07/10/13

LIRMM

Mining Reusable Software
Components from Object-Oriented
Source Code of a Set of Similar
Software

Anas Shatnawi
Abdelhak-Djamel Seriai

1 LIRMM Laboratory, Montpellier, France

Outlines
e

e Introduction

Background: the ROMANTIC Approach.
- From Object to Component: the Mapping Model.
- From Object to Component: the Quality Measurement Model.

The Proposed Approach
- Identifying Potential Components.
Identifying Similar Components.
- Reusable Component Mining from Similar Potential Ones.
Identifying structure of the reusable components.
- Documentation of Components.

Experimental Results
Conclusions
Future Directions

N
[)

Outlines
e

e Introduction

Background: the ROMANTIC Approach

- From Object to Component: the Mapping Model.
- From Object to Component: the Quality Measurement Model.

The Proposed Approach.
- Identifying Potential Components.
- Identifying Similar Components.
- Reusable Component Mining from Similar Potential Ones.
- Identifying structure of the reusable components.
- Documentation of Components.
Experimental Results.
Conclusions.

Future Directions.

w
[}

Introduction
]

e One of the most important approaches
supporting software reuse is Component Based
Software Engineering (CBSE).

e The lack of component libraries is one of the
major limitations against widely use of CBSE in
the industry.

e Also, software components are admitted as
more reusable entities than object-oriented
4 ones.

07/10/13

Introduction ‘cont.‘

e Thus,

- Many approaches have been proposed to identify
components from existing object-oriented software.

e Nevertheless, these approaches mines
components by analyzing single software.

- Thus, the mined components may be useless in
other software and, consequently, their reusability is
not guaranteed.

Introduction ‘cont.‘

e In many cases, companies developed many
software systems

- In the same domain, but with functional or technical
variations.

- Adding some variations to an existing software to
meet the requirements of a new need.

e We propose an approach to mine reusable
components from a set of similar object-oriented
software
- E.g. product variants.

07/10/13

Introduction ‘cont.‘

e The goal is to analyse the source code of these

software to identify pieces of code that may form
reusable components

- Which will be more useful (reusable) for the
development of new software than those mined from
singular ones.

Outlines

Introduction

Background: the ROMANTIC Approach
- From Object to Component: the Mapping Model.
- From Object to Component: the Quality Measurement Model.

The Proposed Approach.

- Identifying Potential Components.
Identifying Similar Components.
Reusable Component Mining from Similar Potential Ones.
Identifying structure of the reusable components.

- Documentation of Components.
Experimental Results.
Conclusions.

Future Directions.

07/10/13

The ROMANTIC AﬁﬁroaCh

e In our previous works, we have proposed the
ROMANTIC approach

- To extract a component-based architecture from an
object-oriented software.

e ROMANTIC is mainly based on two models:
- Mapping model.
- Quality measurement model.

e We rely on these two models to mine reusable
components from similar software.

9
From Object to Component:
the Mapping Model
Component Elements I Structural Elements l Object Elements
| |
___________________________ :___________________________i________________________.
Component i Structural ! Object
o . |
Services __4_:% Internal -
1) 11| Sucure |70 v % E
1 b Lo i
: ! Class i
¥ |
| | |
Interface I Lo ! ﬁ* !
1 0] A — !
.: | External : ! !y | Method
| A Structure b |
| _ _ i i 11 | |
t [Provided || Required |l o |
| i |
1 | emmmmmmemmmememememeeeeeeeed
10

07/10/13

07/10/13

From Object to Component:
the Quality Measurement

. - External Structure Internal Structure Object-Oriented
Characteristics Sub Characteristics . s .
Prosperities Prosperities Metrics
1 (Number of (External
A y Required Classes
I L Interfaces Coupling
Coupling
c t (Internal
gmpo“l:en Classes
oupling L Coupling
Number of Number of Number of
mo Classes Having §
Provided . — Public
Public
3 A Interfaces Methods
Quality . / Methods
Characteristics L b
Component
Cohesion

sion
Component (External
Interface Classes +—t Cohesion
sion L Cohesion
Average of

- Tvice External
Composability Cohesion by Classes
1 1 inter face Cohesion

From Object to Component:
the Quality Measurement

Model icont.‘

o QE)=1/Ziti N (M*S(E)+A*A(E)+Ag% C(E))
e Where:

- E is an object-oriented component composed of a
group of classes.

- S(E), A(E) and C(E) refer to the specificity,
autonomy, and composability of E respectively.

- Ay, A, Ag are weight values, situated in [0-1]. These

are used by the architect to weight each
characteristic as needed.

12

13

Outlines

Introduction.

Background: the ROMANTIC Approach.

- From Object to Component: the Mapping Model.
- From Object to Component: the Quality Measurement Model

The Proposed Approach
- Identifying Potential Components.
Identifying Similar Components.

- Reusable Component Mining from Similar Potential Ones.

Conclusions.

Experimental Results.

Future Directions.

Identifying structure of the reusable components.
- Documentation of Components.

14

The Progosed Aﬁﬁroach

Object-Oriented Source Code
of N Similar Systems

@ Identifying

Components
Interfaces

-«

o o

Identifying
Potential
Components

Internal Structure of
Reusable Components

@ o

Documentation
of Components

Pn

P2

[

P1 ?
Identifying
Similar
Components

Building
Reusable
Components

Clusters of Similar Components

GO o

07/10/13

Identif*inﬂ Potential Comﬁonents

e A potential component is a group of classes that
are gradually formed starting from an object-
oriented core class.

e Each class can be considered as a potential
core class to form a component.

e Other classes are identified based on
incrementally fusion process.

15

Identifying Potential
Components (cont.)
.|

e The selection of the class to be added at each
step is decided based on the value of the
quality of the resulted component.

- The class obtaining the highest quality value is
selected to extend the current group.

- We do this until all classes are grouped into a single
group.

e Some classes of this group will be excluded.

- Classes that are added after the quality function

reaches the peak value.
16

07/10/13

Identifying Potential
Components (cont.)

o
[*4]

(=]
~

o
=)
R

\\
N

/
/

o
wn
\

(=]
w

Quality Function Value
o
-~

o
N

o
=

o

o
@
7
@
w

Tssep
ZSSeD

pssep

Gssep

o
o
7
“
(2]

Component Size (Classes)

7 ssep

gssep

= = Componentl

Comoponent2

e Threshold

17

Identifxinﬂ Similar Comﬁonents

e Potential components are mined from similar

systems

- Thus, some of them may be similar.

e Similar components are those share the majority

of its classes and differ considering few ones.

e These components may be considered as

variants of one common component

- Which is considered more reusable.

18

07/10/13

Identif*inﬂ Similar Comﬁonents icont.)

e Thus, similar components are gathered into
groups.

e Building groups of similar components are
based on lexical similarity metrics
- The strength of similarity links between classes
composing each component.

- Each component is considered as a text document
where the content is composed of a list of component
classes’ hames.

- Cosine similarity metric.

19

Identif*inﬂ Similar Comﬁonents icont.)

e Hierarchal clustering algorithm to gather similar
components into groups.

- Individual components as initial leaf nodes in a
binary tree.

- The two most similar nodes are grouped into a new
one.

- This is continued until all nodes are grouped.
- Depth first search algorithm is used to find the cut-
off points.

e A node has a similarity value exceeding the average
20 similarity value of its children.

07/10/13

10

Reusable Component
Mining from Similar

o e—

e One common component is extracted from each
group of similar components.

e A collection of classes that is used to form the
reusable component is composed of
- All shared classes.
- Some of non-shared.

21

Reusable Component Mining
from Similar Potential

Ones icont.‘

e Shared classes form the core of the reusable
component.

- But considering only the shared classes may not
form a correct component following our quality
measurement model.

e Selecting a non-shared class
- The density of non-shared class.
- The quality of the component.

22

07/10/13

11

Reusable Component Mining
from Similar Potential Ones

e Steps:

- Extracting all candidate subsets among non-shared
classes of the group.

- Subsets that reach a predefined density threshold
are only taken into consideration.

- Evaluating the quality of the subsets.

- The subset that maximizes the quality value is
grouped with the core classes to form the reusable
23 component.

Identifying structure of the reusable

comﬁonents

e A component is used based on its provided and
required interfaces.

- Provided interfaces are composed of the public
methods of classes that compose its external
structure.

- Required interfaces are composed of the methods
that are used from the other components
e i.e. the provided interfaces of the other components.

24

07/10/13

12

25

Identifying structure of the reusable

comﬁonents ‘cont.‘

e We rely on the following heuristics:

- A group of methods belongs to the same object-
oriented interface may belong to the same
component’s interface.

- Cohesive and lexically similar methods have high
probability to belong to the same interface.

- When methods are called many times together, this
is an indicator of a high correlation of use.

26

Identifying structure of the reusable

comﬁonents ‘cont.‘

«SM(M)+ A3 * CUM)+ A4 «CI(M))
e Where:

- M: a set of methods.

- SI: measures how much a set of methods M belongs to the same
object-oriented interface.

- SM: measures how much a set of methods M is similar using cosine
and cohesion (LCC) metrics.

- CU: measures how many times a set of methods M has been called
together by the same component.

- CI: measures how many times a set of methods M is invocated
together.

07/10/13

13

Identifying structure of the reusable

comﬁonents ‘cont.‘

e This function is used as a fitness function in a
hierarchical clustering algorithm to partition a set
of public methods into a set of clusters
- Where each cluster is a component’s interface.

27

Documentation of Comﬁonents

e The documentation of a component helps the
developers to find a component that meets their
needs.

e The description of the component functionalities
forms an important part of its documentation.

e Thus, we propose to identify for each mined
component its main functionalities.

28

07/10/13

14

Documentation of Comﬁonents ‘cont.)

1- Identifying the component functionalities

- The specificity of a component refers to the
functionalities that are provided

e Number of public methods is proportional to the number of
functionalities.

e Classes providing the same functionalities must be
cohesive.

e Classes participating in the same functionality must have a
high cohesion with themselves and low coupling with other
parts in the component.

29

Documentation of Comﬁonents ‘cont.)

1- Identifying the component functionalities
- S(E)=1/5«(1 /|1 «JE€lTELCCQ) +LCC(H+LCC(E)+
Coupl(£)+noPub(l))
- We use this equation as a fitness function in a
hierarchical clustering algorithm to decompose
component classes into partitions

e Where each one represents one of the functionality of the
analyzed component.

30

07/10/13

15

31

Documentation of Comﬁonents icont.)

2- Generation of the functionality description

- The description consists of the most frequent words
in the partition classes’ names.

- A class name is often a set of nouns concatenated by
the camel-case notation.

e These nouns are representing a meaningful name for the
main purpose of the class.

e The first noun in a class name holds the main goal of the
class, and so on.

32

Documentation of Comﬁonents icont.)

2- Generation of the functionality description
- We propose the following three steps.
1. Tokens are extracted by separating the classes

names according to the camel-case syntax
e E.g. MediaController is divided into Media, and Controller.

2. A weight is affected to each extracted token

e The tokens which are the first word of a class name are
given a large weight. Other tokens are given a small weight.

3. Tokens which have the highest weight is used to
construct the functionality description in an orderly
manner.

07/10/13

16

Documentation of Comﬁonents ‘cont.)

2- Generation of the functionality description
- Weight(w)=1/3iT#ENL *(1xNI1 +0.75x V2 +0.50%
N3 + 0.25xVi4)

- Where:

o W.: refers to a word.

o N, refers to the number of occurrence of the word w in the
position i.

33

Outlines
e

e [ntroduction.
e Background: the ROMANTIC Approach.
- From Object to Component: the Mapping Model.
- From Object to Component: the Quality Measurement Model.

The Proposed Approach.
- Identifying Potential Components.
Identifying Similar Components.
Reusable Component Mining from Similar Potential Ones.
- Identifying structure of the reusable components.
- Documentation of Components.

Experimental Results.
Conclusions.
Future Directions.

34

07/10/13

17

Experimental Results
|

e \We have applied it onto two open source
Software Product Line Java applications of
different sizes
- Mobile Media.

- ArgoUML-SPL.

e To consider that a group of classes forms a
component, its quality function value should
exceed a predefined quality threshold.

e We tested the quality threshold value from 0 up
35 to 1 by incrementing it 0.05 in each run.

EerrimentaI Results ‘cont.‘

e Changing the Quality threshold value to extract all potential
components in Mobile Media.

‘_'50
:245 <& ety et
= a0 v\\
£ 35
= 30
2 \
S 25 \
g 20 X
g
%= 15 \
S 10
% \
% .
-
0o ———
mmmmmmm =< V! U U W L~ 1N 0L o N -
S o 2o N o Mg T o g Y ™o ® g @
o o o o o o o o o o
36 Threshold Value

07/10/13

18

Exgerimental Results ‘cont.l

e Changing the Quality threshold value to extract all
potential components in ArgoUML-SPL.

1

.
N
N\

\
N—
~
\
\

558

[y
N

:

2]

<5888

\
N8t

R S N S SR S S SR SO
o > ¥ ¥ M 7 T O S A SN N

Threshold Value

N

Avg No. of Components in a Variant

37

Exgerimental Results ‘cont.‘

e An instance of a potential component extracted from
ArgoUML-SPL.

- GoClassToNavigableClass

as the core class.

o
o0
=

_ the 18 first classes form 08 7“”&%
this potential component. | 2°7 7 X
. = 078
- The remaining classes are | ., | | M
rejected. Zoms | N\
'.;0.75 l \
: AN
& o074 N
073

o
o
~

0 5 10 15 20 25 30 35
Number of Classes (Component Size)

38

07/10/13

19

EerrimentaI Results ‘cont.‘

e The results of potential components extraction, when
0.70 and 0.83 are assigned as threshold value

respectively for Mobile Media and ArgoUML.

AVG # of AVG
potential AVG AVG | AVG
Product Name . component
components in size (classes) Spe Aut | Com
all variants
Mobile Media 24.5 6.45 0.56 0.71 0.83
ArgoUML-SPL 811 11.38 0.64 0.83 | 0.89
39
Experimental Results (cont.)
e The results of component’s clustering
AVG number of AVG number of
Product # of clusters | components ina | shared classes in a
cluster cluster
Mobile Media 42 5.38 5.04
ArgoUML-SPL 325 5.26 8.67
40

07/10/13

20

07/10/13

Exgerimental Results ‘cont.l

e The final set of mined components, when we
assign 0.50 to the density threshold value.

Product ﬁ::sna“br::d con‘::{ac:ient e
. Spe Aut | Com
components size
Mobile Media 39 5.61 0.58 0.74 | 0.90
ArgoUML-SPL 324 9.77 0.61 0.84 | 0.84

41

EerrimentaI Results ‘cont.‘

e Some components from Mobile Media.

Description of the i var!ants t_hat Size
p . o contains this Spe. | Aut. | Cop.
unctionalities (class)
component
New Constants Screen
Album Image 6 6 0.59 |0.75| 0.94
Add Constants Photo
Album
Count Software Splash 8 1 || O | Tliske
Down Screen
Base Image Constants
Album Screen Accessor
List 6 9 0.67 |0.50| 0.85
Controller Image Interface
Thread

42

21

Reusabilitx Validation

e To validate the reusability of our results

- Comparing them with ones that are mined from
singular system.

e The reusability of a component

- The ratio between the number of systems that can
reuse this component to the number of all systems.

43

Reusabilitx Validation ‘cont.‘

e K-fold cross validation method
- Validate the results of the mining model.
- Partitioning the data set into two parts

e Train data: to learn the mining model.

e Test data: to validate the mining model.

- Divide the data set into K parts
e K-1 parts as train data.

e The other one as test data.

44

07/10/13

22

Reusabilitx Validation ‘cont.‘

Similar Systems

Singular System

32%

28%

Al N X

18%

15%

8 09%

07%

45

Reusability Validation (cont.)

e The slight difference between the reusability
results comes from the nature of our case

studies

- Where these case studies are very similar.

- Consequently, the resulting components are closely

similar

e i.e. there are many groups of similar components containing
exactly the same classes which resulted the same reusable

component.

- Therefore, there is very small difference in the

results.
46

07/10/13

23

Outlines
e

e Introduction.

e Background: the ROMANTIC Approach.
- From Object to Component: the Mapping Model.
- From Object to Component: the Quality Measurement Model.

The Proposed Approach.
- Identifying Potential Components.
Identifying Similar Components.
- Reusable Component Mining from Similar Potential Ones.
Identifying structure of the reusable components.
- Documentation of Components.

Experimental Results.
Conclusions.
Future Directions.

47

Conclusions
.|
e Mining components from similar software
provides more guarantees for the reusability of
the mined components rather than depending
on single software.

e An approach is proposed to mine reusable
components from a set of similar object-oriented
systems.

48

07/10/13

24

Conclusions ‘cont.‘

e The results show that

- There are components that are shared in many
systems.

- These ones are more reusable.

e There are two aspects to be considered
regarding the hypothesis of our approach

- We consider that the variability between software is
in the class level.

- Forming a component by adding a non-shared class
to the core ones may cause a dead code.

49

Outlines
e

Introduction.

Background: the ROMANTIC Approach.
- From Object to Component: the Mapping Model.
- From Object to Component: the Quality Measurement Model.

The Proposed Approach.
- Identifying Potential Components.
Identifying Similar Components.
- Reusable Component Mining from Similar Potential Ones.
Identifying structure of the reusable components.
- Documentation of Components.

Experimental Results.
Conclusions.
Future Directions.

50

07/10/13

25

07/10/13

Future Directions
]

e The future directions will focus on migrating similar
software into component based software product line.

51

26

