
07/10/13

1

Mining Reusable Software
Components from Object-Oriented

Source Code of a Set of Similar
Software

Anas Shatnawi
Abdelhak-Djamel Seriai

LIRMM Laboratory, Montpellier, France 1

 Outlines
l  Introduction

l  Background: the ROMANTIC Approach.

–  From Object to Component: the Mapping Model.
–  From Object to Component: the Quality Measurement Model.

l  The Proposed Approach
–  Identifying Potential Components.
–  Identifying Similar Components.
–  Reusable Component Mining from Similar Potential Ones.
–  Identifying structure of the reusable components.
–  Documentation of Components.

l  Experimental Results
l  Conclusions
l  Future Directions

2

07/10/13

2

Outlines
l  Introduction

l  Background: the ROMANTIC Approach

–  From Object to Component: the Mapping Model.
–  From Object to Component: the Quality Measurement Model.

l  The Proposed Approach.
–  Identifying Potential Components.
–  Identifying Similar Components.
–  Reusable Component Mining from Similar Potential Ones.
–  Identifying structure of the reusable components.
–  Documentation of Components.

l  Experimental Results.
l  Conclusions.
l  Future Directions. 3

Introduction

l  One of the most important approaches
supporting software reuse is Component Based
Software Engineering (CBSE).

l  The lack of component libraries is one of the

major limitations against widely use of CBSE in
the industry.

l  Also, software components are admitted as

more reusable entities than object-oriented
ones. 4

07/10/13

3

Introduction (cont.)

l  Thus,
–  Many approaches have been proposed to identify

components from existing object-oriented software.

l  Nevertheless, these approaches mines
components by analyzing single software.
–  Thus, the mined components may be useless in

other software and, consequently, their reusability is
not guaranteed.

5

Introduction (cont.)

l  In many cases, companies developed many
software systems
–  In the same domain, but with functional or technical

variations.
–  Adding some variations to an existing software to

meet the requirements of a new need.

l  We propose an approach to mine reusable
components from a set of similar object-oriented
software
–  E.g. product variants.

6

07/10/13

4

Introduction (cont.)

l  The goal is to analyse the source code of these
software to identify pieces of code that may form
reusable components
–  Which will be more useful (reusable) for the

development of new software than those mined from
singular ones.

7

Outlines

l  Introduction

l  Background: the ROMANTIC Approach

–  From Object to Component: the Mapping Model.
–  From Object to Component: the Quality Measurement Model.

l  The Proposed Approach.
–  Identifying Potential Components.
–  Identifying Similar Components.
–  Reusable Component Mining from Similar Potential Ones.
–  Identifying structure of the reusable components.
–  Documentation of Components.

l  Experimental Results.
l  Conclusions.
l  Future Directions. 8

07/10/13

5

The ROMANTIC Approach

l  In our previous works, we have proposed the
ROMANTIC approach
–  To extract a component-based architecture from an

object-oriented software.

l  ROMANTIC is mainly based on two models:
–  Mapping model.
–  Quality measurement model.

l  We rely on these two models to mine reusable
components from similar software.

9

From Object to Component:
the Mapping Model

10

07/10/13

6

From Object to Component:
the Quality Measurement
Model

11

From Object to Component:
the Quality Measurement
Model (cont.)

l  𝑄(𝐸)=​1/∑𝑖↑▒λi   (λ1∗S(E)+λ2∗A(E)+λ3∗ C(E))
l  Where:

–  𝐸 is an object-oriented component composed of a
group of classes.

–  𝑆(𝐸), 𝐴(𝐸) and 𝐶(𝐸) refer to the specificity,
autonomy, and composability of E respectively.

–  λ1, λ2, λ3 are weight values, situated in [0-1]. These
are used by the architect to weight each
characteristic as needed.

12

07/10/13

7

Outlines

l  Introduction.
l  Background: the ROMANTIC Approach.

–  From Object to Component: the Mapping Model.
–  From Object to Component: the Quality Measurement Model

l  The Proposed Approach
–  Identifying Potential Components.
–  Identifying Similar Components.
–  Reusable Component Mining from Similar Potential Ones.
–  Identifying structure of the reusable components.
–  Documentation of Components.

l  Experimental Results.
l  Conclusions.
l  Future Directions. 13

The Proposed Approach

14

07/10/13

8

Identifying Potential Components

l  A potential component is a group of classes that
are gradually formed starting from an object-
oriented core class.

l  Each class can be considered as a potential

core class to form a component.

l  Other classes are identif ied based on

incrementally fusion process.

15

Identifying Potential
Components (cont.)

l  The selection of the class to be added at each
step is decided based on the value of the
quality of the resulted component.
–  The class obtaining the highest quality value is

selected to extend the current group.
–  We do this until all classes are grouped into a single

group.

l  Some classes of this group will be excluded.
–  Classes that are added after the quality function

reaches the peak value.
16

07/10/13

9

Identifying Potential
Components (cont.)

17

Identifying Similar Components

l  Potential components are mined from similar
systems
–  Thus, some of them may be similar.

l  Similar components are those share the majority
of its classes and differ considering few ones.

l  These components may be considered as

variants of one common component
–  Which is considered more reusable.

18

07/10/13

10

Identifying Similar Components (cont.)

l  Thus, similar components are gathered into
groups.

l  Building groups of similar components are
based on lexical similarity metrics
–  The strength of similarity links between classes

composing each component.
–  Each component is considered as a text document

where the content is composed of a list of component
classes’ names.

–  Cosine similarity metric.
19

Identifying Similar Components (cont.)

l  Hierarchal clustering algorithm to gather similar
components into groups.
–  Individual components as initial leaf nodes in a

binary tree.

–  The two most similar nodes are grouped into a new
one.

–  This is continued until all nodes are grouped.
–  Depth first search algorithm is used to find the cut-

off points.
l  A node has a similarity value exceeding the average

similarity value of its children. 20

07/10/13

11

Reusable Component
Mining from Similar
Potential Ones

l  One common component is extracted from each
group of similar components.

l  A collection of classes that is used to form the

reusable component is composed of
–  All shared classes.
–  Some of non-shared.

21

Reusable Component Mining
 from Similar Potential
Ones (cont.)

l  Shared classes form the core of the reusable
component.
–  But considering only the shared classes may not

form a correct component following our quality
measurement model.

l  Selecting a non-shared class

–  The density of non-shared class.
–  The quality of the component.

22

07/10/13

12

Reusable Component Mining
from Similar Potential Ones

l  Steps:
–  Extracting all candidate subsets among non-shared

classes of the group.

–  Subsets that reach a predefined density threshold

are only taken into consideration.

–  Evaluating the quality of the subsets.

–  The subset that maximizes the quality value is

grouped with the core classes to form the reusable
component. 23

Identifying structure of the reusable
components

l  A component is used based on its provided and
required interfaces.

–  Provided interfaces are composed of the public

methods of classes that compose its external
structure.

–  Required interfaces are composed of the methods

that are used from the other components
l  i.e. the provided interfaces of the other components.

24

07/10/13

13

Identifying structure of the reusable
components (cont.)

l  We rely on the following heuristics:
–  A group of methods belongs to the same object-

oriented interface may belong to the same
component’s interface.

–  Cohesive and lexically similar methods have high

probability to belong to the same interface.

–  When methods are called many times together, this

is an indicator of a high correlation of use.

25

Identifying structure of the reusable
components (cont.)

l  𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝑀)= ​1/∑𝑖↑▒​𝜆↓𝑖   (​𝜆↓1 ∗𝑆𝐼(𝑀)+ ​𝜆↓2 
∗𝑆𝑀(𝑀)+ ​𝜆↓3 ∗𝐶𝑈(𝑀)+ ​𝜆↓4  ∗𝐶𝐼(𝑀))

l  Where:
–  M: a set of methods.
–  SI: measures how much a set of methods M belongs to the same

object-oriented interface.
–  SM: measures how much a set of methods M is similar using cosine

and cohesion (LCC) metrics.
–  CU: measures how many times a set of methods M has been called

together by the same component.
–  CI: measures how many times a set of methods M is invocated

together.

26

07/10/13

14

Identifying structure of the reusable
components (cont.)

l  This function is used as a fitness function in a
hierarchical clustering algorithm to partition a set
of public methods into a set of clusters
–  Where each cluster is a component’s interface.

27

Documentation of Components

l  The documentation of a component helps the
developers to find a component that meets their
needs.

l  The description of the component functionalities

forms an important part of its documentation.

l  Thus, we propose to identify for each mined

component its main functionalities.

28

07/10/13

15

Documentation of Components (cont.)

1- Identifying the component functionalities
–  The specificity of a component refers to the

functionalities that are provided
l  Number of public methods is proportional to the number of

functionalities.

l  Classes providing the same functionalities must be

cohesive.

l  Classes participating in the same functionality must have a

high cohesion with themselves and low coupling with other
parts in the component.

29

Documentation of Components (cont.)

1- Identifying the component functionalities
–  𝑆(𝐸)= ​1/5 ∗(​1/|𝐼| ∗∑𝑖∈𝐼↑▒𝐿𝐶𝐶(𝑖) +𝐿𝐶𝐶(𝐼)+𝐿𝐶𝐶(𝐸)+
𝐶𝑜𝑢𝑝𝑙(𝐸)+𝑛𝑜𝑃𝑢𝑏(𝐼))

–  We use this equation as a fitness function in a
hierarchical clustering algorithm to decompose
component classes into partitions
l  Where each one represents one of the functionality of the

analyzed component.

30

07/10/13

16

Documentation of Components (cont.)

2- Generation of the functionality description
–  The description consists of the most frequent words

in the partition classes’ names.

–  A class name is often a set of nouns concatenated by
the camel-case notation.

l  These nouns are representing a meaningful name for the
main purpose of the class.

l  The first noun in a class name holds the main goal of the
class, and so on.

31

Documentation of Components (cont.)

2- Generation of the functionality description
–  We propose the following three steps.
1.  Tokens are extracted by separating the classes

names according to the camel-case syntax
l  E.g. MediaController is divided into Media, and Controller.

2.  A weight is affected to each extracted token
l  The tokens which are the first word of a class name are

given a large weight. Other tokens are given a small weight.

3.  Tokens which have the highest weight is used to
construct the functionality description in an orderly
manner. 32

07/10/13

17

Documentation of Components (cont.)

2- Generation of the functionality description
–  𝑊𝑒𝑖𝑔ℎ𝑡(𝑤)= ​1/∑𝑖↑▒​𝑁↓𝑖   ∗(1∗​𝑁↓1 +0.75∗​𝑁↓2 +0.50∗​
𝑁↓3 + 0.25∗​𝑁↓4 )

–  Where:
l  W: refers to a word.
l  Ni refers to the number of occurrence of the word w in the

position i.

33

Outlines
l  Introduction.
l  Background: the ROMANTIC Approach.

–  From Object to Component: the Mapping Model.
–  From Object to Component: the Quality Measurement Model.

l  The Proposed Approach.
–  Identifying Potential Components.
–  Identifying Similar Components.
–  Reusable Component Mining from Similar Potential Ones.
–  Identifying structure of the reusable components.
–  Documentation of Components.

l  Experimental Results.
l  Conclusions.
l  Future Directions. 34

07/10/13

18

Experimental Results

l  We have applied it onto two open source
Software Product Line Java applications of
different sizes
–  Mobile Media.
–  ArgoUML-SPL.

l  To consider that a group of classes forms a
component, its quality function value should
exceed a predefined quality threshold.

l  We tested the quality threshold value from 0 up
to 1 by incrementing it 0.05 in each run. 35

Experimental Results (cont.)
l  Changing the Quality threshold value to extract all potential

components in Mobile Media.

36

07/10/13

19

Experimental Results (cont.)

l  Changing the Quality threshold value to extract all
potential components in ArgoUML-SPL.

37

Experimental Results (cont.)

l  An instance of a potential component extracted from
ArgoUML-SPL.

–  GoClassToNavigableClass
as the core class.

–  the 18 first classes form
this potential component.

–  The remaining classes are
rejected.

38

07/10/13

20

Experimental Results (cont.)

l  The results of potential components extraction, when
0.70 and 0.83 are assigned as threshold value
respectively for Mobile Media and ArgoUML.

Product Name

AVG # of
potential

components in
all variants

AVG
component

size (classes)

AVG
Spe

AVG
Aut

AVG
Com

Mobile Media 24.5 6.45 0.56 0.71 0.83

ArgoUML-SPL 811 11.38 0.64 0.83 0.89

39

Experimental Results (cont.)

l  The results of component’s clustering

Product # of clusters
AVG number of

components in a
cluster

AVG number of
shared classes in a

cluster

Mobile Media 42 5.38 5.04

ArgoUML-SPL 325 5.26 8.67

40

07/10/13

21

Experimental Results (cont.)

l  The final set of mined components, when we
assign 0.50 to the density threshold value.

Product
 # of mined

reusable
components

AVG
component

size

AVG
Spe

AVG
Aut

AVG
Com

Mobile Media 39 5.61 0.58 0.74 0.90

ArgoUML-SPL 324 9.77 0.61 0.84 0.84

41

Experimental Results (cont.)

l  Some components from Mobile Media.

Description of the
functionalities

of variants that
contains this
component

Size
(class) Spe. Aut. Cop.

New Constants Screen
Album Image 6 6 0.59 0.75 0.94

Add Constants Photo
Album 8 10 0.57 0.75 0.89 Count Software Splash

Down Screen
Base Image Constants

Album Screen Accessor
List 6 9 0.67 0.50 0.85

Controller Image Interface
Thread

42

07/10/13

22

Reusability Validation

l  To validate the reusability of our results
–  Comparing them with ones that are mined from

singular system.

l  The reusability of a component
–  The ratio between the number of systems that can

reuse this component to the number of all systems.

43

Reusability Validation (cont.)

l  K-fold cross validation method
–  Validate the results of the mining model.

–  Partitioning the data set into two parts
l  Train data: to learn the mining model.

l  Test data: to validate the mining model.

–  Divide the data set into K parts
l  K-1 parts as train data.

l  The other one as test data.

44

07/10/13

23

Reusability Validation (cont.)

K Similar Systems Singular System

2 32% 28%

4 18% 15%

8 09% 07%

45

Reusability Validation (cont.)

l  The slight difference between the reusability
results comes from the nature of our case
studies
–  Where these case studies are very similar.
–  Consequently, the resulting components are closely

similar
l  i.e. there are many groups of similar components containing

exactly the same classes which resulted the same reusable
component.

–  Therefore, there is very small difference in the
results. 46

07/10/13

24

Outlines

l  Introduction.
l  Background: the ROMANTIC Approach.

–  From Object to Component: the Mapping Model.
–  From Object to Component: the Quality Measurement Model.

l  The Proposed Approach.
–  Identifying Potential Components.
–  Identifying Similar Components.
–  Reusable Component Mining from Similar Potential Ones.
–  Identifying structure of the reusable components.
–  Documentation of Components.

l  Experimental Results.
l  Conclusions.
l  Future Directions. 47

Conclusions

l  Mining components from similar software
provides more guarantees for the reusability of
the mined components rather than depending
on single software.

l  An approach is proposed to mine reusable

components from a set of similar object-oriented
systems.

48

07/10/13

25

Conclusions (cont.)

l  The results show that
–  There are components that are shared in many

systems.
–  These ones are more reusable.

l  There are two aspects to be considered
regarding the hypothesis of our approach
–  We consider that the variability between software is

in the class level.

–  Forming a component by adding a non-shared class

to the core ones may cause a dead code.
49

Outlines

l  Introduction.
l  Background: the ROMANTIC Approach.

–  From Object to Component: the Mapping Model.
–  From Object to Component: the Quality Measurement Model.

l  The Proposed Approach.
–  Identifying Potential Components.
–  Identifying Similar Components.
–  Reusable Component Mining from Similar Potential Ones.
–  Identifying structure of the reusable components.
–  Documentation of Components.

l  Experimental Results.
l  Conclusions.
l  Future Directions. 50

07/10/13

26

Future Directions

l  The future directions will focus on migrating similar
software into component based software product line.

51

