
Supporting Reuse by Reverse

Engineering Software Architectures and

Components from Object-Oriented

Product Variants and APIs

by

Anas Shatnawi

UNIVERSITY OF MONTPELLIER

P H D T H E S I S
to obtain the title of

PhD of Computer Science

of the University of Montpellier

Specialty : Software Engineering

Defended by

Anas Shatnawi

Supporting Reuse by Reverse Engineering Software

Architectures and Components from Object-Oriented

Product Variants and APIs

prepared at Laboratoire d'Informatique de Robotique et de

Microctronique de Montpellier, Marel Team

defended on June 29, 2015

Jury :

Reviewers : Prof. Franck Barbier - University of Pau, France

Prof. Jean-Michel Bruel - University of Toulouse, France

Examiners : Prof. Flávio Oquendo - University of Brittany, France

Dr. Abdelkader Gouaich - University of Montpellier, France

Advisor : Dr. Abdelhak-Djamel Seriai - University of Montpellier, France

Co-Advisor : Prof. Houari Sahraoui - University of Montreal, Canada

Acknowledgments

This dissertation could not have been written without Dr. Abdelhak-Djamel Se-

riai who not only served as my supervisor but also encouraged and challenged me

throughout my academic program. Besides Dr. Seriai, I would like to thank my

co-advisor Prof. Houari Sahraoui. My thanks also go to MaREL team. I would

like to thank the members of the committee. Thank you for having accepted to

review my thesis and for their time in reading and commenting on my thesis. Many

thanks to ERASMUS MUNDUS for their generous �nancial support.

Contents

1 Introduction 5

1.1 Research Context . 5

1.1.1 Software Reuse . 5

1.1.2 Component-Based Software Engineering (CBSE) 6

1.1.3 Software Product Line Engineering (SPLE) 6

1.2 Problem and Motivation . 7

1.3 Contribution . 8

1.4 Thesis Outline . 9

2 Reverse Engineering Software Architectures and Software Compo-

nents from Object-Oriented Software Systems 11

2.1 Reverse Engineering . 12

2.2 Reverse Engineering Software Architectures and Software Components 12

2.3 Classi�cation Axes of Related Works 15

2.3.1 The Goal of Identi�cation Approaches 15

2.3.2 The Required Input of Identi�cation Approaches 16

2.3.3 The Process of Identi�cation Approaches 19

2.3.4 The Output of Identi�cation Approaches 25

2.4 Example of Identi�cation Approach: ROMANTIC 26

2.4.1 Object-to-Component Mapping Model 27

2.4.2 Quality Measurement Model 27

2.5 Discussion . 29

2.5.1 The Required Input of Identi�cation Approaches 29

2.5.2 The Process of Identi�cation Approaches 30

2.5.3 The Output of Identi�cation Approaches 31

2.6 Conclusion . 32

3 Mining Software Components from a Set of Similar Object-

Oriented Product Variants 33

3.1 Introduction . 33

3.2 The Proposed Approach Foundations 34

3.2.1 The Goal: Object to Component 34

3.2.2 Approach Principles and Process 35

3.3 Identifying Classes Composing Reusable Components 36

3.3.1 Identifying Potential Components 36

3.3.2 Identifying Similar Components 38

3.3.3 Reusable Component Mining from Similar Potential Ones . . 41

3.4 Identifying Component Interfaces . 45

3.5 Documentation of Components . 47

3.5.1 Identifying Component Functionalities 47

iv Contents

3.5.2 Generation of the Functionality Description 48

3.6 Experimental Results and Evaluation 49

3.6.1 Data Collection . 49

3.6.2 Evaluation Method and Validation 49

3.6.3 Results . 49

3.6.4 Validation . 53

3.7 Threats to Validity . 55

3.7.1 Threats to Internal Validity 55

3.7.2 Threats to External Validity 56

3.8 Conclusion . 57

4 Mining Software Components from Object-Oriented

APIs 59

4.1 Introduction and Problem Analysis 60

4.2 The Proposed Approach Foundations 61

4.2.1 Component Identi�cation . 61

4.2.2 API as Library of Components 61

4.2.3 Principles and Mapping Model 62

4.2.4 Identi�cation Process . 63

4.3 Identi�cation of Component Interfaces 65

4.3.1 Extracting Transactions of Usage 65

4.3.2 Mining Frequent Usage Patterns of Classes 66

4.3.3 Identifying Classes Composing Component Interfaces from

Frequent Usage Patterns . 70

4.4 API as Library of Components . 71

4.4.1 Identifying Classes Composing Components 71

4.4.2 Organizing API as Layers of Components 73

4.5 Experimental Results and Evaluation 76

4.5.1 Experimentation Design . 76

4.5.2 Results . 77

4.5.3 Answering Research Questions 82

4.6 Discussion . 85

4.6.1 Component and Frequent Usage Pattern 85

4.6.2 Component Identi�cation: APIs VS Software Applications . . 85

4.7 Threats to Validity . 85

4.7.1 Threats to Internal Validity 85

4.7.2 Threats to External Validity 86

4.8 Conclusion . 87

5 Recovering Software Architecture of a Set of Similar Object-

Oriented Product Variants 89

5.1 Introduction . 90

5.2 Background . 91

5.2.1 Software Variability . 91

Contents v

5.2.2 Formal Concept Analysis . 91

5.3 Architecture Variability Analysis . 93

5.4 Architecture Variability Recovery Process 94

5.5 Identifying the Architecture Variability 95

5.5.1 Identifying Component Variants 95

5.5.2 Identifying Con�guration Variability 98

5.6 Identifying Architecture Dependencies 100

5.6.1 Identi�cation of Dependencies Related to Feature Variability 101

5.6.2 Identi�cation of Dependencies Related to Optional Compo-

nent Distribution . 104

5.7 Identi�cation of Groups of Variability 104

5.8 Experimental Results and Evaluation 105

5.8.1 Experimentation Design . 105

5.8.2 Results . 107

5.8.3 Answering Research Questions 114

5.9 Threats to Validity . 116

5.9.1 Threats to Internal Validity 116

5.9.2 Threats to External Validity 117

5.10 Conclusion . 117

6 Conclusion and Future Direction 119

6.1 Summary of Contributions . 119

6.2 General Limitations . 121

6.3 Future Directions . 122

6.3.1 Addressing New Related Aspects: 122

6.3.2 Tools Support and Experimentations 123

Bibliography 125

Contents 1

Supporting Reuse by Reverse Engineering Software Architecture
and Component from Object-Oriented Product Variants and APIs

Abstract: It is widely recognized that software quality and productivity can be

signi�cantly improved by applying a systematic reuse approach. In this context,

Component-Based Software Engineering (CBSE) and Software Product Line Engi-

neering (SPLE) are considered as two important systematic reuse paradigms. CBSE

aims at composing software systems based on pre-built software components and

SPLE aims at building new products by managing commonalty and variability of a

family of similar software. However, building components and SPL artifacts from

scratch is a costly task. In this context, our dissertation proposes three contributions

to reduce this cost.

Firstly, we propose an approach that aims at mining reusable components from

a set of similar object-oriented software product variants. The idea is to analyze

the commonality and the variability of product variants, in order to identify pieces

of code that may form reusable components. Our motivation behind the analysis of

several existing product variants is that components mined from these variants are

more reusable for the development of new software products than those mined from

single ones. The experimental evaluation shows that the reusability of the compo-

nents mined using our approach is better than those mined from single software.

Secondly, we propose an approach that aims at restructuring object-oriented

APIs as component-based ones. This approach exploits speci�city of API entities

by statically analyzing the source code of both APIs and their software clients to

identify groups of API classes that are able to form components. Our assumption is

based on the probability of classes to be reused together by API clients on the one

hand, and on the structural dependencies between classes on the other hand. The

experimental evaluation shows that structuring object-oriented APIs as component-

based ones improves the reusability and the understandability of these APIs.

Finally, we propose an approach that automatically recovers the component-

based architecture of a set of object-oriented software product variants. Our

contribution is twofold: the identi�cation of the architectural component variability

and the identi�cation of the con�guration variability. The con�guration variability

is based on the identi�cation of dependencies between the architectural elements

using formal concept analysis. The experimental evaluation shows that our

approach is able to identify the architectural variability.

Keywords: software reuse, reverse engineering, restructuring, reengineering,

object oriented, software component, software product line architecture, software

architecture variability, API, product variants.

Contents 3

Support à la réutilisation par la rétro-ingénierie des architectures
et des composants logiciels à partir du code source orienté objet

des variantes de produits logiciels et d'APIs

Résumé: La réutilisation est reconnue comme une démarche intéressante pour

améliorer la qualité des produits et la productivité des projets logiciels. L'ingénierie

des logiciels à base de composants (CBSE en anglais) et l'ingénierie des lignes de

produits logiciels (SPLE en anglais) sont considérées parmi les plus importants

paradigmes de réutilisation systématique. L'ingénierie à base de composants permet

de développer de nouveaux systèmes logiciels par composition de briques précon-

struites appelées composants. L'ingénierie des lignes de produits logiciels permet

de dériver (construire) de nouveaux produits par simple sélection de leurs carac-

téristiques (feature en anglais). Cette dérivation est rendue possible grâce à la

représentation et à la gestion de la variabilité et de la similarité des produits d'une

même famille. Cependant, une des di�cultés vers une large adoption de l'ingénierie

des logiciels à base de composants et des lignes de produits est le coût à investir

pour construire, à partir de rien, les composants et les artefacts de lignes de pro-

duits. Dans ce contexte, les travaux de cette thèse proposent de réduire ce coût par

une démarche basée sur la rétro-ingénierie.

La première contribution de cette thèse consiste à proposer une approche per-

mettant d'identi�er, par l'analyse d'un ensemble de variantes d'un produit logiciel

orienté objet, les éléments du code source pouvant servir à l'implémentation de com-

posants. Au contraire des approches existantes d'identi�cation de composants basées

sur l'analyse d'un seul produit, l'originalité de notre approche consiste en l'analyse

de plusieurs variantes de produits en même temps. Notre objectif est l'amélioration

de la réutilisabilité des composants extraits. L'évaluation expérimentale menée dans

le cadre de cette thèse a montré la pertinence de cette démarche.

La deuxième contribution de cette thèse permet de restructurer les APIs ori-

entées objet en composants. Nous exploitons la spéci�cité des classes des APIs

d'être conçues pour être utilisées par des applications clientes pour identi�er ces

composants. Le code source de ces APIs et celui de leurs applications clientes sont

analysés a�n d'identi�er des groupes de classes qui peuvent servir à l'implémentation

de composants à extraire. L'identi�cation de ces groupes de classes est basée sur

l'analyse des liens structurels entre ces classes et sur la probabilité que ces classes

soient utilisées ensemble par les applications clientes. Nous montrons à travers les ré-

sultats expérimentaux que la restructuration des API orientées objet en composants

facilite la réutilisation et la compréhension des éléments de ces APIs.

La troisième contribution consiste en la proposition d'une approche pour

l'extraction d'une architecture à base de composants d'un ensemble de variantes

d'un produit logiciel orienté objet. Il s'agit d'identi�er la variabilité des com-

posants architecturaux et la con�guration architecturale. L'identi�cation de la

con�guration architecturale est principalement basée sur l'utilisation de l'analyse

formelle de concepts pour trouver les dépendances entre les éléments architecturaux.

4 Contents

L'expérimentation conduite pour l'évaluation de l'approche proposée con�rme la

pertinence des éléments identi�és.

Mots-clés: réutilisation logicielle, rétro-ingénierie, restructuration, ré-

ingénierie, orienté objet, composants logiciels, architecture logicielle, ligne de

produits logiciels, variabilité, API, variantes logicielles.

Chapter 1

Introduction

Contents

1.1 Research Context . 5

1.1.1 Software Reuse . 5

1.1.2 Component-Based Software Engineering (CBSE) 6

1.1.3 Software Product Line Engineering (SPLE) 6

1.2 Problem and Motivation . 7

1.3 Contribution . 8

1.4 Thesis Outline . 9

1.1 Research Context

1.1.1 Software Reuse

S
oftware reuse refers to the process of building new software systems based on

pre-existing software artifacts [Frakes 2005] [Shiva 2007] [Leach 2012]. Soft-

ware reuse can be applied at di�erent levels of abstraction(i.e., requirement, de-

sign and implementation), and can concern di�erent software artifacts (e.g., fea-

ture, documentation, software architecture, software component, source code, etc.)

[Frakes 1996] [Leach 2012]. When a systematic reuse is applied, the software quality

and productivity are signi�cantly improved [Ferreira da Silva 1996] [Frakes 1996].

On the one hand, the quality of software is enhanced because of reusing exist-

ing artifacts that are already tested, evaluated and proven in advance [Griss 1997].

On the other hand, the software productivity is improved because of reusing pre-

existing software artifacts instead of developing them from scratch. This leads

to reductions in both the development cost and the time to market [Frakes 2005]

[Mohagheghi 2007].

The concept of systematic software reuse was �rstly presented by McIlroy in 1968

[McIlroy 1968]. Since that, many software reuse approaches have been proposed, in

order to reach a potential degree of software reuse [Frakes 2005] [Shiva 2007]. Ex-

amples of these approaches are Component-Based Software Engineering (CBSE)

[Heineman 2001], Software Product Line Engineering (SPLE) [Clements 2002],

service-oriented software engineering [Stojanovi¢ 2005] and aspect-oriented soft-

ware engineering [Filman 2004].

6 Chapter 1. Introduction

1.1.2 Component-Based Software Engineering (CBSE)

CBSE is considered one of the most promising software reuse approaches [Cai 2000]

[Gasparic 2014]. It aims at composing software systems based on pre-built soft-

ware components [Heineman 2001]. This means that the development of software

systems is done via components that are already built rather than the develop-

ment from scratch on the one hand, and coarse-grained software entities (having

explicit architecture) instead of �ne-grained entities on the other hand [Lau 2007]

[Heineman 2001]. In CBSE, components can be independently built, and the in-

teraction between them is done through their required and provided interfaces that

explicitly describe their dependencies and their provided services. As a result, the

possibility of reusing the components in new software is opened [Land 2009].

1.1.3 Software Product Line Engineering (SPLE)

Instead of developing each software product individually, SPLE promotes a pre-

planned software reuse by building and managing a family of software products

that are developed in the same domain (called Software Product Line (SPL))

[Clements 2002] [Pohl 2005a]. A SPL is de�ned as �a set of software-intensive sys-

tems that share a common, managed set of features satisfying the speci�c needs of a

particular market segment or mission and that are developed from a common set of

core assets in a prescribed way�[Clements 2002]. The main idea behind SPLE is to

analyze a business domain in order to identify the common and the variable parts

between the member products [Clements 2002] [Pohl 2005a]. This aims at building

a single production line that comprises of a family of software products that can be

customized based on common characteristics. This means that a software product is

instantiated based on SPL core assets that consist of a set of common and reusable

software artifacts [Clements 2002].

SPLE is composed of two phases; domain engineering and application engineer-

ing [Pohl 2005a]. In the former, SPL core assets are created based on the analysis of

the commonalty and the variability of a SPL. The content of these core assets can

be mainly composed of requirements, architectures, components, test cases, source

codes [Pohl 2005a]. In the second, the created core assess are used to derive SPL

products [Linden 2007] [Pohl 2005a].

One of the most important software artifact composing SPL's core assets

is Software Product Line Architecture (SPLA) [DeBaud 1998] [Clements 2002]

[Linden 2007] [Nakagawa 2011]. The aim of a SPLA is at highlighting the com-

monalty and the variability of a SPL at the architecture level [Pohl 2005a]. It does

not only describe the system structure at a high level of abstraction, but also de-

scribes the variability of a SPL by capturing the variability of architecture elements

[Pohl 2005a]. This is done by (i) describing how components can be con�gured to

form a concrete architecture, (ii) describing shared components and (iii) describing

individual architecture characteristics of each product.

1.2. Problem and Motivation 7

1.2 Problem and Motivation

Applying systematic software reuse requires an initial investment to develop reusable

core assets [Gasparic 2014]. Companies use three investment strategies: proactive,

reactive and extractive [Frakes 2005]. In the proactive model, companies develop

their reusable core assets from scratch. This requires, at an earlier stage, a large

investment for the analysis and planning tasks, while the return values can be only

proven when the products are developed [Gasparic 2014]. Thus the proactive strat-

egy is considered as a costly and risky one. In the reactive, companies incrementally

develop their reusable core assets during the development of new demands. This

reduces the cost and the risk compared to the proactive strategy. In the extractive

strategy, companies invest the already developed software systems, in order to re-

verse engineer the reusable core assets. By doing so, companies signi�cantly reduce

the cost compared to the other strategies [Gasparic 2014].

The ultimate goal of our dissertation is at supporting CBSE and SPLE by reverse

engineering some of their reusable core assets. In this goal, we address the following

research problems.

1. Reverse engineering reusable software components: identifying soft-

ware component from existing object-oriented software is an e�cient way for

supplying CBSE by feeding component-based libraries. This is done through

providing coarse-grained software entities that can be easily reused. Compo-

nents can be identi�ed at di�erent levels of abstraction (requirement, design

and implementation). We focus on the identi�cation of components at the

implementation level. In this context, the identi�cation is mainly composed

of analyzing the source code, in order to extract pieces of codes (i.e., sets of

classes) that may form reusable components [Kebir 2012b].

(i) Identifying reusable component by analyzing software product

variants: numerous approaches have been presented to identify software com-

ponents from existing object-oriented software like [Kebir 2012a] [Allier 2011]

[Hasheminejad 2015]. Nevertheless these ones perform the identi�cation by

analyzing a single software product. As a result, the mined components may

be useless in other software products and consequently their reusability is not

guaranteed. In fact the probability of reusing a component in a new software

product is proportional to the number of software products that have already

used it [Sametinger 1997] [Gasparic 2014]. Thus mining software components

based on the analysis of a set of software products contributes to identify com-

ponents that are probably more reusable than those identi�ed by analyzing a

single software product. Otherwise, companies developed many software prod-

ucts in the same domain, but with functional or technical variations. Each

software is developed by adding some variations to an existing software to

meet the requirements of a new need. These products are called product vari-

ants [Yinxing 2010]. Nonetheless, mining reusable components from a set of

product variants has not been investigated in the literature.

8 Chapter 1. Introduction

(ii) Identifying component by analyzing object-oriented APIs: ex-

isting component identi�cation approaches aims at mining components by

analyzing the source code of software applications. In this context, depen-

dencies between classes are only realized via calls between methods, sharing

types, etc. Nevertheless reengineering object-oriented Application Program-

ming Interfaces (APIs) into component-based ones has not been considered in

the literature. In this context, there are two kinds of dependencies. The �rst

one is that classes are structurally dependent. The second one is that some

classes need to be reused together to implement a functionality. This kind of

dependencies can not be identi�ed by analyzing the source code, but needs the

analysis of how software applications use the API classes. For example, in the

android API, Activity and Context classes are structurally and behaviorally

independent, but they have to be used together to build android applications.

This means that classes frequently used together are more favorable to belong

to the same component.

2. Recovering SPLA by analyzing the source code of existing software

product variants: SPLA can be recovered based on the analysis of the source

code of the existing product variants. This is done through the exploitation of

the commonality and the variability across the source code of product variants.

In the literature, there are few approaches that recover SPLA from a set of

product variants. However these approaches su�er from two main limitations.

The �rst one is that the architecture variability is partially addressed since

they recover only some variability aspects, no one recovers the whole SPLA.

For example, [Koschke 2009, Frenzel 2007] do not identify dependencies among

the architectural elements. The second one is that they are not fully-automatic

since they rely on the expert domain knowledge which is not always available,

such as [Pinzger 2004] and [Kang 2005].

1.3 Contribution

This dissertation presents three contributions:

1. Mining software components by analyzing a set of similar object-

oriented software product variants:

We propose an approach that aims at mining reusable components from a set

of similar object-oriented software product variants. The idea is to analyze the

commonality and the variability of product variants, in order to identify pieces

of code that may form reusable components. Our motivation is that compo-

nents mined based on the analysis of several existing software products will

be more useful (reusable) for the development of new software products than

those mined from singular ones. This is shown, thanks to the experimental

evaluation.

1.4. Thesis Outline 9

2. Mining software components by analyzing object-oriented APIs:

We propose an approach that aims at reverse engineering software components

by analyzing object-oriented APIs. This approach exploits speci�city of API

entities by statically analyzing the source code of both APIs and their software

clients to identify groups of API classes that are able to form components. This

is based on the probability of classes to be reused together by API clients on the

one hand, and the structural dependencies between classes on the other hand.

The experimental evaluation shows that structuring object-oriented APIs as

component-based ones improves the reusability and the understandability of

these APIs.

3. Recovering software architecture of a set of similar object-oriented

software product variants:

We propose an approach that automatically recovers the architecture of a set

of software product variants. Our contribution is twofold: on the one hand,

we recover the architecture variability concerning both component and con�g-

uration variabilities. On the other hand, we recover the architecture depen-

dencies between the architectural elements. The identi�cation of architecture

dependencies is done by capturing the commonality and the variability at the

architectural level using formal concept analysis. The experimental evaluation

shows that our approach is able to identify the architectural variability and

dependencies.

1.4 Thesis Outline

The rest of this thesis is organized into �ve chapters presented as follows:

• Chapter 2 discusses the state-of-the-art related to the problem of reverse en-

gineering software architectures and software components from object-oriented

software systems.

• Chapter 3 presents our contribution related to identify reusable software

components based on the analysis of a set of object-oriented product variants.

• Chapter 4 presents our contribution aiming at mining software components

by analyzing object-oriented APIs.

• Chapter 5 presents our approach that aims at recovering software architec-

ture of a set of object-oriented product variants.

• Chapter 6 reports conclusion remarks and future directions.

Chapter 2

Reverse Engineering Software

Architectures and Software

Components from

Object-Oriented Software Systems

Contents

2.1 Reverse Engineering . 12

2.2 Reverse Engineering Software Architectures and Software

Components . 12

2.3 Classi�cation Axes of Related Works 15

2.3.1 The Goal of Identi�cation Approaches 15

2.3.2 The Required Input of Identi�cation Approaches 16

2.3.3 The Process of Identi�cation Approaches 19

2.3.4 The Output of Identi�cation Approaches 25

2.4 Example of Identi�cation Approach: ROMANTIC 26

2.4.1 Object-to-Component Mapping Model 27

2.4.2 Quality Measurement Model 27

2.5 Discussion . 29

2.5.1 The Required Input of Identi�cation Approaches 29

2.5.2 The Process of Identi�cation Approaches 30

2.5.3 The Output of Identi�cation Approaches 31

2.6 Conclusion . 32

In this chapter, we discuss the-state-of-the-art related to reverse engineering soft-

ware architectures and software components research area. We start by positioning

our work compared to the related domains in Section 2.1 and Section 2.2. Then, axes

used to classify related approaches are presented in Section 2.3. A detail example

of a related approach is presented in Section 2.4. Next, the classi�cation results are

discussed in Section 2.5. Lastly, we conclude the chapter in Section 2.6.

12

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

2.1 Reverse Engineering

In software engineering, the traditional engineering process is forward engineering.

This refers to the movement from a higher level of conceptual abstraction, e.g., soft-

ware requirements, going down to a lower level of abstraction composed of details,

e.g., source code [Vliet 2008]. The opposite of forward engineering is reverse engi-

neering. It refers to the process of recovering and discovering a high level of abstrac-

tion, e.g., design and requirement, based on the analysis of a low level of abstraction,

e.g., source code [Chikofsky 1990]. In other words, reverse engineering denotes to

the movement from physical details going up to conceptual abstractions. Both

reverse and forward engineering could be met through reengineering [Demeyer],

which is de�ned as �the examination and alteration of a system to reconstitute it in

a new form�[Chikofsky 1990]. For example, the movement of object-oriented soft-

ware to component-based one. In this context, reverse engineering is required for

recovering an abstract description (e.g., component-based architecture), while for-

ward engineering follows the �rst by identifying implementation details of the new

form based on the recovered abstract description (e.g., the component implemen-

tation) [Vliet 2008] [Chikofsky 1990]. Figure 2.1 shows these engineering processes

and their relationships explained in terms of life cycle phases; requirement, design

and implementation.

In the literature, researchers have used many terminologies that refer to the

reverse engineering process. These are extraction [Razavizadeh 2009], identi�ca-

tion [Mende 2009], mining [Yuan 2014], recovery [Pinzger 2004] and reconstruction

[Moshkenani 2012].

The use of reverse engineering is strongly required in the case of legacy software

where the source code is the only artifact that exists [Müller 2000] [Demeyer]. In

this case, reverse engineering is connected with the concept of analyzing the source

code of legacy software, in order to recover other software artifacts at di�erent

level of abstractions [Müller 2000]. These artifacts can be mainly classi�ed into two

types. The �rst one is abstract artifacts that provide a higher level of abstraction,

such as architecture model [Kebir 2012a], feature model [She 2011], class diagram

[Tonella 2001] and so on. The second type refers to concrete software artifacts that

can be directly reused in the future development, like component [Allier 2011], fea-

ture [Ziadi 2012], service [Sneed 2006] and so on. Figure 2.2 shows this classi�cation.

2.2 Reverse Engineering Software Architectures and

Software Components

In this chapter, we focus on the state-of-the-arts related to reverse engineer software

architectures, software product line architectures and software components. These

are de�ned as follows:

2.2. Reverse Engineering Software Architectures and Software

Components 13

Figure 2.1: Forward engineering, reverse engineering and reengineering

[Chikofsky 1990]

Figure 2.2: Classi�cation of reverse engineering results

Software Architecture

The goal of Software Architecture (SA) is at playing the role of connecting business

requirements and technical implementations [Perry 1992]. SA has been de�ned by

several researchers. One of the commonly accepted de�nition is the one presented by

Bass et al. [Bass 2012]. Based on this de�nition, SA describes the system structure

at a high level of abstraction in terms of software elements and their relationships.

However, it does not describe the nature of software elements represented in the

architecture. Perry and Wolf [Perry 1992] provide a more clearly de�nition by dis-

tinguishing between elements composing the architecture (i.e., processing elements,

14

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

data elements, and connecting elements). This classi�cation is still used by a large

number of de�nitions. Afterwards, each element has been given a name and its

role is clearly de�ned. For instance, Moriconi [Moriconi 1994] de�ned six types of

architecture elements that can be used to describe the SA. These are component,

interface, connector, con�guration, mapping, and architecture style or pattern. A

component encapsulates a speci�c set of functionalities. An interface is a logical

point of a component that it is used by the component to interact with its envi-

ronment. A Connector de�nes the roles of component interactions. A con�guration

consists of a set of constraints de�ning the topology of how components are compos-

ited. A mapping model de�nes the correlation between a concrete architecture and

the set of vocabularies and formulas of an abstract architecture. Architecture style

contains a set of well-de�ned constraints that should be contented by an architecture

written in such a style.

Consequently, SA is considered as a blueprint that de�nes the system structure

at a high level of abstraction in terms of three architecture elements: (i) functional

components represent the system decomposition (ii) connectors that describe the

communications and connections between components (iii) a con�guration that de-

scribes the topology of links between components and connectors. According to our

de�nition, SA is mainly composed of three elements. These are software compo-

nents, connectors and con�guration.

Software Product Line Architecture

Software Product Line Architecture (SPLA), aka domain-speci�c architecture

[DeBaud 1998] or reference architecture [Pohl 2005b], is a special kind of software

architecture. It is designed for describing SA of a set of similar software products

that are developed in the context of Software Product line (SPL) [Clements 2002].

In the literature, many de�nitions have been presented to de�ne SPLA. These def-

initions consider SPLA as a core architecture, which captures the variability of a

set of software products at the architecture level. However they di�er in terms of

the variability de�nition. For instance, a general de�nition is presented by DeBaud

et al. [DeBaud 1998] where SPLA is considered as an architecture shared by their

member products and has such a variability degree. This is a very general de�nition

since that it does not specify the nature of the architecture variability. In contrast,

Pohl et al. [Pohl 2005a] provide a more accurate de�nition by specifying the nature

of architecture variability. For instance, SPLA includes variation points and variants

that are presented in such a variability model. Gomaa [Gomaa 2005] links the ar-

chitecture variability with the architectural-elements. Thus, in his de�nition, SPLA

de�nes the variability in terms of mandatory, optional, and variable components,

and their connections.

Software Component

Many de�nitions have been presented in the literature to de�ne Software Compo-

nents (SCs). Each de�nition describes a SC from a speci�c perspective. These de�ni-

2.3. Classi�cation Axes of Related Works 15

tions can be mainly classi�ed into domain-oriented SCs [Baster 2001], architecture-

oriented SCs [Szyperski 2002] or technical-oriented SCs [Lüer 2002].

Domain-oriented de�nitions focus on SCs that are associated to business con-

cepts, such that a SC encapsulates a set of autonomous business functionalities. For

example, Baster et al. [Baster 2001] de�ne a SC as �abstract, self-contained pack-

ages of functionality performing a speci�c business function within a technology

framework. These business components are reusable with well-de�ned interfaces�.

Architecture-oriented de�nitions do not focus on business concept, but focus on the

logical aspects of SCs, such as the SC structure and SC interfaces. For instance,

Szyperski [Szyperski 2002] de�nes a SC as �a unit of composition with contractu-

ally speci�ed interfaces and explicit context dependencies only. A software compo-

nent can be deployed independently and is subject to composition by third parties�.

Technical-oriented de�nitions focus on the SC deployment and implementation point

of view. For example, Lüer et al. [Lüer 2002] de�ne a SC as �a software element that

(a) encapsulates a reusable implementation of functionality, (b) can be composed

without modi�cation, and (c) adheres to a component model�.

By combining these de�nitions, a SC is considered as �a software element that

(a) can be composed without modi�cation, (b) can be distributed in an autonomous

way, (c) encapsulates the implementation of one or many closed functionalities, and

(d) adheres to a component model�[Kebir 2012a]. Based on this de�nition, a SC

is mainly composed of two parts; internal and external structures. Internal struc-

ture encapsulates functionalities that a component implements. External structure

manages how a SC interacts with its environment. This is realized by component

interfaces; required and provided interfaces. Required interfaces represent services

required by the component to achieve its goal. Provided interfaces present services

that the component o�ers.

2.3 Classi�cation Axes of Related Works

The life cycle of an identi�cation approach is composed of goals, inputs, processes

and outputs (see Figure 2.3). According to this life cycle, approaches1 presented

in the literature can be classi�ed mainly based on four axes; the target goal, the

needed input, the applied process and the desired output. Figure 2.4 shows our

classi�cation scheme.

2.3.1 The Goal of Identi�cation Approaches

The goal of an identi�cation approach can be: understanding, reuse, construction,

evolution, analysis or management [Garlan 2000]. These concern both software

1In our classi�cation, we select approaches based on two criteria. The �rst one focuses on the

approaches that are frequently cited since they are considered as the most known approaches pre-

sented in the state-of-the-art. The second one is related to the comprehension of the classi�cation

axes. This means that we select approaches that cover all of the classi�cation axes presented in

this chapter.

16

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

Figure 2.3: The life cycle of identi�cation approaches

architectures and software components. Software understanding is supported by

providing a high level of abstraction describing the system structure. Reuse is sup-

ported by providing a coarse-grain software entities that can be easily decoupled

from the system and deployed in another one. Construction is guided by explaining

how software components interact with each other through their interfaces. A better

comprehension of the outcome changes is provided to software maintainers. Thus

they can be more precise in estimating cost of modi�cations of the software evolu-

tion. Software analysis is enriched by understanding the dependencies provided by

software architectures. Managing the development tasks get success, when a clear

view of the system structure is provided [Garlan 2000].

2.3.2 The Required Input of Identi�cation Approaches

The input of identi�cation approaches can be: source codes, documentations, his-

torical information and human expert knowledges.

2.3.2.1 Source code

Source code is a collection of computer instructions describing the system execu-

tion [Harman 2010]. It is written in a computer programming language, such as

Java, C++, and C. Software developers use the source code to realize the actions

that need to be performed by computers. In the case of object-oriented systems,

source code is mainly composed of a set of classes that are organized in a set of

packages [Rumbaugh 1991]. Methods and attributes constituting the main build-

ing units of a class. The relationship between classes is realized via method calls,

access attributes inheritance, and so on. Source code is the most commonly used

software artifact by the existing identi�cation approaches, due to its availability.

The identi�cation approaches relied on relationships among classes to analyze the

system structure, in order to identify high cohesive and low coupling parts. In

�rst hand, for SAI, classes are grouped into disjoint clusters, such that each clus-

ter represents a component of the system architecture view, like [Chardigny 2008b],

2.3. Classi�cation Axes of Related Works 17

Figure 2.4: Classi�cation axes of software architecture and component identi�cation

approaches

18

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

[Zhang 2010], [Constantinou 2011] and [Moshkenani 2012]. In the second hand, for

SCI, the overlapping is allowed between the clusters since any group of classes �lling

the quality requirement may form a potential component, such as [Mende 2008] and

[Mende 2009].

2.3.2.2 Documentation

Software documentation is a description that is used to document software artifacts

at di�erent level of abstractions [Lethbridge 2003]. It can be either text-based or

model-based documents. Documentations are used to guide the identi�cation ap-

proach by reducing the search space. We distinguish three types of documentations;

requirement, design, and implementation.

• At the requirement level, documentations describe what a system should do

by documenting user requirements [Pohl 2010]. For example, use cases de-

�ne how actors, e.g., human and external system, could interact with a sys-

tem to achieve the goals [Rumbaugh 2004]. Since use cases provide a list of

system functionalities in terms of a set of steps, it is the most commonly

used documentation by existing approaches. They relied on use cases to de-

rive scenarios for executing the system for the purpose of dynamic analysis.

[Allier 2011] [Mishra 2009] and [Riva 2002] are examples of these approaches.

Additionally, use cases were used by [Chardigny 2008a], [Hamza 2009] and

[Hasheminejad 2015] as guides to extract a set of logical functional compo-

nents.

• At the design level, software systems are documented by describing their archi-

tecture [Bachmann 2000]. Examples of architecture documentations are the

number of software components composing the system, the used architecture

style and so on. Con�guration �les are used by [Weinreich 2012] to extract

information about the previous architecture, which provides guidances for his

identi�cation approach. [Riva 2002] relied on architectural documentation to

determine the main concepts constituting the system design. Design docu-

ments provide, in [Kolb 2006, Kolb 2005], information about how components

have been designed and implemented. In [Chardigny 2010], documentations

are used to drive an initial intentional architecture that represents that input

of the approach.

• Implementation documentations include a demonstration of how the system

should be built [Lethbridge 2003]. A class diagram is an example of an im-

plementation model describing classes and their dependencies. For instance,

[Hamza 2009] used class diagrams and [Mishra 2009] used sequence diagrams

as well as class diagrams to identify the structural and behavioral dependencies

among the system classes.

2.3. Classi�cation Axes of Related Works 19

2.3.2.3 Historical Information

Change history is a log storing changes that have been made to a system. It is

the less commonly used source of information. In [Dugerdil 2013], it is invested to

identify execution trace scenarios that are used to dynamically analyze a system. In

[Chardigny 2009] it is used to support driving the system partition.

2.3.2.4 Human expert Knowledge

Human experts are persons who have relevant information about the design and the

implementation of a software system. In most cases, they are software architects.

A few approaches utilized human experts in their approaches. For instance, they

are used to select the main architecture view that needs to be the core of SPLA

in [Pinzger 2004]. In [Chardigny 2010], the authors relied on them to provide an

initial intentional architecture. Human experts guide the identi�cation by, for ex-

ample, classifying the architecture units and identifying the dependencies among the

components in [Kang 2005]. In [Riva 2002], experts add a new architectural infor-

mation that is not immediately evident from the identi�ed one from the source code.

[Erdemir 2011] depended on them to analyze and evaluate the resulted architecture,

and thus modify it as needed.

2.3.2.5 Combination of Multiple Inputs

A combination of the mentioned input resources is used by some approaches. In

some cases, the combination of multiple input resources is necessary, while in some

others, it is an optional one. It is required for approaches that need more than

one input to achieve their goal. For instance, approaches that aim at identifying

software architecture based on the dynamic analysis need at least the source code

and another input explaining the execution scenarios. [Allier 2009] relied on use

cases and [Dugerdil 2013] depend on the log history of the system end-users. The

optionality of a combination has many situations. Firstly, some approaches need to

reduce the search space, such as [Chardigny 2010] which utilized the documentation

and the human experts to minimize their search space in the source code. Secondly,

a combination is made by investing the human experts knowledge to analyze and

modify the resulted architecture, like [Erdemir 2011]. Thirdly, a previous architec-

tural information maybe used as a guide of the identi�cation approaches, such as

[Weinreich 2012] and [Pinzger 2004].

In Table 2.1, the classi�cation results of the identi�cation approaches are pre-

sented in terms of software artifacts that are required as inputs.

2.3.3 The Process of Identi�cation Approaches

The process of an identi�cation approach refers to the way that how the approach

achieves its goal based on the input resources. It is mainly composed of �ve as-

pects. These are related to algorithms used to implement the approach, the process

20

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

Table 2.1: Classi�cation results based on the input software artifacts
Approach Source code Req. doc. Design doc. Impl. doc. History Human experts

[Riva 2002] X X X X

[Pinzger 2004] X X X

[Kang 2005] X X

[Kolb 2005, Kolb 2006] X X

[Chardigny 2008b] X

[Mende 2008, Mende 2009] X

[Koschke 2009, Frenzel 2007] X

[Hamza 2009] X X

[Mishra 2009] X X X

[Allier 2009] X X

[Razavizadeh 2009] X

[Zhang 2010] X

[Allier 2010] X X

[Chardigny 2010] X X X

[Allier 2011] X X

[Constantinou 2011] X

[Erdemir 2011] X X

[Boussaidi 2012] X

[Weinreich 2012] X X

[Moshkenani 2012] X

[Kebir 2012a] X

[Kebir 2012b] X

[von Detten 2012, von Detten 2013] X

[Dugerdil 2013] X X

[Seriai 2014] X

[Hasheminejad 2015] X

[Chihada 2015] X

automation, the process direction and the used analysis type.

2.3.3.1 Identi�cation Algorithm

Algorithms are used to solve computational problems [Cormen 2009]. In our context,

software architecture and component identi�cation is the problem that needs to be

solved. This problem is considered as NP-hard problem since identifying the optimal

solution is not reachable in a polynomial time complexity (i.e., need to evaluate all

possible solutions, then take the best one). Thus, in the literature, the authors relied

on several algorithms that aim at identifying a near optimal solution (i.e., good-

enough solution). These algorithms can be classi�ed mainly into �ve types; search-

based, data mining, mathematical-based, clone detection, and heuristic algorithms.

• Search-based algorithms are meta-heuristic techniques that formulate the

search problems as optimization ones [Harman 2001]. In this type of algo-

rithms, the search space is composed of a set of problem solutions (e.g., the

possible software architectures). Then, the algorithms proceed a series of iter-

ations to �nd a near optimal solution, e.g., software architecture, in the search

space. Existing approaches mainly used two kinds of search-based algorithms;

genetic algorithm and simulating annealing. For instance, genetic algorithm

is used by [Hasheminejad 2015] to partition the requirements into a set of

logical components and by [Kebir 2012b] to partition the source code into

groups, such that each group is a component. Simulating annealing is used

in [Chardigny 2008b, Chardigny 2010] to partition the source code. Since

2.3. Classi�cation Axes of Related Works 21

genetic algorithm could reach a trap of a local optimum and simulating an-

nealing could reach a trap of global optima [Elhaddad 2012], a hybrid search

is applied to avoid these traps in [Allier 2010, Allier 2011].

• Data mining is a knowledge discovery technique that aims at extracting hid-

den interesting information from huge data [Han 2006]. In the context of

software architecture and component identi�cation, the hug data is the input

software artifacts (e.g., source code), while software architecture and compo-

nents are the interesting knowledges that need to be mined. There are several

data mining algorithms. Existing approaches mainly used two algorithms,

clustering and classi�cation.

Clustering is the process of grouping a set of similar objects into clusters,

such that objects inside a cluster are similar to each other and dissimilar

to other clusters' objects. Since the number of classes is unknown, clus-

tering is an unsupervised learning algorithm [Han 2006]. Clustering algo-

rithms are widely used by a bunch of approaches to partition the source code

of object-oriented systems into groups, where each cluster is a component,

like [Dugerdil 2013], [von Detten 2012, von Detten 2013], [Boussaidi 2012],

[Erdemir 2011], [Kebir 2012a, Kebir 2012b], [Mishra 2009] and [Zhang 2010].

Classi�cation is a supervised learning categorization process that distributes

a set of objects into a set of prede�ned classes [Han 2006]. It consists of

two steps; model construction and model usage. In model construction, the

model is learned by giving it a set of objects having known classes. Based

on these objects, the model extracts such a procedure, i.e., roles, to classify

new unknown objects in model usage step [Han 2006]. Two of the existing

approaches utilized classi�cation algorithms to identify software architecture.

In [Chihada 2015], Support Vector Machine algorithm is used. The algorithm

takes as input a set of design pattern implementations that were manually

identi�ed by the software architects. Then, Support Vector Machine is used

to recognize design patterns of new source codes. Naïve Bayes classi�er is

used by [Moshkenani 2012] to reconstruct the architecture of legacy software.

• Mathematical-based algorithms are mathematical data analysis techniques.

In the literature, there are mainly two types of used algorithms. These

are Formal Concept Analysis (FCA) [Ganter 2012] and graph-based analy-

sis [Cormen 2009].

FCA is developed based on lattice theory [Ganter 2012]. It allows the analysis

of the relationships between a set of objects described by a set of attributes.

In this context, maximal groups of objects sharing the same attributes are

called formal concepts. These are extracted and then hierarchically organized

into a graph called a concept lattice. FCA is used as a clustering technique by

[Allier 2009] to cluster object-oriented classes, [Hamza 2009] to partition soft-

ware requirements into functional components and [Seriai 2014] to structure

the component interfaces.

22

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

Graph based techniques refer to the formulation of the problem as a graph

partitioning algorithm. Here, classes are considered as nodes and depen-

dencies among the classes represent edges. This facilitates the understand-

ing of the problem as well as the data processing. This type of formulation

is used by [Erdemir 2011], [Constantinou 2011], [Zhang 2010], [Frenzel 2007]

and [Mende 2008, Mende 2009].

• Clone detection algorithms aim at identifying duplicated source codes. In the

context of migrating product variants into a SPL, clone detection algorithms

are used to identify peaces of source codes that exist in many product variants.

In [Koschke 2009, Frenzel 2007], clone detection is used to recover SPLA. The

authors determine the architecture view of the �rst product as a core one.

Then, using a clone detection algorithm, they map the implementation of

the second product to the implementation of the �rst architecture model and

so on. In [Kolb 2005, Kolb 2006], legacy software components are refactored

to be reused in the context of SPLs. The authors used a clone detection

algorithm to identify similar components that could integrate the variability.

In [Mende 2008, Mende 2009], the approach depended on a clone detection

algorithm to identify pairs of functions that share most of their source code,

such that these functions are used to form components.

• Some approaches proposed their own heuristic algorithms, instead of using

prede�ned algorithms. [Weinreich 2012], [Razavizadeh 2009], [Kang 2005],

and [Pinzger 2004] are some examples of these approaches.

A combination of di�erent types of the above algorithms has been applied by

some of the existing approaches. The idea of the combination is to improve the

accuracy. For instance, a combination of clustering and genetic algorithms is ap-

plied by [Kebir 2012b]. Graph-based have been combined with clustering algorithm

by [Erdemir 2011] and [Zhang 2010]. Clone detection algorithms are applied on a

graph-based in [Mende 2008, Mende 2009].

2.3.3.2 Process Automation

The automation of the identi�cation process refers to the degree in which this process

needs human experts interactions. In other words, it corresponds to how much

an approach relies on human experts. We distinguish three types of automations;

manual, semi-automatic and full automatic.

• Manual approaches fully depend on human experts. These ones only provide

guides for the experts, such as visual analysis of the source code, that allow

them to identify architectural elements. [Lanza 2003] and [Langelier 2005] are

examples of visualization tools.

• Semi-automatic identi�cation approaches need human expert recommenda-

tions to perform their tasks. For example, [Chardigny 2010] approach needs

2.3. Classi�cation Axes of Related Works 23

as an input an initial intentional architecture provided by human experts.

[Pinzger 2004] relies on software architects to select the main architecture view

that needs to be the core of SPLA and to manually analyze design documents.

In [Erdemir 2011], software architects need to interact with the approach

steps. [Kang 2005] and [Riva 2002] are also examples of semi-automatic ap-

proaches.

• Full automated approaches do not need any human interactions. There are

no purely automated approaches (do not need software architects at all). We

consider approaches that do not have a high impact of human interactions

on their results as fully automated ones. For example, software architects

need to determine some threshold values. As examples of these approaches

[Kebir 2012a, Kebir 2012b], [Chardigny 2008b], [Mende 2008, Mende 2009],

[Seriai 2014] and [Hasheminejad 2015].

2.3.3.3 Process Direction

The process of identi�cation approaches can be performed in three directions. These

are top-down, bottom-up and hybrid directions.

• Top-down process identi�es low level software artifacts by analyzing higher

level ones. For example, it identi�es software architecture based on software

requirements analysis. In [Ducasse 2009], the authors relied on the execu-

tion traces, identi�ed from use cases, to recover the architecture of a corre-

sponding system by mapping the traces classes to clusters. [Hamza 2009] and

[Hasheminejad 2015] partition software requirements into functional compo-

nents.

• Bottom-up process starts from low level software artifacts to identify higher

level ones. For instance, starting from the source code, it extracts a higher ab-

straction artifact, e.g., software architecture, that can be used to understand

the system structure. In [Boussaidi 2012], [Erdemir 2011], [Kebir 2012a],

[Kang 2005], [Koschke 2009, Frenzel 2007] and [Zhang 2010], the authors ex-

tract the software architecture based on the source code analysis.

• Hybrid process refers to the combination of a top-down process and a bottom-

up one. It starts from software requirements by applying a top-down process

and from the source code by applying a bottom-up process to identify the

corresponding software architecture. [Allier 2009, Allier 2010, Allier 2011],

[Mishra 2009] and [Riva 2002] are examples of this type, since they analyzed

use cases (the high level) and source code classes (the low level) to recover

the software architecture.

2.3.3.4 Analysis type

Identi�cation approaches may perform the software analysis either statically, dy-

namically or conceptually to identify the relationships between software artifacts,

24

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

in order to reverse engineer software architectures/components.

• Static analysis is performed without executing the software system. In

source code, dependencies between classes are potential relationships, like

method calls and access attributes. These dependencies are analyzed

to identify strongly connected classes, for example, to identify compo-

nents. [Pinzger 2004], [Kebir 2012b, Kebir 2012a], [Weinreich 2012] and

[Boussaidi 2012] are examples of approaches that used the static analysis.

The main advantage of static analysis is the fact that it depends only on

the source code. However, it does not address polymorphism and dynamic

binding. In addition, it does not allow to distinguish between the used and

unused source code.

• Dynamic analysis is performed by examining the software system at the run

time. Dependencies between software elements are collected during the pro-

gram executing. Thus they refer to the actual relationships. The execution is

performed based on a set of cases that covers the system functionalities, called

execution scenarios. Use cases, usage log and sequence diagram are respec-

tively used to identify execution scenarios by [Allier 2009], [Dugerdil 2013]

and [Mishra 2009]. In dynamic analysis, polymorphism and dynamic binding

are addressed and unused source code is excluded from the analysis. However,

in the case of losing use cases, the corresponding system functionalities can

not be covered by dynamic analysis since the corresponding classes would not

be executed.

• Conceptual analysis refers to the lexical analysis of the source code. This

analysis supposes that the similarity between the classes should be taken into

account during the identi�cation process. This analysis plays the main role

in approaches that used clone detection techniques, such as [Koschke 2009,

Frenzel 2007] [Mende 2008, Mende 2009], and [Kolb 2005, Kolb 2006].

A combination between the above analysis types can be applied. The idea

is to reduce the limitation of each analysis type when it is applied separately.

[Allier 2010, Allier 2011] relied �rstly on the dynamic analysis to identify classes

that have frequently appeared together in execution traces. Then, the static anal-

ysis is used to investigate classes that do not occur in the execution traces. In

contrast, in [Riva 2002], the static analysis is �rstly realized by exploring the source

code to identify signi�cant architectural elements. Then, the dynamic analysis is

performed. In [Koschke 2009, Frenzel 2007], the static analysis is used to identify

architectural view from the source code and the conceptual analysis is used to detect

architecture elements having similar implementations among product variants.

Table 2.2 presents the results of our classi�cation based on the applied process.

This includes the used algorithm, the process automation, the direction and the

analysis type. GA, SA, CD, H, TD, BU, HP, D, S and C respectively refer to

genetic algorithm, simulating annulling, clone detect, heuristic, top-down, bottom-

up, hybrid, dynamic analysis, static analysis and conceptual analysis.

2.3. Classi�cation Axes of Related Works 25

Table 2.2: Classi�cation results based on the applied process

Approach

Algorithm Automation Direction Analysis

Search-Based Math-Based Data Mining Others
Semi Full TD BU HP D S C

GA SA Graph FCA Cluster Classify CD H

[Riva 2002] X X X X X X

[Pinzger 2004] X X X X X X

[Kang 2005] X X X X

[Kolb 2005, Kolb 2006] X X X X X X

[Chardigny 2008b] X X X X

[Mende 2008, Mende 2009] X X X X X X

[Koschke 2009, Frenzel 2007] X X X X X X

[Hamza 2009] X X X X X

[Mishra 2009] X X X X X X

[Allier 2009] X X X X X

[Razavizadeh 2009] X X X X

[Zhang 2010] X X X X X

[Allier 2010] X X X X X X

[Chardigny 2010] X X X X

[Allier 2011] X X X X X X

[Constantinou 2011] X X X X X

[Erdemir 2011] X X X X X X

[Boussaidi 2012] X X X X X

[Weinreich 2012] X X X X

[Moshkenani 2012] X X X X

[Kebir 2012a] X X X X

[Kebir 2012b] X X X X X

[von Detten 2012, von Detten 2013] X X X X X

[Dugerdil 2013] X X X X X

[Seriai 2014] X X X X X

[Hasheminejad 2015] X X X X

[Chihada 2015] X X X X

2.3.4 The Output of Identi�cation Approaches

The output of an identi�cation approach is related to the goal of the approach. Thus

it can be SA, SPLA or SCs. In this section, we classify identi�cation approaches

based on the results that can be obtained. Most of the existing approaches identify

SA of a single object-oriented system, such as [Erdemir 2011], [Moshkenani 2012],

[Hamza 2009] and [Chihada 2015]. These approaches may provide di�erent results.

In the �rst hand, some approaches provide a documentation about the extracted SA,

like [Ducasse 2009], [Kebir 2012a] and [von Detten 2012, von Detten 2013]. In the

second hand, some ones support hierarchical architecture by providing a multi-layer

SA, such as [Boussaidi 2012], [Constantinou 2011] and [Riva 2002]. In the third

hand, some approaches support CBSE by providing SCs that can be reused. This

is done by structuring component interfaces, like [Allier 2010], [Mishra 2009] and

[Chihada 2015], or by providing deployable (operational) SCs, like [Allier 2011] in

which the identi�ed SCs are integrated with the OSGi component model.

The recovery of SPLA is supported by identifying component variants in

[Kolb 2005, Kolb 2006] and [Koschke 2009, Frenzel 2007], component variability in

[Pinzger 2004], [Kang 2005] and [Koschke 2009, Frenzel 2007], and dependencies be-

tween components in [Kang 2005]. [Mende 2008, Mende 2009] is an example of ap-

proaches aiming at identifying reusable components from the source code of a set of

product variants.

The classi�cation results concerning the output axes are presented in Table 2.3,

where Cvariant, Cvariab, Cdep, Com, Com Int, Dep and Hier respectively refer to

component variants, component variability, component dependencies, component,

component interfaces, deployable and hierarchical composition.

26

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

Table 2.3: The results of classi�cation based on the output of identi�cation ap-

proaches

Approach

Architecture Component Property

Single
Multiple Software

Com Com Int Dep Doc Hier
Cvariant Cvariab Cdep

[Riva 2002] X X

[Pinzger 2004] X

[Kang 2005] X X

[Kolb 2005, Kolb 2006] X X

[Chardigny 2008b] X

[Mende 2008, Mende 2009] X

[Koschke 2009, Frenzel 2007] X X

[Hamza 2009] X

[Mishra 2009] X X X

[Allier 2009] X X

[Razavizadeh 2009] X X

[Zhang 2010] X

[Allier 2010] X X

[Chardigny 2010] X

[Allier 2011] X X X X

[Constantinou 2011] X X

[Erdemir 2011] X

[Boussaidi 2012] X X X

[Weinreich 2012] X X

[Moshkenani 2012] X

[Kebir 2012a] X X X X

[Kebir 2012b] X

[von Detten 2012, von Detten 2013] X X X X

[Dugerdil 2013] X X

[Seriai 2014] X

[Hasheminejad 2015] X

[Chihada 2015] X

2.4 Example of Identi�cation Approach: ROMANTIC

In this section, we detail one component identi�cation approach that aims to analyze

a single software application. We select this approach to present how the process is

done in detail. In addition, we rely on its quality model as a black box model that

is used to measure the quality of a group of classes to form a component.

In [Chardigny 2008b] and [Kebir 2012a], the authors presented an approach

called ROMANTIC (Re-engineering of Object-oriented systeMs by Architecture

extractioN and migraTIon to Component based ones). ROMANTIC aims to au-

tomatically recover a component-based architecture from the source code of a single

object-oriented software. It is mainly based on two models:

1. Object-to-component mapping model that allows to link object-oriented con-

cepts, e.g., package and class, to component-based ones, e.g., component and

interface.

2. Quality measurement model that is used to evaluate the quality of recovered

architectures and their architectural-elements.

2.4. Example of Identi�cation Approach: ROMANTIC 27

2.4.1 Object-to-Component Mapping Model

ROMANTIC de�nes a software component as a set of classes that may belong to

di�erent object-oriented packages. The component classes are organized based on

two parts: internal and external structures. The internal structure is implemented

by a set of classes that have direct links only to classes that belong to the component

itself. The external structure is implemented by a set of classes that have direct

links to other components' classes. Classes that form the external structure of a

component de�ne provided and required interfaces. Figure 2.5 shows the object-to-

component mapping model.

Figure 2.5: Object-to-component mapping model

2.4.2 Quality Measurement Model

According to [Szyperski 2002] [Lüer 2002] and [Heineman 2001], a component is de-

�ned as �a software element that (a) can be composed without modi�cation, (b) can

be distributed in an autonomous way, (c) encapsulates the implementation of one or

many functionalities, and (d) adheres to a component model �[Kebir 2012a]. Based

on this de�nition, ROMANTIC identi�es three quality characteristics of a compo-

nent: composability, autonomy and speci�city [Chardigny 2008b]. Composability is

the ability of a component to be composed without any modi�cation. Autonomy

means that it can be reused in an autonomous way. Speci�city characteristic is

related to the fact that a component must implement a limited number of closed

functionalities.

Similar to the software quality model ISO 9126 [Iso 2001], ROMANTIC proposes

to re�ne the characteristics of the component into sub-characteristics. Next, the

sub-characteristics are re�ned into the properties of the component (e.g., number

of required interfaces). Then, these properties are mapped to the properties of

the group of classes from which the component is identi�ed (e.g., group of classes

28

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

coupling). Lastly, these properties are re�ned into object-oriented metrics (e.g.,

coupling metric). Figure 2.6 shows how the component characteristics are re�ned

following the proposed measurement model.

Figure 2.6: Component quality measurement model

Based on this measurement model, a quality function has been proposed to

measure the quality of an object-oriented component based on its characteristics.

This function is given bellow:

Q(E) =
1∑
i λi
· (λ1 · S(E) + λ2 ·A(E) + λ3 · C(E)) (2.1)

Where:

• E is an object-oriented component composed of a group of classes.

• S(E), A(E) and C(E) refer to the speci�city, autonomy, and composability of

E respectively.

• λi are weight values, situated in [0-1]. These are used by the architect to

weight each characteristic as needed.

ROMANTIC proposes a speci�c �tness function to measure each of these char-

acteristics. For example, the speci�city characteristic of a component is calculated

as follows:

2.5. Discussion 29

S(E) =
1

5
· (1

|I|
·
∑
i∈I

LCC(i)+LCC(I)+LCC(E)+Couple(E)+noPub(I)) (2.2)

This means that the speci�city of a component E depends on the following

object-oriented metrics: the cohesion of classes composing the internal structure

of E (LCC(E)), the cohesion of all classes composing the external structure of E

(LCC(I)), the average cohesion of all classes composing the external structure of E

(1
|I| ·

∑
i∈I LCC(i)), the coupling of internal classes of E (Coupl(E) which is measured

based on the number of dependencies between the classes of E), and the number of

public methods belonging to the external structure of E (noPub(I)). LCC (Loose

Class Cohesion) is an object-oriented metric that measures the cohesion of a set

of classes [Bieman 1995]. For more details about the quality measurement model

please refer to [Chardigny 2008b] and [Kebir 2012a].

This component quality function is applied in a hierarchical clustering al-

gorithm [Kebir 2012a, Chardigny 2008b] as well as in search-based algorithms

[Chardigny 2008a] to partition the object-oriented classes into disjoint groups,

where each group represents a component. In addition, it has been extended by

[Adjoyan 2014] to be able to identify service-oriented architectures.

2.5 Discussion

In this section, we discuss �ndings resulted from our classi�cation. The �ndings

are organized based on the input, the process and the output of identi�cation ap-

proaches.

2.5.1 The Required Input of Identi�cation Approaches

Almost all existing approaches relied on the source code as the main source of

information to be analyzed. 92.5% of the approaches used the source code, such

that 48% of the approaches depended only on the source code, while 44.5% of the

approaches took other inputs. In the case of a combination, it is used by 22% of

the approaches with the documentations, 7.5% of the approaches with the human

experts' knowledge, 4% of the approaches with the historical data, and 11% of the

approaches with both the documentation and the human experts' knowledge. Only

few approaches relied only on the documentations (i.e., 7.5% of the approaches).

These are approaches that aim at identifying SA based on a forward engineering

technique. Figure 2.7 shows the distribution of the approaches based on the required

input.

However, there is a trade o� between depending on the source code only or taking

other information from documentations and human experts. In the �rst hand, the

source code is always available. Thus approaches used only the source code can be

applied to any software system. In the other hand, although documentations and

30

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

human experts improve the accuracy of identi�cation approaches and reduce the

search-space, but they are not always available.

Figure 2.7: The analysis of the approaches based on their inputs

2.5.2 The Process of Identi�cation Approaches

The process applied by identi�cation approaches has many dimensions; the algo-

rithm, the automation, the direction and the analysis type. Several algorithms have

been applied. All of them identi�es a near optimal system partition. Each one has a

degree of accuracy. Search-based algorithms are deployed by 22% of the approaches,

such that half of them (11%) for each of genetic algorithm and simulating annulling.

Data mining techniques are utilized more than search-based ones where it is used

by 37% of the approaches. These are distributed into 30% for clustering algorithms

and 7% for classi�cation ones. Mathematical-based algorithms are used by 30% of

the approaches such that graph-based is used by 19% of the approaches and FCA is

used by 11% of the approaches. Clone detection algorithms are used by 11% of the

approaches. The authors have proposed their heuristic algorithms in 56% of the ap-

proaches. However, in computer science, there are several optimization algorithms

that have not been deployed to improve the accuracy.

Certainly, fully-automated approaches are relatively preferred than semi-

automated or manual ones. 48% of the approaches are fully-automatic, while 52%

are semi-automated. The selection of a process direction is based on the input arti-

facts. If the input is the source code, then a bottom-up process is applied. This is

the situation in 63% of the approaches. If requirement documents are used, then a

2.5. Discussion 31

top-down process need to be applied, 11% of the approaches. 26% of the approaches

applied a hybrid process direction. Most of the approaches relied on static (93%)

or dynamic analyses (30%), while few ones depend on conceptual analysis (15%).

Figure 2.8: The analysis of the approaches based on their outputs

2.5.3 The Output of Identi�cation Approaches

Most of the existing approaches aim at recovering the software architecture of a

single software, 78% of the approaches. The results of these approaches are groups

of classes represent a system partition corresponding to component-based architec-

ture. 33% of these approaches provided only a system partition, while 15% of

them converted the groups into operational components by identifying component

interfaces or/and adhering them into such a component model. In addition, the

resulted software architecture is documented in few approaches (19% of them). A

software architecture that supports the hierarchical composition is provided by 19%

of the approaches, such that 4% of them also provided a documentation. How-

ever, a perfect software architecture identi�cation approach can be presented by

providing operational component that can be used to constitute component-based

libraries. Also, providing documentation will help the software architects to under-

stand and reuse the identi�ed components. Identifying software components, that

do not represent a system partition, is presented by 7% of the approaches.

SPLA has been investigated in few approaches (15%, such that 4% of them pro-

vided documentations). However these approaches su�er from two main limitations.

One the one hand, the architecture variability is partially addressed. For instance,

[Koschke 2009, Frenzel 2007] do not identify dependencies among the architectural

32

Chapter 2. Reverse Engineering Software Architectures and Software

Components from Object-Oriented Software Systems

elements. However SPLA should be recovered in terms of component variants, vari-

able components, links variability and interfaces variability. On the other hand,

they are not fully-automatic. For example, [Pinzger 2004] and [Kang 2005] required

domain expert knowledges which is not always available. Otherwise mining soft-

ware components from object-oriented APIs has not been investigated. Existing

approaches only focus on mining software components from object-oriented soft-

ware applications. Figure 2.8 presents the analysis of the approaches based on their

outputs.

2.6 Conclusion

In this chapter, we present the-state-of-the-art related to software architecture and

software component identi�cation. This include positioning our dissertation com-

pared to the domain concepts and the related works. Related works are classi�ed

based on four axes. These are the goals, the required inputs, the applied processes

and the obtained outputs. The chapter is concluded with the following remarks:

First Numerous approaches have been presented to identify software architecture

from a single software system.

Second Few approaches recover SPLA from a set of product variants. However,

existing SPLA recovery approaches only identify some variability aspects, no

one recovers the whole SPLA.

Third Identifying reusable SC based on the analysis of the source code of a set of

product variants has not been addressed.

Fourth Mining software components from object-oriented APIs has not been inves-

tigated. Existing approaches only focus on mining software components from

object-oriented software applications.

Chapter 3

Mining Software Components

from a Set of Similar

Object-Oriented Product Variants

Contents

3.1 Introduction . 33

3.2 The Proposed Approach Foundations 34

3.2.1 The Goal: Object to Component 34

3.2.2 Approach Principles and Process 35

3.3 Identifying Classes Composing Reusable Components . . . 36

3.3.1 Identifying Potential Components 36

3.3.2 Identifying Similar Components 38

3.3.3 Reusable Component Mining from Similar Potential Ones . . 41

3.4 Identifying Component Interfaces 45

3.5 Documentation of Components 47

3.5.1 Identifying Component Functionalities 47

3.5.2 Generation of the Functionality Description 48

3.6 Experimental Results and Evaluation 49

3.6.1 Data Collection . 49

3.6.2 Evaluation Method and Validation 49

3.6.3 Results . 49

3.6.4 Validation . 53

3.7 Threats to Validity . 55

3.7.1 Threats to Internal Validity 55

3.7.2 Threats to External Validity 56

3.8 Conclusion . 57

3.1 Introduction

I
dentifying software components from existing object-oriented software is an ef-

�cient way that supports software reuse by providing coarse-grained software

34

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

entities that can be easily reused through their required and provided interfaces

[Birkmeier 2009].

To address this issue, numerous approaches have been presented, like

[Kebir 2012a] [Allier 2011] [Hasheminejad 2015]. Nevertheless these ones perform

the identi�cation by analyzing a single software product. As a result, the mined com-

ponents may be useless in other software products and consequently their reusability

is not guaranteed. In fact the probability of reusing a component in a new software

product is proportional to the number of software products that have already used

it [Sametinger 1997] [Gasparic 2014]. Thus mining software components based on

the analysis of a set of software products contributes to identify reusable compo-

nents. These components will be more useful (reusable) for the development of new

software products than those mined from singular ones. Nonetheless, this has not

been investigated in the literature (see Chapter 2).

In this chapter, we propose an approach that aims at mining reusable software

components from a set of similar object-oriented software product variants. The

main idea is to analyze the commonality and the variability of product variants, in

order to identify pieces of code that may form reusable components.

The rest of this chapter is organized as follows: in Section 3.2, we put in context

the problem of component identi�cation from product variants. It presents the

goal of the proposed approach and the problem analysis. Section 3.3.1 discusses

how potential components are extracted. In Section 3.3.2, Similar components are

identi�ed. Reusable components are recovered from the similar ones in Section

3.3.3. Section 3.4 presents how to structure the component interfaces. Section 3.5

shows the process of documenting the mined components. Our experimentation

is discussed in Section 3.6. Threats to validity are discussed in Section 3.7. A

conclusion of this chapter is presented in Section 3.8.

3.2 The Proposed Approach Foundations

3.2.1 The Goal: Object to Component

Our goal is to mine software components based on the analysis of object-

oriented software product variants. Based on [Szyperski 2002], [Lüer 2002] and

[Heineman 2001], a software component is considered as �a software element that

(a) can be composed without modi�cation, (b) can be distributed in an autonomous

way, (c) encapsulates the implementation of one or many closed functionalities, and

(d) adheres to a component model�[Kebir 2012a]. According to this de�nition, three

quality characteristics should be satis�ed by a component; Composability, Autonomy

and Speci�city.

In the context of our approach, the identi�cation1 of a component means iden-

tifying a cluster of object-oriented classes that can be considered as the implemen-

tation of this component. Thus we consider that a component can be identi�ed

1Component identi�cation is the �rst step of the migration process of object-to-component

3.2. The Proposed Approach Foundations 35

from a collection of classes that may belong to di�erent packages. Classes that

have direct links (e.g., method call, attribute access) with classes implementing

other components compose the interfaces of the component. Provided Interfaces of

a component are de�ned as a group of methods implemented by classes compos-

ing these interfaces. Required interfaces of a component are de�ned as a group of

methods invoked by the component and provided by other components. Figure 3.1

shows our object to component mapping model that is adhered from ROMANTIC

approach [Chardigny 2009] [Kebir 2012a] (see Section 2.4).

Figure 3.1: Object-to-component mapping model

3.2.2 Approach Principles and Process

The proposed approach aims at mining reusable software components from a collec-

tion of similar object-oriented software product variants. This is done by statically

analyzing the commonality and the variability between components composing the

products. Thus we identify components composing each product variant. Since

that an object-oriented class may contribute to implement di�erent functionalities

by participating with di�erent sets of object-oriented classes, we consider that any

set of classes could form a potential component if and only if it has an accepted qual-

ity function value, following such a component quality model. Due to the similarity

between the product variants, their potential components may provide similar func-

tionalities. Thus we identify similar components among all potential ones. Similar

components are those providing mostly the same functionalities and di�er compared

to few others. A group of similar components is considered as variants of one com-

ponent since that they provide mostly the same functionalities. Thus we extract

a common component from each group of similar components. This component

is considered as the most reusable one compared to the members of the analyzed

group. Only classes constituting the internal structures, i.e., the implementation,

36

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

of the reusable components are identi�ed. However a component is used based on

its provided and required interfaces. Thus we structure component interfaces; re-

quired and provided. The selection of a component to be reused is based on its

documentation. This means that software architects go through the component

documentation to decide if the component serve their needs. Thus we document the

mined components by describing the services that components provide.

Based on that, we propose the following process to identify reusable components

from a set of product variants (see Figure 3.2):

Identifying potential components: each software product is independently an-

alyzed to identify all potential components. These are identi�ed based on the

evaluation of their quality characteristics.

Identifying similar components: we identify similar components among all po-

tential ones. To this end, we cluster the components into groups based on the

lexical similarity among classes composing the components.

Reusable component mining from similar potential ones: we rely on the

similarity of each group of components to build a single component, which

will be representative of this group; this will be considered as a reusable com-

ponent. To this end, we rely on how the composing classes are distributed

between the components.

Identifying component interfaces: we structure component interfaces, provided

and required ones, based on the analysis of the dependencies between compo-

nents in order to identify how they interact with each other.

Documentation of components: we document the minded components by pro-

viding a description of the component functionalities.

3.3 Identifying Classes Composing Reusable Compo-

nents

3.3.1 Identifying Potential Components

We view a potential component as a set of object-oriented classes, where the corre-

sponding value of the quality �tness function is satisfactory (i.e., its quality value is

higher than a prede�ned quality threshold). Thus our analysis consists of extracting

any set of object-oriented classes that can be formed as a potential component. Such

that the overlapping between the components is allowed.

3.3.1.1 Potential Component Identi�cation Method

Identifying all potential components needs to investigate all subsets of classes that

can be formulated from the source code (i.e., brute force technique). Then, the

3.3. Identifying Classes Composing Reusable Components 37

Figure 3.2: The process of reusable components mining

ones that maximize the quality �tness function are selected2. Nevertheless, this is

considered as NP-hard problem since that the computation of all subsets requires

an exponential time complexity (O(2n)). Figure 3.3 presents the curve of the time

complexity. To this end, we propose a heuristic-based technique that aims at mining

a set of groups, such that these groups are good enough ones of the corresponding

optimal groups. We consider that classes composing a potential component are

gradually identi�ed starting from a core class that participates with other classes to

contribute functionalities. Thus each class of the analyzed software product can be

selected to be a core one. Classes having either direct or indirect link with it are

candidates to be added to the corresponding component.

3.3.1.2 Potential Component Identi�cation Algorithm

The selection of a class to be added at each step is decided based on the quality

function value obtained from the formed component. In other words, classes are

ranked based on the obtained value of the quality function when it is gathered to

the current group composing the component. The class obtaining the highest quality

value is selected to extend the current group. We do this until all candidate classes

are grouped into the component. The quality of the formed groups is evaluated at

each step, i.e., each time when a new class is added. We select the peak quality

value to decide which classes form the component. This means that we exclude

2We rely on the component quality model presented by ROMANTIC [Chardigny 2009]

[Kebir 2012a] (see Section 2.4.2).

38

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

Figure 3.3: The time complexity of brute force technique

classes added after the quality function reaches the peak value since they minimize

the quality of the mined component.

For example, in Figure 3.4, Class 7 and Class 8 are put aside from the group

of classes related to Component 2 because when they have been added the quality

of the component is decreased compared to the peak value. Thus classes retained

in the group are those maximizing the quality of the formed component. After

identifying all potential components of such a software product, the only ones re-

tained are components that their quality values are higher than a quality threshold

that is de�ned by software architects. For example, in Figure 3.4, suppose that the

prede�ned quality threshold value is 70%. Thus Component 1 does not reach the

required threshold. Therefore it should not be retained as a potential component.

This means that the starting core class is not suitable to form a component.

Algorithm 1 illustrates the process of potential component mining. In this al-

gorithm, Q refers to the quality �tness function and Q-threshold is a prede�ned

quality threshold.

3.3.2 Identifying Similar Components

We de�ne similar components as a set of components providing mostly the same

functionalities and di�ering in few ones. These can be considered as variants of the

same component.

3.3. Identifying Classes Composing Reusable Components 39

Figure 3.4: Forming potential components by incremental selection of classes

3.3.2.1 Similar Components Identi�cation Method

Product variants are usually developed using copy-paste-modify technique. Thus,

we consider that classes having similar names implement almost the same function-

alities. Even if some of the composed methods are overridden, added or deleted,

the main functionalities are still the same ones. Therefore the similarity, as well as

the di�erence, between components appears compared to their internal structures

composed of object-oriented classes. Thus similar components are those sharing the

majority of their classes and di�ering considering the other ones.

Groups of similar components are built based on a lexical similarity metric. Thus

components are identi�ed as similar compared to the strength of similarity links

between classes composing them. We use cosine similarity metric [Han 2006]. Fol-

lowing this metric each component is considered as a text document, which consists

of a list of component classes' names. The similarity between a set of components

is calculated based on the ration between the number of shared classes to the total

number of distinguished classes.

3.3.2.2 Similar Components Identi�cation Algorithm

We use a hierarchical clustering algorithm to gather similar components into groups.

The algorithm consists of two steps. The �rst one aims at building a binary tree,

called dendrogram. This dendrogram provides a set of candidate clusters by pre-

senting a hierarchical representation of component similarity. Figure 3.5 shows an

example of a dendrogram tree, where Ci refers to Componenti. The second step

40

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

Algorithm 1: Identifying Potential Components

Input: Object-Oriented Source Code(OO)

Output: A Set of Potential Components(PC)

classes = extractInformation(OO);

for each c in classes do
component = c;

candidateClasses = classes.getConnectedClasses(c);

bestComponent = component;

while (|candidateClasses| >= 1) do
c1 = getNearestClass(component, candidateClasses);

component = component + c1;

candidateClasses = candidateClasses - c1;

if Q(component)) > Q(bestComponent) then
bestComponent = component;

end

end

if Q(bestComponent) > Q− threshold then
PC = PC + bestComponent;

end

end

return PC

Algorithm 2: Building Dendrogram

Input: Potential Components(PC)

Output: Dendrogram Tree (dendrogram)

BinaryTree dendrogram = PC;

while (|dendrogram| > 1) do
c1, c2 = mostLexicallySimilarNodes(dendrogram);

c = newNode(c1, c2);

remove(c1, dendrogram);

remove(c2, dendrogram);

add(c, dendrogram);

end

return dendrogram

3.3. Identifying Classes Composing Reusable Components 41

Figure 3.5: An example of a dendrogram tree

aims at traveling through the built dendrogram, in order to extract the best clus-

ters, representing a partition.

To build a dendrogram, the algorithm starts by considering individual compo-

nents as initial leaf nodes in a binary tree. Next, the two most similar nodes are

grouped into a new one, i.e., as a parent of them. For example, in Figure 3.5, the C2

and C3 are grouped. This is continued until all nodes are grouped in the root of the

dendrogram. Algorithm 2 presents the procedure used to gather similar components

onto a dendrogram. It takes a set of potential components as an input. The result

of this algorithm is a hierarchical tree representation of candidate clusters.

To identify the best clusters, a depth �rst search algorithm is used to travel

through the dendrogram tree. It starts from the tree root to �nd the cut-o� points.

It compares the similarity of the current node with its children. If the current node

has a similarity value exceeding the average similarity value of its children, then

the cut-o� point is in the current node where the children minimize the quality

function value. Otherwise, the algorithm continues through its children. Algorithm

3 presents the procedure used to extract clusters of components from a dendrogram.

The results of this algorithm are clusters, where each one groups a set of similar

components.

3.3.3 Reusable Component Mining from Similar Potential Ones

As previously mentioned, similar components are considered as variants of a com-

mon one. Thus, from each cluster of similar components, we extract a common

component which is considered as the most reusable compared to the members of

the analyzed group.

42

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

Algorithm 3: Dendrogram Traversal

Input: Dendrogram Tree(dendrogram)

Output: A Set of Clusters of Potential Components(clusters)

Stack traversal;

traversal.push(dendrogram.getRoot());

while (! traversal.isEmpty()) do
Node father = traversal.pop();

Node left = dendrogram.getLeftSon(father);

Node right = dendrogram.getRightSon(father);

if similarity(father) > (similarity(left) + similarity(right) / 2) then
clusters.add(father)

else
traversal.push(left);

traversal.push(right);

end

end

return clusters

3.3.3.1 Method to Identify Reusable Component Based on Similar Ones

Classes composing similar components are classi�ed into two types. The �rst one

consists of classes that are shared by these components. We call these classes as

Shared classes. In Figure 3.6, C3, C4, C8 and C9 are examples of Shared classes.

The second type is composed of other classes that are diversi�ed between the com-

ponents. These are called as Non-Shared classes. C1, C2 and C10 are examples of

Non-Shared classes in the cluster presented in Figure 3.6.

Since that Shared classes are identi�ed in several products to be part of one com-

ponent, we consider that Shared classes form the core of the reusable component.

Thus C3, C4, C8 and C9 should be included in the component identi�ed from the

cluster presented in Figure 3.6. However, these classes may not form a correct com-

ponent following our quality measurement model. Thus some Non-Shared classes

need to be added to the reusable component, in order to keep the component quality

high. The selection of a Non-Shared class to be included in the component is based

on the following criteria:

• The quality of the component obtained by adding a Non-Shared class to the

core ones. This criterion aims at increasing the component quality. Therefore

classes maximizing the quality function value are more preferable to be added

to the component.

• The density of a Non-Shared class in a cluster of similar components. This

refers to the occurrence ratio of the class compared to the components of this

group. It is calculated based on the number of components including the class

to the total number of components composing the cluster. We consider that

3.3. Identifying Classes Composing Reusable Components 43

a class having a high density value contributes to build a reusable component

since it keep the component belonging to a larger number of products. For

example, in Figure 3.6, the densities of C2 and C1 are respectively 66% (2/3)

and 33% (1/3). Thus C2 is more preferable to be included in the compo-

nent than C1, since that C2 keeps the reusable component belonging to two

products, while C1 keeps it belonging only to one product.

Figure 3.6: An example of a cluster of similar components

3.3.3.2 Algorithm Providing Optimal Solution for Reusable Component

Identi�cation

Based on the method given in the previous section, an optimal solution which consid-

ers the two criteria of Non-Shared class selection can be given through the following

algorithm. First, for each cluster of similar components, we extract all candidate

subsets of classes among the set of Non-Shared ones. Then, the subsets that reach a

prede�ned density threshold are only selected. The density of a subset is the average

densities of all classes in this subset. Next, we evaluate the quality of the compo-

nent formed by grouping core classes with classes of each subset resulting from the

previous step. Thus the subset maximizing the quality value is grouped with the

core classes to form the reusable component. Only components with a quality value

higher than a prede�ned threshold are retained. Algorithm 4 shows this procedure,

such that Q refers to the component quality �tness function of ROMANTIC, Q-

threshold refers to the prede�ned quality threshold and D-threshold refers to the

prede�ned density threshold.

Nevertheless the above algorithm is NP-complete problem (i.e., the complexity

of identifying all subsets of a collection of classes is O(2n)). This means that the

computing time will be accepted only for components with a small number of Non-

Shared classes. This algorithm is not scalable for a large number of Non-Shared

44

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

classes. For example, 10 Non-Shared classes need 1024 computational operations,

while 20 classes need 1048576 computational operations.

Algorithm 4: Optimal Solution for Mining Reusable Components

Input: Clusters of Components(clusters)

Output: A Set of Reusable Components(RC)

for each cluster ∈ clusters do
shared = cluster.getFirstComponent().getClasses;

allClasses = ∅;
for each component ∈ cluster do

shared = shared ∩ component.getClasses();
allClasses = allClasses ∪ component.getClasses();

end

nonShared = allClasses− shared;
allSubsets = generateAllsubsets(nonShared);

reusableComponent = shared;

bestComp = reusableComponent;

for each subset ∈ allSubsets do
if Density(subset)> D − threshold then

if Q(reusableComponent ∪ subset)) > Q(bestComp) then

bestComp = reusableComponent ∪ subset;
end

end

end

if Q(bestComp) >= Q− threshold then
add(RC,bestComp);

end

end

return RC

3.3.3.3 Algorithm Providing Near-Optimal Solution for Reusable Com-

ponent Identi�cation

As a consequence of the complexity of the algorithm given in the previous section

(the optimal result algorithm), we de�ned an heuristic algorithm as an alternative.

This algorithm is as follows. First of all, Non-Shared classes are evaluated based

on their density. The Classes that do not reach a prede�ned density threshold are

rejected. Then, we identify the greater subset that reaches a prede�ned quality

threshold when it is added to the core classes. To identify the greater subset,

we consider the set composed of all Non-Shared classes as the initial one. This

subset is grouped with the core classes to form a component. If this component

reaches the prede�ned quality threshold, then it represents the reusable component.

Otherwise, we remove the Non-Shared class having the lesser quality value compared

3.4. Identifying Component Interfaces 45

to the quality of the component formed when this class is added to the core ones.

We do this until a component reaching the quality threshold or the subset of Non-

Shared classes becomes empty. Algorithm 5 shows the process of reusable component

mining, where Q refers to the component quality �tness function of ROMANTIC,

Q-threshold refers to the prede�ned quality threshold and D-threshold refers to the

prede�ned density threshold.

Algorithm 5: Near-Optimal Solution for Mining Reusable Components

Input: Clusters of Components(clusters)

Output: A Set of Reusable Components(RC)

for each cluster ∈ clusters do
shared = cluster.getFirstComponent().getClasses;

allClasses = ∅;
for each component ∈ cluster do

shared = shared ∩ component.getClasses();
allClasses = allClasses ∪ component.getClasses();

end

nonShared = allClasses− shared;
reusableComponent = shared;

for each class ∈ nonShared do
if Density(class)< D − threshold then

nonShared = nonShared - class;

end

end

while (|nonShare| > 0) do

if Q(reusableComponent ∪ nonShare) >= Q− threshold then
add(RC,reusableComponent);

break;
else

removeLessQualityClass(nonShare, shared);

end

end

end

return RC

3.4 Identifying Component Interfaces

A component is used based on its provided and required interfaces. For object-

oriented components, the interaction between the components is realized through

method calls. In other words, a component provides its services through a set of

methods that can be called by the other ones, which requires services of this com-

ponent. Thus provided interfaces are composed of a set of public methods that

are implemented by classes composing the component. In the other hand, required

46

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

interfaces are composed of methods that are used by the other components (i.e., the

provided interfaces of the other components). The identi�cation of component inter-

faces is based on grouping a set of object-oriented methods into a set of component

interfaces. We rely on the following heuristics to identify these interfaces:

Object-oriented interface: in object-oriented design, methods manipulating

functionalities of the same object family are implemented by the same object-

oriented interface. Thus we consider that a group of methods belonging to the

same object-oriented interface has a high probability to belong to the same

component interface. We propose a function, called SI (), that aims at mea-

suring how much a set of methods M belongs to the same interface. This

function returns the size of the greatest subset of M which consists of meth-

ods that belong to the same object oriented interface divided by the size of

M. Algorithm 6 shows the procedure of SI () function.

Method cohesion: methods access (read/write) the same set of attributes to par-

ticipate to provide the same services. Thus cohesive methods have more proba-

bility to belong the same component interface than those that are not. To mea-

sure how much a set of methods is cohesive, we use LCC metric [Bieman 1995]

since that it measures direct and indirect dependencies between methods.

Method lexical similarity: the lexical similarity of methods probably indicates

to similar implemented services. Therefore methods having a lexical similarity

likely belong to the same interface. To this end, we utilize Conceptual Coupling

metric [Poshyvanyk 2006] to measure methods lexical similarity based on the

semantic information obtained from the source code, encoded in identi�ers

and comments.

Correlation of usage: when a component provides services for another compo-

nent, it provides them through the same interface. Thus methods that have

got called together by the other components are likely to belong to the same

interface. To this end, we propose a function CU() which measures how much

a set of methods M has been called together by the same component. Algo-

rithm 7 shows the precedure of calculating the value of correlation of usage

for a set of methods.

According to these heuristics, we de�ne a �tness function used to measure the

quality of a group of methods M to form a component interface. Where λi are

weight values, situated in [0-1]. These are used by the architect to weight each

characteristic as needed.

Interface(M) =
1∑
i λi
·(λ1·SI(M)+λ2·LCC(M)+λ3·CS(M)+λ4·CU(M)) (3.1)

Based on this �tness function, we use a hierarchical clustering algorithm to par-

tition a set of public methods into a set of clusters, where each cluster is considered

as a component interface.

3.5. Documentation of Components 47

Algorithm 6: Same Object-Oriented Interface (SI)

Input: A Set of Methods(M), a Set of Object-Oriented Interfaces(OOI)

Output: Same Object-Oriented Interface Value (SI)

sizeGreatest = |M ∩OOI.getFirstInterface().getMethods()|;

for each interface ∈ OOI do
if |M ∩ interface.getMethods()| > sizeGreatest then

sizeGreatest = |M ∩ interface.getMethods()|;

end

end

SI = sizeGreatest / M.size();

return SI

Algorithm 7: Correlation of Usage (CU)

Input: A Set of Methods(M), a Set of Components(Com)

Output: Correlation of Usage Value(CU)

sizeGreatest = |M ∩ Com.getFirstComponent().getCalledMethods()|;

for each component ∈ Com do

if |M ∩ component.getCalledMethods()| > sizeGreatest then
sizeGreatest = |M ∩ interface.getCalledMethods()|;

end

end

CU = sizeGreatest / M.size();

return CU

3.5 Documentation of Components

The documentation of a component helps the developers to �nd a component that

meets their needs, instead of going through its implementation. The description of

the component functionalities forms an important part of its documentation. Thus

we propose to identify for each mined component its main functionalities. We do

this based on two steps: the identi�cation of the component functionalities and the

generation of a description for each of them. These steps are detailed below.

3.5.1 Identifying Component Functionalities

The identi�cation of functionalities provided by a component is based on partition-

ing the component into a set of sub-components. Such that each sub-component

provides a speci�c functionality. The partitioning is based on the following three

properties:

• Number of provided interfaces. Di�erent component interfaces may pro-

vide di�erent functionalities. Thus as much as the number of provided inter-

faces is increased, the number of functionalities is increased.

48

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

• Cohesion of classes. Classes providing the same functionalities must be

cohesive. Thus as much as a group of classes is cohesive, they are likely

participate to the same speci�c functionality.

• Classes coupling. Classes participating in the same functionality must have

a low coupling with other parts in the component.

These properties refer to the speci�city of a component de�ned by ROMANTIC

quality model. Thus, we use Equation 2.2 as a �tness function in a hierarchical clus-

tering algorithm, in order to decompose component classes into partitions, where

each one represents one of the functionality of the analyzed component. This func-

tion is as follows:

S(E) =
1

5
· (1

|I|
·
∑
i∈I

LCC(i)+LCC(I)+LCC(E)+Couple(E)+noPub(I)) (3.2)

3.5.2 Generation of the Functionality Description

In the previous step, the component classes are partitioned according to their func-

tionalities. In this step, we present how a description of each partition (i.e., func-

tionality) is generated. We consider that a description consists of words that are

frequently used to form class names of a partition. In object-oriented languages,

a class name is often composed of a set of nouns concatenated by the camel-case

notation. These nouns represent a meaningful name for the main purpose of the

class. Usually, the �rst noun in a class name holds the main goal of the class, and so

on. Accordingly, we propose the following three steps. Firstly, tokens are extracted

by separating the words which form the class names according to the camel-case

syntax. For example, MediaControllerAlbum is divided into Media, Controller and

Album). Secondly, a weight is a�ected to each extracted token. The tokens which

are the �rst word of a class name are given a large weight (100%). Other tokens are

given a small weight, such that 75% for the second word, 50% for the third word

and 25% for the fourth word. The weight of each token is calculated as follows:

Weight(w) =
1∑
iNi
· (1 ·N1 + 0.75 ·N2 + 0.50 ·N3 + 0.25 ·N4) (3.3)

Such that:

• W : refers to a word.

• Ni refers to the number of occurrence of the word W in the position i.

Lastly, we use tokens which have the highest weight to construct the functionality

description in an orderly manner. Meaning, the token that has the highest weight

will become the �rst word of the functionality description and so on. Software

architects de�ne the number of words as needed.

3.6. Experimental Results and Evaluation 49

3.6 Experimental Results and Evaluation

3.6.1 Data Collection

We collect two sets of product variants. These are Mobile Media 3 [Figueiredo 2008]

as a small-scale software, and ArgoUML 4 [Couto 2011] as a large-scale one. Mobile

Media variants manipulate music, video and photo on mobile phones. They were

developed starting from the core implementation of Mobile Media. Then, the other

features are added incrementally for each variant. Using the latest version, the user

can generate 200 variants. In our experimentation, we considered 8 variants, where

each variant contains 43.25 classes on average. ArgoUML [Couto 2011] is a UML

modeling tool. It is developed as a software product line. We applied our approach

on 9 variants, where each variant is generated by changing a set of the needed

features. Each variant contains 2198.11 classes on average.

3.6.2 Evaluation Method and Validation

The proposed approach is applied on the collected product variants. Firstly, we

extract a set of potential components from each product variant independently.

Then, we identify similar components among ones identi�ed from all products. This

is done by using a hierarchical clustering algorithm. Next, a reusable component

is identi�ed by analyzing each group of potential ones. In order to validate our

approach, we evaluate the reusability of components that are mined based on our

approach.

3.6.3 Results

3.6.3.1 Identifying Potential Components

In order to consider a group of classes forming a potential component, its quality

function value should exceed a prede�ned quality threshold. Indeed the selection of

this threshold e�ects on both the quality and the number of the mined components.

To help software architects selecting a proper threshold value, we assign the quality

threshold values situated in [0%, 100%]. We start from a value 0 and then it is

incremented by 5% at each run. The results obtained from Mobile Media and

ArgoUML are respectively shown in Figure 3.7 and Figure 3.8, where the value of

the threshold is on the X-axis, and the average number of the mined components in

a variant is on the Y-axis.

The results show that the number of the mind components is lower than the num-

ber of classes composing the products, for low threshold values. The reason behind

that is the fact that some of the investigated classes produce the same component.

For example, InvalidPhotoAlbumNameException and InvalidImageFormatException

produce the same component, when they are considered as the core for mining a

3Available at http://homepages.dcc.ufmg.br/ �gueiredo/spl/icse08
4Available at http://argouml-spl.tigris.org/

50

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

Figure 3.7: Changing threshold value to extract potential components from Mobile

Media

potential component. Moreover, the results show that the number of the mined com-

ponents is �xed as well as the quality threshold value is situated in [5%, 55%]. This

means that selecting a value in this interval do not represent good choice, since that

it does not make a distinction between components having diverse quality values.

In our study, to have a harmony between the number of potential components

and the number of classes composing the products, we assign 70% and 83% as

threshold values respectively for Mobile Media and ArgoUML case studies. Table

3.1 shows the detail results obtained based on these threshold values. It presents

the total number of potential components (TNOPC) mined based on the analysis of

all variants, the average number of classes (size) of these components (ASOC), the

average value of the speci�city characteristic (AS), the average value of the auton-

omy characteristic (AA) and the average value of the composability characteristic

(AC).

Figure 3.9 presents an example of a potential component extracted from Ar-

goUML. This component is identi�ed by considering GoClassToNavigableClass as

the core class. The quality �tness function reaches the peak value as well as the 18th

classes is added. Thus classes added after the 18th one are rejected since that they

should be belonged to other components and the dependencies with this component

should be realized by component interfaces.

3.6. Experimental Results and Evaluation 51

Figure 3.8: Changing threshold value to extract potential components from Ar-

goUML

Table 3.1: The results of potential components extraction
Family Name TNOPC ASOC AS AA AC

Mobile Media 24.50 6.45 0.56 0.71 0.83

ArgoUML 811 11.38 0.64 0.83 0.89

3.6.3.2 Identifying Similar Components

Table 3.2 presents the results of the process of grouping similar potential compo-

nents into clusters. For each case study, Table 3.2 shows the number of clusters

(NOC), the average number of components in the identi�ed clusters (ANOC), the

average number of Shared classes in these clusters (ANSC), the average value of the

speci�city characteristic (ASS), the average value of the autonomy characteristic

(AAS), and the average value of composability characteristic of the Shared classes

(ACS) in these clusters. The results show that product variants sharing a bunch

of similar components. For instance, each variant of Mobile Media has 24.5 com-

ponents in average. These components are grouped into 42 clusters. This means

that each variant shares 5.38 components with the other variants, in average. Thus

a reusable component can be identi�ed from these components. In the same way,

ArgoUML variants share 5.26 components. Table 3.3 shows an example of a cluster

of similar components identi�ed from ArgoUML case study, where X refers to that

a class is a member in the corresponding product variant. In this example, we note

that the components have 5 Shared classes. These classes have been identi�ed to be

52

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

Figure 3.9: An instance of a potential component extracted from ArgoUML

part of the same component in 9 variants of ArgoUML. Thus they can be considered

as core classes to form a reusable component that is reused in the 9 variants.

Table 3.2: The results of component clustering
Family Name NOC ANOC ANSC ASS AAS ACS

Mobile Media 42 5.38 5.04 0.59 0.71 0.89

ArgoUML 325 5.26 8.67 0.57 0.87 0.93

3.6.3.3 Reusable Component Mining from Similar Potential Ones

Table 3.4 summarizes the �nal set of reusable components mined using our approach.

Based on our experimentation, we assign 50% to the density threshold value. For

each product, we present the number of the mined components (NOMC), the average

component size (ACS), and the average value of the speci�city (AS), the autonomy

(AA), and the composability (AC) of the mined components. The results show that

some of the identi�ed clusters do not produce reusable components. For instance, in

Mobile Media, the 42 clusters produce only 39 components. This means that three

of the clusters are not able to form reusable components. The reason behind that is

one of the following two situations. The �rst one is that the selection of threshold

density causes to remove classes that are important to constitute the component, and

hence, the component was rejected because it did not exceed the quality threshold

value. The second one is that the produced component is already identi�ed from

3.6. Experimental Results and Evaluation 53

Table 3.3: An instance of a cluster of similar potential components
aaaaaaaaaaaaaaa
Class Name

Variant No.

1 2 3 4 5 6 7 8 9

StreamSource X X X X X

ArgoEventTypes X X X X X X X X X

JWindow X X X X X X X X X

TabFigTarget X X X X X X X X X

SortedListModel X X X X X

BooleanSelection2 X X X X

FileConstants X X X X X X X X X

OclAPIModelInterpreter X X X X X X X X X

another cluster, thus the component is removed to avoid the redundancy.

Table 3.4: The �nal set of mined components
Family Name NOC ACS AS AA AC

Mobile Media 39 5.61 0.58 0.74 0.90

ArgoUML 324 9.77 0.61 0.84 0.84

Table 3.5 shows examples of a set of reusable components that are mined based

on the analysis of Mobile Media. Where, DOF refers to the description of the

functionalities provided by the considered component, NOV refers to the number

of variants that contain the component, NOC represents the number of classes

that form the component. S, A and C respectively represent the speci�city, the

autonomy, and the composability of each component. As it is shown in Table 3.5,

the second component provides two functionalities, which are Add Constants Photo

Album, and Count Software Splash Down Screen. The former one deals with adding

a photo to an album. The letter is dedicated to the splash screen service.

Table 3.5: Some components
DOF NOV NOC S A C

New Constants Screen Album Image 6 6 0.59 0.75 0.94

Add Constants Photo Album
8 10 0.57 0.75 0.89

Count Software Splash Down Screen

Base Image Constants Album Screen Accessor List
6 9 0.67 0.50 0.85

Controller Image Interface Thread

3.6.4 Validation

In order to validate the reusability of components that are mined based on our

approach, we compare their reusability with ones that are mined from singular

54

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

Figure 3.10: The results of reusability validation of Mobile Media components

software. We consider that the reusability of a component is evaluated based on the

number of software products that the component can be reused in. For a collection

of software products, the reusability is calculated as the ratio between the number

of products that can reuse the component to the total number of products. A

component can be reused in a product if it provides functionalities required by the

product. In other words, we analyze the software functionalities, and then we check

if a component provides some of these functionalities. The functionalities required by

a product are identi�ed based on potential components extracted from the product.

To prove that our validation can be generalized for other independent product

variants, we depend on K-fold cross validation method [Han 2006]. In data mining,

it is widely used to validate the results of a mining model. The main idea is to

evaluate the model using an independent data set. Thus K-fold divides the data set

into two parts: train data, and test data. On the one hand, train data are used to

learn the mining model. On the other hand, test data are then used to validate the

mining model. To do so, K-fold divides the data set into K parts. The validation

is applied K times by considering K-1 parts as train data and the other one as test

data. After that, the validation result is the average of all K trails. Accordingly, we

validate our approach by dividing the product variants into K parts. Then, we only

mine components from the train variants (i.e., K-1 parts). Next, we validate the

reusability of these components in the test product variants. We evaluate the result

by assigning 2, 4 and 8 to the K at each run of the validation. The results obtained

from Mobile Media and ArgoUML case studies are respectively presented in Figure

3.10 and Figure 3.11. These results show that the reusability of the components

3.7. Threats to Validity 55

Figure 3.11: The results of reusability validation of ArgoUML components

which is mined from a collection of similar software is better than the reusability

of components which is mined from singular software. We note that the reusability

is decreased when the number of K is increased. The reason is that the number of

test variants is decreased. For example, there is only one test variant when K=8.

The slight di�erence between the reusability results comes from the nature of our

case studies, where these case studies are very similar. Consequently, the resulting

components are closely similar. In other words, there are many groups of similar

components containing exactly the same classes. This yields a reusable component

that is identical to cluster components. Therefore, the reusability has the same

value for all of these components. However, our approach remains outperforming

the traditional identi�cation approaches.

3.7 Threats to Validity

The presented approach is concerned by two types of threats to validity. These are

internal and external.

3.7.1 Threats to Internal Validity

There are �ve aspects to be considered regarding the internal validity. These are as

follows:

1. We select a static analysis technique to identify dependencies between the

56

Chapter 3. Mining Software Components from a Set of Similar

Object-Oriented Product Variants

classes. However this analysis a�ects our results by two axes. The �rst one

is that it does not address polymorphism and dynamic binding. However, in

object-oriented, the most important dependencies are realized through method

calls and access attributes. Thus the ignorance of polymorphism and dynamic

binding has not a high impact on the general results of our approach. The

second one is that it does not di�er from the used and unused source code.

This may provide a noise dependencies. However, this situation rarely exists

in the case of well designed and implemented software. In contrast, dynamic

analysis addresses all of these limitations. But the challenge with dynamic

analysis is to identify all use cases of software.

2. We consider that the variability between software products is at the class level.

This means that classes that have the same name should have almost the same

implementation. While in some situations, classes may have closely similar

names, but they are completely unrelated. However, in the case of product

variants that is developed by copy-paste-modify technique, the modi�cation

is mainly composed of method overriding, adding or deleting, but the main

functionalities are still the same ones. By the way, clone detection technique

can be used to improve the identi�cation of this similarity, which will be one

of our future extensions.

3. Forming a component by adding a Non-Shared class to the core ones may

cause a dead code (i.e., a piece of code which is executed but there is no need

for its result). However this does not have an impact of the reusability, and the

functionality as well, of the identi�ed components (the goal of the approach).

4. We use a cluster algorithm to group similar components. However this provides

a near optimal solution of the partitioning. Other grouping techniques may

provide more accurate solutions, such as search-based algorithms. This will

be a future extension of our approach.

5. Due to the lack of models that measure the reusability of object-oriented com-

ponents, we propose our own empirical measurement to validate the reusability

of the mined components. This can threat the reusability validation results.

3.7.2 Threats to External Validity

There are two aspects to be considered regarding the external validity. These are

as follows:

1. The approach is experimented via product variants that are implemented by

Java programming language. Since all object-oriented languages (e.g., C++

and C#) have the same structure (i.e., classes) as well as the same type of

dependencies (e.g., method calls and access attributes), they will provide the

same results, on average.

3.8. Conclusion 57

2. Only two case studies have been collected in the experimentation (Mobile

Media and ArgoUML). However these are used in several research papers that

address the problem of migrating products variants into software product line.

On average, the selected case studies obtained the same results. Thus these

results can be generalized for other similar case studies. By the way, the

approach needs to be validated with a large number of case studies. This will

be a logical extension of our work.

3.8 Conclusion

In this chapter, we have presented an approach that aims at mining software compo-

nents from a set of product variants. This is based on the analysis of the common-

ality and the variability between the products. The approach supposes that mining

component based on the analysis of a set of similar software products provides more

guarantee for the reusability of the mined components, compared to depending on

single software product. To this end, it �rstly identi�es a set of potential compo-

nents of each product. Then, similar components are identi�ed to extract reusable

components.

Our experimentation includes two case studies. The results show that the

reusability of components that have been mined using our approach is better than

the reusability of ones that have been mined based on the analysis of singular soft-

ware products.

Chapter 4

Mining Software Components

from Object-Oriented

APIs

Contents

4.1 Introduction and Problem Analysis 60

4.2 The Proposed Approach Foundations 61

4.2.1 Component Identi�cation . 61

4.2.2 API as Library of Components 61

4.2.3 Principles and Mapping Model 62

4.2.4 Identi�cation Process . 63

4.3 Identi�cation of Component Interfaces 65

4.3.1 Extracting Transactions of Usage 65

4.3.2 Mining Frequent Usage Patterns of Classes 66

4.3.3 Identifying Classes Composing Component Interfaces from

Frequent Usage Patterns . 70

4.4 API as Library of Components 71

4.4.1 Identifying Classes Composing Components 71

4.4.2 Organizing API as Layers of Components 73

4.5 Experimental Results and Evaluation 76

4.5.1 Experimentation Design . 76

4.5.2 Results . 77

4.5.3 Answering Research Questions 82

4.6 Discussion . 85

4.6.1 Component and Frequent Usage Pattern 85

4.6.2 Component Identi�cation: APIs VS Software Applications . . 85

4.7 Threats to Validity . 85

4.7.1 Threats to Internal Validity 85

4.7.2 Threats to External Validity 86

4.8 Conclusion . 87

60

Chapter 4. Mining Software Components from Object-Oriented

APIs

4.1 Introduction and Problem Analysis

I
n the case of object-oriented APIs, e.g., Standard Template Libraries in C++

or Java SDK, the functionalities are implemented as object-oriented classes.

It is well known that reusing and understanding large APIs, such as Java SDK

which contains more than 7.000 classes, is not an easy task [Ma 2006] [Uddin 2012].

On the other hand, classes of an API are used following speci�c usage patterns,

in order to provide services to software applications [Acharya 2007] [Wang 2013]

[Robillard 2013]. For example, in the android API, Activity, GroupView, Context,

LayoutIn�ater and View are the classes needed to create a simple activity which

contains an empty view [Google 2015]. Classes forming a speci�c usage pattern are

used to serve the same functionalities. Thus they are more favorable to be formed

as a component.

Existing component identi�cation approaches are designed to mine components

from software applications, such as [Mishra 2009], [Kebir 2012a] and [Allier 2011].

Dependencies between classes composing software applications are only realized via

structural and behavioral dependencies materialized in the source code. For exam-

ple, in the case of object-oriented applications, these dependencies are realized via

calls between methods, sharing types, etc.

Nevertheless reengineering object-oriented APIs into component-based ones has

not been considered in the literature. In this context, we distinguish two kinds of

dependencies that characterize their classes: source-code-based and usage-pattern-

based ones. On the one hand, source-code-based dependencies refer to structural

and behavioral dependencies (similar to software applications). On the other hand,

usage-pattern-based ones are those that are revealed only by reuse scenarios: some

classes need to be reused together , i.e., simultaneously, by software applications to

implement a service. For example, Activity, and Context should be used together, in

the android API, despite they are not structurally dependent. Usage-pattern-based

dependencies can be identi�ed by determining which classes are frequently used

together. Thus these classes are more favorable to be part of the implementation

of the same component. Starting from this observation, in this chapter, we propose

an approach that aims at reengineering object-oriented APIs into component-based

ones.

The rest of this chapter is organized as follows: Section 4.2 presents the foun-

dations of our approach. In Section 4.3, we present the identi�cation of component

interface classes. Section 4.4 presents how APIs are organized as component-based

libraries. Experimentation and results are discussed through three APIs in Sec-

tion 4.5. In Section 4.6 we discuss the di�erences between software components

and frequent usage patterns, and component identi�cation from APIs and software

applications. Threats to validity are discussed in Section 4.7. Finally, concluding

remarks are presented in Section 4.8.

4.2. The Proposed Approach Foundations 61

4.2 The Proposed Approach Foundations

The goal of our approach is at reengineering object-oriented APIs to component-

based ones. This is done through two directions. The �rst one is the identi�cation

of groups of classes that can be considered as the object-oriented implementation of

the API components. The second one is the identi�cation of how these components

can be organized as component-based APIs.

4.2.1 Component Identi�cation

We view a component as a group of API classes that provides coarse grained services

to clients of an API. The identi�cation of this group is based on two kinds of de-

pendencies; usage-pattern-based and source-code-based ones. Usage-pattern-based

is related to the way of how software applications have used the group of classes.

This refers to observations made based on the analysis of previous usages of APIs.

We consider that classes frequently used together are more favorable belonging to

a single or a few number of components. This is realized through Frequent Usage

Patterns (FUPs) that identify recurring patterns, composed of classes frequently

used together. Classes composing FUPs represent the gateways to access the API

services. Thus they are used to guide the identi�cation of classes composing the

provided interfaces of components. Classes composing a FUP may be related to

di�erent services that have been used together. Thus they can be mapped to be

a part of di�erent component interfaces. Classes of a component interface can be

very dependent on other classes that are not directly used by clients of the API.

These are identi�ed based on source-code-based dependencies. This means that the

component identi�cation process is driven by the identi�cation of its provided inter-

faces. To this end, the analysis of structural dependencies between classes is used to

identify classes forming the core of the component. This is used to form a quality-

centric component. This is achieved through the three quality characteristics that

should be satis�ed by the group of classes forming the component; Composability,

Autonomy and Speci�city. To this end we rely on the component quality model

presented by ROMANTIC [Kebir 2012a] (see Section 2.4.2).

4.2.2 API as Library of Components

We organize the API as layers of components. These layers describe how API com-

ponents are vertically and horizontally organized. We consider that each layer con-

tains components providing services to components of the layer above and requiring

services from components of the layer below.

Classes constituting an API can be categorized into two types. The �rst one

is classes that are directly reused by software applications. These represent the

implementation of accessible-services of the API (o�ered to software applications).

Thus components that are identi�ed corresponding to these classes constitute the

�rst layer of the API (i.e., the layer accessed by software applications). The second

one is classes representing the rest of API classes. Also, these can be divided into

62

Chapter 4. Mining Software Components from Object-Oriented

APIs

two categories. The �rst category comprises of classes providing services to the �rst

layer components. These represent the implementation of components constituting

the second layer. In the same manner, components composing the other layers are

identi�ed. Based on that, we organize component-based APIs as a set of layers

describing how their components are organized. Figure 4.1 shows our point of view

regarding the API organization.

Figure 4.1: Multi-layers component-based API

4.2.3 Principles and Mapping Model

Based on the observations made in the previous sub-sections, the proposed approach

can be summarized based on the the following principles:

• In object-oriented APIs, a component is identi�ed as a group of classes.

• To reengineer the entire object-oriented API into component-based one, each

class of the API is mapped to be part of at least one component. Each class

is mapped either as a class of the component interfaces or as a part of the

internal classes of the component.

• Classes frequently used together by software applications provide accessible-

user services of the API. Thus they are used to guide the identi�cation of

classes composing the provided interfaces of components. These are identi�ed

based on FUPs.

• As a FUP can be composed of classes providing multiple services, its classes

can be mapped to be a part of di�erent component interfaces.

4.2. The Proposed Approach Foundations 63

Figure 4.2: Mapping class to component through FUP

• A class of an API can be a part of several FUPs and can participate to im-

plement multiple services. Consequently, a class can be mapped into multiple

component interfaces.

• The identi�cation of classes forming the core of the components is driven by

the identi�cation of its provided interfaces.

• The analysis of structural dependencies between classes is used to identify

classes forming the core of the component.

• Classes that are not reused by software applications are used to structure

components of the API layers.

• In a component-based API, the components are vertically and horizontally or-

ganized in terms of layers based on the required and provided services between

the components.

Based on that, we propose a mapping model, shown in Figure 4.2, that maps

class-to-component through FUPs.

4.2.4 Identi�cation Process

We propose the following process to mine components from object-oriented APIs

(see Figure 4.3):

• Identi�cation of frequent usage patterns. FUPs are identi�ed by ana-

lyzing the interactions between the API and its application clients.

64

Chapter 4. Mining Software Components from Object-Oriented

APIs

Figure 4.3: The process of mining components from an object-oriented API

• Identi�cation of the interfaces of components. We partition the set of

classes of each FUP into subgroups, where each one is considered as related to

the provided interfaces of one component (c.f. Figure 4.4). The partitioning

is based on criteria related to structural dependencies, lexical similarity and

the frequency of simultaneous reuse.

• Identi�cation of internal classes of components driven by their pro-

vided interfaces. Classes forming the provided interfaces of a component

form the starting point for identifying the rest of the component classes. To

identify these classes we rely on the analysis of structural dependencies be-

tween classes in the API with those forming the interfaces. We check if these

classes are able to form a quality-centric component.

• Organizing API as Layers of Components. As each class of the API

must be a part of at least one component, we associate classes that do not

compose any of the already identi�ed components to new ones. Based on

that, we organize component-based APIs as a set of layers. This organization

is used-driven. The �rst layer is composed of components that are used by

the software clients, while the second layer is composed of components that

provide services used by components of the �rst layer, and so on. As a result,

the API is structured in N layers of components.

4.3. Identi�cation of Component Interfaces 65

Figure 4.4: From FUP to provided interfaces

4.3 Identi�cation of Component Interfaces

The identi�cation of classes forming an API component is driven by the identi-

�cation of classes composing the provided interfaces of this component. Classes

composing these interfaces are those directly accessed by the clients of the API.

Classes belonging to the same interface are those frequently used together. There-

fore they are identi�ed from frequent usage patterns. Classes of the API composing

frequent usage patterns are identi�ed based on the analysis of how API classes were

used by the API clients. API classes used together constitute transactions of usage.

4.3.1 Extracting Transactions of Usage

A transaction of usage is a set of interactions between an API and a client of this

API. These interactions consist of calling methods, accessing attributes, inheritance

or creating an instance object based on a class of the API. They are identi�ed by

statically analyzing the source code of the API and its clients. Transactions are

di�erent depending on the choice of API clients. Therefore the choice of the API

clients directly a�ects the type of the resulting patterns. A client can be considered

either a class, a group of classes or the whole software application. Figure 4.5

illiterates the types of transactions that can be identi�ed. On the �rst hand, if we

consider that a transaction corresponds to an application class, {C2, C5}, {C3},

{C5}, {C7} and {C7} are the set of transactions identi�ed for the �rst application.

On the second hand, if a transaction corresponds to a group of application classes,

{C2, C5, C3}, {C5, C7} and {C7} are the set of transactions extracted for the �rst

66

Chapter 4. Mining Software Components from Object-Oriented

APIs

application. On the other hand, if a transaction is identi�ed based on the whole

application, {C2, C5, C3, C7} is the one corresponding to the �rst application.

We consider that a group of classes related to the same application functionality

reuses API classes that are related to correlated functionalities. Thus we de�ne a

client as group of classes forming a functional component in software applications.

The idea behind that is to mine patterns related to functionalities composing the

applications. Thus, a transaction is a set of API classes that is used by classes

composing a client component. Figure 4.6 shows an example. To this end, we use

ROMANTIC approach to identify client components composing software applica-

tions. Algorithm 8 shows the process of transaction identi�cation. It starts by

partitioning each software client into components. Then, for each component, it

identi�es API classes that are reused by the component classes.

Figure 4.5: Client components using API

4.3.2 Mining Frequent Usage Patterns of Classes

In the previous step, the interactions of all client components with the API are

identi�ed as transactions. Based on these transactions, we identify FUPs. A FUP

is de�ned as a set of API classes that are frequently used together by client compo-

nents. A group of classes is considered as frequent pattern if it reaches a prede�ned

threshold of interestingness metric. This metric is known as Support. The Support

refers to the probability of �nding a set of API classes in the transactions. For

example, the value of 0.30 Support, means that 30% of all the transactions contain

4.3. Identi�cation of Component Interfaces 67

the target classes. The following equation refers to the Support:

S(E1, E2) = P (E1UE2) (4.1)

Where:

• E1, E2 are sets of items.

• S refers to the Support.

• P refers to the probability.

Figure 4.6: Client components using API

Algorithm 8: Identifying Transactions

Input: Source Code of a Set of Software Clients(Clients), API Source

Code(API)

Output: A Set of Transactions(trans)

for each client ∈ Clients do
components.add(ROMANTIC(client.sourceCode));

end

for each com ∈ components do
transaction = ∅;
for each class ∈ com do

transaction.add(class.getUsedClasses(API.sourceCode));

end

trans.add(transaction);

end

return trans

68

Chapter 4. Mining Software Components from Object-Oriented

APIs

4.3.2.1 FUPs Mining Algorithms: an Analysis

The identi�cation of groups of classes forming FUPs can be done based on several

algorithms. One of them is the Brute-Force algorithm [Han 2006] that identi�es all

possible groups of classes. Then, it prunes groups that do not reach the prede�ned

Support threshold value. However this algorithm is computationally prohibitive

since that the identi�cation of all groups, corresponding to N classes, needs 2N time

complexity [Han 2006]. Another algorithm is the Apriori algorithm that utilizes the

property of anti-monotone [Han 2006], which means that if a group of classes is

considered as infrequent, then all of its supersets must be infrequent as well. Thus

they do not need to be generated. However this algorithm still has to generate the

candidate groups of classes. For instance, suppose that we have 104 frequent groups

of classes of size 1, it requires to generate about 107 groups of size 2. Furthermore, it

needs to generate about 1030 groups of size 10. Thus this algorithm does not work in

the situation where low Support threshold values are selected [Han 2000]. Another

algorithm is the Frequent-Pattern Growth (FPGrowth) algorithm [Han 2000]. In

this algorithm, these is no need to produce the candidate groups. Instead, it uses a

divide-and-conquer technique to mine FUPs. It �rstly build a special data structure

called Frequent-Pattern tree (FP-tree). This tree is used to compress information

of class associations. Then, FPGrowth divides the FP-tree into a collection of

databases, such that each one is related to one frequent group of classes.

Table 4.1: An example of transactions composed of API classes
Transaction ID List of Classes

T1 C1, C2, C5

T2 C2, C4

T3 C2, C3

T4 C1, C2, C4

T5 C1, C3

T6 C2, C3

T7 C1, C3

T8 C1, C2, C3, C5

T9 C1, C2, C3

4.3.2.2 Frequent-Pattern Growth Algorithm

Among the presented algorithms, FPGrowth is the best one since that it outperforms

the others in terms of time and space complexity [Han 2006]. Thus we mine FUPs

based on the FPGrowth algorithm. To better understand how FPGrowth works, we

provide an illustrative example. In this example, we have 9 transactions presented

in Table 4.1. The algorithm starts by building the FP-tree corresponds to these

transactions. To this end, it �rstly scans the transactions to �nd the frequency of

each API class. In our example, the frequencies of C1, C2, C3, C4 and C5 are

4.3. Identi�cation of Component Interfaces 69

Table 4.2: Classes ordering inside the transactions
Transaction ID Ordered Classes

T1 C2, C1, C5

T2 C2, C4

T3 C2, C3

T4 C2, C1, C4

T5 C1, C3

T6 C2, C3

T7 C1, C3

T8 C2, C1, C3, C5

T9 C2, C1, C3

respectively 6, 7, 6, 2 and 2. Then, the classes are sorted in a descending order

according to their frequency values. That is C2, C1, C3, C4, C5. Next, The classes

inside the transactions are ordered according to their frequency values (see Table

4.2). Then, the tree is build based on the ordered transactions as follows: starting

from the root of the tree, which is labeled by a NULL value, each transaction is

added as a branch in the tree, such that the class which has the highest frequency

is �rstly added and so on. In the example, the order is C2, C1, C5 for the �rst

transaction. Whenever a branch shares a common pre�x with an already added

branch, we only increment the frequency of the shared nodes. Figure 4.7 explains

the process of building the FP-tree.

Based on the FP-tree, the algorithm extracts conditional pattern bases and a

conditional FP-tree for each frequent class. Conditional pattern bases consist of

the collection of paths that co-located with the su�x pattern, while the conditional

FP-trees are the subtrees that generate the pattern. For example, the conditional

pattern bases corresponding to C5 is {{C2:1, C1:1}, {C2:1, C1:1, C3: 1} }, thus

the conditional FP-tree is 〈C2 : 2, C1 : 2〉. Paths that do not reach the prede�ned

threshold value are rejected. For example, if the threshold is 2, the path 〈C2 :

2, C1 : 2, C31〉 is excluded since its frequency is 1. The set of FUPs identi�ed from

our example is {{C2, C1, C5}, {C2, C4}, {C2, C1, C3}, {C2, C1}}.

4.3.2.3 Less Commonly Used Classes

The use of the Supportmetric separates the classes of API into two groups according

to whether they belong to at least one FUP or not. Classes that do not belong to

any of the identi�ed FUPs are the less commonly used classes. As each API class

that belongs to a transaction is a class that has been accessed by the clients of the

API, therefore it must be a part of the classes composing the interfaces of at least

one component. We propose assigning each class of the less commonly used classes

to the pattern holding the maximum Support value when they are merged together.

70

Chapter 4. Mining Software Components from Object-Oriented

APIs

Figure 4.7: Identifying classes composing components

4.3.3 Identifying Classes Composing Component Interfaces from
Frequent Usage Patterns

We identify classes composing component interfaces from those composing FUPs.

Each FUP is partitioned into a set of groups, where each group represents a com-

ponent interface. Classes are grouped together according to three heuristics that

measure the probability of a set of classes to be a part of the same interface.

1. Frequency of simultaneous use: classes composing a FUP are di�erent

4.4. API as Library of Components 71

compared to their co-reused together by software applications. As much as

a collection of classes reused together, the probability of o�ering the same

services is higher. To this end, we rely on Support metric to measure the

association frequency of a set of classes.

2. Cohesion: a group of classes that accesses and shares the same data (e.g.,

attributes) is strongly related to the same services. Thus we consider that the

cohesion of a group of classes indicates to their connectivity. To this end, we

use LCC metric [Bieman 1995] to measure the cohesion of a set of classes. We

select LCC since it measures both direct and indirect dependencies between

the classes.

3. Lexical similarity: in most cases, classes of an API are well-documented (i.e.,

the identi�er names are meaningful). Thus their identi�er names indicate to

the o�ered services. Thus a group of classes having similar identi�er names

likely belongs to the same services. To this end, we utilize Conceptual Coupling

metric [Poshyvanyk 2006] to measure classes lexical similarity based on the

semantic information obtained from the source code, encoded in identi�ers

and comments..

Based on the above heuristics, we propose a �tness function, given below, mea-

suring the ability of a group of classes to form a component interface. This function

is used to partition each FUP into groups of classes using a hierarchical clustering

algorithm (see Algorithm 2 and Algorithm 3).

IQ(E) =
1∑
i λi
· (λ1 · LCC(E) + λ2 · CC(E) + λ3 · S(E)) (4.2)

Where:

• E is a set of object-oriented classes

• LCC(E) is the Cohesion of E

• CC(E) is Conceptual Coupling of E

• S(E) is the Support of E

• λ1, λ2, and λ3 are weight values, situated in [0-1]. These are used by the API

expert to weight each characteristic as needed.

4.4 API as Library of Components

4.4.1 Identifying Classes Composing Components

As we mentioned before, the component identi�cation process is driven by the identi-

�cation of its provided interfaces. This means that API classes forming a component

72

Chapter 4. Mining Software Components from Object-Oriented

APIs

Algorithm 9: Identifying classes composing components

Input: Sets of Provided Interface Classes(interfaces), API Source

Code(API)

Output: A Set of Components(components)

for each inter in interfaces do
comp = inter.getClasses();

bestComp = comp;

searchSpace = API.getConnectedClasses(inter);

while (|searchClasses| > 1) do
c = Q.getMaximizeClass(searchSpace, comp);

searchSpace.remove(c);

comp = comp ∪ c;
if Q(comp)) > Q(bestComp) then

bestComp = comp;

end

end

components.add(bestComp);

end

return components

are identi�ed in relation to their structural dependencies with the classes forming

provided interfaces of the component. Thus classes having either direct or indirect

links with the interface ones compose the search space of classes that may be added

to the component. The selection of a group of classes, from the search space, is

based on the measurement of the quality of the component, when they are included.

To identify the best group of classes, we need to investigate all subsets of can-

didate classes. Then, the set that maximizes the component quality is selected.

However this requires an exponential time complexity to identify all subsets (i.e.,

NP-hard problem). Thus we present a heuristic-based technique that identi�es a

good enough group of classes of the corresponding optimal group.

The identi�cation of these classes is done gradually. In other words, we start to

form the group of classes composing the interface ones, and then we add other classes

to form a component based on the component quality measurement model. Classes

having either direct or indirect links with the interface ones represent the candidate

classes to be added to the component. At each step, we add a new API class. This

is selected based on the quality value of the component, formed by adding this class

to the ones already selected. The class that maximizes the quality value is selected

in this step. This is done until all search space classes are investigated.

Each time we add a class, we evaluate the component quality. Then, we select

the peak quality value to decide which classes form the component. This means

that we exclude classes added after the peak value. As an example, Class7 and

Class8 in Figure 4.8 are excluded from the resulting component because they were

added after the quality value reached the peak. Algorithm 9 illustrates the process

4.4. API as Library of Components 73

Figure 4.8: Identifying classes composing components

of identi�cation of classes composing a component. In this algorithm, Q refers to

the quality �tness function.

4.4.2 Organizing API as Layers of Components

4.4.2.1 Problem Analysis

As we previously mentioned, the API is structured in N layers of components. To

identify components of layer L, we rely on components of layer L− 1. We proceed

similarly to the identi�cation of the components of the �rst layer. We use required

interfaces of the components already identi�ed in layer L − 1 to identify the in-

terfaces provided by components in layer L. This continues until reaching a layer

where its components either do not require any interface or they require ones already

identi�ed. Figure 4.9 shows an example that illustrates how the components com-

posing each layer are identi�ed, where Figure 4.9.a presents an object oriented API,

Figure 4.9.b shows how the �rst layer components are identi�ed, Figure 4.9.c ex-

plains the second layer component identi�cation and Figure 4.9.d shows the resulted

component-based API.

4.4.2.2 Identi�cation Algorithm

Each interface that is de�ned as a required for a component of layer L−1 is consid-

ered as a provided by a component of layer L except ones provided by the already

74

Chapter 4. Mining Software Components from Object-Oriented

APIs

Figure 4.9: Identifying component-based API as layers of components

4.4. API as Library of Components 75

identi�ed components. The identi�cation of these interfaces is similar to the iden-

ti�cation of provided interfaces of the �rst layer. Thus we consider that each com-

ponent (already identi�ed) in layer L− 1 is a client of the rest of API classes. This

means that we collect a set of transactions, such that each transaction composes of

classes that have got accessed by a component in layer L − 1. These transactions

are used to identify FUPs based on FP-Growth algorithm. Similar to the �rst layer,

each FUP is divided into groups of classes composing provided interfaces of com-

ponents in layer L. The partitioning is based on the (i) the cohesion of classes, (ii)

the lexical similarity of these classes and (iii) the frequency of their simultaneous

use. Analogously to the identi�cation of the components of the �rst layer, the other

classes composing each component are identi�ed starting from classes composed of

its already identi�ed provided interfaces. Algorithm 10 shows the procedure that

identi�es component-based API as a set of layers composing of components.

Algorithm 10: Organizing API as Layers of Components

Input: Source Code of a Set of Application Clients(AppClients), API

Source Code(API)

Output: Component-Based API as Layers of Components(CB −API)
clients = AppClients;

layerIndex = 1;

while (|API| > 1) do
transactons = extractTransactions(clients, API);

FUPs = FPGrowth(transactons, SupportThreshold);

for each pattern ∈ FUPs do
.IQ refers to Equation 4.2

ProvideInterfaces = ProvideInterfaces∪clustering(pattern, IQ);
end

.Identifying classes composing components

components = Algorithm9(providedInterfaces,API);

CB −API.addLayer(layerIndex, components);
layerIndex = layerIndex + 1;

API = API - components.getClasses();

clients = components;
end

return CB −API

76

Chapter 4. Mining Software Components from Object-Oriented

APIs

4.5 Experimental Results and Evaluation

4.5.1 Experimentation Design

4.5.1.1 Data Collection

We collected a set of 100Android−Java applications from open-source repositories1.

The average size of these applications in terms of number of classes is 90. Table 4.3

presents the names of the applications. These applications are developed based on

classes of the android APIs2. In our experimentation, we focus on three of these

APIs. The �rst one is the android.view composed of 491 classes. This API provides

services related to the de�nition and management of the user interfaces in android

applications. The second API is the android.app composed of 361 classes. This

API provides services related to creating and managing android applications. The

last API is the android that composes of 5790 classes. This API includes all of the

android services.

Table 4.3: The name of the android applications
ADW Launcher APV ARMarker ARviewer Alerts

Alogcat AndorsTrail AndroMaze AndroidomaticKeyer AppsOrganizer

AripucaTracker AsciiCam Asqare AugmentRealityFW AussieWeatherRadar

AutoAnswer Avare BansheeRemote BiSMoClient BigPlanetTracks

BinauralBeats Blokish BostonBusMap CH-EtherDroid CVox

CalendarPicker CamTimer ChanImageBrowser CidrCalculator ColorPicker

CompareMyDinner ConnectBot CorporateAddressBook Countdown CountdownTimer

CrossWord CustomMaps DIYgenomics Dazzle Dialer2

DiskUsage DistLibrary Dolphin Doom DriSMo

DroidLife DroidStack Droidar ExchangeOWA FeedGoal

FileManager FloatingImage Gcstar GeekList GetARobotVPNFrontend

GlTron GoHome GoogleMapsSupport GraphView HeartSong

Hermit Historify Holoken HotDeath Introspy

LegoMindstroms Lexic LibVoyager LiveMusic LocaleBridge

Look LookSocial MAME4droid Macnos Mandelbrot

Mathdoku MediaPlayer Ministocks MotionDetection NGNStack

NewspaperPuzzles OnMyWay OpenIntents OpenMap OpenSudoku

Pedometer Phoenix PhotSpot Prey PubkeyGenerator

PwdHash QueueMan RateBeerMobile AlienbloodBath SuperGenPass

SwallowCatcher Swiftp Tumblife VectorPinball WordSearch

4.5.1.2 Research Questions and Evaluation Method

The approach is evaluated on the collected software applications and APIs. We

identify client components independently for each software application. Each com-

ponent in software is considered as a client of the APIs to form a transaction of

classes. Then, we mine Frequent Usage Patterns (FUPs) from the identi�ed trans-

actions. Next, from classes composing each FUP, we identify classes composing a

set of component interfaces. Then, we identify all component classes starting from

1sourceforge.net, code.google.com, github.com, gitorious.org, and aopensource.com
2We select android API level 14 as a reference

4.5. Experimental Results and Evaluation 77

ones composing their interfaces. Lastly, the �nal results obtained by our approach

are presented.

We evaluate the obtained components by answering the three following research

questions.

• RQ1: Does the Approach Reduce the Understandability E�orts?

This research question aims at measuring the saved e�orts in the API un-

derstandability that are brought by migrating object-oriented APIs into

component-based ones.

• RQ2: Are the Mined Components Reusable? As our approach aims

at mining reusable components, we evaluate the reusability of the resulted

component. This is based on measuring how much related classes are grouped

into the same components.

• RQ3: Is the Identi�cation of Provided Interfaces Based on FUPs

Useful? The proposed approach identi�es the provided interfaces of the com-

ponents based on how clients have used the API classes (i.e., FUPs). Thus,

this research question evaluates how much bene�t the use of FUPs brings

by comparing components identi�ed by our approach with the ones identi�ed

without taking FUPs into account.

4.5.2 Results

4.5.2.1 Extracting Transactions of Usage

The average number of client components identi�ed from each software is 4.5 and

the average number of classes composing each component is 18.73. Table 4.4 shows

the average number of transactions per software application (ANTIC), the average

transaction size in terms of classes (ATS), and the percentage of components that

have used the API (PCU). The last column of this table shows an example of

transactions.

The results show that android, view, and app APIs have been used respectively

by only 54%, 29% and 32% of client components. In addition, we note that each

client component has used the API classes intensively compared to the number of

classes composing it. For example, the transaction size is 17.91 classes for the view

API, where the average number of classes per component is 18.73. This is due

to the fact that classes that serve the same services in software applications, and

consequently depend on the same API classes, are grouped together in the same

client component.

4.5.2.2 Mining Frequent Usage Patterns of Classes

The identi�cation of FUPs relies on the value of the Support threshold. The number

and the size of the mined FUPs depend on this value. For all application domains

where FUPs are used (e.g., data mining), this value is determined by domain experts.

78

Chapter 4. Mining Software Components from Object-Oriented

APIs

Figure 4.10: Changing the support threshold value to mine FUPs in android API

Table 4.4: The Identi�cation of Transactions
API ANTIC ATS PCU Example

android 2.61 64.82 0.54 Bitmap, Path, Log, Activity, Location, Can-

vas, Paint, ViewGroup, MotionEvent, View,

TextView, GestureDetector

view 1.51 17.91 0.29 MenuItem, Menu, View, ContextMenu, Window-

Manager, MenuIn�ater, Display, LayoutIn�ater

app 1.58 10.90 0.32 ProgressDialog, Dialog, AlertDialog, Activity,

ActionBar, Builder, ListActivity

In our approach, to help API experts to determine this value, we assign the Support

threshold values situated in [30%-100%]. We give for each Support value the number

of the mined FUPs and the average size of the mined FUPs for each API. Figure

4.10, Figure 4.11 and Figure 4.12 respectively refer to the results of the android,

the view and the app APIs. The results show that the number of mined FUPs is

directly proportional to the Support value, while the average size of the mined FUPs

is inversely proportional.

Based on their knowledge of the API, API experts can select the value of the

Support. For example, if the known average number of API classes used together

4.5. Experimental Results and Evaluation 79

Figure 4.11: Changing the support threshold value to mine FUPs in view API

to implement an application service is N , then the experts can choose the Support

value corresponding to FUPs having N as the average size. Based on the obtained

results and our knowledge on android APIs, we select the Support threshold values

as 60%, 45%, and 45% respectively for the android, the view and the app APIs.

Table 4.5 shows examples of the mined FUPs. For instance, the FUP related to

view API contains 10 classes. The analysis of this FUP shows that it corresponds

to three services: animation (Animation and AnimationUtils classes), view (Sur-

face, SurfaceView, SurfaceHolder, MeasureSpec, ViewManager and MenuIn�ater

classes), and persistence of the view states (AbsSavedState and AccessibilityRecord

classes). These services are dependent. Animation service needs the view service

and the data of animation view needs to be persistent.

4.5.2.3 Identifying Classes Composing Component Interfaces from Fre-

quent Usage Patterns

In Table 4.6, we present the results of interface identi�cation in terms of the aver-

age number of component interfaces identi�ed from a FUP (ANCIP), the average

number of classes composing component interfaces (ACIS) and the total number

of component interfaces in the API (TNCI). The last column of this table presents

examples of component interfaces identi�ed from the FUPs given in Table 4.5.

The results show that FUPs contain classes corresponding to a di�erent set of

80

Chapter 4. Mining Software Components from Object-Oriented

APIs

Figure 4.12: Changing the support threshold value to mine FUPs in app API

Table 4.5: Examples of the Mined FUPs

API Example

android Intent, Context, Log, SharedPreferences, View, TextView, Toast,

Activity, Resources

view Surface, Animation, AnimationUtils, AccessibilityRecord, View-

Manager, MenuIn�ater, AbsSavedState, SurfaceView, Surface-

Holder, MeasureSpec

app Dialog, Activity, ProgressDialog

services. In average, each FUP is divided into 1.57, 2.17 and 2.5 services, such that

each service is provided by 5.62, 2.94 and 4 classes respectively for android, view

and app APIs. Figure 4.13 shows an instance of partitioning a FUP into component

interfaces from view API. The analysis of classes composing the identi�ed compo-

nent interfaces shows that they are related to three services; animation, view and

persistent of the view states.

4.5.2.4 Identifying Classes Composing Components

Table 4.7 presents the results related to the mined components composing the �rst

API layer. For each API, we give the number of the mined components (NMC)

4.5. Experimental Results and Evaluation 81

Figure 4.13: An instance of partitioning a FUP into component interfaces from view

API

Table 4.6: Identi�cation of Component Interfaces from FUPs
API ANCIP ACIS TNCI Example

android 1.57 5.62 232 Activity, View, TextView, Toast

view 2.17 2.94 19 Surface, SurfaceView, SurfaceHolder

app 2.50 4 10 Dialog, ProgressDialog

and the average number of classes composing the mined components (ACS). The

last column of this table shows examples of classes composing components identi�ed

started from classes composing provided component interfaces presented in Table

4.6. The results show that the services o�ered by classes of android, view and app

APIs are identi�ed as 232, 19 and 10 components respectively. This means that

developers only require to interact with these components to get the needed services

from these APIs.

4.5.2.5 Final Results

Table 4.8 shows the �nal results obtained by our approach. For each API, we �rstly

give the size of the API in terms of the number of object-oriented classes composing

the API and the number of the identi�ed components. Secondly, we present the

total number of used entities (classes and respectively components) by the software

clients. The results show that classes participating in providing related services

are grouped into one component. Furthermore, the total number of cohesive and

82

Chapter 4. Mining Software Components from Object-Oriented

APIs

Table 4.7: Identifying Classes Composing Components
API NMC ACS Example

android 232 19.99 Activity, View, TextView, Toast, Drawable, GroupView,

Window, Context, ColorStateList, LayoutIn�ater

view 19 7.49 Surface,SurfaceView, SurfaceHolder, MockView, Dis-

play, CallBack

app 10 5.86 Dialog, ProgressDialog, AlertDialog

decoupled services is identi�ed for each API. For instance, android API consists of

497 components (coarse-grained services), while view and app APIs contain 43 and

55 components respectively.

Table 4.8: The Final Results
API Name API Entity API size No. of used Entities

android
object− oriented 5790 491

CB 497 54

view
object− oriented 491 42

CB 43 17

app
object− oriented 361 45

CB 55 5

4.5.3 Answering Research Questions

4.5.3.1 RQ1: Does the Approach Reduce the Understandability E�orts?

The e�orts spent to understand such an API is directly proportional to the com-

plexity of the API. This complexity is related to the number of API elements and

the individual element's complexity. On the one hand, the reduction in the num-

ber of elements composing the API is obtained by grouping classes collaborating to

provide one coarse-grained service into one component. The results show that the

average number of identi�ed components for the studied APIs is 11% (((497/5790)

+ (43/491) + (55/361)) /3) of the number of classes composing the APIs. This

means that the API size is signi�cantly reduced by mapping class-to-component.

On the other hand, the reduction in the individual element complexity is done by

migrating object-oriented APIs into component-based ones. Meaning, components

de�ne their required and provided interfaces, while object-oriented classes at least

do not de�ne required interfaces (e.g., a class may call a large number of methods

belonging to a set of classes without an explicit speci�cation of these dependencies).

The results show that the average number of used components for the APIs is 4%

(((54/491) + (17/42) + (5/45)) /3) of the number of used classes. This means

that the e�ort spent to understand API entities is signi�cantly reduced in the case

of software applications developed based on API components compared to the de-

velopment based on API classes. Note that, developers only need to understand the

4.5. Experimental Results and Evaluation 83

component interfaces, but not the whole component implementation.

Figure 4.14: Reusability validation results

4.5.3.2 RQ2: Are the Mined Components Reusable?

We consider that the reusability of a software component is related to the number of

used classes among all ones composing the software component. Thus, we calculate

the reusability of the component based on the ratio between the numbers of used

classes composing the component to the total number of classes composing the

component. To prove that our resulted component-based APIs could be generalized

to another independent set of client applications, we rely onK−fold cross validation
method [Han 2006]. The main idea is to evaluate the model using an independent

client applications. Thus K-fold divides the set of client applications into K parts.

Then, the identi�cation process is applied K times by considering, each time, K−1

di�erent parts for the identi�cation process and by using the remaining part to

measure the reusability. Next, we take the average of all K trial results. In our

experiment, we set K to 2, 4, and 8.

Figure 4.14 presents the results of this measurement. These results show that

the reusability results is distributed in a disparate manner. The reason behind this

disputation is the size of the train and test data as well as the size of the API. For

instance, the average reusability for the app API is 37% when the number of train

clients is 50 application clients, while it is 51% when the number of train clients is

88 application clients. Thus, the reusability of the components increases when the

number of train client applications increases. The results show that our approach

84

Chapter 4. Mining Software Components from Object-Oriented

APIs

identi�es reusable components, where the average reusability for all APIs is 47%.

Figure 4.15: Density validation results

4.5.3.3 RQ3: Is the Identi�cation of Provided Interfaces Based on FUPs

Useful?

To prove the utility of using FUPs during the identi�cation process, we compare

the components mined based on our approach with ones mined using ROMANTIC

approach, which does not take FUPs into consideration. This is based on the density

of using the component provided interfaces by application clients. The density refers

to the ratio between the number of used interface classes to the total number of

interface classes for each component. Figure 4.15 shows the average density for the

two identi�cation approaches. These results show that our approach outperforms

ROMANTIC approach. For instance, the application clients need to reuse a larger

number of components of ones mined based on ROMANTIC with less density of

provided interface classes compared to component mined based on our approach.

For instance, the average usage density of classes composing provided interfaces

of ROMANTIC components is 21%, while it is 61% for components mined by our

approach for all APIs.

4.6. Discussion 85

4.6 Discussion

4.6.1 Component and Frequent Usage Pattern

FUPs and components serve the reuse needs in two di�erent ways. Components

are entities that can be directly reused and integrated into software applications,

while FUPs are guides for reuse and not entities for reuse. In addition, components

and FUPs are structurally di�erent. Related to Speci�city characteristic, classes

composing a component serve a coherent body of services, while classes composing

a FUP may be related to di�erent services. Concerning Autonomy characteristic,

dependencies of component's classes are mostly internal, which forms an autonomous

entity. FUP's classes can be very dependent on other classes that are not directly

used by clients of APIs. Concerning Composability characteristic, a component is

structured and reused via interfaces, while FUPs are not directly reusable entities.

4.6.2 Component Identi�cation: APIs VS Software Applications

Classes of APIs are reused by developers to develop their own software applications.

However, a software application o�ers services that can be used directly to meet

the needs of end-users. In addition, APIs and software applications are di�erent

compared to relationships between the classes that compose them. Classes com-

posing software applications are structural and behavioral dependent to provide the

expected services. For APIs, two kinds of relationships characterize their classes.

On the one hand, some classes are structural and behavioral dependent, to provide

reusable services for software applications. On the other hand, some classes need

to be reused together, i.e., simultaneously, by software applications to implement

end-user services (e.g., JFrame and Layout classes in java.swing API).

Dependencies between classes composing object-oriented applications have been

exploited by approaches that aim to identify components from object-oriented ap-

plications. In an analogous manner, we rely on relationships between API classes

to identify components. This is based on both the analysis of the structural and

behavioral dependencies between classes and the frequency of simultaneous reuse of

these classes by clients of APIs.

4.7 Threats to Validity

Two types of threats to validity concern the proposed approach. These are internal

and external.

4.7.1 Threats to Internal Validity

There are �ve aspects to be considered regarding the internal validity. These are as

follows:

1. The validation of the understandability, respectively the reusability, of the

resulted component-based APIs is not directly measured. On the �rst hand,

86

Chapter 4. Mining Software Components from Object-Oriented

APIs

the understandability is measured through the complexity of the resulted API,

while in some cases a complex API can be understandable if it is well doc-

umented. However, for the same API, the understandability of a complex

version is worse than the understandability of a less complex one, even if both

versions are already documented.

On the other hand, the reusability is measured based on the number of used

classes among the ones composing the components. Although the reusability

of components needs to be measured based on their interfaces, this provides

an indication of how the component interfaces will be reused by the future

software clients.

2. We use FPGrowth algorithm to mine FUPs. Nevertheless this algorithm has a

limitation of ignoring classes that their patterns' support values do not reach

the support threshold (i.e., less commonly used classes). Thus some of API

classes may not be presented by a FUP. However we attach each class of them

to a FUP holding the maximum support value when it is added. By doing this,

we guarantee that each API class that have reused by software applications is

attached to at least one FUP.

3. As our approach is used-driven, the results depend on the quality and the

number of usages of the API. This means that identi�ed FUPs rely on the

considered software clients. Therefore the identi�cation of provided interfaces

and then their corresponding components depends on API clients. Conse-

quently it is essential to select clients having the largest number of usages of

the API.

4. In the case of facing a NP-hard problem, we rely on heuristic algorithms in-

stead of optimal algorithms. Therefore this a�ects the accuracy of the results.

However these heuristics guarantee good enough solutions, such as clustering

algorithms.

5. Similar to the approach presented in Chapter 3, we rely on the static analysis

to identify dependencies between the classes (please refer to the �rst point of

Section 3.7.1).

4.7.2 Threats to External Validity

There are two aspects to be considered regarding the external validity. These are

as follows:

1. The presented approach is experimented via APIs that are implemented by

Android programming language. However the obtained results can be gener-

alized for any object-oriented API. The reason behind this generalization is

the fact that all object-oriented languages (e.g., C++ and C#) are structured

in terms of classes and their relationships are realized through method calls,

access attributes, etc.

4.8. Conclusion 87

2. The way that API classes are reused together may strongly depend on the

choice of the subject software applications, i.e., di�erent software applications

may use API classes following di�erent patterns, ending up in di�erent compo-

nents. To prove that our resulted component-based APIs could be generalized

to another independent set of software applications, we rely on K−fold cross
validation method. The cross validation presents whether components identi-

�ed on n-K software applications can be reused by K software applications.

4.8 Conclusion

In this chapter, we presented an approach aims at mining software components from

object-oriented APIs. This is based on static analysis of the source code of both the

APIs and their software clients, in order to analyze the way that the software clients

have used the API classes. The component identi�cation process is used-driven.

This means that components are identi�ed starting from classes composing their

interfaces. Classes composing the provided interface of the �rst layer components

compose FUPs. Then, the API is organized by a set of layers, where each layer

composes of components providing services to the others composing the above layer,

and so on.

To validate the presented approach, we experimented it by applying on a set

of open source Java applications as clients for three android APIs. The validation

is done through three research questions. The �rst one is related to the reusabil-

ity, while the second indicates to the understandability. The results show that our

approach improves the reusability and the understandability of the API. The last

research question aims at comparing our approach with a traditional component

identi�cation approach. The results prove that our approach outperforms the tra-

ditional one.

Chapter 5

Recovering Software Architecture

of a Set of Similar

Object-Oriented Product Variants

Contents

5.1 Introduction . 90

5.2 Background . 91

5.2.1 Software Variability . 91

5.2.2 Formal Concept Analysis . 91

5.3 Architecture Variability Analysis 93

5.4 Architecture Variability Recovery Process 94

5.5 Identifying the Architecture Variability 95

5.5.1 Identifying Component Variants 95

5.5.2 Identifying Con�guration Variability 98

5.6 Identifying Architecture Dependencies 100

5.6.1 Identi�cation of Dependencies Related to Feature Variability 101

5.6.2 Identi�cation of Dependencies Related to Optional Component

Distribution . 104

5.7 Identi�cation of Groups of Variability 104

5.8 Experimental Results and Evaluation 105

5.8.1 Experimentation Design . 105

5.8.2 Results . 107

5.8.3 Answering Research Questions 114

5.9 Threats to Validity . 116

5.9.1 Threats to Internal Validity 116

5.9.2 Threats to External Validity 117

5.10 Conclusion . 117

90

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

5.1 Introduction

S
oftware Product Line Architecture (SPLA) does not only describe the system

structure at a high level of abstraction, but also describes the variability of a

SPL by capturing the variability of architecture elements [Pohl 2005a]. This is done

by (i) describing how components can be con�gured to form a concrete architecture,

(ii) describing shared components and (iii) describing individual architecture char-

acteristics of each product.

However, developing a SPLA from scratch is a highly costly task [Clements 2002,

Pohl 2005a]. Otherwise, SPLA can be recovered based on the analysis of existing

software product variants. This is done through the exploitation of the common-

ality and the variability across the source code of product variants, and thus the

extraction of the architecture of each software product and the variability between

them. As it is mentioned in the state-of-the-art chapter, there are few approaches

that recover SPLA from a set of product variants. However these approaches suf-

fer from two main limitations. The �rst one is that the architecture variability

is partially addressed since they recover only some variability aspects, no one re-

covers the whole SPLA. For example, [Koschke 2009, Frenzel 2007] do not identify

dependencies among the architectural elements. The second one is that they are

not fully-automatic since they rely on the domain knowledge which is not always

available, such as [Pinzger 2004] and [Kang 2005].

To address this limitation, we propose, in this chapter, an approach that au-

tomatically recovers the architecture of a set of software product variants. Our

contribution is twofold:

• The identi�cation of architecture variability concerning component and con-

�guration variabilities.

• The identi�cation of architecture dependencies existing between the architec-

ture elements.

In order to validate the proposed approach, we experimented on two families of

open-source product variants; Mobile Media and Health Watcher. The evaluation

shows that our approach is able to identify the architectural variability and the

dependencies as well.

The rest of this chapter is organized as follows: the background needed to un-

derstand the approach is presented in Section 5.2. In Section 5.3, we analyze the

architecture variability. Then, the recovery process of the architecture variability is

presented in Section 5.4. Next, the architecture variability is identi�ed in Section

5.5. In Section 5.6, dependencies between architecture elements are recovered, while

the identi�cation of groups of variability is presented in Section 5.7. Our experi-

mentation is discussed in Section 5.8. Threat to validity are discussed in Section

5.9. A conclusion of this chapter is presented in Section 5.10.

5.2. Background 91

5.2 Background

5.2.1 Software Variability

The main theme in SPLE is software variability. It is related to the susceptibility and

�exibility to change [Clements 2002]. The variability in a SPL is realized at di�erent

levels of abstraction during the development life cycle, e.g., requirement, and design.

For instance, at the requirement level, it is originated starting from the di�erences in

users' wishes, and does not carry any technical sense [Pohl 2005a]. This is related to

a set of features that are needed to be included in such an application (e.g., the user

needs camera, WIFI, and color screen features in the phone). Usually, this variability

is documented by feature modeling language [Kang 1990]. At the design level, the

variability have more details related to technical senses to form the applications

architecture. These technical senses describe how the applications are built and

implemented with regard to the point of view of software architects [Pohl 2005a].

Such technical senses are those related to which software components are included in

the application (e.g., video recorder, capture a photo, and media store components),

how these components interact by their interfaces (e.g., video recorder provides a

video stream interface to media store), and what topology forms the architectural

con�guration (i.e., how components are composited) [Nakagawa 2011]. All of these

technical senses are described via SPLA [Pohl 2005a].

5.2.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical data analysis technique devel-

oped based on lattice theory [Ganter 2012]. FCA is applied to support various tasks

in data mining and software engineering domains. It allows the analysis of the rela-

tionships between a set of objects described by a set of attributes. In this context,

maximal groups of objects sharing the same attributes are called formal concepts.

These are extracted and then hierarchically organized into a graph called a concept

lattice. Each formal concept consists of two parts. The �rst allows the representa-

tion of the objects covered by the concepts called the extent of the concept. The

second allows the representation of the set of attributes shared by the objects be-

longing to the extent. This is called the intent of the concept. Concepts can be

linked through sub-concept and super-concept relationship [Ganter 2012] where the

lattice de�nes a partially ordered structure. A concept A is a sub-concept of the

super-concept B, if the extent of the concept B includes the extent of the concept

A and the intent of the concept A includes the intent of the concept B.

The input of FCA is called a formal context. A formal context is de�ned as

a triple K = (O,A,R) where O refers to a set of objects, A refers to a set of

attributes and R is a binary relation between objects and attributes. This binary

relation indicates to a set of attributes that are held by each object (i.e., R ⊆ O×A).
Table 5.1 shows an example of a formal context for a set of bodies of waters and

their attributes. An X in a cell indicates that an object holds the corresponding

attribute.

92

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

Table 5.1: Formal context example
Natural Arti�cial Stagnant Running Inland Maritime Constant

River X X X X

Sea X X X X

Reservoir X X X X

Channel X X X

Lake X X X X

As stated before, a formal concept consists of extent E and intent I, with E a

subset of objects O (E ⊆ O) and I a subset of attributes A (I ⊆ A). A pair of

extent and intent (E, I) is considered a formal concept, if and only, if E consists of

only objects that shared all attributes in I and I consists of only attributes that are

shared by all objects in E. The pair (�river, lake�, �inland, natural, constant�) is

an example of a formal concept of the formal context in Table 5.1.

Fig. 5.1 shows the concept lattice of the formal context presented in Table 5.1. It

consists of 13 formal concepts. For more details about FCA, refer to [Ganter 2012].

Figure 5.1: The concept lattice of the formal context in Table 5.1

5.3. Architecture Variability Analysis 93

5.3 Architecture Variability Analysis

SPLA aims at realizing the software variability at the architecture level. This is

done by exploring the commonality and the variability of architecture elements,

i.e., component, connector and con�guration variability. In this chapter, we focus

on component and con�guration variability. This means that connector variability

is not considered since that connectors are not considered as �rst class concepts

in many architecture description languages such as [Magee 1996] [Luckham 1996]

[Canal 1999]. To better understand the architecture variability, we rely on the ex-

ample provided in Figure 5.2. This example schemes three product variants related

to an audio player product family. Each variant diverges in the set of components

constituting its architecture as well as the links between these components.

Figure 5.2: An example of architecture variability

Components are considered as the main building unit of an architecture. The

variability of components can be considered following two dimensions. The �rst

one is related to the existence of several components having the same architectural

meaning, i.e., almost provide the same functionalities. We call these ones com-

ponent variants. For example, in Figure 5.2, MP3 Decoder and MP3 Decoder /

Encoder are examples of component variants. The second dimension is related to

the commonality and the variability between component variants. This is realized

thought internal and external variabilities. Internal variability refers to the diver-

gence related to the implementation details of component variants which may lead

94

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

to variability in the set of functionalities provided by these component variants,

e.g., Decoder only or Decoder/Encoder functionalities. External variability refers

to the way that the component interacts with other components. This is realized

through the variability in the component interfaces. In our example, the Sound

Source component variants have either one or two interfaces.

Furthermore architecture con�guration does not only de�ne the topology of how

components are composited and connected, but also de�nes the set of included com-

ponents. Thus con�guration variability is represented in terms of presence/absence

of components on the one hand, and presence/absence of component-to-component

links on the other hand. These respectively refer to the commonality (mandatory)

and the variability (optionality) of component and component-link. For example,

in Figure 5.2, Sound Source is a mandatory component, while Purchase Reminder

is an optional one. The links that connect Player and Sound Source are mandatory

links, while the link that connect MP3 Decoder/Encoder and Sound Source is an

optional link.

The identi�cation of component and component-link variability is not enough

to de�ne a valid architectural con�guration. This also depends on the identi�cation

of architectural element dependencies, i.e., constraints, that may exist between the

elements of the architectures. For instance, components providing antagonism func-

tionalities have an exclude relationship. Furthermore, a component may need other

components to perform its services.

5.4 Architecture Variability Recovery Process

Based on the observations made in the previous section, we propose the following

process to recover SPLA of a set of product variants (see Figure 5.3):

Identifying the architecture of each single product: we rely on ROMANTIC

approach to extract the architecture of a single product. It statically analyze

the object-oriented source code of each single product.

Identifying component variants: we identify component variants based on the

identi�cation of components providing similar functionalities. Then, we ana-

lyze their variability in terms of internal and external variability.

Identifying con�guration variability: we identify con�guration variability

based on both the identi�cation of mandatory and optional components and

links between these components.

Identifying architecture dependencies: to identify dependencies between the

optional components, we rely on Formal Concept Analysis (FCA) that ana-

lyzes the distribution of optional components between the products.

5.5. Identifying the Architecture Variability 95

Figure 5.3: The process of architectural variability recovery

5.5 Identifying the Architecture Variability

The architecture variability is mainly materialized either through the existence of

variants of the same architectural element (i.e., component variants) or through

the con�guration variability. In this section, we show how component variants and

con�guration variability are identi�ed.

5.5.1 Identifying Component Variants

The selection of a component to be used in an architecture is based on its provided

and required services. The provided services de�ne the role of the component.

However, other components may provide the same, or similar, core services. Each

may also provide other speci�c services in addition to the core ones. Considering

these components, either as completely di�erent or as the same, does not allow

the variability related to components to be captured. Thus, we consider them as

component variants. We de�ne component variants as a set of components providing

the same core services and di�ering concerning few secondary ones. In Figure 5.2,

96

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

MP3 Decoder and MP3 Decoder / Encoder are considered as component variants.

We identify component variants based on the identi�cation of components providing

similar functionalities. Then, we analyze their variability in terms of implemented

services and provided and required interfaces.

5.5.1.1 Identi�cation of Groups of Similar Components

We identify component variants based on their similarity. Similar components are

those sharing the majority of their classes and di�ering in relation to some others.

Components are identi�ed as similar based on the strength of similarity links be-

tween their implementing classes. For this purpose, we use cosine similarity metric

[Han 2006] where each component is considered as a text document composed of the

names of its classes. We use a hierarchical clustering algorithm [Han 2006] to gather

similar components into clusters. It starts by considering components as initial leaf

nodes in a binary tree. Next, the two most similar nodes are grouped into a new

one that forms their parent. This grouping process is repeated until all nodes are

grouped into a binary tree (see Algorithm 2). All nodes in this tree are considered

as candidates to be selected as groups of similar components. To identify the best

nodes, we use a depth �rst search algorithm (see Algorithm 3). Starting from the

tree root to �nd the cut-o� points, we compare the similarity of the current node

with its children. If the current node has a similarity value exceeding the average

similarity value of its children, then the cut-o� point is in the current node. Other-

wise, the algorithm continues through its children. The results of this algorithm are

clusters where each one is composed of a set of similar components that represent

variants of one component.

5.5.1.2 Identi�cation of Internal Variability

Internal structure variability is related to the implementation of components. Com-

ponent variants are implemented by object-oriented classes. Thus we identify in-

ternal variability in terms of class variability. We distinguish two types of classes.

The �rst one refers to classes that represent the commonality. These are classes

that belong to all variants of the component. We call them common classes. The

second type refers to classes representing the variability. These are classes that do

not belong to all variants of the component. We call them variable classes.

Table 5.2: An example of formal context of three component variants
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Variant 1 X X X X X X

Variant 2 X X X X X X

Variant 3 X X X X X X

The identi�cation of common/variable classes and the distribution of variable

classes is achieved using Formal Concept Analysis (FCA). To this end, we build

the formal context, such as each component variant is considered as an object and

5.5. Identifying the Architecture Variability 97

Figure 5.4: A lattice example of component variants

each class is an attribute in this formal context. Table 5.2 shows an example of

a formal context built using three component variants. A cross in the cell (V, C)

denotes to that the variant V holds the class C. In the Lattice generated based

on this formal context, common classes are grouped in the root, while the variable

ones are hierarchically distributed to the non-root nodes. The leave nodes represent

component variants. These variants have all classes that are attached to the nodes

in the path to the root node.

Figure 5.4 shows the Lattice extracted based on the formal context presented

in Table 5.2. On the �rst hand, the commonality of their implementation is repre-

sented by common classes grouped together on the top of the Lattice (i.e., the root).

Class1, Class2, Class3 and Class4 are the common classes. On the other hand, the

variability of their implementation is represented by variable classes distributed on

the non root nodes. For instance, Class8 belongs to two variants; Variant1 and

Variant3, while Class6 belongs only to one variant; Variant2.

5.5.1.3 Identi�cation of External Variability

The interaction between components is realized through their interfaces; provided

and required interfaces. Provided interfaces are abstract description of services

in providing components and required by other components. In object-oriented

components, an interface is the abstraction of a group of method invocations, access

attributes or inheritances. This group provides accessing to the component services.

As component variants are identi�ed from di�erent products, thus each variant

may have some interfaces that are di�erent compared to the other variants. For

98

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

example, in Figure 5.5, CD Reader and CD Reader/Writer variants di�er compared

to their interfaces. In the former, it has only one provided interface that provides

the functionality of reading the CD content. In the latter, it has an additional

required interface compared to the �rst variant. This interface requires a source of

information to be written on the CD. The interfaces of a component can be classi�ed

into mandatory and optional interfaces. Mandatory interfaces are ones existing in

all variants of the component (e.g., the provided interface in Figure 5.5). Optional

interfaces are those that are not mandatory (e.g., the required interface in Figure

5.5).

Figure 5.5: An instance of interface variability

To identify interface variability, we proceed as follows. For each variant, we

identify its interfaces in the corresponding product in which the variant has been

identi�ed. This is done using the approach presented by [Kebir 2012a] which iden-

ti�es interfaces as groups of methods. To identify whether interfaces are similar or

not, we rely on the textual similarity between their implemented methods. If the

similarity exceeds a pre-de�ned threshold value, then they are considered as the

same interface, otherwise, they are di�erent ones. The intersection of the sets of

interfaces from all the products determines all mandatory interfaces for the given

component. The other interfaces are optional ones. Algorithm 11 shows the proce-

dure of identifying mandatory and optional interfaces of a set of component variants,

where the function called identifyInterfaces() refers to the approach presented by

[Kebir 2012a].

5.5.2 Identifying Con�guration Variability

The architectural con�guration is de�ned based on the list of components composing

the architecture, as well as the topology of the links existing between these compo-

nents. Thus the con�guration variability is related to these two aspects; the lists of

core (mandatory) and optional components and the list of core and optional links

between the selected components.

5.5. Identifying the Architecture Variability 99

Algorithm 11: Identifying Interface Variability

Input: A Set of Component Variants (CV)

Output: A Set of Mandatory and Optional Interfaces (MI, OI))

MI = identifyInterfaces(CV.getFirstVariant());

allInterfaces = ∅;
for each v ∈ CV do

MI = MI∩ identifyInterfaces(v);

allInterfaces = allInterfaces∪ identifyInterfaces(v);

end

OI = allInterfaces−MC;

return MI,OI

Figure 5.6: A lattice example of similar con�gurations

5.5.2.1 Identi�cation of component variability

To identify mandatory and optional components, we use Formal Concept Analysis

(FCA) to analyze architecture con�gurations. We present each software architecture

as an object and each member component as an attribute in the formal context. In

the concept Lattice, common attributes are grouped into the root while the variable

ones are hierarchically distributed among the non-root concepts.

Figure 5.6 shows an example of a Lattice for three similar architecture con�g-

urations. The common components (the core ones) are grouped together at the

root concept of the lattice (the top). In Figure 5.6 Com1 and Com4 are the core

components presented in the three architectures. By contrast, optional components

are represented in all Lattice concepts except the root. e.g., according to the Lattice

of Figure 5.6,Com2 and Com5 present in Arch1 and Arch2 but not in Arch3.

100

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

5.5.2.2 Identi�cation of component-link variability

A component-link is de�ned as a connection between two components. Each connec-

tion is composed of a provided interface of the providing component and a required

interface of the other component. Figure 5.7 shows an example of how components

are linked through their interfaces.

Figure 5.7: An example of component-to-component link

A component may be linked with di�erent sets of components. A component

may have links with a set of components in one product, and it may have other links

with a di�erent set of components in another product. Thus the component-link

variability is related to the component variability. This means that the identi�cation

of the link variability is based on the identi�ed component variability. For instance,

the existence of a link between Component A and Component B is related to the

selection of Component A and Component B in the architecture. Thus considering

a core link (mandatory link) is based on the occurrence of the linked components,

but not on the occurrence in the architecture of products. According to that, a core

link is de�ned as a link occurring in the architecture con�guration as well the linked

components are selected. To identify the component-link variability, we proceed as

follows. For each architectural component, we collect the set of components that

are connected to it in each product. The intersection of the sets extracted from all

the products determines all core links for the given component. The other links are

optional ones.

5.6 Identifying Architecture Dependencies

We distinguish two types of dependencies. The �rst one is dependencies related

to the variability at the requirement level (e.g., feature variability). For example,

if a feature requires another feature, then the implementation component(s) of the

�rst feature require the implementation component(s) of the second feature. These

dependencies can be of �ve kinds: alternative, OR, AND, require, and exclude

dependencies. The second one refers to dependencies related to the optional compo-

nent distribution. These dependencies help to decide which optional component(s)

is probably could be selected after the selection of another optional component(s)).

5.6. Identifying Architecture Dependencies 101

5.6.1 Identi�cation of Dependencies Related to Feature Variability

To identify them, we rely on the same concept Lattice generated in the previous

section. In the Lattice, each node groups a set of components representing the in-

tent (e.g., Com5 and Com2) and a set of architectural con�gurations representing

the extent (e.g., Arch2). The con�gurations are represented by paths starting from

their concepts to the Lattice concept root. The idea is that each object is gener-

ated starting from its node up going to the top. This is based on sub-concept to

super-concept relationships (c.f. Section 5.2.2). This process generates a path for

each object. A path contains an ordered list of nodes based on their hierarchical

distribution; i.e., sub-concept to super-concept relationships).

Figure 5.8: An example of BFS process

The extraction of these paths is based on two steps. The �rst one is node num-

bering. This is done using Breadth First Search (BFS) algorithm [Cormen 2009].

Since that BFS identi�es the distance of such a node from another node, we use it

to identify the order of the nodes in the paths. Starting from the root node (i.e.,

the top), BFS visits the nodes at distance 1, then it visits the nodes at distance

2 and so on. Figure 5.8 shows the process of how BFS orders the nodes. In the

second step, starting from a node that holds an extent (e.g., Arch1), we go up

through links guiding us to nodes that carry a lower numbering and so on. This is

recursively continued, where the termination condition is a reach of the node having

0 numbering. Figure 5.9 presents the paths identi�ed in our example. There are

three paths respectively presented by solid, dashed and double dashed arrows. For

instance, the path corresponding to Arch1 includes the node of Com3, the node of

Com5 and Com 2 and the node of Com1 and Com4.

According to these paths, we propose extracting the dependencies between each

pair of nodes as follows:

5.6.1.1 Required Dependency

This constraint refers to the obligation selection of a component to select another

one; i.e., Component B is required to select Component A. Based on the extracted

102

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

Figure 5.9: An example of paths extracted from FCA lattice

paths, we analyze their nodes by identifying parent-to-child relation (i.e., top to

down). Thus node A requires node B if node B appears before node A in all path,

i.e., node A is a sub-concept of the super-concept corresponding to node B. In other

words, to reach node A in any path, it is necessary to traverse node B. For example,

if we consider Lattice of the Figure 5.6, Com6 requires Com2 and Com5 since Com2

and Com5 are traversed before Com6 in all paths including Com6 and linking root

node to object nodes.

5.6.1.2 Exclude and Alternative Dependencies

Exclude dependency refers to the antagonistic relationship; i.e., Component A and

Component B cannot occur in the same architecture. This relation is extracted by

checking all paths. A node is excluded with respect to another node if they never

appear together in any of the existing paths; i.e., there is no sub-concept to super-

concept relationship between them. This means that there exists no object exists

containing both nodes. For example, if we consider Lattice of Figure 5.6, Com6

and Com7 are exclusives since they never appear together in any of the Lattice

paths. Algorithm 12 presents the procedure of extracting pairs of nodes that have

the exclude dependency.

Alternative dependency generalizes the exclude one by exclusively selecting only

one component from a set of components. It can be identi�ed based on the exclude

dependencies. Indeed, a set of nodes in the lattice having each an exclude constraint

with all other nodes forms an alternative situation. For example, if node A is

excluded with nodes B and C on the one hand, and node B is excluded with node

C on the other hand, then the group of A, B and C forms an alternative situation.

5.6.1.3 AND Dependency

This is the bidirectional version of the required constraint; i.e., Component A re-

quires Component B and vice versa. More generally, the selection of one component

among a set of components requires the selection of all the other components. Ac-

5.6. Identifying Architecture Dependencies 103

Algorithm 12: Identifying Exclude Pairs

Input: All Pairs of Lattice Nodes and Paths(Pairs, Paths)

Output: A Set of Pairs Having Exclude Dependency(ED)

ED = ∅;
for each pair ∈ Pairs do

isFound = false;

for each path ∈ Paths do
if path.contains(pair) then

isFound = true;

break;
end

if isFound == false then
ED = ED ∪ pair ;

end

return ED

cording to the built Lattice, this relation is found when a group of components is

grouped in the same concept node in the Lattice; i.e., the whole node should be

selected and not only a part of its components. For example if we consider Lattice

of Figure 5.6, Com2 and Com5 are concerned with an AND dependency.

5.6.1.4 OR Dependency

When some components are concerned by an OR dependency, this means that at

least one of them should be selected; i.e., the con�guration may contain any com-

bination of the components. Thus, in the case of absence of other constraints any

pair of components is concerned by an OR dependency. Thus pairs concerned by

required, exclude, alternative, or AND dependencies are ignored as well as those

concerned by transitive require constraints; e.g., Com6 and Com7 are ignored since

they are exclusives.

The process of identifying the OR groups is as follows. Firstly, we check the

relationships between each pair of nodes. Pairs that have required, exclude, alterna-

tive, and AND relation are ignored. All pairs having transitive require constraints

are also ignored. The reason of the exclusion is that these constraints break the

OR one. Then, the remaining pairs of nodes are assigned an OR relation. Next,

we analyze these pairs by testing the relation of their nodes. Pairs sharing a node

need to be resolved (e.g., in Figure 5.6, a pair of (Com5 -Com2, Com7) and a pair

of (Com5 -Com2, Com3), where Com5 -Com2 is a shared node). The resolution is

based on the relation between the other two nodes (e.g., Com3 and Com7). If these

nodes have a require relation, then we select the highest node in the lattice (i.e.,

the parent causes the OR relation to its children). If the relation is excluded or

alternative one, then we remove all OR relations (i.e., an exclude constraint violates

an OR one). In the case of sharing an OR relation, the pairs are grouped to one

OR relation. AND relation will not occur in this case according to AND de�nition.

104

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

Algorithm 13 shows the procedure of identifying groups of OR dependency.

Algorithm 13: Identifying OR-Groups

Input: all pairs (ap), require dependencies (rd), exclude dependencies (ed)

and alternative dependencies (ad)

Output: sets of nodes having OR dependencies (orGroups)

OrDep = ap.exclusionPairs(rd, ed, ad);

OrDep = orDep.removeTransitiveRequire(rd);

ORPairsSharingNode = orDep.getPairsSharingNode();

for each p ∈ ORPairsSharingNode do
if otherNodes.getDependency() == require then

orDep.removePair(childNode);

else if otherNodes.getDependency()= exclude || alternative then
orDep.removeAllPairs(p);

end

orGroups = orDep.getpairssharingOrDep();

return orGroups

5.6.2 Identi�cation of Dependencies Related to Optional Compo-
nent Distribution

The distribution of optional components consists of the identi�cation of the associ-

ation rules between them, and the ratio of component occurrences in the products

(e.g., Component A has occurred in 80% of products). Association rules refer to

the frequency of co-occurrences between two groups of components. For example,

if an architectural con�guration contains Component A and Component B, it has a

probability of 70% of also containing Component C and Component D. We rely on

FPGrowth algorithm [Han 2006] to mine the association rules. Each architectural

con�guration is considered as a transaction and each component is an item that

can be existed in such a con�guration. For instance, in Figure 5.6, we see that if a

con�guration contains Com1, Com2, and Com4, there is a 100% probably that it

also contains Com5. Additionally, Figure 5.6 shows, for instance, that Com6 and

Com3 are present respectively in 33% and 67% of the con�gurations.

5.7 Identi�cation of Groups of Variability

In the previous steps, mandatory and optional components, as well as the depen-

dencies among them are identi�ed. However, understanding a large number of de-

pendencies is a challenge facing the software architect. Furthermore, some of these

are overlapping dependencies. This means that many dependencies represent con-

straints on a shared set of components (e.g., a component has an OR relationship

with components having AND relationships among them-self). Such dependencies

5.8. Experimental Results and Evaluation 105

need to be hierarchically represented in a tree form, in order to facilitate the task

of the software architect (e.g., similar to feature model).

The idea behind that is to identify the variability among groups (i.e., identifying

dependencies among groups of dependencies). For example, an OR relationship is

existed among groups of alternative ones. The identi�cation of these dependencies

is as follows. As an AND can be considered as one entity, thus it is not allowed to

their components to have internal dependencies (i.e., it is impossible to have another

dependency, e.g., an OR, as a member in the AND). Thus the relation with AND

is an external relation. For alternative and OR dependencies, it is allowed to take

an AND relation as a member. In addition, the internal dependency between alter-

native and OR dependencies is allowed. In other words, an alternative dependency

can take as a member an OR dependency and vice versa. According to that, the

AND dependency have a high priority to be added before the others while OR and

alternative have the same priority.

The construction of a hierarchical representation of the tree is as follows. First,

we start from the root of the tree by directly connecting all mandatory components

to it. At this stage, we do not have a hierarchy. Then, we add optional components

based on their relationships. Groups of components having AND dependencies are

added by creating an abstract node that carries out these components. The rela-

tion between the parent and the children is an AND dependency. Next, Alternative

dependencies are represented by an abstract node that carries out these compo-

nents. Then, OR relations are applied by adding an abstract node as a parent to

components having OR relation. In the case where the relation is between a set of

components having AND relation as well as alternative relation, the connection is

made with their abstract node (i.e., the abstract node corresponding to the AND

dependency as well as the alternative one becomes a child of the OR parent). Next,

the remaining components are directly added to the root with optional notation.

Finally, the cross-tree relations are added (i.e., required and exclude relations). Ac-

cordingly, we propose a procedure to identify the hierarchical tree. This procedure

is presented in Algorithm 14.

5.8 Experimental Results and Evaluation

5.8.1 Experimentation Design

5.8.1.1 Data Collection

We select two sets of product variants. These sets are Mobile Media1 (MM) and

Health Watcher2 (HW). We select these products because they were used in many

research projects aiming at addressing the problem of migrating product variants

into a SPL. Our study considers 8 variants of MM and 10 variants of HW. MM

variants manipulate music, video and photo on mobile phones. They are developed

1Available at: http://ptolemy.cs.iastate.edu/design-study/#mobilemedia.
2Available at: http://ptolemy.cs.iastate.edu/design-study/#healthwatcher.

106

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

Algorithm 14: Identifying Hierarchically Representation

Input: Sets of Dependencies (OR,AND,Require, Exclude,Alternative)

and Mandatory and Optional Components (MC,OC)

Output: A Tree (tree)

tree.root.addChildren(MC);

for each and ∈ AND do
tree.addChild(and);

end

for each or ∈ OR do

for each node ∈ or do
if AND.isContiant(node) then

tree.remove(node);

nodeOR.addChildren(node);

else
nodeOR.addChildren(node);

end

tree.addChild(nodeOR);

end

end

for each alt ∈ Alternative do
for each node ∈ alt do

if OR.isContiant(node) then
break;

else if AND.isContiant(node) then
tree.remove(node);

nodeAlt.addChildren(node);

else
nodeAlt.addChildren(node);

end

tree.addChild(nodeAlt);

end

end

tree.addChildren(OC.getRemainingOptional());

tree.addExcludeCrossTree(Exclude);

tree.addRequireCrossTree(Require);

return tree

5.8. Experimental Results and Evaluation 107

starting from the core implementation of MM. Then, the other features are added

incrementally for each variant. HW variants are web-based applications that aim at

managing health records and customer complaints. The size of each variant of MM

and HW, in terms of classes, is shown in Table 5.3.

Table 5.3: Size of MM variants and HW ones
Name 1 2 3 4 5 6 7 8 9 10 Avg.

MM 25 34 36 36 41 50 60 64 X X 43.25

HW 115 120 132 134 136 140 144 148 160 167 136.9

5.8.1.2 Research Questions and Evaluation Method

Our experimentation aims at showing how the proposed approach is applied to

identify the architectural variability and validating the obtained results. To this

end, we applied it on the collected case studies. We utilize ROMANTIC approach

[Kebir 2012a] to extract architectural components from each variant independently.

Then, the components derived from all variants are the input of the clustering

algorithm to identify component variants. Next, we identify the architecture con-

�gurations of the products. These are used as a formal context to extract a concept

lattice. Then, we extract the core (mandatory) and optional components as well

as the dependencies among optional-component. Next, we present the results of

identifying groups of variability. Finally, we show a model that contains all of the

identi�ed variability.

In order to evaluate the resulted architecture variability, we study the following

research questions:

• RQ1: Are the identi�ed dependencies correct? This research question

goals at measuring the correctness of the identi�ed component dependencies.

• RQ2: What is the precision of the recovered architectural variabil-

ity? This research question focuses on measuring the precision of the resulting

architecture variability. This is done by comparing it with a pre-existed ar-

chitecture variability model.

5.8.2 Results

5.8.2.1 Component Based Architecture Extraction

Table 5.4 shows the results of component extraction from each variant indepen-

dently, in terms of the number of components, for each variant of MM and HW.

The results show that classes related to the same functionality are grouped into

the same component. The di�erence in the numbers of the identi�ed components

in each variant has resulted from the fact that each variant has a di�erent set of

user's requirements. On average, a variant contains 6.25 and 7.7 main functionalities

respectively for MM and HW.

108

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

Figure 5.10: The distribution of classes composing the component variants

Table 5.4: Component extraction results
Name 1 2 3 4 5 6 7 8 9 10 Avg. Total

MM 3 5 5 5 7 7 9 9 X X 6.25 50

HW 6 7 9 10 7 9 8 8 7 6 7.7 77

5.8.2.2 Identifying Component Variants

Table 5.5 summarizes the results of component variants in terms of the number

of components having variants (NOCV), the average number of variants of a com-

ponent (ANVC), the maximum number of component variants (MXCV) and the

minimum number of component variants (MNCS). The results show that there are

many sets of components sharing the most of their classes. Each set of components

mostly provides the same functionality. Thus, they represent variants of the same

architectural component. Table 5.6 presents an instance of 6 component variants

identi�ed from HW, where X means that the corresponding class is a member in the

variant. By analyzing these variants, it is clear that these components represent the

same architectural component. In addition to that, we noticed that there are some

component variants having the same set of classes in multiple product variants. For

5.8. Experimental Results and Evaluation 109

internal component variability, we provide the Lattice that presents the distribution

of classes composing the component variants, see Figure 5.10. From this Lattice, we

can note that there are 8 common classes between the variants. These represent the

implementation of shared services. Additionally, the distribution of variable classes

is easy to recognize. For example, the di�erence between Variant3 and Variant6 is

that Variant6 has an additional variable class (i.e., Connection).

Table 5.5: Component variants identi�cation
Name NOCV ANVC MXCV MNCV

MM 14 3.57 8 1

HW 18 4.72 10 1

Table 5.6: Instance of 6 component variants
Class Name Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6

Bu�eredReader X X X X X X

ComplaintRepositoryArray X X X X X X

ConcreteIterator X X X X X X

DiseaseRecord X

IIteratorRMITargetAdapter X X X X X X

IteratorRMITargetAdapter X X X X X X

DiseaseType X

InputStreamReader X X X X X X

Employee X X

InvalidDateException X X X X

IteratorDsk X X X X X X

PrintWriter X X X X X

ObjectNotValidException X X X

RemoteException X X X

PrintStream X X X

RepositoryException X X

Statement X X X X X X

Throwable X X X

HWServlet X

Connection X X

5.8.2.3 Analyzing Architecture Con�guration: Communality and Vari-

ability

The identi�cation of component variants allows us to identify the architecture con-

�gurations. Table 5.7 and Table 5.8 show respectively the con�guration of MM and

HW variants, where X means that the component is a part of the product variants.

The results show that the products are similar in their architectural con�gurations

and di�er considering other ones. The reason behind the similarity and the di�er-

ence is the fact that these products are common in some of their user's requirements

and variable in some others. These architecture con�gurations are used as a formal

110

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

context to extract the concept lattice. We use the Concept Explorer3 tool to gen-

erate the concept lattice. We give the concept lattices of MM and HW respectively

in Figure 5.11 and Figure 5.12.

In Table 5.9, the numbers of core (mandatory) and optional components are given

for MM and HW, together with examples of their association rules and component

occurrence ratios. An example of an association rule in MM is �when a con�guration

has Com5 and Com8, it is 86% likely to also contain Com9 �. The results show that

there are some components that represent the core architecture, while some others

represent delta (optional) components.

Table 5.7: Architecture con�guration for all MM variants

Variant No. C
om

1

C
om

2

C
om

3

C
om

4

C
om

5

C
om

6

C
om

7

C
om

8

C
om

9

C
om

10

C
om

11

C
om

12

C
om

13

C
om

14

1 X X X

2 X X X X X

3 X X X X X

4 X X X X X

5 X X X X X X X

6 X X X X X X X

7 X X X X X X X X X

8 X X X X X X X X X

Table 5.8: Architecture con�guration for all HW variants
Variant No. C

om
1

C
om

2

C
om

3

C
om

4

C
om

5

C
om

6

C
om

7

C
om

8

C
om

9

C
om

10

C
om

11

C
om

12

C
om

13

C
om

14

C
om

15

C
om

16

C
om

17

C
om

18

1 X X X X X X

2 X X X X X X X

3 X X X X X X X X X

4 X X X X X X X X X X

5 X X X X X X X

6 X X X X X X X X X

7 X X X X X X X X

8 X X X X X X X X

9 X X X X X X X

10 X X X X X X

3Presentation of the Concept Explorer tool is available in [Yevtushenko 2000]

5.8. Experimental Results and Evaluation 111

Figure 5.11: The concept lattice of MM architecture con�gurations

Figure 5.12: The concept lattice of HW architecture con�gurations

112

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

Table 5.9: Mandatory and optional components
Product Name MM HW

Mandatory 1 2

Optional 13 16

Some Association Rules

Com5, Com8 =>Com9 : 86% Com2, Com3, Com11 =>Com6 : 100%

Com1, Com5 =>Com8. Com9 : 80% Com2, Com3, Com4 =>Com6 : 86%

Com5, Com12 =>Com8, Com9, Com11 : 100% Com2, Com3, Com12 =>Com4, Com6, Com7, Com11 : 100%

Some Component Occurrence Ratio

Component Ratio Component Ratio

Com8 80% Com6 90%

Com12 38% Com7 50%

Com4 12% Com14 20%

5.8.2.4 Identifying Components Dependencies

The results of the identi�cation of optional-component dependencies are given in

Table 5.10 and Table 5.11 respectively for MM and HW (Com 5 from MM and

Com2, Com3 from HW are excluded since they are mandatory components). The

dependencies are represented between all pairs of components in MM (where R=

Require, E= Exclude, O= OR, RB = Required By, TR = Transitive Require, TRB

= Transitive Require By, and A = AND). Table 5.12 shows a summary of MM and

HW dependencies between all pairs of components. This includes the number of

direct require constrains (NRC), the number of exclude ones (NE), the number of

AND groups (NOA), and the number of OR groups (NO). Alternative constrains is

represented as exclude ones. The results show that there are dependencies among

components that help the architect to avoid creating invalid con�guration. For

instance, a design decision of AND components indicates that these components

depend on each other, thus, they should be selected all together.

Table 5.10: Component dependencies of MM
C
om

1

C
om

2

C
om

3

C
om

4

C
om

6

C
om

7

C
om

8

C
om

9

C
om

10

C
om

11

C
om

12

C
om

13

C
om

14

Com1 X R E E O E E E

Com2 X E A RB R TR A RB RB

Com3 RB E X E E O E E E

Com4 A E X RB R TR A RB RB

Com6 E R E R X TR TR E R E E A A

Com7 E RB RB TRB X R O RB TRB TRB

Com8 TRB O TRB TRB RB X RB TRB TRB TRB TRB TRB

Com9 E O R X RB TRB E E

Com10 A E A RB R TR X RB RB

Com11 O E TR R X RB E E

Com12 E E TR TR R X E E

Com13 E R E R A TR TR E R E E X A

Com14 E R E R A TR TR E R E E A X

5.8.2.5 Identifying Groups of Variability

After the identi�cation of mandatory and optional components as well as the de-

pendencies among the optional ones, the elements of AVM are extracted. Based on

5.8. Experimental Results and Evaluation 113

Table 5.11: Component dependencies of HW

C
om

1

C
om

4

C
om

5

C
om

6

C
om

7

C
om

8

C
om

9

C
om

10

C
om

11

C
om

12

C
om

13

C
om

14

C
om

15

C
om

16

C
om

17

C
om

18

Com1 X TR TR R ALT ALT E ALT ALT ALT ALT

Com4 TRB X O RB RB TRB E E E RB RB RB

Com5 X R O O O O E TRB E E E E

Com6 TRB O RB X RB RB RB TRB RB TRB TRB TRB TRB E E E

Com7 RB R O R X O O O RB E E E E E E

Com8 O R O X O O E RB E E E E

Com9 R O R O O X O E E E E E E E

Com10 TR X R E RB E E E E E

Com11 O R RB X RB TRB RB TRB E E E

Com12 ALT TR E TR R E E E R X ALT E ALT ALT ALT ALT

Com13 ALT E TR TR E R E R TR ALT X E ALT ALT ALT ALT

Com14 E E TR E E E R E E X RB E E E

Com15 ALT E E TR E E E E TR ALT ALT R X ALT ALT ALT

Com16 ALT R E E E E E E E ALT ALT E ALT X A A

Com17 ALT R E E E E E E E ALT ALT E ALT A X A

Com18 ALT R E E E E E E E ALT ALT E ALT A A X

Table 5.12: Summarization of MM and HW dependencies
Name NDR NE NA NO

MM 17 20 6 3

HW 18 62 3 11

these elements, the AVM is built. We use the FeatureIDE4 tool to visualize the tree

on form of feature model. Figure 5.13 shows the trees of both MM and HW, where

Comi => Comj refers to a required constrain, and ¬ (Comi ∧ Comj) refers to an

exclude constraint.

5.8.2.6 Final Results

To the best our knowledge, there is no architecture description language supporting

all kinds of the identi�ed variability. The existing languages, like [Hendrickson 2007],

are mainly focused on modeling component variants, links and interfaces, while

they do not support dependencies among components such as AND-group, OR-

group, and require. Thus, on the �rst hand, we use notations presented in

[Hendrickson 2007] to represent the concept of component variants and links vari-

ability. On the other hand, we propose notations inspired from feature modeling

languages to model the dependencies among components. For the purpose of under-

standability, we document the resulting components by assigning a name based on

the most frequent tokens in their classes' names. Figure 5.14 shows the architectural

variability model identi�ed for MM variants, where the large boxes denote to design

decisions (constraints). For instance, core architecture refers to components that

should be selected to create any concrete product architecture. In MM, there is one

core components manipulating the base controller of the product. This component

4Presentation of the FeatureIDE tool is available in [Thüm 2014]

114

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

Figure 5.13: The architecture variability trees of MM and HW

has two variants. A group of Multi Media Stream, Video Screen Controller, and

Multi Screen Music components represents an AND design decision.

5.8.3 Answering Research Questions

5.8.3.1 RQ1: Are the identi�ed dependencies correct?

The identi�cation of component dependencies is based on the occurrence of compo-

nents. e.g., if two components never selected to be included in a concrete product

architecture, we consider that they hold an exclude relation. However, this method

could provide correct or incorrect dependencies. To evaluate the accuracy of this

method, we manually validate the identi�ed dependencies. This is based on the

functionalities provided by the components. For instance, we check if the compo-

nent functionality requires the functionality of the required component and so on.

The results show that 79% of the required dependencies are correct. As an example

of a correct relation is that SMS Controller requires Invalid Exception as it performs

an input/output operations. On the other hand, it seems that Image Util does not

require Image Album Vector Stream. Also, 63% of the exclude constrains are correct.

For AND and OR dependencies, we �nd that 88% of AND groups are correct, while

42% of OR groups are correct. Thus, the precision of identifying dependencies is

68% in average.

5.8. Experimental Results and Evaluation 115

Figure 5.14: Architectural variability model for MM

5.8.3.2 RQ2: What is the precision of the recovered architectural vari-

ability?

In our case studies, MM is the only case study that has an available architecture

model containing some variability information. In [Figueiredo 2008], the authors

presented the aspect oriented architecture for MM variants. This contains infor-

mation about which products had added components, as well as in which product

a component implementation was changed (i.e., component variants). We manu-

ally compare both models to validate the resulting model. Figure 5.15 shows the

comparison results in terms of the total number of components in the architecture

model (TNOC), the number of components having variants (NCHV), the number

of mapped components in the other model (NC), the number of unmapped compo-

nents in the other model (NUMC), the number of optional components (NOC) and

the number of mandatory ones (NOM). The results show that there are some vari-

ation between the results of our approach and the pre-existed model. The reason

116

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

behind this variation is the idea of compositional components. For instance, our

approach identi�es only one core component compared to 4 core components in the

other model. Our approach grouped all classes related to the controller components

together in one core components. On the other hand, the other model divided the

controller component into Abstract Controller, Album Data, Media Controller, and

Photo View Controller components. In addition, the component related to handling

exceptions is not mentioned in the pre-existed model at all.

Figure 5.15: The results of the MM validation

5.9 Threats to Validity

Two types of threats to validity concern the proposed approach. These are internal

and external.

5.9.1 Threats to Internal Validity

There are �ve aspects to be considered regarding the internal validity. These are as

follows:

1. We identify component variants based on the textual similarity between the

classes composing the components. While in some situations, a set of compo-

nents may be implemented through sets of classes that are textual similar, but

they are completely unrelated. However, in the case of product variants that

is developed by copy-paste-modify technique, the modi�cation is mainly com-

posed of method overriding, adding or deleting, but the main functionalities

are still the same ones.

5.10. Conclusion 117

2. Dependencies among components are identi�ed based on component occur-

rences in the product architectures. Thus, the identi�ed dependencies maybe

correct or incorrect. However the accuracy of the approach is increased as

much as the number of product variants is increased.

3. The input of our approach is the components independently identi�ed form

each product variants using ROMANTIC approach. Thus. the accuracy of

the obtained variability depends on the accuracy of ROMANTIC approach.

4. We manually evaluate the research questions. For the �rst question, we check

the component functionalities to evaluate the identi�ed dependencies. For

the second question, the identi�ed architecture variability is also manually

compared to the existing model. However this should be done by the domain

experts to be precise.

5. Similar to the approach presented in Chapter 3, we rely on the static analysis

to identify dependencies between the classes (please refer to the �rst point of

Section 3.7.1).

5.9.2 Threats to External Validity

There are two aspects to be considered regarding the external validity. These are

as follows:

1. The proposed approach is experimented through product variants that are

implemented by Java programming language. However the obtained results

can be generalized for any object-oriented language. The reason behind this

generalization is the fact that all object-oriented languages (e.g., C++ and

C#) are structured in terms of classes and their relationships are realized

through method calls, access attributes, etc.

2. In the experimentation, only two case studies have been collected; Mobile

Media and HealthWatcher. However these are used in several research projects

that address the problem of migrating products variants into software product

line. On average, the selected case studies obtained the same results. Thus

these results can be generalized for other similar case studies. By the way, the

approach needs to be validated with a large number of case studies. This will

be a logical extension of our work.

5.10 Conclusion

In SPLA, the variability is mainly represented in terms of components and con�g-

urations. In the case of migrating product variants to a SPL, identifying the archi-

tecture variability among the product variants is necessary to facilitate the software

architect's tasks. Thus, in this chapter, we proposed an approach to recover the

architecture variability of a set of product variants.

118

Chapter 5. Recovering Software Architecture of a Set of Similar

Object-Oriented Product Variants

The recovered variability includes mandatory/optional components, the de-

pendencies among optional components (e.g., require, etc.), the variability of

component-links, and component variants. We rely on FCA to analyze the vari-

ability. Then, we propose two heuristics. The former is to identify the architecture

variability. The latter is to identify the architecture dependencies. The proposed

approach is validated through two sets of product variants derived from Mobile Me-

dia and Health Watcher. The results show that our approach is able to identify the

architectural variability and the dependencies as well.

Chapter 6

Conclusion and Future Direction

Contents

6.1 Summary of Contributions . 119

6.2 General Limitations . 121

6.3 Future Directions . 122

6.3.1 Addressing New Related Aspects: 122

6.3.2 Tools Support and Experimentations 123

T
he ultimate goal of this dissertation is to support systematic software reuse.

Towards this goal, we propose to reverse engineering some core assets related

to CBSE and SPLE by analyzing existing object-oriented software. To do so, we

address the following research problems:

1. Reverse engineering software components by analyzing existing

object-oriented software: the identi�cation consists of analyzing the source

code, in order to extract a piece of code (i.e., cluster of classes) that can con-

stitute the implementation components.

2. Recovering SPLA by analyzing existing software product variants:

in the case of migrating product variants to a SPL, identifying the architecture

variability among the product variants is necessary to facilitate the software

architect's tasks. SPLA is recovered based on the analysis of the source code

of the existing product variants.

6.1 Summary of Contributions

The contributions of this dissertation are:

1. We proposed an approach that aims at mining reusable components from a

set of similar object-oriented software product variants. The main idea is to

analyze the commonality and the variability of product variants, in order to

identify pieces of code that may form reusable components. Our motivation

is that components mined based on the analysis of several existing software

products will be more useful (reusable) for the development of new software

products than those mined from singular ones. During this contribution, we

mainly answered the following research questions:

120 Chapter 6. Conclusion and Future Direction

• What is a component compared to an object?

• How to identify potential components constituting a software applica-

tion?

• How to identify components providing similar functionalities?

• Which component to be extract from a group of similar ones?

• How to validate the reusability of the mined components?

To validate our approach, we apply it onto two families of open-source product

variants. We propose an empirical measurement to evaluate the reusability of

the mined components. According to this measurement, the results show that

the reusability of the components mined based on our approach is better than

the reusability of those mined from singular software.

2. We proposed an approach that aims at reverse engineering component-based

APIs from object-oriented APIs. This approach exploits speci�city of API

entities by statically analyzing the source code of both APIs and their software

clients to identify groups of API classes that are able to form components.

This is based on two criteria. The �rst one is the probability of classes to be

reused together by API clients. The second one is related to the structural

dependencies among classes and thus their ability to form a quality-centric

component. The component identi�cation process is used-driven. This means

that components are identi�ed starting from classes composing their interfaces.

Classes composing the provided interface of the �rst layer components compose

FUPs. Then, the API is organized by a set of layers, where each layer composes

of components providing services to the others composing the above layer, and

so on. During this contribution, we answered the following research questions:

• How to identify components from object-oriented APIs?

• What are the limitation of existing approaches?

• What are dependencies that can be existed between API classes?

• How to invest the way that software applications used API classes to

identify components?

• How to identify frequent usage patterns of classes?

• How to map frequent usage patterns to component interfaces?

• How to identify classes composing the component based on the interface

classes?

• How components are organized in the component-based API?

• How to validate reusability and understandability of the resulting

component-based APIs?

In order to validate the presented approach, we experimented it by applying on

a set of 100 open source Java applications as clients for three Android APIs.

6.2. General Limitations 121

The validation is done through three research questions. The �rst one is

related to the reusability of the mined components, while the second indicates

to the understandability of the resulting component-based APIs. The results

show that our approach improves the reusability and the understandability of

the API. The last research question aims to measure how much bene�t the

use of FUPs brings. To this end, we compare our approach with a traditional

component identi�cation approach that is designed for software applications.

The results prove that our approach outperforms the traditional one.

3. We proposed an approach that aims at automatically recovering the architec-

ture of a set of software product variants. This is done through the exploita-

tion of the commonality and the variability across the source code of product

variants. Our contribution is twofold: the identi�cation of architecture vari-

ability concerning both component and con�guration variabilities on the one

hand, and the identi�cation of architecture dependencies existed between the

architectural elements on the other hand. The latter is done by capturing the

commonality and the variability at the architectural level using formal con-

cept analysis. During this contribution, we answered the following research

questions:

• What is architecture variability?

• How to identify component variability?

• How to recover con�guration variability?

• How to identify dependencies existing between components using FCA?

• How to validate the recovered SPLA?

In order to validate the proposed approach, we experimented on two families of

open-source product variants. The approach was validated using twos research

questions. The �rst one measures the precision of the recovered architectural

variability. The second one evaluates the identi�ed architectural dependencies.

The experimental evaluation shows that our approach is able to identify the

architectural variability and the dependencies as well.

6.2 General Limitations

The main limitations related to the presented approaches are:

1. We relied on static analysis techniques to analyze dependencies between object

oriented classes. This means that our approaches su�er two main limitations.

The �rst one is that they do not address polymorphism and dynamic binding

dependencies. However, in object-oriented, the most important dependencies

are realized through method calls and access attributes. Thus the ignorance of

polymorphism and dynamic binding has not a high impact on the performance

122 Chapter 6. Conclusion and Future Direction

of our approaches. The second one is that they do not di�er from the used

and unused source code. This may provide a noise dependencies by taking

into account unused source codes. However, this situation rarely exists in the

case of well designed and implemented software. In contrast, dynamic analysis

addresses all of these limitations. But the challenge with dynamic analysis is

to identify all use cases of software.

2. We use cluster algorithms to group similar components and classes into dis-

joint clusters. However this provides a near optimal solution of the partition-

ing. Other grouping techniques may provide more accurate solutions, such as

search-based algorithms. This will be a future extension of our approach to

investigate simulating annulling and genetic algorithms.

3. Our approaches are experimented via software systems (e.g. product variants,

APIs and API clients)that were implemented using Java programming lan-

guage. Other object-oriented languages (e.g., C++ and C#) have not been

tested. To prove that our approaches work also for all object-oriented software

systems. We plan to apply them on case studies developed using C++ and

C#.

4. In some cases, we need software architects to provide threshold values.

6.3 Future Directions

Based on the research work presented in this dissertation, many future directions

are identi�ed. These include:

6.3.1 Addressing New Related Aspects:

1. Migrating the identi�ed object-oriented components into existing

component models. The presented approaches identify a component as a

cluster of object-oriented classes representing the implementation of this com-

ponent. This constitutes the �rst step of the reengineering process of object-

oriented software into component-based software. Thus we plan to extend the

approaches by transforming the object-oriented implementation of the identi-

�ed components into an equivalent component-based one, such as OSGI. For

example, we propose to address problems related to the transformation of ob-

ject dependencies to component interfaces such as inheritance and exception

handling.

2. Reverse engineering software architectures and components based

on dynamic analysis. To address the static analysis techniques, we plan to

extend the approaches by analyzing object-oriented software based on dynamic

analysis. For example, we propose to dynamically analyze the API client

applications by identifying execution traces corresponding to the use cases.

6.3. Future Directions 123

This allows to identify the internal dependencies between classes used by client

applications and other ones composing the API.

3. Mapping the requirement variability and the architecture variability.

In the case of reengineering a SPL from product variants, mapping the identi-

�ed architectural variability with the requirement variability is an important

task. Thus we plan to extend the results of SPLA identi�cation by mapping

them to the feature model which realized the variability at the requirement

level. For example, we propose to identify component(s) implementing given

feature(s).

6.3.2 Tools Support and Experimentations

1. Developing a visual environment. The presented approaches can be ex-

tended by providing a visual environment, such that domain experts are al-

lowed to interact with the approaches at each step of the identi�cation process,

and modify the obtained results as needed. To do so, we propose to develop

an Eclipse plug-in that implements our approaches.

2. Experimenting with large number of case studies. The performance

of our approaches is based on the number of case studies. This refers to

the number of the product variants for the approaches presented to analyze

product variants and the number of API clients for the approach presented

to analyze APIs. Thus we plan extending the evaluation of the proposed

approaches by conducting more case studies which provides better test of the

approaches and generalizes the results as well.

3. Validating the approaches by human experts. The results of the pre-

sented approaches are validated based on heuristic measurements that we pro-

posed. However this is considered as an approximation validation. To better

validate the approaches, we plan to validate the results based on human ex-

perts. This can be realized by giving our results to a set of software developers

and asking them to build a new software applications.

Publications

The PhD was started in September 2012. During this period, we have published the

following research papers published in international conferences:

• Recovering Architectural Variability of a Family of Product Variants - Anas

Shatnawi, Abdelhak Seriai, Houari A. Sahraoui. In Software Reuse for Dy-

namic Systems in the Cloud and Beyond - 14th International Conference on

Software Reuse, ICSR 2015, Miami, FL, USA, January 4-6, 2015. Proceed-

ings. Lecture Notes in Computer Science 8919, Springer 2014, ISBN 978-3-

319-14129-9: 17-33. (Selected by ICSR 2015 to be extended for a special issue

of JSS "Journal of System and Software").

124 Chapter 6. Conclusion and Future Direction

• Mining Software Components from Object-Oriented APIs - Anas Shatnawi,

Abdelhak Seriai, Houari A. Sahraoui, Zakarea Al-Shara. In Software Reuse for

Dynamic Systems in the Cloud and Beyond - 14th International Conference on

Software Reuse, ICSR 2015, Miami, FL, USA, January 4-6, 2015. Proceedings.

Lecture Notes in Computer Science 8919, Springer 2014, ISBN 978-3-319-

14129-9: 330-347. (Selected by ICSR 2015 to be extended for a special issue

of JSS "Journal of System and Software").

• Mining Reusable Software Components from Object-Oriented Source Code of

a Set of Similar Software - Anas Shatnawi, Abdelhak-Djamel Seriai. In IEEE

14th International Conference on Information Reuse & Integration, IRI 2013,

San Francisco, CA, USA, August 14-16, 2013. IEEE 2013: 193-200.

• Service Identi�cation Based on Quality Metrics : Object-Oriented Legacy Sys-

tem Migration Towards SOA - Seza Adjoyan, Abdelhak-Djamel Seriai, Anas

Shatnawi. In The 26th International Conference on Software Engineering and

Knowledge Engineering, SEKE 2014, Vancouver, BC, Canada, July 1-3, 2013.

Knowledge Systems Institute Graduate School 2014: 1-6.

Bibliography

[Acharya 2007] Mithun Acharya, Tao Xie, Jian Pei and Jun Xu. Mining API pat-

terns as partial orders from source code: from usage scenarios to speci�ca-

tions. In Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The founda-

tions of software engineering, pages 25�34. ACM, 2007. (Cited on page 60.)

[Adjoyan 2014] Seza Adjoyan, Abdelhak-Djamel Seriai and Anas Shatnawi. Service

Identi�cation Based on Quality Metrics - Object-Oriented Legacy System Mi-

gration Towards SOA. In The 26th International Conference on Software

Engineering and Knowledge Engineering, Hyatt Regency, Vancouver, BC,

Canada, July 1-3, 2013., pages 1�6, 2014. (Cited on page 29.)

[Allier 2009] Simon Allier, Houari A Sahraoui and Salah Sadou. Identifying com-

ponents in object-oriented programs using dynamic analysis and clustering.

In Proceedings of the 2009 Conference of the Center for Advanced Stud-

ies on Collaborative Research, pages 136�148. IBM Corp., 2009. (Cited on

pages 19, 20, 21, 23, 24, 25 and 26.)

[Allier 2010] Simon Allier, Houari A Sahraoui, Salah Sadou and Stéphane Vaucher.

Restructuring object-oriented applications into component-oriented applica-

tions by using consistency with execution traces. In Component-Based Soft-

ware Engineering, pages 216�231. Springer, 2010. (Cited on pages 20, 21,

23, 24, 25 and 26.)

[Allier 2011] Simon Allier, Salah Sadou, Houari Sahraoui and Régis Fleurquin.

From Object-Oriented Applications to Component-Oriented Applications via

Component-Oriented Architecture. In 2011 9th Working IEEE/IFIP Confer-

ence on Software Architecture (WICSA), pages 214�223. IEEE, 2011. (Cited

on pages 7, 12, 18, 20, 21, 23, 24, 25, 26, 34 and 60.)

[Bachmann 2000] Felix Bachmann, Len Bass, Jeromy Carriere, Paul C Clements,

David Garlan, James Ivers, Robert Nord and Reed Little. Software archi-

tecture documentation in practice: Documenting architectural layers. 2000.

(Cited on page 18.)

[Bass 2012] Len Bass, Paul Clements and Rick Kazman. Software architecture in

practice. Addison-Wesley Professional, 3rd édition, 2012. (Cited on page 13.)

[Baster 2001] Greg Baster, Prabhudev Konana and Judy E. Scott. Business Com-

ponents: A Case Study of Bankers Trust Australia Limited. Commun. ACM,

vol. 44, no. 5, pages 92�98, May 2001. (Cited on page 15.)

126 Bibliography

[Bieman 1995] James M Bieman and Byung-Kyoo Kang. Cohesion and reuse in

an object-oriented system. In ACM SIGSOFT Software Engineering Notes,

volume 20, pages 259�262. ACM, 1995. (Cited on pages 29, 46 and 71.)

[Birkmeier 2009] Dominik Birkmeier and Sven Overhage. On component iden-

ti�cation approaches�classi�cation, state of the art, and comparison. In

Component-Based Software Engineering, pages 1�18. Springer, 2009. (Cited

on page 34.)

[Boussaidi 2012] G.E. Boussaidi, A.B. Belle, S. Vaucher and H. Mili. Reconstruct-

ing Architectural Views from Legacy Systems. In 2012 19th Working Confer-

ence on Reverse Engineering (WCRE), pages 345�354, Oct 2012. (Cited on

pages 20, 21, 23, 24, 25 and 26.)

[Cai 2000] Xia Cai, Michael R Lyu, Kam-Fai Wong and Roy Ko. Component-based

software engineering: technologies, development frameworks, and quality as-

surance schemes. In Software Engineering Conference, 2000. APSEC 2000.

Proceedings. Seventh Asia-Paci�c, pages 372�379. IEEE, 2000. (Cited on

page 6.)

[Canal 1999] Calos Canal, Ernesto Pimentel and José M Troya. Speci�cation and

re�nement of dynamic software architectures. In Software Architecture, pages

107�125. Springer, 1999. (Cited on page 93.)

[Chardigny 2008a] Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah and

Dalila Tamzalit. Search-based extraction of component-based architecture

from object-oriented systems. In Software Architecture, pages 322�325.

Springer, 2008. (Cited on pages 18 and 29.)

[Chardigny 2008b] Sylvain Chardigny, Abdelhak Seriai, Dalila Tamzalit and

Mourad Oussalah. Quality-driven extraction of a component-based archi-

tecture from an object-oriented system. In 12th European Conference on

Software Maintenance and Reengineering (CSMR), pages 269�273. IEEE,

2008. (Cited on pages 16, 20, 23, 25, 26, 27 and 29.)

[Chardigny 2009] Sylvain Chardigny. Extraction d'une architecture logicielle à base

de composants depuis un système orienté objet. Une aproche par exploration.

PhD thesis, Université de Nantes, 2009. (Cited on pages 19, 35 and 37.)

[Chardigny 2010] Sylvain Chardigny and Abdelhak Seriai. Software architecture

recovery process based on object-oriented source code and documentation. In

Software Architecture, pages 409�416. Springer, 2010. (Cited on pages 18,

19, 20, 22, 25 and 26.)

[Chihada 2015] Abdullah Chihada, Saeed Jalili, Seyed Mohammad Hossein

Hasheminejad and Mohammad Hossein Zangooei. Source code and design

Bibliography 127

conformance, design pattern detection from source code by classi�cation ap-

proach. Applied Soft Computing, vol. 26, pages 357�367, 2015. (Cited on

pages 20, 21, 25 and 26.)

[Chikofsky 1990] Elliot J Chikofsky, James H Crosset al. Reverse engineering and

design recovery: A taxonomy. Software, IEEE, vol. 7, no. 1, pages 13�17,

1990. (Cited on pages 12 and 13.)

[Clements 2002] P. Clements and L. Northrop. Software product lines: practices and

patterns. 2002. (Cited on pages 5, 6, 14, 90 and 91.)

[Constantinou 2011] Eleni Constantinou, George Kakarontzas and Ioannis Stame-

los. Towards open source software system architecture recovery using design

metrics. In 2011 15th Panhellenic Conference on Informatics (PCI), pages

166�170. IEEE, 2011. (Cited on pages 18, 20, 22, 25 and 26.)

[Cormen 2009] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest and Clif-

ford Stein. Introduction to algorithms. MIT press, 2009. (Cited on pages 20,

21 and 101.)

[Couto 2011] Marcus Vinicius Couto, Marco Tulio Valente and Eduardo Figueiredo.

Extracting software product lines: A case study using conditional compilation.

In 15th European Conference on Software Maintenance and Reengineering

(CSMR2011), pages 191�200. IEEE, 2011. (Cited on page 49.)

[DeBaud 1998] Jean-Marc DeBaud, Oliver Flege and Peter Knauber. PuLSE-

DSSA-a method for the development of software reference architectures. In

Proceedings of the third international workshop on Software architecture,

pages 25�28. ACM, 1998. (Cited on pages 6 and 14.)

[Demeyer] Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz. Object-

oriented reengineering patterns. (Cited on page 12.)

[Dubinsky 2013] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszyn-

ski, Martin Becker and Krzysztof Czarnecki. An exploratory study of cloning

in industrial software product lines. In Software Maintenance and Reengi-

neering (CSMR), 2013 17th European Conference on, pages 25�34. IEEE,

2013. (Not cited.)

[Ducasse 2009] Stéphane Ducasse and Damien Pollet. Software architecture recon-

struction: A process-oriented taxonomy. Software Engineering, IEEE Trans-

actions on, vol. 35, no. 4, pages 573�591, 2009. (Cited on pages 23 and 25.)

[Dugerdil 2013] Philippe Dugerdil and David Sennhauser. Dynamic Decision Tree

for Legacy Use-case Recovery. In Proceedings of the 28th Annual ACM

Symposium on Applied Computing, SAC '13, pages 1284�1291, New York,

NY, USA, 2013. ACM. (Cited on pages 19, 20, 21, 24, 25 and 26.)

128 Bibliography

[Elhaddad 2012] Younis R Elhaddad. Combined Simulated Annealing and Genetic

Algorithm to Solve Optimization Problems. In World Academy of Science,

Engineering and Technology (WASET), 2012. (Cited on page 21.)

[Erdemir 2011] Ural Erdemir, Umut Tekin and Feza Buzluca. Object Oriented Soft-

ware Clustering Based on Community Structure. In 2011 18th Asia Pa-

ci�c Software Engineering Conference (APSEC), pages 315�321. IEEE, 2011.

(Cited on pages 19, 20, 21, 22, 23, 25 and 26.)

[Ferreira da Silva 1996] M Ferreira da Silva and Claudia Maria Lima Werner. Pack-

aging reusable components using patterns and hypermedia. In Software

Reuse, 1996., Proceedings Fourth International Conference on, pages 146�

155. IEEE, 1996. (Cited on page 5.)

[Figueiredo 2008] Eduardo Figueiredo, Nelio Cacho, Claudio Sant'Anna, Mario

Monteiro, Uira Kulesza, Alessandro Garcia, Sérgio Soares, Fabiano Ferrari,

Safoora Khan, Francisco Dantaset al. Evolving software product lines with as-

pects. In ACM/IEEE 30th International Conference on Software Engineering

(ICSE'08), pages 261�270. IEEE, 2008. (Cited on pages 49 and 115.)

[Filman 2004] Robert Filman, Tzilla Elrad, Siobhán Clarkeet al. Aspect-oriented

software development. Addison-Wesley Professional, 2004. (Cited on page 5.)

[Fischer 2014] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon and

Alexander Egyed. Enhancing clone-and-own with systematic reuse for devel-

oping software variants. In Software Maintenance and Evolution (ICSME),

2014 IEEE International Conference on, pages 391�400. IEEE, 2014. (Not

cited.)

[Frakes 1996] William Frakes and Carol Terry. Software Reuse: Metrics and Models.

ACM Comput. Surv., vol. 28, no. 2, pages 415�435, June 1996. (Cited on

page 5.)

[Frakes 2005] William B Frakes and Kyo Kang. Software reuse research: Status

and future. IEEE transactions on Software Engineering, vol. 31, no. 7, pages

529�536, 2005. (Cited on pages 5 and 7.)

[Frenzel 2007] Pierre Frenzel, Rainer Koschke, Andreas PJ Breu and Karsten Angst-

mann. Extending the re�exion method for consolidating software variants into

product lines. In 14th Working Conference on Reverse Engineering (WCRE),

pages 160�169. IEEE, 2007. (Cited on pages 8, 20, 22, 23, 24, 25, 26, 31

and 90.)

[Ganter 2012] Bernhard Ganter and Rudolf Wille. Formal concept analysis: math-

ematical foundations. Springer Science & Business Media, 2012. (Cited on

pages 21, 91 and 92.)

Bibliography 129

[Garlan 2000] David Garlan. Software Architecture: A Roadmap. In Proceedings

of the Conference on The Future of Software Engineering, ICSE '00, pages

91�101, New York, NY, USA, 2000. ACM. (Cited on pages 15 and 16.)

[Gasparic 2014] Marko Gasparic, Andrea Janes, Alberto Sillitti and Giancarlo

Succi. An Analysis of a Project Reuse Approach in an Industrial Setting.

In Software Reuse for Dynamic Systems in the Cloud and Beyond, pages

164�171. Springer, 2014. (Cited on pages 6, 7 and 34.)

[Gomaa 2005] H. Gomaa. Designing Software Product Lines with UML. In Software

Engineering Workshop - Tutorial Notes, 2005. 29th Annual IEEE/NASA,

pages 160�216, April 2005. (Cited on page 14.)

[Google 2015] Google. API Guides (http://developer.android.com/reference/packages.html),

2015. (Cited on page 60.)

[Griss 1997] Martin L Griss. Software reuse architecture, process, and organization

for business success. In Computer Systems and Software Engineering, 1997.,

Proceedings of the Eighth Israeli Conference on, pages 86�89. IEEE, 1997.

(Cited on page 5.)

[Hamza 2009] Haitham S Hamza. A Framework for Identifying Reusable Software

Components Using Formal Concept Analysis. In Sixth International Con-

ference on Information Technology: New Generations (ITNG), 2009, pages

813�818. IEEE, 2009. (Cited on pages 18, 20, 21, 23, 25 and 26.)

[Han 2000] Jiawei Han, Jian Pei and Yiwen Yin. Mining frequent patterns without

candidate generation. In ACM SIGMOD Record, volume 29, pages 1�12.

ACM, 2000. (Cited on page 68.)

[Han 2006] Jiawei Han, Micheline Kamber and Jian Pei. Data mining, southeast

asia edition: Concepts and techniques. Morgan kaufmann, 2006. (Cited on

pages 21, 39, 54, 68, 83, 96 and 104.)

[Harman 2001] Mark Harman and Bryan F Jones. Search-based software engineer-

ing. Information and Software Technology, vol. 43, no. 14, pages 833 � 839,

2001. (Cited on page 20.)

[Harman 2010] Mark Harman. Why Source Code Analysis and Manipulation Will

Always be Important. In 10th IEEE International Working Conference on

Source Code Analysis and Manipulation (SCAM 2010), pages 7�19, 2010.

(Cited on page 16.)

[Hasheminejad 2015] SMH Hasheminejad and S Jalili. CCIC: Clustering analysis

classes to identify software components. Information and Software Technol-

ogy, vol. 57, pages 329�351, 2015. (Cited on pages 7, 18, 20, 23, 25, 26

and 34.)

130 Bibliography

[Heineman 2001] George T Heineman and William T Councill. Component-based

software engineering. Putting the Pieces Together, Addison-Westley, 2001.

(Cited on pages 5, 6, 27 and 34.)

[Hendrickson 2007] S. A. Hendrickson and A. van der Hoek. Modeling Product Line

Architectures Through Change Sets and Relationships. In Proc. of the 29th

Inter. Conf. on Software Engineering, ICSE '07, pages 189�198, Washington,

DC, USA, 2007. IEEE Computer Society. (Cited on page 113.)

[Iso 2001] ISO Iso. IEC 9126-1: Software Engineering-Product Quality-Part 1:

Quality Model. Geneva, Switzerland: International Organization for Stan-

dardization, 2001. (Cited on page 27.)

[Kang 1990] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak and

A Spencer Peterson. Feature-oriented domain analysis (FODA) feasibility

study. Rapport technique, DTIC Document, 1990. (Cited on page 91.)

[Kang 2005] Kyo Chul Kang, Moonzoo Kim, Jaejoon Lee and Byungkil Kim.

Feature-oriented re-engineering of legacy systems into product line assets�

a case study. In Software Product Lines, pages 45�56. Springer, 2005. (Cited

on pages 8, 19, 20, 22, 23, 25, 26, 32 and 90.)

[Kebir 2012a] Selim Kebir, A-D Seriai, Sylvain Chardigny and Allaoua Chaoui.

Quality-Centric Approach for Software Component Identi�cation from

Object-Oriented Code. In 2012 Joint Working IEEE/IFIP Conference on

Software Architecture (WICSA) and European Conference on Software Ar-

chitecture (ECSA), pages 181�190. IEEE, 2012. (Cited on pages 7, 12, 15,

20, 21, 23, 24, 25, 26, 27, 29, 34, 35, 37, 60, 61, 98 and 107.)

[Kebir 2012b] Selim Kebir, Abdelhak-Djamel Seriai, Allaoua Chaoui and Sylvain

Chardigny. Comparing and combining genetic and clustering algorithms for

software component identi�cation from object-oriented code. In Proceedings

of the Fifth International C* Conference on Computer Science and Software

Engineering, pages 1�8. ACM, 2012. (Cited on pages 7, 20, 21, 22, 23, 24,

25 and 26.)

[Kolb 2005] Ronny Kolb, Dirk Muthig, Thomas Patzke and Kazuyuki Yamauchi. A

case study in refactoring a legacy component for reuse in a product line. In

Proceedings of the 21st IEEE International Conference on Software Mainte-

nance (ICSM 2005), pages 369�378. IEEE, 2005. (Cited on pages 18, 20, 22,

24, 25 and 26.)

[Kolb 2006] Ronny Kolb, Dirk Muthig, Thomas Patzke and Kazuyuki Yamauchi.

Refactoring a legacy component for reuse in a software product line: a case

study. Journal of Software Maintenance and Evolution: Research and Prac-

tice, vol. 18, no. 2, pages 109�132, 2006. (Cited on pages 18, 20, 22, 24, 25

and 26.)

Bibliography 131

[Koschke 2009] Rainer Koschke, Pierre Frenzel, Andreas PJ Breu and Karsten

Angstmann. Extending the re�exion method for consolidating software vari-

ants into product lines. Software Quality Journal, vol. 17, no. 4, pages 331�

366, 2009. (Cited on pages 8, 20, 22, 23, 24, 25, 26, 31 and 90.)

[Land 2009] Rikard Land, Daniel Sundmark, Frank Lüders, Iva Krasteva and Adnan

Causevic. Reuse with software components-a survey of industrial state of

practice. In Formal Foundations of Reuse and Domain Engineering, pages

150�159. Springer, 2009. (Cited on page 6.)

[Langelier 2005] Guillaume Langelier, Houari Sahraoui and Pierre Poulin.

Visualization-based analysis of quality for large-scale software systems. In

Proceedings of the 20th IEEE/ACM international Conference on Automated

software engineering, pages 214�223. ACM, 2005. (Cited on page 22.)

[Lanza 2003] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight

visual approach to reverse engineering. Software Engineering, IEEE Trans-

actions on, vol. 29, no. 9, pages 782�795, 2003. (Cited on page 22.)

[Lau 2007] Kung-Kiu Lau and Zheng Wang. Software component models. Software

Engineering, IEEE Transactions on, vol. 33, no. 10, pages 709�724, 2007.

(Cited on page 6.)

[Leach 2012] Ronald J Leach. Software reuse: Methods, models, costs. AfterMath,

2012. (Cited on page 5.)

[Lethbridge 2003] Timothy C Lethbridge, Janice Singer and Andrew Forward. How

software engineers use documentation: The state of the practice. IEEE Soft-

ware, vol. 20, no. 6, pages 35�39, 2003. (Cited on page 18.)

[Linden 2007] Frank J. van der Linden, Klaus Schmid and Eelco Rommes. Software

product lines in action: The best industrial practice in product line engi-

neering. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007. (Cited

on page 6.)

[Luckham 1996] D Luckham. Rapide: A language and toolset for simulation of

distributed systems by partial orderings of events, 1996. (Cited on page 93.)

[Lüer 2002] Chris Lüer and André Van Der Hoek. Composition environments for

deployable software components. Citeseer, 2002. (Cited on pages 15, 27

and 34.)

[Ma 2006] Homan Ma, Robert Amor and Ewan Tempero. Usage patterns of the Java

standard API. In Proceedings of the 13th Asia Paci�c Software Engineering

Conference (APSEC 2006), pages 342�352. IEEE, 2006. (Cited on page 60.)

[Magee 1996] Je� Magee and Je� Kramer. Dynamic structure in software archi-

tectures. ACM SIGSOFT Software Engineering Notes, vol. 21, no. 6, pages

3�14, 1996. (Cited on page 93.)

132 Bibliography

[McIlroy 1968] M Douglas McIlroy, JM Buxton, Peter Naur and Brian Randell.

Mass-produced software components. In Proceedings of the 1st International

Conference on Software Engineering, Garmisch Pattenkirchen, Germany,

pages 88�98. sn, 1968. (Cited on page 5.)

[Mende 2008] Thilo Mende, Felix Beckwermert, Rainer Koschke and Gerald Meier.

Supporting the grow-and-prune model in software product lines evolution us-

ing clone detection. In 12th European Conference on Software Maintenance

and Reengineering (CSMR), pages 163�172. IEEE, 2008. (Cited on pages 18,

20, 22, 23, 24, 25 and 26.)

[Mende 2009] Thilo Mende, Rainer Koschke and Felix Beckwermert. An evaluation

of code similarity identi�cation for the grow-and-prune model. Journal of

Software Maintenance and Evolution: Research and Practice, vol. 21, no. 2,

pages 143�169, 2009. (Cited on pages 12, 18, 20, 22, 23, 24, 25 and 26.)

[Mishra 2009] SK Mishra, Dharmender Singh Kushwaha and Arun Kumar Misra.

Creating Reusable Software Component from Object-Oriented Legacy System

through Reverse Engineering. Journal of object technology, vol. 8, no. 5,

pages 133�152, 2009. (Cited on pages 18, 20, 21, 23, 24, 25, 26 and 60.)

[Mohagheghi 2007] Parastoo Mohagheghi and Reidar Conradi. Quality, productiv-

ity and economic bene�ts of software reuse: a review of industrial studies.

Empirical Software Engineering, vol. 12, no. 5, pages 471�516, 2007. (Cited

on page 5.)

[Moriconi 1994] Mark Moriconi and Xiaolei Qian. Correctness and Composition of

Software Architectures. In Proceedings of the 2Nd ACM SIGSOFT Sympo-

sium on Foundations of Software Engineering, SIGSOFT '94, pages 164�174,

New York, NY, USA, 1994. ACM. (Cited on page 14.)

[Moshkenani 2012] Zahra Sadri Moshkenani, Sayed Mehran Shara� and Bahman

Zamani. Improving Naïve Bayes Classi�er for Software Architecture Recon-

struction. In Instrumentation & Measurement, Sensor Network and Automa-

tion (IMSNA), 2012 International Symposium on, volume 2, pages 383�388.

IEEE, 2012. (Cited on pages 12, 18, 20, 21, 25 and 26.)

[Müller 2000] Hausi A Müller, Jens H Jahnke, Dennis B Smith, Margaret-Anne

Storey, Scott R Tilley and Kenny Wong. Reverse engineering: A roadmap.

In Proceedings of the Conference on the Future of Software Engineering,

pages 47�60. ACM, 2000. (Cited on page 12.)

[Nakagawa 2011] Elisa Yumi Nakagawa, Pablo Oliveira Antonino and Martin

Becker. Reference architecture and product line architecture: a subtle but

critical di�erence. In Software Architecture, pages 207�211. Springer, 2011.

(Cited on pages 6 and 91.)

Bibliography 133

[Perry 1992] Dewayne E Perry and Alexander L Wolf. Foundations for the study of

software architecture. ACM SIGSOFT Software Engineering Notes, vol. 17,

no. 4, pages 40�52, 1992. (Cited on page 13.)

[Pinzger 2004] Martin Pinzger, Harald Gall, Jean-Francois Girard, Jens Knodel,

Claudio Riva, Wim Pasman, Chris Broerse and Jan Gerben Wijnstra. Ar-

chitecture recovery for product families. In Software Product-Family Engi-

neering, pages 332�351. Springer, 2004. (Cited on pages 8, 12, 19, 20, 22, 23,

24, 25, 26, 32 and 90.)

[Pohl 2005a] Klaus Pohl, Günter Böckle and Frank J. van der Linden. Software

product line engineering: Foundations, principles and techniques. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2005. (Cited on pages 6, 14, 90

and 91.)

[Pohl 2005b] Klaus Pohl, Günter Böckle and Frank J. van der Linden. Software

product line engineering: Foundations, principles and techniques. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2005. (Cited on page 14.)

[Pohl 2010] Klaus Pohl. Requirements engineering: fundamentals, principles, and

techniques. Springer Publishing Company, Incorporated, 2010. (Cited on

page 18.)

[Poshyvanyk 2006] Denys Poshyvanyk and Andrian Marcus. The conceptual cou-

pling metrics for object-oriented systems. In Software Maintenance, 2006.

ICSM'06. 22nd IEEE International Conference on, pages 469�478. IEEE,

2006. (Cited on pages 46 and 71.)

[Razavizadeh 2009] Azadeh Razavizadeh, Hervé Verjus, Sorana Cimpan and

Stéphane Ducasse. Multiple viewpoints architecture extraction. In Joint

Working IEEE/IFIP Conference on Software Architecture, 2009 & European

Conference on Software Architecture. WICSA/ECSA 2009, pages 329�332.

IEEE, 2009. (Cited on pages 12, 20, 22, 25 and 26.)

[Riva 2002] Claudio Riva and Jordi Vidal Rodriguez. Combining static and dy-

namic views for architecture reconstruction. In Proceedings. Sixth European

Conference on Software Maintenance and Reengineering, 2002, pages 47�55.

IEEE, 2002. (Cited on pages 18, 19, 20, 23, 24, 25 and 26.)

[Robillard 2013] M.P. Robillard, E. Bodden, D. Kawrykow, M. Mezini and

T. Ratchford. Automated API Property Inference Techniques. IEEE Trans-

actions on Software Engineering, vol. 39, no. 5, pages 613�637, 2013. (Cited

on page 60.)

[Rumbaugh 1991] James Rumbaugh, Michael Blaha, William Premerlani, Freder-

ick Eddy, William E. Lorensenet al. Object-oriented modeling and design,

volume 199. Prentice-hall Englewood Cli�s, 1991. (Cited on page 16.)

134 Bibliography

[Rumbaugh 2004] James Rumbaugh, Ivar Jacobson and Grady Booch. Uni�ed

modeling language reference manual, the. Pearson Higher Education, 2004.

(Cited on page 18.)

[Sametinger 1997] Johannes Sametinger. Software engineering with reusable compo-

nents. Springer Science & Business Media, 1997. (Cited on pages 7 and 34.)

[Seriai 2014] Abderrahmane Seriai, Salah Sadou, Houari Sahraoui and Salma

Hamza. Deriving component interfaces after a restructuring of a legacy sys-

tem. In 2014 IEEE/IFIP Conference on Software Architecture (WICSA),

pages 31�40. IEEE, 2014. (Cited on pages 20, 21, 23, 25 and 26.)

[She 2011] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski and

Krzysztof Czarnecki. Reverse engineering feature models. In The 33rd Inter-

national Conference on Software Engineering (ICSE 2011), pages 461�470.

IEEE, 2011. (Cited on page 12.)

[Shiva 2007] Sajjan G Shiva and Lubna Abou Shala. Software Reuse: Research and

Practice. In International Conference on Information and Technology (ITNG

2007), pages 603�609, 2007. (Cited on page 5.)

[Sneed 2006] Harry M Sneed. Integrating legacy software into a service oriented

architecture. In Software Maintenance and Reengineering, 2006. CSMR 2006.

Proceedings of the 10th European Conference on, pages 11�pp. IEEE, 2006.

(Cited on page 12.)

[Stojanovi¢ 2005] Zoran Stojanovi¢ and Ajantha Dahanayake. Service-oriented soft-

ware system engineering: challenges and practices. IGI Global, 2005. (Cited

on page 5.)

[Szyperski 2002] Clemens Szyperski. Component software: beyond object-oriented

programming. Pearson Education, 2002. (Cited on pages 15, 27 and 34.)

[Tavares 2008] A. L. C. Tavares and M. T. Valente. A Gentle Introduction to OSGi.

SIGSOFT Softw. Eng. Notes, vol. 33, no. 5, pages 8:1�8:5, August 2008.

(Not cited.)

[Thüm 2014] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,

Gunter Saake and Thomas Leich. Featureide: An extensible framework for

feature-oriented software development. Science of Computer Programming,

vol. 79, pages 70�85, 2014. (Cited on page 113.)

[Tonella 2001] Paolo Tonella and Alessandra Potrich. Reverse engineering of the

UML class diagram from C++ code in presence of weakly typed containers. In

Proceedings of the IEEE International Conference on Software Maintenance

(ICSM 2001), pages 376�385. IEEE, 2001. (Cited on page 12.)

Bibliography 135

[Uddin 2012] Gias Uddin, Barthélémy Dagenais and Martin P. Robillard. Temporal

Analysis of API Usage Concepts. In Proceedings of the 2012 International

Conference on Software Engineering, ICSE 2012, pages 804�814, Piscataway,

NJ, USA, 2012. IEEE Press. (Cited on page 60.)

[Vliet 2008] Hans van Vliet. Software Engineering: Principles and Practice. 2008.

(Cited on page 12.)

[von Detten 2012] Markus von Detten. Archimetrix: A Tool for De�ciency-Aware

Software Architecture Reconstruction. In 2012 19th Working Conference

on Reverse Engineering (WCRE), pages 503�504. IEEE, 2012. (Cited on

pages 20, 21, 25 and 26.)

[von Detten 2013] Markus von Detten, Marie Christin Platenius and Ste�en Becker.

Reengineering component-based software systems with Archimetrix. Software

& Systems Modeling, pages 1�30, 2013. (Cited on pages 20, 21, 25 and 26.)

[Wang 2013] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie and

Dongmei Zhang. Mining Succinct and High-coverage API Usage Patterns

from Source Code. In Proceedings of the 10th Working Conference on Mining

Software Repositories, MSR '13, pages 319�328, Piscataway, NJ, USA, 2013.

IEEE Press. (Cited on page 60.)

[Weinreich 2012] R. Weinreich, C. Miesbauer, G. Buchgeher and T. Kriechbaum.

Extracting and Facilitating Architecture in Service-Oriented Software Sys-

tems. In 2012 Joint Working IEEE/IFIP Conference on Software Architec-

ture (WICSA) and European Conference on Software Architecture (ECSA),

pages 81�90, Aug 2012. (Cited on pages 18, 19, 20, 22, 24, 25 and 26.)

[Yevtushenko 2000] [A. Serhiy Yevtushenko. System of data analysis "Concept Ex-

plorer". (In Russian) Proc. of the 7th National Conf. on Arti�cial Intelligence

KII, Russia, vol. 79, pages 127�134, 2000. (Cited on page 110.)

[Yinxing 2010] Xue Yinxing, Xing Zhenchang and Jarzabek Stan. Understanding

Feature Evolution in a Family of Product Variants. Reverse Engineering,

Working Conference on, vol. 0, pages 109�118, 2010. (Cited on page 7.)

[Yuan 2014] Eric Yuan, Naeem Esfahani and Sam Malek. Automated Mining of

Software Component Interactions for Self-adaptation. In Proceedings of the

9th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems, SEAMS 2014, pages 27�36, New York, NY, USA, 2014.

ACM. (Cited on page 12.)

[Zhang 2010] Qifeng Zhang, Dehong Qiu, Qubo Tian and Lei Sun. Object-oriented

software architecture recovery using a new hybrid clustering algorithm. In

Seventh International Conference on Fuzzy Systems and Knowledge Dis-

covery (FSKD), 2010, volume 6, pages 2546�2550. IEEE, 2010. (Cited on

pages 18, 20, 21, 22, 23, 25 and 26.)

136 Bibliography

[Ziadi 2012] Tew�k Ziadi, Luz Frias, Marcos Aurélio Almeida da Silva and Mikal

Ziane. Feature identi�cation from the source code of product variants. In Soft-

ware Maintenance and Reengineering (CSMR), 2012 16th European Confer-

ence on, pages 417�422. IEEE, 2012. (Cited on page 12.)

Supporting Reuse by Reverse Engineering Software Architectures
and Components from Object-Oriented Product Variants and

APIs

Abstract: It is widely recognized that software quality and productivity can be

signi�cantly improved by applying a systematic reuse approach. In this context,

Component-Based Software Engineering (CBSE) and Software Product Line Engi-

neering (SPLE) are considered as two important systematic reuse paradigms. CBSE

aims at composing software systems based on pre-built software components and

SPLE aims at building new products by managing commonalty and variability of a

family of similar software. However, building components and SPL artifacts from

scratch is a costly task. In this context, our dissertation proposes three contributions

to reduce this cost.

Firstly, we propose an approach that aims at mining reusable components from

a set of similar object-oriented software product variants. The idea is to analyze

the commonality and the variability of product variants, in order to identify pieces

of code that may form reusable components. Our motivation behind the analysis of

several existing product variants is that components mined from these variants are

more reusable for the development of new software products than those mined from

single ones. The experimental evaluation shows that the reusability of the compo-

nents mined using our approach is better than those mined from single software.

Secondly, we propose an approach that aims at restructuring object-oriented

APIs as component-based ones. This approach exploits speci�city of API entities

by statically analyzing the source code of both APIs and their software clients to

identify groups of API classes that are able to form components. Our assumption is

based on the probability of classes to be reused together by API clients on the one

hand, and on the structural dependencies between classes on the other hand. The

experimental evaluation shows that structuring object-oriented APIs as component-

based ones improves the reusability and the understandability of these APIs.

Finally, we propose an approach that automatically recovers the component-

based architecture of a set of object-oriented software product variants. Our

contribution is twofold: the identi�cation of the architectural component variability

and the identi�cation of the con�guration variability. The con�guration variability

is based on the identi�cation of dependencies between the architectural elements

using formal concept analysis. The experimental evaluation shows that our

approach is able to identify the architectural variability.

Keywords: software reuse, reverse engineering, restructuring, reengineering,

object oriented, software component, software product line architecture, software

architecture variability, API, product variants.

	Introduction
	Research Context
	Software Reuse
	Component-Based Software Engineering (CBSE)
	Software Product Line Engineering (SPLE)

	Problem and Motivation
	Contribution
	Thesis Outline

	Reverse Engineering Software Architectures and Software Components from Object-Oriented Software Systems
	Reverse Engineering
	Reverse Engineering Software Architectures and Software Components
	Classification Axes of Related Works
	The Goal of Identification Approaches
	The Required Input of Identification Approaches
	The Process of Identification Approaches
	The Output of Identification Approaches

	Example of Identification Approach: ROMANTIC
	Object-to-Component Mapping Model
	Quality Measurement Model

	Discussion
	The Required Input of Identification Approaches
	The Process of Identification Approaches
	The Output of Identification Approaches

	Conclusion

	Mining Software Components from a Set of Similar Object-Oriented Product Variants
	Introduction
	The Proposed Approach Foundations
	The Goal: Object to Component
	Approach Principles and Process

	Identifying Classes Composing Reusable Components
	Identifying Potential Components
	Identifying Similar Components
	Reusable Component Mining from Similar Potential Ones

	Identifying Component Interfaces
	Documentation of Components
	Identifying Component Functionalities
	Generation of the Functionality Description

	Experimental Results and Evaluation
	Data Collection
	Evaluation Method and Validation
	Results
	Validation

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Conclusion

	Mining Software Components from Object-Oriented APIs
	Introduction and Problem Analysis
	The Proposed Approach Foundations
	Component Identification
	API as Library of Components
	Principles and Mapping Model
	Identification Process

	Identification of Component Interfaces
	Extracting Transactions of Usage
	Mining Frequent Usage Patterns of Classes
	Identifying Classes Composing Component Interfaces from Frequent Usage Patterns

	API as Library of Components
	Identifying Classes Composing Components
	Organizing API as Layers of Components

	Experimental Results and Evaluation
	Experimentation Design
	Results
	Answering Research Questions

	Discussion
	Component and Frequent Usage Pattern
	Component Identification: APIs VS Software Applications

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Conclusion

	Recovering Software Architecture of a Set of Similar Object-Oriented Product Variants
	Introduction
	Background
	Software Variability
	Formal Concept Analysis

	Architecture Variability Analysis
	Architecture Variability Recovery Process
	Identifying the Architecture Variability
	Identifying Component Variants
	Identifying Configuration Variability

	Identifying Architecture Dependencies
	Identification of Dependencies Related to Feature Variability
	Identification of Dependencies Related to Optional Component Distribution

	Identification of Groups of Variability
	Experimental Results and Evaluation
	Experimentation Design
	Results
	Answering Research Questions

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Conclusion

	Conclusion and Future Direction
	Summary of Contributions
	General Limitations
	Future Directions
	Addressing New Related Aspects:
	Tools Support and Experimentations

	Bibliography

