Mining Features from the Object-Oriented Source
Code of a Collection of Software Variants Using
Formal Concept Analysis and Latent Semantic

Indexing

R. AL-msie’deen*, Abdelhak-Djamel Seriai*, M. Huchard*, C. Urtado**,
S. Vauttier**, and H. Eyal Salman*

* LIRMM / CNRS & Montpellier 2 University, France
**Ecole des Mines d’Aleés, Nimes, France

Seriai@lirmm.fr

SEKE 2013, Boston, 29 june 1

Outline

The context and the issue

Our goal and the main hypotheses
* Our approach : The main ideas

The process : step by step
e Experimentation and results

Perspectives

SEKE 2013, Boston, 29 june 2

07/10/13



The context (1/4)

¢ Software variants

— Are similar software

¢ Share some features, called common features, and differ in
others, called optional features

* Developed by ad-hoc reuse techniques such as clone-own

* Usually, an existing product is copied and later modified to
meet incremental demands of customers

— Example
* Wingsoft Financial Management System (WFMS)

* Variants of the WFMS systems have been used in over 100
universities in Ching

Variant

The context (2/4)

e Software product Line

— SPL supports efficient development of related software
products

— Manages common and optional features

* A Feature is a system property relevant to some stakeholder
used to capture commonalities or variations among systems in a
family

— Promotes systematic software reuse from SPL’s core
assets (such as features, code, documentation and etc.)
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The context (3/4)

= Software Product Line

= Domain Engineering : development for reuse
= Application Engineering : development by reuse
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The context (4/4)

* Software Product Line

— Feature model (FM)
* Is a tree-like graph of features and relationships among
them
* Used to represent commonality and variability of SPL
members at different levels of abstraction
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Issue

e Software variants

— Difficulties for :
* Reuse
* Maintenance
* Comprehension
* Impact analysis

* Software Product Line
— Design from scratch is a hard task (domain engineering)
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Our Goal (1/2)

* Reengineering existing software variants into a software
product line

— Benefits
» Software variants will be managed as a product line

* Software product line will be engineered started from existing products
(not from scratch)

— Strategy
* Feature model mining (reverse engineering step)
— Mining features
— Mining feature model structure (group of features)
— Mining feature constraints
— Mining feature relationships

* Source code Framework generation (reengineering step)
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Our main hypotheses

=

Mining feature From object oriented source code

2. Focus on functional features

— Functional features express the behavior or the way users may
interact with a product

3. Focus on feature implemented at the programming level

— The elements of the source code reflect these features

— Feature are implemented as package, class, attribute, method, local variable, attribute access,
method invocation, etc.

B

A Feature has the same implementation in all product
variants where it is present (we not consider evolution)
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The main ideas(1/4)

The initial search space
is composed of all 00
elements of software
variants

Characterizing OO
elements implementing
features to cluster

Identifying clusters

theme together ~— | composed of the most
. rel similar OO elements
— Are similar elements :
lexical similarity | based on LSI |
— Are dependent
elements : structural
dependencies
—
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The main ideas (2/4)
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The main ideas(3/4)

4. Reducing the search space by
Isolating groups of variations
corresponding to some
related features

Identifying all groups of OO elements
L_| representing
differences or intersections between variants

| based on FCA |

From one large search space to
many sub search spaces
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The main ideas (4/4)
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Object-to-feature mapping model
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Used techniques : FCA and LSI (1/3)

* Formal Concept Analysis (FCA)

—Is a technique for data analysis and knowledge
representation based on lattice theory

— It identifies meaningful groups of objects that share
common attributes

— It provides a theoretical model to analyze hierarchies of
these groups

— In order to apply FCA based on the definition of a formal
context or incidence table of objects and their attributes
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Used techniques : FCA and LSI (2/3)
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Used techniques : FCA and LSI (3/3)

* Latent Semantic Indexing (LSI)

— Compute textual similarity among different documents

* Based on the occurrences of terms in documents
— If two documents share a large number of terms, those documents are
considered to be similar

— Three steps
* A corpus of documents is built after pre-processing such as stop word
removal and stemming performing

* A term-by-document matrix is built, where each column represents a
document and each row is a term. The values in the matrix indicate the
frequency of the term occurring in the document

* The similarity among documents is calculated using cosine similarity
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The mining process : step by step
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ldentifying the Common Block and
Blocks of Variation (1/3)

* Two steps

1. A formal context, where objects are product variants and
attributes are OBEs is defined

2. Calculate corresponding AOC-poset

*  The intent of each concept represents OBEs common to two or more
products

— The intent of the most general (i.e., top) concept gathers OBEs that are
common to all products. They constitute the CB

— The intents of all remaining concepts are BVs

» They gather sets of OBEs common to a subset of products and
correspond to the implementation of one or more features

*  The extent of each of these concepts is the set of products having

these OBEs in common
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ldentifying the Common Block and
Blocks of Variation(2/3)

* Example

TEXT EDITOR VARIANTS DESCRIBED BY THEIR FEATURES

Variant Name Features
Editor_1 Core (Open, Close, Print)
Editor_2 Core, Select_all
Editor_3 Core, Copy, Paste
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Editor_1 X X X X
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ldentifying the Common Block and
Blocks of Variation(3/3)

* Example
— The AOC-poset

Common Block
Concept_0

/
Package (Editor)

Class (Open_ Editor.Marfigment)
Package (Editor.Managment)
Class (Close_ Editor.Managment)
Class (Print_ Editor. )

Editor_1

Block of \
d aaon

Block of

Concept_2
Package (Editor.Paste)
Concept_1 Method (CopySettings()_ CopyText_ Editor.Copy)
Chess (SelectAllSettings_ Editor.SelectAll) Class (CopyText_ Editor.Copy)
Package (Editor.SelectAll) Class (PasteText_ Editor.Paste)
Editor 2 Method (PasteSettings()_ PasteText_ Editor.Paste)
itoe 2 Package (Editor.Copy)
Editor_3
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|dentifying Atomic Blocks (1/5)

* Three steps
— Exploring the BV’s AOC-poset to Identify Atomic Blocks of Variation
— Measuring OBEs’ Similarity Based on LSI
— Identifying Atomic Blocks Using FCA

* Exploring the BV’'s AOC-poset to Identify Atomic Blocks of Variation

— Exploring the AOC-poset from the smallest (bottom) to the highest
(top) block

— If a group of OBEs is identified as an ABV, this group is considered as
such when exploring the following BV

— For Common Atomic Blocks (CAB), there is no such need to explore
the AOC-poset as there is a unique CB.
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|dentifying Atomic Blocks (2/5)

* Measuring OBEs’ Similarity Based on LSI
— Building the LSI corpus

— Building the term- document matrix and the term-
qguery matrix for each BV and for the CB

— Building the cosine similarity matrix
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|dentifying Atomic Blocks (3/5)

* Example of cosine similarity matrix
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Class CopyText Copy 1 0.0556 0.9921 0.1715 0.9964 -0.0166
Class PasteText Paste 0.0556 1 0.1802 0.9931 -0.0285 0.9973
Method CopySettings CopyText 0.9921 0.1802 1 0.2935 0.9780 0.1086
Method PasteSetting PasteText 0.1715 0.9931 0.2935 1 0.0880 0.9821
Package Copy 0.9964 -0.0285 0.9780 0.0880 1 -0.1007
Package Paste -0.0166 0.9973 0.1086 0.9821 -0.1007 1
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|dentifying Atomic Blocks (4/5)

Identifying Atomic Blocks Using FCA

— Transforming the (numerical) similarity matrices of previous step into
(binary) formal contexts

* Only pairs of OBEs having a calculated similarity greater than or equal to 0.70 are

considered similar

— Example

7 -
S Z
S| é
2 2
’Q 7]
© £
-~ 2 & 80
S| 2| £ | £
© A -] £
szl @13 ..
&z |2 &|¢
= 2 =) < C S
& Z o & o &
o & 2 2 & s
. S S 3 S
2 2 = = - 1
2| 2| 2|32 p S
o o = = [ [
Class CopyText Copy X X X
Class PasteText Paste X X X
Method CopySettings CopyText X X X
Method PasteSetting PasteText X X X
Package Copy X X X
Package Paste X X X
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|dentifying Atomic Blocks (5/5)
* |Identifying Atomic Blocks Using FCA

" Common Block
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Experimentation and results (1/5)

* Case studies : Two Java open-source software: Mobile Media and

ArgoUML
Product # Mobile Media Product Description LOC NOP NOC NOOBE
P1 Mobile photo core 1,046 6 15 822
P2 Exception handling enabled 1,159 7 24 925
P3 Sorting and edit photo label enabled 1,314 7 25 1,040
P4 Favourites enabled 1,363 7 25 1,066
Product # ArgoUML Product Description LOC NOP NOC NOOBE
P1 All Features disabled 82,924 55 1,243 74,444
P2 All Features enabled 120,348 81 1,666 100,420
P3 Only Logging disabled 118,189 81 1,666 98,988
P4 Only Cognitive disabled 104,029 73 1,451 89,273
P5 Only Sequence diagram disabled 114,969 7 1,608 96,492
P6 Only Use case diagram disabled 117,636 78 1,625 98,468
P7 Only Deployment diagram disabled 117,201 79 1,633 98,323
P8 Only Collaboration diagram disabled 118,769 79 1,647 99,358
P9 Only State diagram disabled 116,431 81 1,631 97,760
P10 Only Activity diagram disabled 118,066 79 1,648 98,777
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Experimentation and results (2/5)

Case Study Feature Evaluation Metrics

Mobile Media Features Common |  Optional K Precision Recall F-Measure
Album Management 0.05 83% 62% 70%
Splash Screen z 0.05 1% 57% 63%
Create Album 0.05 81% 58% 67%
Delete Album x 0.05 80% 62% 69%
Create Photo X 0.05 81% 52% 63%
Delete Photo x 0.05 78% 63% 69%
View Photo X 0.05 87% 68% 76%
Exception handling X X 0.03 100% 70% 82%
Edit Photo Label X 0.02 100% 77% 87%
Favourites X 0.04 100% 80% 88%
Sorting X 0.06 100% 78% 87%

ArgoUML Features Common | Optional | K Precision Recall F-Measure
Class Diagram % 0.03 72% 56% 63%
Diagram X 0.06 100% 80% 88%
Deployment Diagram X 0.05 100% 4% 85%
Collaboration Diagram X 0.06 100% 67% 80%
Use Case Diagram X 0.03 100% 649% T8%
State Diagram X 0.03 100% 69% 81%
Sequence Diagram X 0.02 100% 67% 80%
Activity Diagram X 0.06 100% 63% T7%
Cognitive Support X 0.01 100% 70% 82%
Logging X 0.02 100 60% 75%
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Experimentation and results (3/5)

* The effectiveness of IR methods is measured by their RECALL,

PRECISION and F-MEASURE

>=; Correctly retrieved links

Precision =

>°; Total retrieved links

Recall =

>°; Correctly retrieved links

>, Total relevant links

F — Measure = 2 -

Precision - Recall

0 Recall is the percentage of correctly
retrieved links (OBEs) to the total number
of relevant links (OBEs) .

QO Precision is the percentage of
correctly retrieved links (OBEs) to the
total number of retrieved links (OBEs) .

O F-measure is a balanced measure that
takes into account both precision and
recall.

Precision + Recall ¢
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Experimentation and results (4/5)

Precision
— For optional features appears to be high

* This means that all mined OBEs grouped as features are relevant

* Mainly due to search space reduction. In most cases, each BV
corresponds to one and only one feature

— For common features, precision is also quite high

* Thanks to our clustering technique that identifies ABVs based on
FCA and LSI

* |s smaller than the one obtained for optional features

— This deterioration can be explained by the fact that we do not perform
search space reduction for the CB
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Experimentation and results (5/5)

Recall

— Its average value is 66% for Mobile Media and 67%
for ArgoUML

* This means most OBEs that compose features are mined

* Non-mined OBEs used different vocabularies compared to
the mined ones
— This is a known limitation of LSI which is based on lexical similarity
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Perspectives

* Enhance the quality of the mining
— Combine both textual and structural similarity measures
— Identify junctions between features
— More reducing of the search space
— Etc.

* Feature model mining
— Mining features
— Mining feature model structure (group of features)
— Mining features constraints
— Mining feature relationships
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