
MIGRATING OBJECT-ORIENTED
SOFTWARE TO COMPONENT-BASED

ONES 

Présentation	extraite	de	la	soutenance	de	thèse	de
Zakarea Al Shara

1



EVOLUTION OF LARGE OO	SOFTWARE SYSTEMS 

¢Example:	in	Mozilla.org

� Composed of 30K	classes	
� More	than	1	million	changes	
� Performed	by	hundreds	of	developers	
� Over	more	than	6	years

α Do	not	have	explicit	architecture

α Fine-grained	entities	(objects)

α Numerous	implicit	dependencies

α Hard	to	maintain,	understand	and	reuse
2



CHARACTERISTICS OF CB	SOFTWARE

¢ Component-Based	Software	Engineering

� Definition:	an	approach	for	developing	software	systems	by	choosing	off-
the-shelf	software	components and	then	assembling them	using	a	well-
defined	software	architecture

¢ Software	component	characteristics

� Coarse-grained	entity

� Encapsulated

� Composable

¢ Easy	to	maintain,	understand	and	reuse
3



STRATEGY SOLUTIONS FOR SOFTWARE EVOLUTION 

1. Replacing	the	software

2. Continuing	maintenance	despite	cost

3. Software	migration
� Allows	to	move	from	original	form	to	a	new	one
� Keeps	same	functionality	and	data
� Without	having	to	completely	redevelop	the	software

� Cost	effective

� Migrating	OO	software	to	CB	ones:
¢Improve	understandability,	maintainability	and	reusability

4

X

X

✔



STEPS OF SOFTWARE MIGRATION 

5

Transformation
Code	Generating

Re
ve
rs
e	
En

gi
ne

er
in
g



STEPS OF MIGRATING OO	SOFTWARE TO CB	ONES 

1. Reverse	engineering:	CB	architecture	recovery
¢Identifying	components	and	their	inter-relationships

2. Transformation:	from	OO	code	to	CB	code
¢Transforming OO	code	to	create	programming	level	
components

6



OO-TO-CB	MAPPING MODEL 

Method

1

*

Component

Interface

1

1..*

Required interfaceProvided interface

Class

0..*

1..*

1..*1..*

0..*

1..*

0..*

1..*

7



TOY EXAMPLE:	INFORMATION SCREEN 

8



Healing	Component	Encapsulation

9



HEALING COMPONENT ENCAPSULATION 

¢ Input:	CB	architecture	recovery

¢The	transformation	needs	to	solve	two	main	problems:

1. Explicit	component	encapsulation	violation

� Explicit	dependencies	between	components	caused	by	direct	access	to	its	internal	

implementation

� i.e.	Instantiation	and	method	invocation

2. Implicit	component	encapsulation	violation

� Implicit	dependencies	between	components	caused	by	OO	mechanisms

� i.e.	Inheritance	and	exception	handling

 10



INSTANCE HANDLING PROBLEM

A	class	belonging	to	a	component	(cluster)	can	be	directly	
instantiated/called	in	a	method	of	class	belonging	to	another	
component

11



SOLUTION:	USING COMPONENT INTERFACES THROUGH THE
FACTORY PATTERN

12

1. Uncoupling	classes	by	creating	object	interfaces
2. Implement	factory	design	pattern	to	provide	object	interfaces



INHERITANCE PROBLEM

� Inheritance	links	between	classes	belonging	to	different	
components	need	to	be	transformed

13



SOLUTION:	REPLACING INHERITANCE BY DELEGATION

14

� Replace	inheritance	with	delegation	between	components

Provide	inherited	services

Provide	initial	receiver



SOLUTION:	REPLACING INHERITANCE BY DELEGATION

15

Supertype chain	



Reveal	Component	Instance

16



REVEAL COMPONENT INSTANCE 

17



PROBLEM AND MOTIVATION 

¢ A	cluster	should	not	be	considered	as	simple	packaging	and	
deployment	units	

¢Moving	from	the	concept	of	object	to	a	concept	of	component	
instance.

¢ Solving	the	gap	between	CB	architecture	and	its	running	
components

 

18



COMPONENT INSTANCE 

¢In	OO,	an	instance	consist	of	state (attributes)	and	
behavior (reified	by	methods)

¢Infer	component	instance	from	a	set	of	classes	instances	
belonging	to	the	same	component

� A	component	state	is	the	aggregated	state	of	these	instances

� A	component	behavior	is	published	through	the	component	
interfaces

19



COMPONENT INSTANCE 

20



SOLUTION:	COMPONENT DESCRIPTOR

Component	descriptor	consists	of:

1. Component	interfaces:	the	component	descriptor	needs	to	
define	provided	and	required	interfaces

2. Implementation	reference:	the	component	descriptor	needs	to	
define	references	of	its	component	implementation	source	
code

3. Component	instantiation:	the	component	descriptor	needs	to	
describe	how	its	component	is	instantiated

21



COMPONENT DESCRIPTOR:	INTERFACES 

22



COMPONENT DESCRIPTOR:	IMPLEMENTATION REFERENCE 

Delegating	provided	services

23



COMPONENT DESCRIPTOR:	INSTANTIATION 

24

¢How	component	instances	can	be	created?
� Component	constructors

1. Default	constructor
2. Initializing	component	state

 



COMPONENT DESCRIPTOR:	INSTANTIATION

25

Before	transformation After	transformation



OUTLINE 

Model-Driven	Transformation:	OO	Models	to	
CB	Models

26



MDT:	OO	MODELS TO CB	MODELS 

27

Re
ve
rs
e	
en

gi
ne

er
in
g

Ba
se
d	
on

Co
nf
or
m
s	t
o

Co
nf
or
m
s	t
o

Co
nf
or
m
s	t
o

Co
de

	g
en

er
at
io
n

Transform	to

Transform	toTransform	to

Ba
se
d	
on

Tr
an

sf
or
m
at
io
n	
pr
oc
es
s

Pr
ed

ef
in
ed



TRANSFORMING OOGM	TO CBGM 

1. Metamodeling:	Defining	OOGMM	and	CBGMM
� FAMIX is	a	family	of	metamodels for	object-oriented	languages

§ Extensible
§ Language	independent	
§ Existing	parsing	technology	to	export	the	meta	information	of	
OO		languages	to	FAMIX	(e.g.	JFamix for	Java)

2. Rules	for	transforming	OOGM	to	CBGM
� Define	the	transformation	rules	to	transform	OO	dependencies	to	
interface-based	ones.

28



INSTANTIATION 

29

Cluster

OOGMMCBGMM

Component

If(!invokedBy.belongToClass.isAbstract){
self.belongToClass.belongToComponent == invokedBy. belongToClass.belongComponent}

If(!reference.belongToClass.isAbstract){
self.belongToClass.belongToComponent == reference. 

belongToClass.belongToComponent}

If(!accessedTo.belongToClass.isAbstract){
self.belongToClass.belongToComponent == 

accessedTo. belongToClass.belongToComponent}



CBGMM	:	INHERITANCE RELATIONSHIP 

30

ClusterComponent

OOGMMCBGMM

self.belongToClass.belongToComponetn == invokedBy. belongToClass. belongToComponetn



CBGMM:	EXCEPTION HANDLING 

31

OOGMMCBGMM
ClusterComponent

self.belongToClass.belongToComponetn == thrownExceptrion. 
belongToClass. belongToComponetn

self.belongToClass.belongToComponetn == declaredException. belongToClass. belongToComponetn

self.belongToClass.belongToComponetn == caughtException. belongToClass. belongToComponetn



EXAMPLE:	TRANSFORMATION RULES

32



TRANSFORMING OOGM	TO CBGM	RULES 

33



TRANSFORMING CBGM	INTO CBSMS 

1. Defining	CBSMMs
� Studying	the	common	component-based	metamodels

2. Identifying	the	variability	of	transformation	rules
� Identifying	the	variability	between	component-based	

metamodels

3. Model-driven	transformation	feature	model
� Modeling	the	common	and	variability	transformations	for	

component-based	metamodels

34



THE VARIABILITY OF TRANSFORMATION RULES 

¢ Component	descriptor
� Implicit:	Do	not	have	component	descriptor
� Explicit:	OO,	CDL,	ADL

¢ Service	description
� Declarative:	Provided	and	required	references	of	services	are	described	in	
XML-like	files

� Imperative:	Using	the	standard	method	call	in	object	oriented

¢ Interface	description
� Independent:	Using	independent	languages	to	describe	component	
interfaces	IDL

� Dependent:	using	a	standard	object	oriented	interface

¢ Required	interface
� Explicit:	Explicitly	declare	the	required	services
� Implicit:	Embedded	in	the	component	source	code

35



THE VARIABILITY OF TRANSFORMATION RULES 

EJBJBOpenCOMCOMFractalCCMSOFAOSGiVariability

✔✔✔ImplicitComponent
Descriptor ✔✔✔✔✔Explicit

✔✔DeclarativeService
Description ✔✔✔✔✔✔✔Imperative

✔IndependentInterface
Description ✔✔✔✔✔✔✔Dependent

✔✔✔✔✔ImplicitRequired	
interface. ✔✔✔✔Explicit

36



TRANSFORMATION FEATURE MODEL (TFM) 

37

OSGi



OUTLINE 

¢ Contributions

1. Healing	Component	Encapsulation

2. Reveal	Component	Instance

3. Model-Driven	Transformation:	OO	Models	to	CB	Models

¢ Experimental	Evaluation

¢ Conclusion	and	Future	Work 
38



EXPERIMENTAL EVALUATION

¢Research	Questions
� RQ1:	Does	the	transformation	result	avoid	component	encapsulation	
violation?

� RQ2:	To	which	extent	does	the	automatic	transformation	reduce	the	
developer’s	effort?

¢Evaluation	Methods
� Answer	to	RQ1:	The	Abstractnessmetric	proposed	by	Martin	[Martin	
2011]
¢Evaluate	how	much	the	OO	dependencies	are	transformed	to	interface-
based	ones

� Answer	to	RQ2:	Compared	the	estimated	efforts	expressed	by	time	
spent	by	developers	through	manual transformation	automatic
transformation

39



EXPERIMENTAL EVALUATION:	DATA COLLECTION

� Conducted	our	transformation	approach	on	9	Java	projects	[Qualitas Corpus]
� Selection	criteria

ØDifferent		project	size
ØDifferent	domains	
ØDifferent	Development	team

40



EXPERIMENTAL EVALUATION:	PROTOCOL

41

Abstractness(C	)	=	Na /	Np
Na:	#	of	interface	and	abstract	∈ provided	types	by	
C
Np:	#	provided	types	by	C



RESULTS:	ABSTRACTNESS

42• Improved	Abstractness	by	4.33 times



RESULTS:	MANUAL VS.	AUTOMATIC TRANSFORMATION

43

Example:	
• Automatically	transforms	Tomcat in	a	few	minutes	(about	6	minutes)	

without	any	wrong transformation.
• The	ratio	between	the	manually	and	the	automatically	

transformation	times	for	Tomcat	is	795



CONCLUSION 

¢Transforming	 object-oriented	code	into	component-
based	code

I. Transforming	object-oriented	dependencies	into	interface-
based	ones	using	design	patterns

II. Materialize	Component	instance

III. A	model-driven	approach	to	automatically	transform	object-

oriented	code	to	component-based	code

¢Threats	to	validity
I. Evaluate	other	software	quality	attributes	(e.g.	performance)
II. The	coverage	of	test	cases

44


