceforge.net, code.google.com, github.com, gitorious.org, and aopensource.com
5 We select android API level 14 as a reference

their interfaces. Lastly, the results related to component-based APIs obtained
based on our approach are presented.

We evaluate the obtained components by answering the three following re-
search questions.

– RQ1: Do the Resulting Component-Based APIs Reduce the Un-
derstandability Efforts? This research question aims at measuring the
saved efforts in the API understandability that are brought by migrating
object-oriented APIs into component-based ones.

– RQ2: Are the Mined Components Reusable? As our approach aims
at mining reusable components, we evaluate the reusability of the resulting
component. This is based on measuring how much related classes are grouped
into the same components.

– RQ3: Is the Identification of Provided Interfaces Based on FUPs
Useful? The proposed approach identifies the provided interfaces of the
components based on how clients have used the API classes (i.e. FUPs).
Thus, this research question evaluates how much benefit the use of FUPs
brings by comparing components identified by our approach with the ones
identified without taking FUPs into account.

Fig. 12. Changing the support threshold value to mine FUPs in android API

Fig. 13. Changing the support threshold value to mine FUPs in view API

6.2 Results

Intermediate Results and Identified Components The average number of
client components identified from each software is 4.5 and the average number of
classes composing each component is 18.73. Table 4 shows the average number
of transactions per software application (ANTIC), the average transaction size
in terms of classes (ATS), and the percentage of components that have used the
API (PCU). The last column of this table shows an example of transactions.

The results show that android, view, and app APIs have been used respec-
tively by only 54%, 29% and 32% of client components. In addition, we note
that each client component has used the API classes intensively compared to
the number of classes composing it. For example, the transaction size is 17.91
classes for the view API, where the average number of classes per component is
18.73. This is due to the fact that classes that serve the same service in software
applications, and consequently depend on the same API classes, are grouped
together in the same client component.

The identification of FUPs relies on the value of the Support threshold. The
number and the size of the mined FUPs depend on this value. For all application
domains where FUPs are used (e.g. data mining), this value is determined by
domain experts. In our approach, to help API experts to determine this value,

Fig. 14. Changing the support threshold value to mine FUPs in app API

Table 4. The Identification of Transactions

API ANTIC ATS PCU Example
android 2.61 64.82 0.54 Bitmap, Path, Log, Activity, Location, Canvas, Paint,

ViewGroup, MotionEvent, View, TextView, GestureDe-
tector

view 1.51 17.91 0.29 MenuItem, Menu, View, ContextMenu, WindowManager,
MenuInflater, Display, LayoutInflater

app 1.58 10.90 0.32 ProgressDialog, Dialog, AlertDialog, Activity, ActionBar,
Builder, ListActivity

we assign the Support threshold values situated in [30%-100%]. We give for each
Support value the number of the mined FUPs and the average size of the mined
FUPs for each API. Figure 12, Figure 13 and Figure 14 respectively refer to the
results of the android, the view and the app APIs. The results show that the
number of mined FUPs is directly proportional to the Support value, while the
average size of the mined FUPs is inversely proportional.

Based on their knowledge of the API, API experts can select the value of
the Support. For example, if the known average number of API classes used
together to implement an application service is N , then the experts can choose
the Support value corresponding to FUPs having N as the average size. Based on

the obtained results and our knowledge of android APIs, 6 we select the Support
threshold values as 60%, 45%, and 45% respectively for the android, the view
and the app APIs.

Table 5 shows examples of the mined FUPs. For instance, the FUP related
to view API contains 10 classes. The analysis of this FUP shows that it corre-
sponds to three services: animation (Animation and AnimationUtils classes),
view (Surface, SurfaceView, SurfaceHolder, MeasureSpec, ViewManager and
MenuInflater classes), and persistence of the view states (AbsSavedState and
AccessibilityRecord classes). These services are dependent. Animation service
needs the view service and the data of animation view needs to be persistent.

Table 5. Examples of the Mined FUPs

API Example
android Intent, Context, Log, SharedPreferences, View, TextView, Toast, Activity,

Resources
view Surface, Animation, AnimationUtils, AccessibilityRecord, ViewManager,

MenuInflater, AbsSavedState, SurfaceView, SurfaceHolder, MeasureSpec
app Dialog, Activity, ProgressDialog

In Table 6, we present the results of interface identification in terms of the
average number of component interfaces identified from a FUP (ANCIP), the
average number of classes composing component interfaces (ACIS) and the total
number of component interfaces in the API (TNCI). The last column of this
table presents examples of component interfaces identified from the FUPs given
in Table 5.

The results show that FUPs contain classes corresponding to a different set
of services. On average, each FUP is divided into 1.57, 2.17 and 2.5 services,
such that each service is provided by 5.62, 2.94 and 4 classes respectively for
android, view and app APIs. Figure 15 shows an instance of partitioning a FUP
into component interfaces from view API. The analysis of classes composing the
identified component interfaces shows that they are related to three services;
animation, view and persistent of the view states.

Table 6. Identification of Component Interfaces from FUPs

API ANCIP ACIS TNCI Examples
android 1.57 5.62 232 Activity, View, TextView, Toast
view 2.17 2.94 19 Surface, SurfaceView, SurfaceHolder
app 2.50 4 10 Dialog, ProgressDialog

6 The authors of this paper are experts on the android APIs

Fig. 15. An instance of partitioning a FUP into component interfaces from view API

Table 7 presents the results related to the mined components composing the
first API layer. For each API, we give the number of the mined components
(NMC) and the average number of classes composing the mined components
(ACS). The last column of this table shows examples of classes composing com-
ponents initially identified from classes composing provided component interfaces
presented in Table 6. The results show that the services offered by classes of
android, view and app APIs are identified as 232, 19 and 10 components respec-
tively. This means that developers only require to interact with these components
to get the required services from these APIs.

Table 7. Identifying Classes Composing Components

API NMC ACS Example
android 232 19.99 Activity, View, TextView, Toast, Drawable, GroupView, Window,

Context, ColorStateList, LayoutInflater
view 19 7.49 Surface,SurfaceView, SurfaceHolder, MockView, Display, CallBack
app 10 5.86 Dialog, ProgressDialog, AlertDialog

Table 8 shows the final results obtained from our approach. For each API, we
firstly give the size of the API in terms of the number of object-oriented classes
composing the API and the number of the identified components. Secondly, we
present the total number of used entities (classes and respectively components)
by the software clients. The results show that classes involved in providing related

services are grouped into one component. Furthermore, the total number of
cohesive and decoupled services is identified for each API. For instance, android
API consists of 497 components (coarse-grained services), while view and app
APIs contain 43 and 55 components respectively.

Table 8. The Final Results

API Name API Entity API size No. of used Entities

android
OO 5790 491
CB 497 54

view
OO 491 42
CB 43 17

app
OO 361 45
CB 55 5

Answering Research Questions RQ1: Do the Resulting Component-
Based APIs Reduce the Understandability Efforts? The efforts spent to
understand an API is directly proportional to the complexity of the API. This
complexity is related to the number of API elements and the individual ele-
ment’s complexity. On the one hand, the reduction in the number of elements
composing the API is obtained by grouping classes collaborating to provide one
coarse-grained service into one component. The results show that the average
number of identified components for the studied APIs is 11% (((497/5790) +
(43/491) + (55/361)) /3) of the number of classes composing the APIs. This
means that the API size is significantly reduced by mapping class-to-component.
On the other hand, the reduction in the individual element complexity is done
by migrating object-oriented APIs into component-based ones. Meaning, compo-
nents define their required and provided interfaces, while object-oriented classes
at least do not define required interfaces (e.g. a class may call a large number of
methods belonging to a set of classes without an explicit specification of these
dependencies). The results show that the average number of used components
for the APIs is 4% (((54/491) + (17/42) + (5/45)) /3) of the number of
used classes. This means that the effort spent to understand API entities is sig-
nificantly reduced in the case of software applications developed based on API
components compared to the development based on API classes. Note that, de-
velopers only need to understand the component interfaces, but not the whole
component implementation.

RQ2: Are the Mined Components Reusable? We consider that the
reusability of a software component is related to the number of used classes
among all ones composing the software component. Thus, we calculate the
reusability of the component based on the ratio between the numbers of used
classes composing the component to the total number of classes composing the
component. To prove that our resulting component-based APIs could be gen-
eralized to another independent set of client applications, we rely on K − fold

Fig. 16. Reusability validation results

cross validation method [21]. The main idea is to evaluate the model using in-
dependent client applications. Thus, K-fold divides the set of client applications
into K parts. Then, the identification process is applied K times by considering,
each time, K − 1 different parts for the identification process and by using the
remaining part to measure the reusability. Next, we take the average of all K
trial results. In our experiment, we set K to 2, 4, and 8.

Figure 16 presents the results of this measurement. These results show that
the reusability results are distributed in a disparate manner. The reason behind
this dispersion is the size of the train and test data as well as the size of the API.
For instance, the average reusability for the app API is 37% when the number of
train clients is 50 application clients, while it is 51% when the number of train
clients is 88 application clients. Thus, the reusability of the components increases
when the number of train client applications increases. The results show that
our approach identifies reusable components, where the average reusability for
all APIs is 47%.

RQ3: Is the Identification of Provided Interfaces Based on FUPs
Useful? To prove the utility of using FUPs during the identification process, we
compare the components mined based on our approach with ones mined using
the ROMANTIC approach, which does not take FUPs into consideration. This is
based on the density of use of the component provided interfaces by application
clients. The density refers to the ratio between the number of used interface
classes to the total number of interface classes for each component. Figure 17
shows the average density for the two identification approaches. These results

Fig. 17. Density validation results

show that our approach outperforms the ROMANTIC approach. For instance,
the application clients need to reuse a larger number of components mined based
on the ROMANTIC with less density of provided interface classes compared
to components mined based on our approach. For instance, the average usage
density of classes composing provided interfaces of ROMANTIC components is
21%, while it is 61% for components mined by our approach for all APIs.

6.3 Threats to Validity

Our proposed approach is subjected to two types of threats: internal validity
and external validity.

Threats to Internal Validity There are five aspects to be considered regard-
ing the internal validity. These are as follows:

1. The validations of understandability and reusability of the resulted component-
based APIs are not directly measured. On the one hand, the understandabil-
ity is measured through the complexity of the resulted API, while in some
cases a complex API can be understandable if it is well documented. How-
ever, for the same API, the understandability of a complex version is worse
than the understandability of a less complex one, even if both versions are
already documented.
On the other hand, the reusability is measured based on the number of used
classes among the ones composing the components. Although the reusability

of components needs to be measured based on their interfaces, this provides
an indication of how the component interfaces will be reused by the future
software clients.

2. We use FPGrowth algorithm to mine FUPs. Nevertheless, this algorithm has
a limitation of ignoring those classes whose patterns’ support values do not
reach the support threshold (i.e. less commonly used classes). Thus, some
of the API classes may not be presented by a FUP. However, we attach
each class of them to a FUP holding the maximum support value when it is
added. This guarantees that each API class used by software applications is
attached to at least one FUP.

3. As our approach is use-driven, the results depend on the quality and the
number of usages of the API. This means that identified FUPs rely on the
considered software clients. Therefore, the identification of provided inter-
faces and their corresponding components depends on API clients. Conse-
quently, it is essential to select clients having the largest number of usages
of the API.

4. In the case of facing a NP-hard problem, we rely on heuristic algorithms
instead of optimal algorithms. This affects the accuracy of the results. How-
ever, these heuristics guarantee near-optimal solutions, such as clustering
algorithms.

5. We select a static analysis technique to identify dependencies between the
classes. However, this analysis affects our results in two axes. The first one
is that it does not address polymorphism and dynamic binding. However, in
object-oriented programming, the most important dependencies are realized
through method calls and access attributes. Thus, not dealing with poly-
morphism and dynamic binding does not have a high impact on the general
results of our approach. The second one is that it does not differ from the
used and unused source code. This may provide noise dependencies. How-
ever, such situations rarely occur in well designed and implemented software.
In contrast, dynamic analysis addresses all of these limitations. But the chal-
lenge with dynamic analysis is to identify all use cases of the software.

Threats to External Validity There are two aspects to be considered regard-
ing the external validity. These are as follows:

1. The presented approach is experimented via APIs that are implemented by
Android programming language. However, the obtained results can be gen-
eralized for any object-oriented API. The reason behind this generalization
is the fact that all object-oriented languages (e.g. Java, C++ and C#) are
structured in terms of classes and their relationships are realized through
method calls, access attributes, etc.

2. The way that API classes are reused together may strongly depend on the
choice of the subject software applications, i.e. different software applica-
tions may use API classes following different patterns, ending up in different
components. In order to prove that our resulting component-based APIs
could be generalized into other independent sets of software applications,

we rely on K − fold cross validation method. The cross validation presents
whether components identified on n-K software applications can be reused
by K software applications.

7 Related Work

To the best of our knowledge, no approach has been proposed to identify compo-
nents from object-oriented APIs. However, we present three research areas that
are related to our approach. The first one aims at identifying components by an-
alyzing object-oriented software applications. The second area aims to identify
features from software applications. The third one is related to mining frequent
patterns of API usage.

7.1 Identifying Software Components from Software Applications

APIs and software applications are different compared to relationships between
classes composing them. In the case of object-oriented applications, classes com-
posing them are structural and behavioral dependent to provide the expected
services. For instance, these dependencies are realized via calls between methods,
sharing types, etc. For APIs, we distinguish two kinds of dependencies. On the
one hand, classes are structural and behavioral dependent, to provide reusable
services for software applications. On the other hand, some classes needs to be
reused together, i.e. simultaneously, by software applications to implement API
services (e.g. JFrame and Layout classes in java.swing API). This kind of de-
pendencies can not be identified by only analyzing the API source code, but also
needs the analysis of how software applications use the API classes.

Dependencies between classes composing object-oriented applications are ex-
ploited by numerous approaches that aim to identify components from object-
oriented applications [25, 26]. In [27], Detten et al. presented the Archimetrix
approach, which aims at mining the architecture of legacy software. It relies
on a clustering algorithm to partition the system classes into components. This
algorithm depends on name resemblance, coupling and cohesion metrics as a
fitness function. In [15], Kebir et al. presented an approach to extract com-
ponents from a single object-oriented software system. Classes composing the
extracted components form a partition. Mined components are considered as
a part of the component-based architecture of the corresponding software. In
[16] Allier et al. depended on dynamic dependencies between classes to recover
components. Based on the use case diagram, the execution trace scenarios are
identified. Classes that frequently occur in the execution traces are grouped into
a single component. Cohesion and coupling metrics are also taken into account
during the identification process. Weinreich et al. proposed, in [28], an approach
to recover multi-view architecture models of software applications implemented
based on service oriented architecture. The authors classified software artifacts
based on the information from source code, configuration files and binary codes.

In [29], the author extracted the architecture of an object-oriented software us-
ing the fast community detection algorithm. Also, a performance evaluation of
fast community and five clustering algorithms is applied. The authors converted
the object oriented elements into a graph representation. Then, the algorithms
are applied to identify the most connected component within the graph. Lastly,
software architects analyze and evaluate the resulted architecture. In [30], an
approach has been presented to mine reusable components from a set of sim-
ilar software applications. A component is considered as more reusable, when
it is reused many times by the software applications. The authors firstly iden-
tified components independently from each software application. Then, based
on the lexical similarity between the classes composing these components, they
identified reusable ones. In [31], an approach was presented to visually ana-
lyze the distribution of variability and commonality among the source code of
product variants. The analysis includes multi-level of abstractions (e.g. line of
code, method, class, etc.). This aims to facilitate the interpretation of variability
distribution, to support identifying reusable entities.

7.2 Feature Mining from Software Applications

The difference between feature mining and component identification arises from
the difference between a feature and a component. The difference is also in
the goals and nature of the process. A feature is a non-structural element that
provides “user-visible aspect, quality, or characteristic of a software system or
systems”[32]. It does not have any interfaces that represent the interaction be-
tween features, rather than component interfaces, required and provided ones.
In addition to that, features and components belong to different levels of ab-
straction, where software requirements are abstracted at a high level as features,
while a component represents an architectural element at the design level.

There are many approaches presented to address feature location and feature
identification. These aims to identify program units such as methods, or classes
that represent features. In [33], a survey of them is presented. These approaches
identify features based on the analysis of single software application, such as
[34–36], and multiple software applications, such as [37, 38].

7.3 Mining Frequent Patterns of API Usage

FUPs are observations made based on the analysis of previous uses of APIs.
They aim to help users of APIs by identifying recurring patterns, composed
of API elements frequently used together. FUPs and components serve reuse
needs in two different ways. Components are entities that can be directly reused
and integrated into software applications, while FUPs are guides for reuse and
not entities for reuse. In addition, components and FUPs are structurally differ-
ent. Related to Specificity characteristic, classes composing a component serve
a coherent body of services, while a FUP may be related to different services.
Concerning Autonomy characteristic, dependencies of component’s classes are

mostly internal, which forms an autonomous entity. FUP’s can be very depen-
dent on other API classes that are not directly used by clients of APIs. Con-
cerning Composability characteristic, a component is structured and reused via
interfaces, while FUPs are not directly reusable entities.

Several approaches have been proposed to mine FUPs based on the analysis
of API clients. Robillard et al. provide a survey of these approaches [8]. These
approaches can be mainly classified based on four main criteria. The first one is
related to the goal, which can be either giving examples and recommendations
of how to use API entities such as [10, 5], supporting the documentation of APIs
like [10, 7], or improving the bug detection task such as [11]. The second criterion
is related to pattern ordering, where some approaches mine ordered patterns like
[10, 7], while other ones mine unordered patterns such as [11, 39]. The third one
concerns the granularity of the elements composing patterns. For examples, in
[10, 7], the approaches mine patterns composed of methods, and the approach in
[39] mines patterns composed of classes. The fourth one related to the technique
that is used to identify the patterns. The used technique can be association rules
mining like [39], clustering algorithms such as [7] or a heuristic defined by the
authors such as [10, 11]. Some approaches combine many techniques, e.g., Unddin
et al. used Principle Component Analysis with clustering algorithm [5], and Buse
and Weimer combined the clustering algorithm with their own proposed heuristic
[40].

8 Conclusion and Future Work

8.1 Conclusion

In this paper, we presented an approach that aims to mine software components
from object-oriented APIs. This is based on static analysis of the source code
of both the APIs and their software clients, in order to analyze the way that
the software clients have used the API classes. The component identification
process is use-driven. It implies that components are identified starting from
classes composing their interfaces. Classes composing the provided interface of
the first layer components compose FUPs. Then, the API is organized by a set
of layers, where each layer composes of components providing services to the
others composing the above layer, and so on.

To validate the presented approach, we experimented it by applying on a
set of open source Java applications as clients for three android APIs. The
validation is done through three research questions. The first one is related to
the understandability, while the second indicates to the reusability. The results
show that our approach improves the reusability and the understandability of
the API. The third research question aims at compare our approach with a tra-
ditional component identification approach. The results prove that our approach
outperforms the traditional one.

8.2 Future Work

There are many future directions that are indicated by this research. These
include:

1. Migrating the identified object-oriented components into exist-
ing component models. Components are identified as clusters of object-
oriented classes representing their implementation. This constitutes the first
step of the reengineering process of object-oriented software into component-
based software. Thus, we plan to extend our approach by transforming the
object-oriented implementation of the identified components into an equiv-
alent component-based one, such as OSGi [41] and Fractal [42].

2. Developing a visual environment. The presented approach can be ex-
tended by providing a visual environment, such that domain experts can
supervise the approach steps and modify the obtained results when needed.

3. Experimenting with large number of case studies. The selection of
API client applications affects the resulted component-based API. Thus, we
plan to extend the evaluation of the proposed approach by conducting more
case studies in order to further test the approach and to generalize the results
as well.

4. Validating our approach by human experts. The results of the pre-
sented approach are validated based on heuristic measurements that we pro-
posed. To better validate our approach, we plan to validate the results using
the help of human experts.

References

1. W.B. Frakes and Kyo Kang. Software reuse research: status and future. IEEE
Transactions on Software Engineering, 31(7):529–536, 2005.

2. M.F. Zibran, F.Z. Eishita, and C.K. Roy. Useful, but usable? factors affecting the
usability of apis. In 18th Working Conf. on Reverse Engineering (WCRE), pages
151–155, 2011.

3. M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini. What should developers be
aware of? an empirical study on the directives of api documentation. Empirical
Software Engineering, 17(6):703–737, 2012.

4. Homan Ma, R. Amor, and E. Tempero. Usage patterns of the java standard api. In
13th Asia Pacific Software Engineering Conf. APSEC 2006, pages 342–352, 2006.

5. G. Uddin, B. Dagenais, and M. P. Robillard. Temporal analysis of api usage
concepts. In Proc. of the 2012 Inter. Conf. on Software Engineering, ICSE 2012,
pages 804–814, Piscataway, NJ, USA, 2012. IEEE Press.

6. Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining api patterns as partial
orders from source code: from usage scenarios to specifications. In Proceedings
of the the 6th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering, pages
25–34. ACM, 2007.

7. J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct and
high-coverage api usage patterns from source code. In Proc. of the 10th Working
Conf. on Mining Software Repositories, MSR ’13, pages 319–328, Piscataway, NJ,
USA, 2013. IEEE Press.

8. M.P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Auto-
mated api property inference techniques. IEEE Transactions on Software Engi-
neering, 39(5):613–637, 2013.

9. Google. Api guides (http://developer.android.com/reference/packages.html),
2015.

10. J.E. Montandon, H. Borges, D. Felix, and M.T. Valente. Documenting apis with
examples: Lessons learned with the apiminer platform. In 20th Working Conf. on
Reverse Engineering (WCRE), pages 401–408, 2013.

11. M. Monperrus, M. Bruch, and M. Mezini. Detecting missing method calls in object-
oriented software. In European Conf. on Object-Oriented Programming ECOOP,
volume 6183 of Lecture Notes in Computer Science, pages 2–25. Springer Berlin
Heidelberg, 2010.

12. W. Maalej and M.P. Robillard. Patterns of knowledge in api reference documen-
tation. IEEE Transactions on Software Engineering, 39(9):1264–1282, 2013.

13. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Pear-
son Education, 2002.

14. S. Mishra, D. S. Kushwaha, and A. K. Misra. Creating reusable software component
from object-oriented legacy system through reverse engineering. Journal of object
technology, 8(5), 133-152, 2009.

15. S. Kebir, A.-D. Seriai, S. Chardigny, and A. Chaoui. Quality-centric ap-
proach for software component identification from object-oriented code. In
Joint Working IEEE/IFIP Conf. and European Conf. on Software Architecture
(WICSA)/(ECSA), 2012, pages 181–190, 2012.

16. S. Allier, S. Sadou, H. Sahraoui, and R. Fleurquin. From object-oriented appli-
cations to component-oriented applications via component-oriented architecture.
In 2011 9th Working IEEE/IFIP Conf. on Software Architecture (WICSA), pages
214–223. IEEE, 2011.

17. Anas Shatnawi, Abdelhak Seriai, Houari A. Sahraoui, and Zakarea Al-Shara. Min-
ing software components from object-oriented apis. In Software Reuse for Dynamic
Systems in the Cloud and Beyond - 14th International Conference on Software
Reuse, ICSR 2015, Miami, FL, USA, January 4-6, 2015. Proceedings, pages 330–
347, 2015.

18. S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzalit. Extraction of component-
based architecture from object-oriented systems. In Seventh Working IEEE/IFIP
Conf. on Software Architecture (WICSA), pages 285–288, 2008.

19. ISO. Software Engineering – Product Quality – Part 1: Quality Model. Technical
Report ISO/IEC 9126-1, International Organization for Standardization, 2001.

20. S. Chardigny, A.-D. Seriai, M. Oussalah, and D. Tamzalit. Search-based extraction
of component-based architecture from object-oriented systems. In 2nd European
Conf. in Software Architecture (ECSA), volume 5292 of Lecture Notes in Computer
Science, pages 322–325. Springer Berlin Heidelberg, 2008.

21. J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques. Morgan
kaufmann, 2006.

22. Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In ACM SIGMOD Record, volume 29, pages 1–12. ACM, 2000.

23. J. M. Bieman and B.-K. Kang. Cohesion and reuse in an object-oriented system.
In Proc. of the 1995 Symposium on Software Reusability, SSR ’95, pages 259–262,
New York, NY, USA, 1995. ACM.

24. D. Poshyvanyk and A Marcus. The conceptual coupling metrics for object-oriented
systems. In 22nd IEEE Inter. Conf. on Software Maintenance (ICSM), 2006, pages
469–478, Sept 2006.

25. J. Garcia, I. Ivkovic, and N. Medvidovic. A comparative analysis of software
architecture recovery techniques. In IEEE/ACM 28th Inter. Conf. on Automated
Software Engineering (ASE), pages 486–496, Nov 2013.

26. Stéphane Ducasse and Damien Pollet. Software architecture reconstruction:
A process-oriented taxonomy. Software Engineering, IEEE Transactions on,
35(4):573–591, 2009.

27. M. von Detten, M. C. Platenius, and S. Becker. Reengineering component-based
software systems with archimetrix. Software & Systems Modeling, pages 1–30,
2013.

28. R. Weinreich, C. Miesbauer, G. Buchgeher, and T. Kriechbaum. Extracting and
facilitating architecture in service-oriented software systems. In Joint Working
IEEE/IFIP Conf. on Software Architecture (WICSA) and European Conf. on Soft-
ware Architecture (ECSA), pages 81–90, Aug 2012.

29. Ural Erdemir, Umut Tekin, and Feza Buzluca. Object oriented software clustering
based on community structure. In 2011 18th Asia Pacific Software Engineering
Conference (APSEC), pages 315–321. IEEE, 2011.

30. A. Shatnawi and A.-D. Seriai. Mining reusable software components from object-
oriented source code of a set of similar software. In IEEE 14th Inter. Conf. on
Information Reuse and Integration (IRI), pages 193–200, 2013.

31. S. Duszynski, J. Knodel, and M. Becker. Analyzing the source code of multiple
software variants for reuse potential. In Proc. of WCRE, pages 303–307. IEEE,
2011.

32. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, DTIC Docu-
ment, 1990.

33. B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source
code: a taxonomy and survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

34. Giuliano Antoniol and Y-G Guéhéneuc. Feature identification: a novel approach
and a case study. In Software Maintenance, 2005. ICSM’05. Proceedings of the
21st IEEE International Conference on, pages 357–366. IEEE, 2005.

35. Kunrong Chen and Václav Rajlich. Case study of feature location using depen-
dence graph. In In Proceedings of the 8th International Workshop on Program
Comprehension, 2000.

36. Robertas Damaševičius, Paulius Paškevičius, Eimutis Karčiauskas, and Romas
Marcinkevičius. Automatic extraction of features and generation of feature models
from java programs. Information Technology And Control, 41(4):376–384, 2012.

37. Yinxing Xue. Reengineering legacy software products into software product line
based on automatic variability analysis. In Proceedings of the 33rd International
Conference on Software Engineering, pages 1114–1117. ACM, 2011.

38. Tewfik Ziadi, Luz Frias, Marcos Aurélio Almeida da Silva, and Mikal Ziane. Feature
identification from the source code of product variants. In Software Maintenance
and Reengineering (CSMR), 2012 16th European Conference on, pages 417–422.
IEEE, 2012.

39. M. Bruch, T. Schäfer, and M. Mezini. Fruit: Ide support for framework understand-
ing. In Proc. of the 2006 OOPSLA Workshop on Eclipse Technology eXchange,
eclipse ’06, pages 55–59, New York, NY, USA, 2006. ACM.

40. R. P. L. Buse and W. Weimer. Synthesizing api usage examples. In Proc. of the
2012 Inter. Conf. on Software Engineering, ICSE 2012, pages 782–792, Piscataway,
NJ, USA, 2012. IEEE Press.

41. A. L. C. Tavares and M. T. Valente. A gentle introduction to osgi. SIGSOFT
Softw. Eng. Notes, 33(5):8:1–8:5, August 2008.

42. E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani. The fractal
component model and its support in java. Software: Practice and Experience,
36(11-12):1257–1284, 2006.

