Mining Features from the Object-Oriented Source
Code of a Collection of Software Variants Using
Formal Concept Analysis and Latent Semantic

Indexing

R. AL-msie’deen*, Abdelhak-Djamel Seriai*, M. Huchard*, C. Urtado**,
S. Vauttier**, and H. Eyal Salman*

* LIRMM / CNRS & Montpellier 2 University, France
**Ecole des Mines d’Aleés, Nimes, France

Seriai@lirmm.fr

SEKE 2013, Boston, 29 june 1

Outline

The context and the issue

Our goal and the main hypotheses
* Our approach : The main ideas

The process : step by step
e Experimentation and results

Perspectives

SEKE 2013, Boston, 29 june 2

07/10/13

The context (1/4)

¢ Software variants

— Are similar software

¢ Share some features, called common features, and differ in
others, called optional features

* Developed by ad-hoc reuse techniques such as clone-own

* Usually, an existing product is copied and later modified to
meet incremental demands of customers

— Example
* Wingsoft Financial Management System (WFMS)

* Variants of the WFMS systems have been used in over 100
universities in Ching

Variant

The context (2/4)

e Software product Line

— SPL supports efficient development of related software
products

— Manages common and optional features

* A Feature is a system property relevant to some stakeholder
used to capture commonalities or variations among systems in a
family

— Promotes systematic software reuse from SPL’s core
assets (such as features, code, documentation and etc.)

SEKE 2013, Boston, 29 june 4

07/10/13

The context (3/4)

= Software Product Line

= Domain Engineering : development for reuse
= Application Engineering : development by reuse

Software Product Lines Process
= v v
c £
© 9 Domain Domain Domain | Domain
g g Expertise Analysis Design Implementation
o2
= |
|
{03 Og
= [N R Reusabel
O ﬁ V] Archi Components
Traceability|
o I—t \—¢
F: !
© ® o sl B
o @ New
'ﬁ_ £ Requirements > Requirements L Design Coding
a 2
<

Image from : http://poltman.com/pm-en/img/Technicallnformation/SoftwareModernization/ProductLines/ProductLines-01.jpg

SEKE 2013, Boston, 29 june 5

The context (4/4)

* Software Product Line

— Feature model (FM)
* Is a tree-like graph of features and relationships among
them
* Used to represent commonality and variability of SPL
members at different levels of abstraction

Text_Editor Legend:
e) .’__ Mandatory
' Optional
, rs .) L A:))stract
Management | | Select_All | Edit :
» T~ . AN | Concrete
Open | | Close | | Print Copy | | Paste
SEKE 2013, Boston, 29 june 6

07/10/13

Issue

e Software variants

— Difficulties for :
* Reuse
* Maintenance
* Comprehension
* Impact analysis

* Software Product Line
— Design from scratch is a hard task (domain engineering)

SEKE 2013, Boston, 29 june 7

Our Goal (1/2)

* Reengineering existing software variants into a software
product line

— Benefits
» Software variants will be managed as a product line

* Software product line will be engineered started from existing products
(not from scratch)

— Strategy
* Feature model mining (reverse engineering step)
— Mining features
— Mining feature model structure (group of features)
— Mining feature constraints
— Mining feature relationships

* Source code Framework generation (reengineering step)

Text_Editor Legend:
AN & Mandatory
/ ~ J optional
S pmOpm S0 Abstract
Management || Select All Edit
= A Concrete

i o o o - o
SEKE 2013, Boston, 29 june open .

07/10/13

07/10/13

/x To domain features :|:> From domain features
] ISoftware Product Lines Process Software Product Lines Process
:5 3 3 =§ §
i i == E =
i} i} T
2 g2
§3 §3
EH g2
From existing software variants To new product generation
SEKE 2013, Boston, 29 june 9

Our main hypotheses

=

Mining feature From object oriented source code

2. Focus on functional features

— Functional features express the behavior or the way users may
interact with a product

3. Focus on feature implemented at the programming level

— The elements of the source code reflect these features

— Feature are implemented as package, class, attribute, method, local variable, attribute access,
method invocation, etc.

B

A Feature has the same implementation in all product
variants where it is present (we not consider evolution)

SEKE 2013, Boston, 29 june 10

The main ideas(1/4)

The initial search space
is composed of all 00
elements of software
variants

Characterizing OO
elements implementing
features to cluster

Identifying clusters

theme together ~— | composed of the most
. rel similar OO elements
— Are similar elements :
lexical similarity | based on LSI |
— Are dependent
elements : structural
dependencies
—
SEKE 2013, Boston, 29 june 11

The main ideas (2/4)

3. Optional

o Variation

v v

features are
implemented as

age Set ‘ Package Content 3

. Pack:
aria

on ariation

. Class
© Variatipn
0

variation in
source code

Mining variations

n Method
© Variation

(= search space)

SEKE 2013, Boston, 29 june

Access
Level
Relations
.hip,

Inheritance (Superclass),

Methods Set (Name)

ariation
Attributes Set

Variation

(Name)

At'tr/'bute (Access Level, Data Type)
:

oca
variables
Method
Invocation

Access

Level ’
Returned Data
Type p
Parameters List order & data J

type

Attribute
Access

12

07/10/13

The main ideas(3/4)

4. Reducing the search space by
Isolating groups of variations
corresponding to some
related features

Identifying all groups of OO elements
L_| representing
differences or intersections between variants

| based on FCA |

From one large search space to
many sub search spaces

SEKE 2013, Boston, 29 june 13

The main ideas (4/4)

—_—

\\ Atomic Block of Variation (AB)
X Block of Variation (8Y)
|
/ Common Atomic Block (CAB)
/ // Common Block (CB)

SEKE 2013, Boston, 29 june 14

07/10/13

Object-to-feature mapping model

Approach Elements
[Software Product Variants (PVs) | - Block of variation (BV)
|
4 1
1 1.
1.0 Atomic block of variation (ABV)
<
1.0 1
- . [[Common Atomic block (CAB)
1 Correspond Correspond
Object-oriented Building Elements (OBEs) Feature Model (FM) Elements
1 1
[Package | Mandatory Feature | [Optional Feature |
rr— | |]
1.7 [Atwribute - 0.~
Foature Model
1.
1
<>
0. 0.~ 0.~ 1 0.~
[Atribute Access | ‘Lﬂolhod Invocation | [[Local variable | [Root]
SEKE 2013, Boston, 29 june 15

Used techniques : FCA and LSI (1/3)

* Formal Concept Analysis (FCA)

—Is a technique for data analysis and knowledge
representation based on lattice theory

— It identifies meaningful groups of objects that share
common attributes

— It provides a theoretical model to analyze hierarchies of
these groups

— In order to apply FCA based on the definition of a formal
context or incidence table of objects and their attributes

SEKE 2013, Boston, 29 june 16

07/10/13

Used techniques : FCA and LSI (2/3)

jungle water forest fish [JETN mamal o
lion X X -
lion
carp
carp X X dolphin
bear
u_bra
dolphin X X F"{'
bear X X Concept_9
Concept_3 o Concept_4
zebra X X water = forest
carp dolphin bear
dolphin bear pine

pine X X / 1 "F" I \

Concept_5 | [Concept_7 | |€91€®Pt1 | Concept 8| [Concept.6
water water Jungle forest forest
fish mamal mama/ mamal plant
carp dolphin e bear pine

Concept_2
jungle
water

. . forest
Extracted from : http://code.google.com/p/erca/wiki/Fcalntroduction fish
plant

SEKE 2013, Boston, 29 june -

Used techniques : FCA and LSI (3/3)

* Latent Semantic Indexing (LSI)

— Compute textual similarity among different documents

* Based on the occurrences of terms in documents
— If two documents share a large number of terms, those documents are
considered to be similar

— Three steps
* A corpus of documents is built after pre-processing such as stop word
removal and stemming performing

* A term-by-document matrix is built, where each column represents a
document and each row is a term. The values in the matrix indicate the
frequency of the term occurring in the document

* The similarity among documents is calculated using cosine similarity

SEKE 2013, Boston, 29 june 18

07/10/13

The mining process : step by step

‘ _—lreal

Implementation Space | ‘(OBEs Stz Commonalities and J

Variabilities Computation

A 4

Common Block

Common OBEs

)
(Block of Variation),)

Variable OBEs

‘ |
Feature Space ! @
>

1]

Similarity
Matrix

(// Optional‘\\\ Atomic Block Clusterin
N, Feature _.< of Variation v e Computation
/‘ LSI
/’_l\jlandalo_r;/‘\\ ¢ Common ¢ . ¢ Similarity Lexical Similarity
<\\‘ Feature __¢ Atomic Block Climtiziing Matrix Computation
Features \Wm

SEKE 2013, Boston, 29 june

Lexical Similarity]

ldentifying the Common Block and
Blocks of Variation (1/3)

* Two steps

1. A formal context, where objects are product variants and
attributes are OBEs is defined

2. Calculate corresponding AOC-poset

* The intent of each concept represents OBEs common to two or more
products

— The intent of the most general (i.e., top) concept gathers OBEs that are
common to all products. They constitute the CB

— The intents of all remaining concepts are BVs

» They gather sets of OBEs common to a subset of products and
correspond to the implementation of one or more features

* The extent of each of these concepts is the set of products having

these OBEs in common
SEKE 2013, Boston, 29 june 20

07/10/13

10

07/10/13

ldentifying the Common Block and
Blocks of Variation(2/3)

* Example

TEXT EDITOR VARIANTS DESCRIBED BY THEIR FEATURES

Variant Name Features
Editor_1 Core (Open, Close, Print)
Editor_2 Core, Select_all
Editor_3 Core, Copy, Paste
~ =) N
~ ~ ~ i = X
X
N ~ 18 b 518
Q)) » N 9 -]
| e | E| & 2| » K w | 2
M a @
] o | o | @ 2 o 9 g @
g1 gl gl ¢ Olg|l=|“ &g
£ i 5 g “ d 2 n P]
) o H 0 | o @
HEIEAEI I ERE IR AR :| 2
g » - o 131 - 4 - o
= M P & 3 b 2 b 7 =)
] 5 H 5 a b b n @ s
0 » Q o { -
Zl2l2]£]0 - o |w | w | & | &]
AR AR R AR A AR RN
AR AR AR AR AL
Zlsl|e|E|8|&a|S| 8|85 |¢<
SIo|s|al8|S|Z1815]%|<]3
The formel context R RS I S RV - O I IO I
le|ale|f|als|f|2|f]|a)|%
I - - T O I IO - - B
o |00 |0 | |D |2 | |0 |a|D]Z2
Editor_1 X X X X
Editor.2 X X X X X X
Editor_3 X X X X X X X X X X
SEKE 2013, Boston, 29 june 21

ldentifying the Common Block and
Blocks of Variation(3/3)

* Example
— The AOC-poset

Common Block
Concept_0

/
Package (Editor)

Class (Open_ Editor.Marfigment)
Package (Editor.Managment)
Class (Close_ Editor.Managment)
Class (Print_ Editor.)

Editor_1

Block of \
d aaon

Block of

Concept_2
Package (Editor.Paste)
Concept_1 Method (CopySettings()_ CopyText_ Editor.Copy)
Chess (SelectAllSettings_ Editor.SelectAll) Class (CopyText_ Editor.Copy)
Package (Editor.SelectAll) Class (PasteText_ Editor.Paste)
Editor 2 Method (PasteSettings()_ PasteText_ Editor.Paste)
itoe 2 Package (Editor.Copy)
Editor_3
SEKE 2013, Boston, 29 june 22

11

|dentifying Atomic Blocks (1/5)

* Three steps
— Exploring the BV’s AOC-poset to Identify Atomic Blocks of Variation
— Measuring OBEs’ Similarity Based on LSI
— Identifying Atomic Blocks Using FCA

* Exploring the BV’'s AOC-poset to Identify Atomic Blocks of Variation

— Exploring the AOC-poset from the smallest (bottom) to the highest
(top) block

— If a group of OBEs is identified as an ABV, this group is considered as
such when exploring the following BV

— For Common Atomic Blocks (CAB), there is no such need to explore
the AOC-poset as there is a unique CB.

SEKE 2013, Boston, 29 june 23

|dentifying Atomic Blocks (2/5)

* Measuring OBEs’ Similarity Based on LSI
— Building the LSI corpus

— Building the term- document matrix and the term-
qguery matrix for each BV and for the CB

— Building the cosine similarity matrix

SEKE 2013, Boston, 29 june 24

07/10/13

12

|dentifying Atomic Blocks (3/5)

* Example of cosine similarity matrix

= | 3
3 3
z g % o
4 s s
S & E £
% ¥ % & °
> g
g % S £ o &~
o &] 2 & &
2 2 = = Z 2
& & E 3 2 g
&) Q = = S [
Class CopyText Copy 1 0.0556 0.9921 0.1715 0.9964 -0.0166
Class PasteText Paste 0.0556 1 0.1802 0.9931 -0.0285 0.9973
Method CopySettings CopyText 0.9921 0.1802 1 0.2935 0.9780 0.1086
Method PasteSetting PasteText 0.1715 0.9931 0.2935 1 0.0880 0.9821
Package Copy 0.9964 -0.0285 0.9780 0.0880 1 -0.1007
Package Paste -0.0166 0.9973 0.1086 0.9821 -0.1007 1

SEKE 2013, Boston, 29 june

25

|dentifying Atomic Blocks (4/5)

Identifying Atomic Blocks Using FCA

— Transforming the (numerical) similarity matrices of previous step into
(binary) formal contexts

* Only pairs of OBEs having a calculated similarity greater than or equal to 0.70 are

considered similar

— Example

7 -
S Z
S| é
2 2
’Q 7]
© £
-~ 2 & 80
S| 2| £ | £
© A -] £
szl @13 ..
&z |2 &|¢
= 2 =) < C S
& Z o & o &
o & 2 2 & s
. S S 3 S
2 2 = = - 1
2| 2| 2|32 p S
o o = = [[
Class CopyText Copy X X X
Class PasteText Paste X X X
Method CopySettings CopyText X X X
Method PasteSetting PasteText X X X
Package Copy X X X
Package Paste X X X
SEKE 2013, Boston, 29 june 26

07/10/13

13

|dentifying Atomic Blocks (5/5)
* |Identifying Atomic Blocks Using FCA

" Common Block

Package (Editor)
Package (Editor.Managment)

IClass (Open_ Editor.Managment)l .

lC]ass (Close_ Editor.Managment)|~———»

| Class (Print_ Editor.Managment) | :

Editorl :
""""""""""""""" \ *" Atomic Block of Variations = Optional Feature

Block of Variations_2

|Class (SelectAllSettings_Editor.SelectAl)|

Package (Editor.SelectAll)

Editor2

Common Atomic Block = Mandatory Feature

Block of Variations_1

o — e —

| Package (Editor.Copy)

' Method (CopySettings()_ CopyText_ Editor.Copy) ;_

\ Class (CopyText_ Editor.Copy)

T P;clglg; (Tidﬁoﬁ];aie) 77777 I

| Class (PasteText_ Editor.Paste)

|
: Method (PasteSettings()_ PasteText_ Editor.Paste)

|
J

Editor3

SEKE 2013, Boston, 29 june

27

Experimentation and results (1/5)

* Case studies : Two Java open-source software: Mobile Media and

ArgoUML
Product # Mobile Media Product Description LOC NOP NOC NOOBE
P1 Mobile photo core 1,046 6 15 822
P2 Exception handling enabled 1,159 7 24 925
P3 Sorting and edit photo label enabled 1,314 7 25 1,040
P4 Favourites enabled 1,363 7 25 1,066
Product # ArgoUML Product Description LOC NOP NOC NOOBE
P1 All Features disabled 82,924 55 1,243 74,444
P2 All Features enabled 120,348 81 1,666 100,420
P3 Only Logging disabled 118,189 81 1,666 98,988
P4 Only Cognitive disabled 104,029 73 1,451 89,273
P5 Only Sequence diagram disabled 114,969 7 1,608 96,492
P6 Only Use case diagram disabled 117,636 78 1,625 98,468
P7 Only Deployment diagram disabled 117,201 79 1,633 98,323
P8 Only Collaboration diagram disabled 118,769 79 1,647 99,358
P9 Only State diagram disabled 116,431 81 1,631 97,760
P10 Only Activity diagram disabled 118,066 79 1,648 98,777
SEKE 2013, Boston, 29 june 28

07/10/13

14

Experimentation and results (2/5)

Case Study Feature Evaluation Metrics

Mobile Media Features Common | Optional K Precision Recall F-Measure
Album Management 0.05 83% 62% 70%
Splash Screen z 0.05 1% 57% 63%
Create Album 0.05 81% 58% 67%
Delete Album x 0.05 80% 62% 69%
Create Photo X 0.05 81% 52% 63%
Delete Photo x 0.05 78% 63% 69%
View Photo X 0.05 87% 68% 76%
Exception handling X X 0.03 100% 70% 82%
Edit Photo Label X 0.02 100% 77% 87%
Favourites X 0.04 100% 80% 88%
Sorting X 0.06 100% 78% 87%

ArgoUML Features Common | Optional | K Precision Recall F-Measure
Class Diagram % 0.03 72% 56% 63%
Diagram X 0.06 100% 80% 88%
Deployment Diagram X 0.05 100% 4% 85%
Collaboration Diagram X 0.06 100% 67% 80%
Use Case Diagram X 0.03 100% 649% T8%
State Diagram X 0.03 100% 69% 81%
Sequence Diagram X 0.02 100% 67% 80%
Activity Diagram X 0.06 100% 63% T7%
Cognitive Support X 0.01 100% 70% 82%
Logging X 0.02 100 60% 75%

SEKE 2013, Boston, 29 june 29

Experimentation and results (3/5)

* The effectiveness of IR methods is measured by their RECALL,

PRECISION and F-MEASURE

>=; Correctly retrieved links

Precision =

>°; Total retrieved links

Recall =

>°; Correctly retrieved links

>, Total relevant links

F — Measure = 2 -

Precision - Recall

0 Recall is the percentage of correctly
retrieved links (OBEs) to the total number
of relevant links (OBEs) .

QO Precision is the percentage of
correctly retrieved links (OBEs) to the
total number of retrieved links (OBEs) .

O F-measure is a balanced measure that
takes into account both precision and
recall.

Precision + Recall ¢

SEKE 2013, Boston, 29 june 30

07/10/13

15

Experimentation and results (4/5)

Precision
— For optional features appears to be high

* This means that all mined OBEs grouped as features are relevant

* Mainly due to search space reduction. In most cases, each BV
corresponds to one and only one feature

— For common features, precision is also quite high

* Thanks to our clustering technique that identifies ABVs based on
FCA and LSI

* |s smaller than the one obtained for optional features

— This deterioration can be explained by the fact that we do not perform
search space reduction for the CB

SEKE 2013, Boston, 29 june 31

Experimentation and results (5/5)

Recall

— Its average value is 66% for Mobile Media and 67%
for ArgoUML

* This means most OBEs that compose features are mined

* Non-mined OBEs used different vocabularies compared to
the mined ones
— This is a known limitation of LSI which is based on lexical similarity

SEKE 2013, Boston, 29 june 32

07/10/13

16

Perspectives

* Enhance the quality of the mining
— Combine both textual and structural similarity measures
— Identify junctions between features
— More reducing of the search space
— Etc.

* Feature model mining
— Mining features
— Mining feature model structure (group of features)
— Mining features constraints
— Mining feature relationships

SEKE 2013, Boston, 29 june 33

Mining Features from the Object-Oriented Source
Code of a Collection of Software Variants Using
Formal Concept Analysis and Latent Semantic

Indexing

R. AL-msie’deen*, Abdelhak-Djamel Seriai*, M. Huchard*, C. Urtado**,
S. Vauttier**, and H. Eyal Salman*

* LIRMM / CNRS & Montpellier 2 University, France
**Ecole des Mines d’Aleés, Nimes, France

Seriai@lirmm.fr

SEKE 2013, Boston, 29 june 34

07/10/13

17

