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Abstract

Software Product Line Engineering (SPLE) is a software engineering discipline providing methods
to promote systematic software reuse for developing short time-to-market and quality products in
a cost-efficient way. SPLE leverages what Software Product Line (SPL) members have in common
and manages what varies among them. The idea behind SPLE is to build core assets consisting of all
reusable software artifacts (such as requirements, architecture, components, etc.) that can be lever-
aged to develop SPL’s products in a prescribed way. Creating these core assets is driven by features
provided by SPL products. Unfortunately, building SPL core assets from scratch is a costly task and re-
quires a long time, which leads to increase time-to-market and up-front investment. To reduce these
costs, existing similar product variants developed by ad-hoc reuse should be re-engineered to build
SPLs. In this context, our thesis proposes three contributions.

Firstly, we proposed an approach to recover traceability links between features and their imple-
menting source code in a collection of product variants. This helps to understand source code of
product variants and facilitate new product derivation from SPL’s core assets. The proposed approach
is based on Information Retrieval (IR) for recovering such traceability links. In our experimental eval-
uation, we showed that our approach outperforms the conventional application of IR as well as the
most recent and relevant work on the subject. Secondly, we proposed an approach, based on trace-
ability links recovered in the first contribution, to study feature-level Change Impact Analysis (CIA)
for changes made to source code of features of product variants. This approach helps to conduct
change management from a SPL manager’s point of view. This allows him to decide which change
strategy should be executed, as there is often more than one change that can solve the same problem.
In our experimental evaluation, we proved the effectiveness of our approach in terms of the most
widely used metrics on the subject. Finally, based on traceability recovered in the first contribution,
we proposed an approach to contribute towards building Software Product Line Architecture (SPLA)
and linking its elements with features. Our focus is to identify mandatory components and variation
points of components. Therefore, we proposed a set of algorithms to identify this commonality and
variability across a given collection of product variants. According to the experimental evaluation,
the efficiency of these algorithms mainly depends on the available product configurations.

Keywords: Software product line engineering, product variants, reuse, variability, feature location,
traceability, architecture, change impact analysis, source code, re-engineering, formal concept analysis,
information retrieval, algorithms.
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Résumé

L’ingénierie des lignes de produits logiciels (Software Product Line Engineering-SPLE en Anglais) est
une discipline qui met en œuvre des principes de réutilisation pour le développement efficace de
familles de produits. Une famille de produits logiciels est un ensemble de logiciels similaires, ayant
des fonctionnalités communes, mais néanmoins différents selon divers aspects; nous parlerons des
différentes variantes d’un logiciel. L’utilisation d’une ligne de produit permet de développer les nou-
veaux produits d’une famille plus vite et d’augmenter la qualité de chacun d’eux. Ces avantages sont
liés au fait que les éléments communs aux membres d’une même famille (besoin, architecture, code
source, etc.) sont réutilisés et adaptés. Créer de toutes pièces une ligne de produits est une tâche dif-
ficile, coûteuse et longue. L’idée sous-jacente à ce travail est qu’une ligne de produits peut être créée
par la ré-ingénierie de logiciels similaires (de la même famille) existants, qui ont été préalablement
développés de manière ad-hoc. Dans ce contexte, la contribution de cette thèse est triple.

La première contribution est la proposition d’une approche pour l’identification des liens de
traçabilité entre les caractéristiques (features) d’une application et les parties du code source qui les
implémentent, et ce pour toutes les variantes d’une application. Ces liens sont utiles pour générer
(dériver) de nouveaux logiciels par la sélection de leurs caractéristiques. L’approche proposée est
principalement basée sur l’amélioration de la technique conventionnelle de recherche d’information
(Information Retrieval –IR en Anglais) et des approches les plus récentes dans ce domaine. Cette
amélioration est liée à deux facteurs. Le premier facteur est l’exploitation des informations liées
aux éléments communs ou variables des caractéristiques et du code source des produits logiciels
analysés. Le deuxième facteur concerne l’exploitation des similarités et des dépendances entre les
éléments du code source. Les résultats que nous avons obtenus par expérimentation confirment
l’efficacité de notre approche. Dans la deuxième contribution, nous appliquons nos résultats précé-
dents (contribution no 1) à l’analyse d’impact (Change Impact Analysis –CIA en Anglais). Nous pro-
posons un algorithme permettant à un gestionnaire de ligne de produit ou de produit de détecter
quelles les caractéristiques (choix de configuration du logiciel) impactées par une modification du
code. Cet algorithme améliore les résultats les plus récents dans ce domaine en permettant de
mesurer à quel degré la réalisation d’une caractéristique est impactée par une modification. Dans
la troisième contribution nous exploitons à nouveau ces liens de traçabilité (contribution No 1) pour
proposer une approche permettant de satisfaire deux objectifs. Le premier concerne l’extraction de
l’architecture de la ligne de produits. Nous proposons un ensemble d’algorithmes pour identifier
les points de variabilité architecturale à travers l’identification des points de variabilité au niveau des
caractéristiques. Le deuxième objectif concerne l’identification des liens de traçabilité entre les carac-
téristiques et les éléments de l’architecture de la ligne de produits. Les résultats de l’expérimentation
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montre que l’efficacité de notre approche dépend de l’ensemble des configurations de caractéris-
tiques utilisé (disponibles via les variantes de produits analysés).

Mots-clés : Traçabilité, localisation de caractéristiques, recherche d’information, variantes de
produits logiciels, variabilité, Ingénierie des lignes de produits, Analyse Formelle de concepts,
architecture, analyse de l’impact du changement, algorithmes, réutilisation, logiciels similaires,
réingénierie, code source.
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1
Introduction

1.1 Research Context: Software Product Line Engineering and Product
Variants

SPLE is a software engineering discipline providing methods to promote systematic software reuse for
developing a family of software products, rather than individual ones [Clements et Northrop, 2001].
This family is known as Software Product Line (SPL). SPLE focuses on efficiently producing and main-
taining multiple similar software products, leveraging what they have in common and managing what
varies among them. This is analogous to what is performed in the automotive industry, where the fo-
cus is on creating a single production line, which consists of a family of customized cars with common
characteristics. In SPLE, SPL’s products of a domain are developed from common and reusable soft-
ware artifacts, called core assets. An asset is any reusable software artifact that can be employed in the
development of a software product [Pohl et al., 2010]. Core assets can be, but are not limited to, re-
quirement documents, architecture, components, source code, test cases, etc. The basic assumption
behind SPLE is that reuse a large scale works best in families of related systems (i.e., SPLs) developed
from the same core assets which have been initially identified and co-developed.

SPLE has economic considerations, which leads companies to transit their software development
strategy toward SPLE. It allows companies to produce a set of related products at lower costs, in a
shorter time and with higher quality [Pohl et al., 2010][Linden et al., 2007][Royer et Arboleda, 2012].
SPLE, of course, reduces the cost of software products development because core assets are reused
in several products, this implies a cost reduction for each product and short time to market. In SPLE,
the core assets are tested in many products, this means providing a high chance to detect fault and
errors in the course of time. This leads to increase the quality of all generated products.

There are two essential tasks playing important roles for successful SPLE: variability management

1
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and product derivation [Clements et Northrop, 2001]. Firstly, variability, in the context of SPLE, can
be understood as differences among SPL’s products in terms of provided features. A feature is defined
as “a prominent or distinctive user-visible aspect, quality or characteristic of a software system or sys-
tems” [Kang et al., 1990]. A feature can be seen as a bundle of requirements abstracted at the feature
level as a feature. Moreover, building core assets is driven by features that SPL products should pro-
vide. The concept of commonality is highly correlated to variability. It refers to features that are part
of each product in SPL (i.e., mandatory features). Leveraging commonality and managing variability
allow the provision of a range of miscellaneous products (SPL) which meet the different and individ-
ual needs of customers in a particular domain. Commonality and variability in SPLE are managed by
Feature Models, a formalism introduced by [Kang et al., 1990] and now widely used in SPLE. Secondly,
product derivation is the process of generating a product from core assets [Thao et al., 2008]. This
process determines which assets should be selected according to features selection, and specifies
how those assets are composed in order to build the desired product [Deelstra et al., 2004]. Features
selection is driven by customer needs. This process is automatically performed for generating many
products in shorter time, which lead to meet the growing needs of customers in a particular domain.

Traceability links between artifacts of SPL’s core assets play a pivot role for automating product
derivation. The term traceability has different meanings in different contexts. In the context of SPL’s
core assets, traceability is the ability to relate the different artifacts of core assets created in the devel-
opment life cycle with one another [Ajila et Kaba, 2004]. Such traceability links relate features with
core assets that implement those features, which facilitate and automate the product derivation pro-
cess [Shen et al., 2009][bin Abid, 2009]. On the other hand, traceability in SPLE is considered as an im-
portant element to manage the complexity of variability by ensuring the correct binding of variability
throughout all derived products and by highlighting variability throughout all SPL’s core assets [Pohl
et al., 2010]. Additionally, traceability links are essential for maintenance tasks, such as change im-
pact analysis. When a change is induced, the impact of change is not limited to a certain type of
software artifacts, but it goes through all software artifacts of different levels of abstraction [De Lucia
et al., 2008]. Therefore, traceability is needed to detect change propagation between different types
of artifacts.

Highlighting variability at architectural level is the basis for building Software Product Line Archi-
tecture (SPLA). SPLA is a key asset in SPL’s core assets. Thus, SPLE is termed architecture-centric [Lin-
den et al., 2007]. SPLA is a core architecture that captures the high level design for the products
of the SPL, including commonality and variability documented in the variability model (or feature
model) [Pohl et al., 2010]. Variability in terms of features can be reflected in SPLA as variation points
of components. Such a variation point represents a location in the SPLA to switch between alterna-
tive component (s) in order to derive specific architecture for each product in SPL. Selection of the
appropriate components depends on the chosen features. For this, traceability links between feature
and SPLA is needed to bind variability at architectural level, and hence deriving architecture for each
member of SPL.

It is common for companies developing variants of a software product to accommodate different
customer needs. These variants provide common features (mandatory) but they also differ from one
another by providing unique features or feature combinations. These products are known product
variants [Yinxing et al., 2010]. Often, product variants evolve from an initial product developed for
and successfully used by the first customer. Unfortunately, product variants are not developed and
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Figure 1.1 : Accumulated Costs for SPL and Independently Systems [Pohl et al., 2010]

maintained as SPL. They are often developed by using ad-hoc reuse approaches such as “clone-and-
own”. Companies develop separate product variants where a new product is built by ad-hoc copying
and modification of various existing variants to fit new purposes. Separately maintaining product
variants causes challenges. Changes in the code of common features must be repeated across prod-
uct variants. Moreover, software engineers must know how the feature (i.e., its implementation) is
supposed to interact (or not interact) with other features at source code level in every product variant
independently [Calder et al., 2003]. As the number of features and the number of product variants
grow, developing product variants in such a way becomes more challenging and costly.

1.2 Problem Statement

As mentioned earlier, SPL’s core assets play a pivotal role in SPLE. However, building SPL’s core assets
from scratch is a costly task and requires a long time, which leads to increase time-to-market [Pohl
et al., 2010]. Figure 1.1 shows the accumulated costs required to develop n software products in both
SPLE and traditional way of software development (one software system at a time). The solid line rep-
resents the costs of developing software products independently, while the dashed line represents the
development costs using SPLE. In the case of the development of a few products, the costs of SPLE are
high. This is because the SPL’s core assets are built from scratch to generate not only small number
of products but also to support generation of the full scope of products required for the foreseeable
horizon. Thus, this leads to increase up-front investment. However, these costs are significantly re-
duced for the development of many products. The location at which both curves intersect represents
the break-even point. At this point, the costs are the same for developing the systems independently
as for developing them using SPLE.

Generally, companies cannot afford to start developing a SPL from scratch, and hence they have
to reuse as much existing software assets of product variants as possible. The existing assets represent
a starting point for building SPL’s assets. In product variants, features and source code are available
assets while SPLA can be reverse-engineered from these variants. Features are available due to the
need for product customization, as product variants are a series of customized products to meet spe-
cific needs of different customers. These needs can be features provided by these variants. Source
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code is always available. These assets (features, source code and SPLA) should be linked together to
be a part of SPL’s core assets, as core assets in SPLE are linked.

The global goal of this thesis is to support re-engineering product variants into SPLs. In this goal,
we address the following problems.

1. Finding traceability links between features and their implementing source code elements in a
collection of product variants
Traceability links between features and their implementing source code elements are necessary

to understand source code of product variants, and then reuse right features (resp. their implementa-
tions) for developing new products taking advantages of SPLE [Lucia et al., 2007]. Such traceability is
also essential for facilitating and automating new product derivation from SPL’s core assets, when the
re-engineering process is completed. Figure 1.2 shows an example of traceability links in a collection
of two product variants. Each product has specific features which are only chosen in that product
and also these products have shared features. The links between these features and classes represent
traceability links that determine which features are implemented by which classes. In the literature,
the process of identifying traceability links between features and their implementing source code el-
ements is known as feature location [Biggerstaff et al., 1993][Bogdan et al., 2013]. Throughout the
thesis, the term of feature implementation refers to the source code elements that implement a fea-
ture.

Figure 1.2 : An Example of Traceability Links in a Collection of Two Product Variants.

Then, we study how to use feature location for addressing the following problems concerned with
our global goal.

2. Performing change impact analysis at feature level for changes made to source code

Features (resp. their implementing source code elements) obtained from product variants may need
to be changed for adapting SPLE context by adding or removing requirements (resp. their source code
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elements) to meet new demands of customers [Liu et al., 2006]. The change may impact the imple-
mentation of other features that are not interested in the change, as a feature’s implementation spans
multiple code elements (e.g., classes and methods) and shares code elements with other features. To
avoid such a situation, feature-level Change Impact Analysis (CIA) is needed to determine feature(s)
that may be impact for a given change proposal before the change is implemented. It is helpful to
conduct change management from a SPL manager’s point of view. For example, managers may most
likely be interested in evaluating a given source code change in terms of affected features in order to
decide which change strategy should be executed, and hence which resources should be reserved. As
a feature is an agreement among all stakeholders (including managers) about what systems should
do, feature-level CIA allows managers to deeply understand the impact of a given change proposal,
rather than technical details. Furthermore, such impact analysis detect the introduction of unde-
sirable interactions between feature implementations. Feature-level CIA represents a maintenance
task for features (resp. their implementations) obtained from product variants. The role of feature
location in this task is to determine a feature’s implementation need to be changed and help the CIA
process to determine affected features due to source code changes.

3. Supporting reverse-engineering SPLA from product variants and establishing feature-to-
architecture traceability links

Developing SPLA from scratch is a costly task because it represents an infrastructure to derive
components not only for one architecture but also for all architectures of SPL’s products. As a result,
existing product variants should be reused as much as possible to build SPLA by extracting com-
ponents and organizing these components as mandatory and as members of variation points. This
organization represents an important step toward reverse-engineering SPLA from product variants.
The role of feature location in this task is to help extract components only from the implementation
of features. Also, it is used to highlight variability at architectural level, in order to identify variation
points of components by establishing traceability links between features and components, as we will
see later.

1.3 Limitations of the Existing Approaches

Information Retrieval (IR) techniques are used widely for locating feature implementations. Most IR-
based feature location approaches conduct a textual matching between all features (i.e., their feature
descriptions) for a single software product and entire source code information of that product. These
features and the associated source code are called IR search spaces. These approaches deal with
product variants as singular independent entities. However, by considering product variants as a
family of similar and related products, an additional input to the process of IR-based feature location
is obtained. This input represents commonality and variability across product variants, which leads
to reducing IR search spaces and hence improves the results of IR-feature location process. There
are a few works that consider commonality and variability of product variants. These works do not
achieve minimal reduction of IR search spaces and also do not pay attention to features information
that represents a guide to IR for locating feature implementations. Moreover, none of the surveyed
approaches consider the abstraction gap between feature and source code levels, which may hinder
the IR-feature location process.
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CIA at feature level for source code changes is seldom considered. Most surveyed approaches
perform change impact at the source code level with few works completed at requirement and design
levels. There is only one work that studies the change impact at the feature level for source code
changes. However, this work does not support the purposes of SPL’s manager concerned with change
management, as it does not provide quantitative metrics to help with making decisions.

Although SPLA is a key asset in SPL’s core assets and its development from scratch is a costly task,
none of existing approaches studied how to support reverse engineering SPLA from product variants.
All existing works support building SPLA from scratch, i.e., forward engineering way to build SPLA in
the SPLE context.

1.4 Contributions

During this thesis, we make three contributions as follows:

• Feature location in a collection of product variants
We propose an approach to support feature location in a collection of product variants based on
Information Retrieval (IR) techniques namely, Latent Semantic Indexing (LSI). This approach
improves the performance of IR-based feature location in terms of the most used metrics in
the subject: precision, recall and F-measure. This improvement is based on two kinds of reduc-
tions. Firstly, exploiting commonality and variability across product variants to reduce feature
and source code spaces where IR is applied. Secondly, reducing abstraction gap between fea-
ture and source code levels by introducing code-topic as an intermediate level. We use Formal
Concept Analysis (FCA) to reduce IR spaces by analyzing commonality and variability across
product variants in order to obtain minimal disjoint sets of features (resp. their implementing
source code elements). We also investigate the results of Agglomerative Hierarchical Clustering
(AHC) and FCA to identify code-topics.

• Change impact analysis at the feature level: based on feature location
In the second contribution, we propose an approach to support feature-level CIA for source
code changes made to the implementation of features obtained from product variants. This
approach takes, as input, a set of classes to be changed and feature implementations. It returns,
as output, a ranked list of affected features. We propose two metrics adapted to feature-level
CIA: impact degree and changeability assessment metrics. The former is used to measure to
which degree a specific feature can be affected by a given change proposal. The latter is used to
measure the percentage of features that will be impacted by a given change proposal.

• Toward reverse engineering SPLA from product variants and establishing feature-to-
architecture traceability links: based on feature location
In the third contribution, we propose an approach to support reverse-engineering of SPLA from
product variants. As SPLA encompasses commonality and variability at feature level, we first
propose determining mandatory features (commonality) and variation point of features (vari-
ability) across product variants. Then, we highlight this commonality and variability at the
architectural level by extracting components from feature implementations and then estab-
lishing traceability links between features and extracted components. This highlighting allows
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identification of mandatory components and variation points of components as an important
step towards building SPLA.

1.5 Thesis Organization

The contents of the remaining chapters are as follows:

1.5.1 Part I: Background

• Chapter 2 presents a base of knowledge that is used as a common language to explain our
approaches throughout this thesis. Firstly, main concepts and definitions about SPLE are given.
Then, we give a necessary background about IR techniques with illustrative example. Next, we
introduce FCA and their definition with illustrative example. Finally, we detail case studies used
through the thesis.

1.5.2 Part II: State-Of-The-Art

• Chapter 3 reviews the state-of-the-art literature about IR-based feature location. Firstly, we
present the types of traceability links and their semantics. Then, we give a general classifica-
tion of feature location approaches. Next, we focus on IR-based feature location approaches.
Finally, we point out advantages and disadvantages of studied approaches.

• Chapter 4 reviews the state-of-the-art literature about the application of feature location for
feature-level CIA and reverse engineering SPLA from product variants. We present the main
concepts in CIA and SPLA and study approaches related to feature-level CIA and reverse-
engineering SPLA. Finally, we evaluate the studied approaches.

1.5.3 Part III: Contributions

• Chapter 5 reports our contribution for supporting feature location in a collection of product
variants. Firstly, we introduce the basic assumptions considered. Then, we explain how to im-
prove the performance of IR-based feature location in a collection of product variants through
reducing IR search spaces and reducing the abstraction gap between feature and source code
levels. Then, we present how to locate features using LSI. Finally, we present our experimental
validation.

• Chapter 6 presents our approach that supports feature-level CIA for source code changes.
Firstly, we determine the impacted set of classes due to source code changes. Next, we use FCA
to analyze feature coupling relations. Then, we present how to query the concept lattice gener-
ated by FCA to compute a ranked list of affected features. Finally, we present our experimental
validation.

• Chapter 7 presents our approach that addresses reverse engineering SPLA from product vari-
ants. Firstly, we introduce a set of algorithms to identify mandatory features and the varia-
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tion points of features as representative of commonality and variability at the feature level, re-
spectively. Next, we extract components from the implementation of mandatory features and
variation points of features. Then, we identify mandatory components and variation point of
components by employing commonality and variability at the feature level. Finally, we present
experimental results.

• Chapter 8 concludes the work presented in this thesis and highlight direct perspective work.

• Appendices IV include architecture implementation, components extraction tool used and
product configuration used.



Part I

Background
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2
Preliminaries

Preamble

In this chapter, we present the main concepts in software product line engineering and techniques on
which our work is built. We start by presenting software product line engineering, which represents our
context. Next, we present information retrieval and formal concept analysis techniques, which we use
in this thesis. We give the basic definitions for these techniques, supported with illustrative examples.
Finally, we present case studies used throughout the thesis.
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2.1 Software Product Line Engineering

Software Product Line Engineering (SPLE) emerges as an important development paradigm allow-
ing companies to realize order-of-magnitude improvements in time to market, cost, productiv-

ity, quality, and other business drivers [Clements et Northrop, 2001]. SPLE allows the development of
multiple similar software systems from common software artifacts. In this section, we introduce the
necessary background to understand SPLE

2.1.1 SPLE Definitions

SPLE is a software engineering discipline providing methods to promote systematic software reuse
for developing short time-to-market and quality products in a cost-efficient way [Clements et
Northrop, 2001]. These products are known as Software Product Line (SPL). The following definition
proposed by [Clements et Northrop, 2001] captures the general idea behind a SPL:

“A software product line is a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way”.

This definition relies on three main terms: software-intensive systems, core assets and features.
Firstly, software-intensive systems refer to a family of similar software products, not a single software
product. Secondly, core assets in a software engineering context, are a collection of reusable artifacts.
These artifacts should be reused in a prescribed way to build applications (SPL members) for a
particular context. Reusable artifacts include requirement models, architectural models, software
components, test plans, etc. Finally, the concept of feature has many definitions in the literature, for
example:

• [Kang et al., 1990] :“a prominent or distinctive user-visible aspect, quality or characteristic of a
software system or systems”.

• [Kang et al., 1998] :“a distinctively identifiable functional abstraction that must be imple-
mented, tested, delivered, and maintained”.

• [Czarnecki et Eisenecker, 2000] :“a distinguishable characteristic of a concept (e.g.,system, com-
ponent, and so on) that is relevant to some stakeholder of the concept ”.

• [Bosch, 2000] :“a logical unit of behavior specified by a set of functional and nonfunctional
requirements ”.

• [Batory et al., 2003] :“a product characteristic that is used in distinguishing programs within a
family of related programs ”.

• [Zave et Jackson, 1997] :“an optional or incremental unit of functionality ”.

• [Batory, 2005] :“an increment of program functionality ”.
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2.1.2 Benefits of SPLE

Compared to traditional single-product development, SPLs promise several benefits [Pohl et al.,
2010][Clements et Northrop, 2001]. In this section, we present key benefits that motivate software
development under the SPLE:

• Reduction of the Development Costs
The cost reduction is strongly correlated to SPLE which supports large-scale reuse during soft-
ware development. In SPLE, software artifacts (core assets) are reused in several products; this
implies a cost reduction for each product. Unfortunately, the reduction in the development
cost does not come for free but it requires extra up-front investment [Linden et al., 2007]. This
is necessary in order to build SPL core assets which include all artifacts that can be reused in
the future. After building SPL’s core assets, the accumulated costs required to develop a large
number of products are much less than developing them independently (traditional way for
development) [Pohl et al., 2010].

• Quality Enhancement
The artifacts in the SPL core assets are reused and tested in many generated products. There-
fore, they have proved their proper functioning in more than one product. The extensive quality
assurance allows a significantly higher chance of detecting faults and correcting them, thereby
increasing the quality of all SPL products [Pohl et al., 2010].

• Reduction of Time to Market
The time to market refers to the time to develop the product. Indeed, the time to market in SPLE
is initially higher because the SPL’s core assets have to be built first since the building process
takes a long time. After building these core assets, the time to market is considerably reduced
as many artifacts can be reused for each new product [Pohl et al., 2010].

• Reduction of Maintenance Efforts
Changing an artifact in the SPL’s core assets, e.g. for the purpose of error correction, can be
propagated to all products in which that artifact is being used. Therefore, there is no need to
do the same task in each product like product variants. This may lead to reduced maintenance
effort. Moreover, maintenance staff do not need to know all specific products and their parts
and hence also reducing understanding effort [Pohl et al., 2010].

2.1.3 Variability in SPLE

SPLE aims at providing a range of products. These products should support different and individual
customer needs for a particular domain. As a result, variability is a key concept in SPLE. Variability,
in general, means the tendency to change. Weiss and Lai define variability in SPLE as “an assump-
tion about how members of a family may differ from each other ” [Weiss et Lai, 1999]. Development
of SPLs mainly relies on managing the variability between SPL’s products to meet all customer re-
quirements [Pohl et al., 2010]. The main goal of variability is to “maximize the return on investment
for building and maintaining products over a specified period of time or number of products” [Felix
et Paul, 2005]. Variability can occur at all levels of abstraction, e.g., in requirement and architec-
ture levels. Examples of variability include: the choice between two functional requirements and the
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choice between multiple architectural styles. When we talk about variability in SPLE, the concept
of commonality immediately stands out. Commonality refers to a characteristic (functional or non-
functional) that can be common to all products in the product line [Linden et al., 2007]. Usually,
variability and commonality in SPLE are expressed in terms of features.

2.1.3.1 Variability Taxonomy

In the literature, there is no unique classification for variability. Pohl et al. [Pohl et al., 2010] pro-
poses variability in time and variability in space. They also propose external and internal variability.
Halmans and Pohl distinguish essential and technical variability [Halmans et Pohl, 2003]. Below, we
detail these classifications.

Variability in time is defined as “the existence of different versions of an artifact that are valid at
different times” [Pohl et al., 2010]. For example in the past, magnetic cards were used as door lock
identification mechanisms, then fingerprints and then iris recognition. The variability in space is
defined as “the existence of an artifact in different shapes at the same time ” [Pohl et al., 2010]. For
example, an online banking system offers two options for communication with its customers: SMS or
email.

External variability is defined as the variability that is visible to customers [Pohl et al., 2010]. For
example, customers of an online banking system can choose between two options for communica-
tion: SMS or email. Internal variability is defined as the variability that is hidden from customers [Pohl
et al., 2010]. For example, the choice between the major asymmetric encryption algorithms used for
encrypting: RSA and DSA.

Essential variability describes the variability of a SPL in terms of customer point of view i.e., cus-
tomer’s wishes. For example, booking systems offer two options to issue a ticket: (i) before a travel
takes places, e.g. before entering a train; (ii) during the travel, e.g. in the train. Technical variability
deals with aspects about the realization of the variability. It corresponds to the SPL engineer view-
point that cares about how to implement the variability. For example, such a booking system can be
implemented with different types of database: ORACLE, MS access, etc.

2.1.3.2 Variability Modeling: Feature Model (FM)

The concept of feature is well-known in SPLE to describe variability because it is an agreement among
all stakeholders about what a system should do [Passos et al., 2013]. Also, feature is the first class entity
in the SPLE to constitute core assets, as building SPL’s core assets is driven by features that these assets
should support. Therefore, feature model (FM) is commonly accepted language to model variability
in SPLE. A FM is a representation of the requirements of a SPL abstracted at the feature level [Riebisch,
2003]. A feature can be a chunk of requirements that represents value to the end user. In SPLE, FM
represents a hierarchy of features and includes constraints of feature selection. It models all possible
products that can be generated in a given context so that each product is a valid combination of
unique features. Figure 2.1 shows a simple FM inspired from the mobile phone industry [Benavides
et al., 2010]. Features in FM are represented as rectangles and can be optional or mandatory:

• An optional feature is a part of one or more products but not all products. It is denoted by an
empty circle at the top (like GPS feature in Figure 2.1). Optional features represent variability.
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Figure 2.1 : FM of Mobile Phone SPL [Benavides et al., 2010].

• A mandatory feature is a part of all products. It is denoted by a filled circle at the top (like Call
feature in Figure 2.1). Mandatory features represent commonality.

An edge between features refers to a dependency. A solid edge is used for the feature tree edge while
a dashed edge is used for a cross-tree constraint. Cross-tree constraints can be exclude or require [Be-
navides et al., 2010]:

• Exclude constraint: if feature A excludes feature B, this means that both features cannot be
part of the same product. For example, in Figure 2.1, GPS and basic are incompatible features,
and hence they can not be members of the same product. This constraint can be represented
graphically or textually (see Figure 2.1).

• Require constraint: if feature A requires feature B, this means that the inclusion of A in a prod-
uct implies the inclusion of B in the same product. For example, in Figure 2.1, including a
camera feature requires the inclusion of high resolution screen feature. This constraint can be
represented graphically or textually (see Figure 2.1).

A feature may also be a member of a feature group. The parent of a group is called abstract feature
while a member of a group is called a concrete feature. The abstract feature does not have an imple-
mentation because it is just a label. FM provides three types of feature groups [Benavides et al., 2010]:
XOR-Group, OR-Group and AND-Group.

• XOR-Group: a set of features has a XOR-relationship with their parent when only one of them
can be selected in the case that their parent is selected. This type is marked with an empty arc
in the FM. In Figure 2.1, the features Basic, High Resolution and Color represent an XOR-Group,
as only one of them should be selected if their parent is selected.
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• OR-Group: a set of features has an OR-relationship with their parent when one or more of them
can be selected in the case that their parent is selected. This type is marked with a filled arc in
the FM. In Figure 2.1, when Media is selected, Camera, MP3 or both can be selected.

• AND-Group: a set of features has an AND-relationship with their parent when all of them must
be selected in the case that their parent is selected. In Figure 2.1, the features SendPhoto, Re-
ceivePhoto and PhotoExplorer represent an AND-Group, as all these features should be selected
when their parent is selected.

Furthermore, optional features fallen down from the FM root represent a set of variants offered
by the root. We consider these variants as a group of optional features and call them OP-Group. The
FM’s groups represent variation points (VPs) because each one offers a set of variants (features) to
choose from.

FM models all possible products that can be generated in the future, so that each product is a valid
combination of unique features. Each valid combination is called product configuration. Figure 2.2
shows an example of product configurations that can be obtained from FM shown in Figure 2.1.

Figure 2.2 : An Example of Product Configurations.

2.1.4 The SPLE Framework

Figure 2.3 shows a framework for SPLE. This framework is composed of two phases: domain engi-
neering and application engineering [Pohl et al., 2010] [Linden et al., 2007]. In the following, we detail
these phases:

2.1.4.1 Domain Engineering

Domain engineering refers to the creation process of the SPL’s core assets. Therefore domain engi-
neering is called a development for reuse. The domain engineering process (shown in the upper part
of Figure 2.3) is composed of five key sub-processes: product management, domain requirements en-
gineering, domain design, domain realization and domain testing [Pohl et al., 2010].

Firstly, product management sub-process is concerned with the economic aspects of SPL and es-
pecially concerned with marketing strategy. It determines the SPL scope which represents a plan for
the future development of the SPL’s products. This plan determines the features of all SPL products
and the schedule for marketing. Secondly, domain requirement engineering identifies and describes
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Figure 2.3 : SPL Framework [Pohl et al., 2010].

the commonality and variability among potential SPL’s products in terms of features. Next, the do-
main design sub-process includes all activities for building SPL architecture (SPLA). Next, domain re-
alization is concerned with the implementation of reusable software components because SPL com-
posed of component-based systems [Pohl et al., 2010]. A component is “a unit of composition with
contractually specified interfaces and explicit context dependencies only” [Szyperski, 2002]. A com-
ponent is provided with two types of interfaces: provided and required interfaces. Provided interfaces
determine what the component offers, whereas required interfaces determine what the component
needs in order to do its job. Finally, domain testing performs validation and verification of reusable
components. Domain testing checks the components against their specifications, i.e. requirements,
architecture, etc. (see the return loop in upper part of Figure 2.3). These sub-processes produce dif-
ferent types of software artifacts (requirements, design models, components, test case, etc.). These
artifacts together constitute SPL’s core assets. According to [Pohl et al., 2010], the key goals of the
domain engineering process are to:

• Determine the set of products the SPL is planned for, i.e. define the scope of the SPL.

• Determine the commonality and the variability of SPL, i.e., determine features that are part of
each product in SPL and features that are part from one product or more (but not all) in SPL.

• Build reusable software artifacts that accomplish the desired variability, i.e., build software ar-
tifacts that realize products for satisfying different customer needs.

2.1.4.2 Application Engineering

Application engineering refers to the process that uses those assets that are built in domain engineer-
ing to build SPL products. Hence, this process is called development with reuse [Linden et al., 2007].
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It is composed of four key sub-processes, in line with domain engineering sub-processes: application
requirements engineering, application design, application realization and application testing (shown
in the lower part of Figure 2.3) [Pohl et al., 2010].

Firstly, application requirements engineering mainly specifies the requirements of a particular
product. These requirements come from the stakeholders of the product under development, for ex-
ample customers, product managers, etc. [Linden et al., 2007]. Next, application design sub-process
encompasses all activity needed to instantiate a product architecture from SPLA. Next, application
realization sub-process implements the required product. It selects and assembles reusable com-
ponents to create the required product. Finally, application testing sub-process encompasses the
activities needed to validate and verify an application against its specification, i.e., requirements, ar-
chitecture, etc. (see the return loop in upper part of Figure 2.3).

These sub-processes use as input software artifacts produced by the domain engineering pro-
cess (requirements, architecture, components, test cases, etc.) to create applications (SPL’s products)
tailored to the specific needs of different customers. The application engineering process aims at
exploiting commonality and variability in order to develop SPL members. It works by first determin-
ing the features that should be provided by some product (product configuration), then creates that
product by using available SPL’s core assets (product derivation) [Pohl et al., 2010].

2.1.5 Different Approaches for SPL Development

Krueger [Krueger, 2002] propose three approaches for SPL development: proactive, reactive and ex-
tractive approaches.

In the proactive approach, organizations design and develop the core assets from scratch to sup-
port the full scope of products required for the foreseeable horizon. This is similar to the waterfall ap-
proach for single system development. In this approach, requirement analysis, design, source code,
etc. are implemented, which leads to a risk of developing useless assets. Figure 2.4 shows the proac-
tive approach.

In the reactive approach, organizations incrementally grow existing SPL’s core assets when the
demand arises for new products or new requirements for existing products. The common and varying
software artifacts are incrementally extended in reaction to meet new demands of customers. This
incremental approach provides a quicker and less expensive transition into SPL. Figure 2.5 shows the
reactive approach.

In the extractive approach, organizations exploit the already existing product variants by extract-
ing the common and varying software artifacts for building SPL core assets. This approach achieves
short time-to-market products compared to other approaches. It also reduce significantly up-front
investment, since a collection of assets are available and could be reused. Figure 2.6 shows the ex-
tractive approach.
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Figure 2.4 : Proactive Approach [de Almeida, 2010].

Figure 2.5 : Reactive Approach [de Almeida, 2010].

Figure 2.6 : Extractive Approach [de Almeida, 2010].

2.2 Information Retrieval Techniques

Information Retrieval (IR) provides many techniques to study the problem of identifying information
or documents that are relevant to a query within a collection of documents [Grossman et Frieder,
2004]. Examples of such a collection in software engineering are source code files and requirement
documents. Queries are formal statements of required information, for example strings describing
source code bugs. IR works by finding a match (e.g., textual matching) between query information
and documents information. It searches in a collection of documents using keywords extracted from
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Figure 2.7 : Information Retrieval Process [Baeza-Yates et Ribeiro-Neto, 1999].

query information. In IR, a query does not uniquely match a single document in the collection. In-
stead, several documents may match the query with different degrees of relevance. Therefore, IR
computes a numerical value to measure how each document in the collection matches the query and
ranks the documents according to this value. The top ranking documents are then retrieved. Fig-
ure 2.7 shows IR process.

IR techniques have been used widely to support feature location [Bogdan et al., 2013]. They are
used to identify source code documents that are relevant to given features by lexical matching source
code information with feature information. In this thesis, we use IR techniques to support feature
location in a collection of software product variants. In the following, we present the main commonly
used IR techniques for feature location, namely, Vector Space Model (VSM) and Latent Semantic In-
dexing (LSI). Also we present their evaluation metrics.

2.2.1 An Illustrative Example

As an illustrative example to clarify and exemplify IR techniques, we assume that there is a collection
of three textual documents (D1, D2, D3) and a query (Q) as follows1:

• D1: “Shipment of gold damaged in a fire ”.

• D2: “Delivery of silver arrived in a silver truck ”.

• D3: “Shipment of gold arrived in a truck ”.

• Q: “Gold silver truck ”.

During our presentation of IR techniques, we attempt to compute similarity between the query
(Q) and each document.

1This example is taken from [Grossman et Frieder, 2004]
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Figure 2.8 : An Example of Vector Representation in VSM.

2.2.2 Vector Space Model

In general, Vector Space Model (VSM) is an algebraic model for representing textual documents as
vectors [Salton et al., 1975]. In IR, VSM creates a space in which both documents and queries are
represented by vectors in this space. The similarity between a query vector and a document vector is
measured by the cosine of angle between them. Figure 2.8 shows an example of vector representation
for two documents (d1, d2) and a query (q) in VSM.

The process of applying VSM consists of four steps [Grossman et Frieder, 2004]: creating a corpus,
preprocessing, indexing and computing similarity. In the following, we detail these steps.

2.2.2.1 Corpus Creation

A corpus represents a collection of documents that contains the required information or documents.
The type of these documents depends on the context that IR is applied to. For example, the in case of
applying IR for feature location, the content of these documents represents source code information
(identifiers and comments). In this case, a document can be created for each method, class, pack-
age or any other granularity of the source code. In this step, a document is created for each query
containing information of that query, too.

2.2.2.2 Pre-processing

When the corpus and query documents are created, the text of each document must be pre-
processed. The pre-processing step refers to the following options: (i) removing stop words (or, the,
etc.); (ii) splitting compound words (featuerLocation becomes feature and location); (iii) performing
stemming (e.g., stemmed becomes stem). Also, query documents are pre-processed as corpus docu-
ments. The goal of pre-processing is to represent documents and queries effectively in terms of space
(for saving the memory space of documents and queries). It also help to find better textual match-
ing between queries and corpus documents by removing noise data (such as stop words), and hence
improves the obtained results.
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2.2.2.3 Indexing

In this step, the corpus is used to create term-document matrix with size m × n and term-query ma-
trix with size m × l where m, n and l respectively represent number of all terms extracted from corpus
query documents, number of documents in the corpus and number of query documents. Matrices’
rows correspond to the terms while columns in term-document and term-query represent respec-
tively corpus and query documents. A generic cell (i, j) in both matrices denotes the weight of the i th

term in the j th document. Different measures were proposed for this weight [Salton et Buckley, 1988].
In the simple measures, the weight is a boolean value, either 1 if the i th term occurs in the jth doc-
ument, or 0 otherwise. In complex measures, the weight is computed based on the frequency of the
terms in the documents, e.g., term frequency (TF). TF measures the number of a term occurrences in
a document.

2.2.2.4 Computing Lexical Similarity

Once the corpus is indexed, each column in both term-document and term-query matrices represent
a vector. Therefore, the similarity between a pair of corpus and query documents is typically mea-
sured by the cosine of the angle between their corresponding vectors. The cosine similarity takes a
value in a range [-1 to 1]. The closer the cosine value is to one, the more similar the corpus document
is to the query document. A cosine similarity value is computed between the query and each corpus
document, and then the documents are descendant ranked by their similarity values. Equation 2.1
represents the cosine similarity equation [Grossman et Frieder, 2004]. Docq and Docc respectively
refer to query and corpus documents while Wqi and Wci refer respectively to the weight of the term i
in the document (Docq ) and the document (Docc ).

COS(Docq ,Docc ) =
∑m

i=1 Wqi ×Wci√∑m
i=1(Wqi )2 ×

√∑m
i=1(Wci )2

(2.1)

To apply VSM to our illustrative example, we assume that a term frequency is used as term weight
for term-document and term-query matrices. Also, we assume the following preprocessing options:
stop words were not ignored, text was tokenized and lowercased and no stemming was used.

Figure 2.9 shows term-document and term-query matrices of our illustrative example. By using
equation 2.1 to compute cosine similarity values between the query (Q) and each document (D1, D2,
D3), we obtain the following values for each document respectively: (0.22, 0.55, 0.44). From these
values, we can notice that document D2 has a score higher than D3 and D1. This means that D2’s
vector is closer to the query vector than the other vectors. Therefore, we can rank these documents
against the query (Q) based on their values in descending order as follows: D2 > D3 > D1. Actually, D2
has two shared terms (truck, silver) with the query (Q) and the “silver” are repeated two times in D2.
D3 and D1 share with the query (Q) respectively two terms (“gold” , “truck” ) and one term (“gold” )
without repetition.

2.2.3 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an advanced IR technique. It was developed as a solution for over-
coming polysemy and synonymy problems that happen in VSM [Susan et al., 1990]. These problems
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Figure 2.9 : Term-Document and Term-Query Matrices.

occur due to the fact that VSM does not take into account relations between terms. For instance,
having a document containing a word “automobile” and another document containing a word “car” ,
does not contribute to finding similarity in these two documents. In LSI, the relations between terms,
between documents and between terms and documents are explicitly taken into account [Lucia et
al., 2007]. LSI assumes that there is “latent structure” (co-occurrence of terms) in word usage pat-
tern and it uses statistical analysis to find this structure. For example, both “car”and “automobile”
probably co-occur in different documents with related terms, such as “motor”, “wheel”, etc. LSI uses
information about co-occurrence of terms to find synonymy between different terms that cover the
same concept.

LSI follows the VSM steps. Then, it applies Singular Value Decomposition (SVD) technique to
term-document matrix. SVD aims to discover the latent structure between terms used in corpus and
query documents [Susan et al., 1990]. SVD is a mathematical technique originally used in signal pro-
cessing to remove noise. SVD has a complex mathematical background, which hinders us to explain
how SVD find the latent structure. The interested reader can refer to [Salton et McGill, 1986] for more
details. In the following two steps, we present how SVD is applied to term-document matrix to per-
form his purpose.

2.2.3.1 Applying SVD Technique

SVD is applied to term-document matrix to decompose it into product of three other different matri-
ces:

A =U SV T (2.2)

where A is the term-document matrix with size m × n, U is a matrix with size m × r containing the left
singular vectors where r is the rank of A, S is a matrix with size n × n representing a diagonal matrix
of singular values, V is a matrix with size n × r containing the right singular vectors. T refers to a
transpose operation executed on V matrix. These matrices (U, S and V) are known as LSI sub-spaces.
Figure 2.10 shows U, S and V T matrices of term-document matrix shown in Figure 2.9.
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U =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.420 −0.075 −0.046
0.299 0.200 0.408
0.121 −0.275 −0.454
0.158 0.305 −0.201
0.121 −0.275 −0.454
0.263 −0.379 0.155
0.420 −0.075 −0.046
0.420 −0.075 −0.046
0.263 −0.379 0.155
0.315 0.609 −0.401
0.299 0.200 0.408

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S =
∣∣∣∣∣∣
4.099 0.000 0.000
0.000 2.362 0.000
0.000 0.000 1.274

∣∣∣∣∣∣V T =
∣∣∣∣∣∣

0.494 0.646 0.582
−0.649 0.719 −0.247
−0.578 −0.256 0.775

∣∣∣∣∣∣

Figure 2.10 : The U, S, VT Matrices of Term-Document Matrix Shown in Figure 2.9.

2.2.3.2 Reducing LSI Sub-Spaces

In this step, the U, S and V matrices are reduced in order to hold only the most significant relations
between terms and documents, and at the same time removes the noise in words usage (e.g., stop
words) that plagues LSI [Lucia et al., 2007]. This reduction is performed by keeping only the first k
columns of U and V, and the first k columns and rows of S where (k<r). The value of k is called the
number of term-topics. A term-topic is a collection of terms that co-occur frequently in the docu-
ments of the corpus. The appropriate selection of k is critical. In fact, if the value of k is too much,
this may lead to hold irrelevant relations. Also, if the value of k is too little, this may lead to loose
relevant relations. The proper way to make such a choice is an open issue in the literature [Susan et
al., 1990][Dumais, 1992]. Figure 2.11 shows U, S and V matrices after the reduction where k=2.

Uk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.420 −0.075
0.299 0.200
0.121 −0.275
0.158 0.305
0.121 −0.275
0.263 −0.379
0.420 −0.075
0.420 −0.075
0.263 −0.379
0.315 0.609
0.299 0.200

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Sk =
∣∣∣∣4.099 0.000
0.000 2.362

∣∣∣∣Vk =
∣∣∣∣∣∣
0.494 −0.649
0.646 0.719
0.582 −0.247

∣∣∣∣∣∣

V T
k =

∣∣∣∣ 0.494 0.646 0.582
−0.649 0.719 −0.247

∣∣∣∣
Figure 2.11 : The Uk , Sk , V T

k Matrices.
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2.2.3.3 Computing Lexical Similarity

In LSI sub-spaces, new document and query vectors are created. For document vectors, each row in
Vk matrix represents a document vector. By referring to Vk shown in Figure 2.11 D1, D2 and D3 have
respectively the new following vectors: (0.494, -0.649), (0.646, 0.719), (0.582, -0.247).
For query vector, LSI uses the equation 2.3 to compute a new query vector. Based on this equation,
the query (Q) shown in Figure 2.9 has the following new vector (0.21, 0.18).

Q =QT UK S−1
K (2.3)

LSI computes lexical similarity between query vector and each document vector using cosine
similarity like VSM (refers to equation 2.1). By using LSI, the similarity between the query (Q) and
Documents D1, D2 and D3 respectively as follows: (-0.054, 0.991, 0.448). Based on this result,
D2 is the closest to Q, then D3 and then D1.

2.2.4 Information Retrieval Performance Measures

As mentioned earlier, IR techniques return a ranked list of corpus documents which are similar to a
given query in descending order. However, this list can include irrelevant documents (false-positive
documents). Therefore, IR techniques provide two strategies to cut (i.e., to select documents) the
ranked list in order to remove irrelevant documents as much as possible: (i) cutting the ranked list
regardless of the similarity value [Lucia et al., 2007]; (ii) cutting the ranked list using threshold on a
similarity value. In the first strategy, there are two options as follows:

• Constant cut point: this option imposes a threshold on the number of documents that should
be selected [Antoniol et al., 2002], i.e., the top n documents of the ranked list are selected.

• Variable cut point: this option specifies a percentage of documents of the ranked list that
should be selected.

In the second strategy, only the documents of ranked list having a similarity value greater than
or equal to the specified threshold will be selected [Lucia et al., 2007]. In this strategy there are three
options as follows:

• Constant threshold: this option imposes a constant threshold regardless of the maximum sim-
ilarity between documents and a given query. This is the most widely used in the literature [Lu-
cia et al., 2007]. The most commonly used threshold for cosine similarity is 0.70 [Marcus et
Maletic, 2003a].

• Variable threshold: this option imposes a constant threshold in the interval [min similarity,
max similarity] where min and max are the minimum and maximum similarity values in the
ranked list [Lucia et al., 2004].

• Scale threshold: in this option, the similarity threshold (Θ) should be computed as the percent-
age of the maximum similarity value that is obtained between documents and a given query,
i.e.,Θ = C·MaxSimilarity, where 0 ≤C ≤ 1 [Antoniol et al., 2002].
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The selected documents from the ranked list should be evaluated to measure the effectiveness
of an IR technique. In the following subsections, we explain well-known IR metrics to evaluate the
selected documents.

2.2.4.1 Precision and Recall

Precision and recall are well-known IR metrics to evaluate results obtained by IR techniques [Salton
et McGill, 1986][Baeza-Yates et Ribeiro-Neto, 1999]. Both measures have values in the interval [0, 1].
Higher recall and precision values mean better results for the technique used. They are calculated for
all documents retrieved above a threshold.

For a given query, precision is the percentage of relevant documents retrieved to the total number
of retrieved documents. If the precision value is 1, this means that all the retrieved documents are
relevant but also this does not mean that all relevant documents are retrieved (false negative docu-
ments). Equation 2.4 represents the precision metric equation.

Pr eci si on = |{Relevant Document s}
⋂

{Retr i eved Document s}|
|{Retr i eved Document s}| ×100% (2.4)

For a given query, recall is the percentage of relevant documents retrieved to the total number
of relevant documents. If the recall value is 1, this means that all relevant documents are retrieved.
However, this does not mean that all retrieved documents are relevant (false positive documents).
Equation 2.5 represents the recall metric equation.

Recal l = |{Relevant Document s}
⋂

{Retr i eved Document s}|
|{Relevant Document s}| ×100% (2.5)

2.2.4.2 F-measure

F-measure is the harmonic mean of precision and recall that is computed as:

F _measur e = 2
1

Reacl l + 1
Pr eci si on

×100% (2.6)

The F-measure values take a range in [0, 1]. If F-measure value is 0, it means that no relevant
documents have been retrieved. If F-measure value is 1, it means that all retrieved documents are
relevant. Moreover, the harmonic mean (F-measure) gives a high value only when both recall and
precision are high, too. Therefore, a high value of F-measure can be interpreted as an attempt to find
the best possible compromise between recall and precision [Baeza-Yates et Ribeiro-Neto, 1999].
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2.3 Formal Concept Analysis (FCA)

Formal Concept Analysis (FCA) is a technique for data analysis and knowledge representation based
on lattice theory [Ganter et Wille, 1999]. It identifies meaningful groups of objects sharing common
attributes and provides a theoretical model to analyze hierarchies of these groups. This technique is
currently applied to support various tasks, including locating feature implementations [Poshyvanyk
et Marcus, 2007], data mining [Valtchev et al., 2004], building or maintaining class hierarchies in
object-oriented software [Godin et Mili, 1998], software understanding [Bhatti et al., 2012]. In this
section, we present the definitions of FCA.

2.3.1 An Illustrative Example

We explain definitions of the FCA technique along with an illustrative example. Suppose we have a
list of Mexican dishes and a list of ingredients for each dish. We assume the data set in Table 2.1 for
these Mexican dishes. Rows represents dishes while the column represents the list of ingredients of
each dish.

Table 2.1 : Mexican dishes and their ingredients.

Mexican dish Ingredients
Burritos chicken, beef, pork, vegetables, beans, rice, cheese, guacamole, sour-cream, lettuce and flour-tortilla
Enchiladas chicken, cheese, sour-cream and corn-tortilla
Fajitas chicken, beef, vegetables, cheese, guacamole, sour-cream, lettuce and flour-tortilla
Nachos vegetables, beans, cheese and guacamole
Quesadillas chicken, beef, cheese, corn-tortilla and flour-tortilla
Tacos chicken, beef, beans, cheese, lettuce, corn-tortilla and flour-tortilla

2.3.2 Definitions

Definition 1 (Formal Context) A formal context is defined as a triple K = (O, A,R) where O is a set
of objects, A is a set of attributes and R is a binary relation between objects and attributes indicating
which attributes are possessed by each object, i.e., R ⊆O × A.

A formal context is represented as a cross table in which row labels display objects and column
labels display attributes. Table 2.2 shows a formal context for Mexican dishes and their ingredients. A
cross in the cell (o, a) of this table refers to the object o that possesses the attribute a. The key mod-
eling issue that strongly impacts on the analysis performed by FCA is the right choosing of objects,
attributes and relations. From our illustrative example, we can create a formal context of Mexican
dishes O={Burritos, Enchiladas, Fajitas, Nachos, Quesadillas, Tacos} and their ingredients A={chicken,
beef, pork, vegetables, beans, rice, cheese, guacamole, sour-cream, lettuce, corn-tortilla, flour-tortilla}.

For a set of objects M ⊆ O, then M ′ = {a ∈ A|∀o ∈ M : (o, a) ∈ R} is the set of common attributes.
Also, for a set of attributes B ⊆ A, then B ′ = {o ∈ O|∀a ∈ B : (o, a) ∈ R} is the set of common objects.
For example, if we take the set M = {Enchiladas, Quesadillas, Tacos} from Table 2.2, the set of com-
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Table 2.2 : A formal context for Mexican dishes.
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Burritos X X X X X X X X X X X

Enchiladas X X X X

Fajitas X X X X X X X X

Nachos X X X X

Quesadillas X X X X X

Tacos X X X X X X X

mon attributes is M ′ ={chicken, cheese, corn tortilla}. In the same way, if B = {pork, rice} then, B ′ =
{Burritos}.

Definition 2 (Formal Concept) For a given formal context K = (O, A,R), a formal concept is a pair
(E , I ) composed of an object set E ⊆ O and an attribute set I ⊆ A. E = {o ∈ O|∀a ∈ I , (o, a) ∈ R} is the
extent of the concept (i.e., the objects covered by the concept). I = {a ∈ A|∀o ∈ E , (o, a) ∈ R} is the intent
of the concept (i.e., the attributes shared by the objects covered by the concept).

For example, ({Enchiladas, Quesadillas, Tacos}, {chicken, cheese, corn-tortilla}) is a concept, while
({ Nachos } , {vegetables, beans, cheese, guacamole}) is not, because ({ Nachos})’ = {vegetables, beans,
cheese, guacamole} while ( {vegetables, beans, cheese, guacamole})’ = {Burritos, Nachos}.

Definition 3 (Concept Specialization Order) Given a formal context K = (O, A,R), and two formal
concepts C1 = (E1, I1) and C2 = (E2, I2) of K , the concept specialization order (≤s) is defined by C1 =
(E1, I1) ≤s C2 = (E2, I2) if and only if E1 ⊆ E2 (and equivalently I2 ⊆ I1). C1 is called a sub-concept of C2.
C2 is called a super-concept of C1.

For example, ({Burritos}, {chicken, beef, pork, vegetables, beans, rice, cheese, guacamole, sour-
cream, lettuce, flour-tortilla}) is a sub-concept of ({Burritos, Nachos}, {vegetables, beans, cheese,
guacamole}). Due to this specialization order definition, an evident property is that a sub-concept
owns (inherits in top-down manner) the attributes of its super-concepts, while a super-concept owns
(inherits in bottom-up manner) the objects of its sub-concepts.

Definition 4 (Concept Lattice) Let CK be the set of all concepts of a formal context K . This set of con-
cepts provided with the specialization order (CK , ≤s) has a lattice structure, and is called the concept
lattice associated with K .

Figure 2.12 shows a part of lattice concept associated with the formal context of Table 2.2. This
sub-order of the lattice is known the Galois Sub-Hierarchy (GSH, also called AOC-Poset) [Berry et al.,
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Figure 2.12 : GSH for the Context in Table 2.2.

2014]. In this GSH we can discover many facts as well as the relationships between the presented
Mexican dishes, for example:

• All the Mexican dishes contain cheese because it appears as the intent of the top concept (Con-
cept_10) that has all the dishes in its extent.

• When a concept has only Mexican dishes in its extent, this means that these dishes don’t have
specific ingredients and they share ingredients with other dishes belonging to different con-
cepts, for example: in Concept_3, Nachos inherits vegetables, guacamole, beans and cheese.

• When a concept has only ingredients in its intent, this means that these ingredients are not
specific for a certain Mexican dish but they are shared among different dishes which belong
to multiple concepts, for example: in Concept_9, beans is shared between Nachos, Tacos and
Burritos dishes.

Galois lattices (or concept lattices) are a powerful tool for knowledge representation. Most of the
algorithms for building concept lattices are cited and compared in [Kuznetsov et Obiedkov, 2002].
The main drawback of this structure is that it may have an exponential size in the number of objects
or attributes [Berry et al., 2014]. In this thesis, we rely on GSH as the best running time of one of
algorithms proposed to build GSH is O(min{nm, n2.376 } where n is the number of objects or attributes
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while m is the size of the relation [Berry et al., 2014]. This major difference in terms of running time
between concept lattice and GSH due to the fact that GSH has non empty concepts (empty extent
and intent). This leads to a drastic difference of complexity between the two structures, because the
concept lattice may have 2mi n(|O|,|A|) concepts, while the number of concepts in the GSH is bounded
by |O| + |A| [Berry et al., 2014].

2.4 Case Studies

We use through this thesis three case studies: ArgoUML-SPL2, a large-scale system, BerekelyDB-SPL3,
a medium-scale system, and MobileMedia4, a small-scale system.

Figure 2.13 : FM of ArgoUML-SPL.

2.4.1 ArgoUML-SPL

ArgoUML-SPL is well-known case study in our context [Xue et al., 2012][Ziadi et al., 2012][Couto et
al., 2011]. It is a JAVA open-source which supports all standard UML diagrams. Figure 2.13 shows
the FM of ArgoUML-SPL. This FM shows that Class Diagram is mandatory feature. It also shows that
most of the features are organized as a single OR-Group (Class, State, Activity, UseCase, Collabora-
tion, Deployment and Sequence diagrams ) while others represent members of an OP-Group (Cogni-
tive Support and Logging). The implementation of Cognitive Support and Logging have crosscutting
behavior through all other feature implementations [Couto et al., 2011]. Cognitive Support feature
detects design errors made by end users while logging supports debug logging and tracing messages
raised by UML diagrams.

We have used seven products of ArgoUML-SPL. These products cover all features shown in Fig-
ure 2.13 and are generated from the same codebase so that products that share some features also
share the same code. These products also have two common features (Class Diagram and Cognitive
Support) and differ in other features. Table 2.3 shows configurations of ArgoUML-SPL products. Ta-
ble 2.4 shows statistical information of source code of ArgoUML-SPL’s products in terms of number

2http://argouml-spl.tigris.org/
3http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/
4http://www.ic.unicamp.br/ tizzei/MobileMedia/
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Table 2.3 : Product configuration of ArgoUML-SPL’s products.

Products Configuration
Product1 Class, Cognitive, Sequence, Collaboration, Deployment, Usecase, Activity, State.
Product2 Class, Cognitive, Sequence, Collaboration, Deployment, Usecase.
Product3 Class, Cognitive, Sequence, Activity, State, Usecase.
Product4 Class, Cognitive, Activity, Collaboration, Deployment, State.
Product5 Class, Cognitive.
Product6 Class, Cognitive, Sequence, Usecase.
Product7 Class, Cognitive, Collaboration, Deployment.

Table 2.4 : Statical information of source code of ArgoUML-SPL’s products.

Products NOP NOC LOC
Product1 81 1666 118189
Product2 74 1587 112060
Product3 72 1607 113533
Product4 69 1541 110168
Product5 63 1455 99243
Product6 70 1554 107334
Product7 67 1488 103969

of packages (NOP), number of classes (NOC) and number of lines of code (LOC). The logging fea-
ture is excluded from this table because it is implemented by an external library called Log4J [Couto
et al., 2011]. ArgoUML-SPL’s features are mainly implemented by source code classes. To establish
ground truth links between features and their source code classes, we perform the following process.
Considering a given feature (F), we generate two products of ArgoUML-SPL such that one of them
(P1) provides all features and other (P2) provides all features except the focused one (F). Then, we
compare code classes of two generated products. The classes that are present in P1 and absent in P2
represent the real implementation of F. We repeat this process to obtain real implementation for all
ArgoUML-SPL’s features. For feature descriptions, we obtain them based on ArgoUML-SPL official
website and manual instructions.

2.4.2 MobileMedia

The MobileMedia is a JAVA open source software which manipulates multimedia on mobile devices.
It was implemented in 8 subsequent releases, each incorporates new mandatory, optional or alter-
native features. Each release represents a variant corresponds to an evolutionary step of the system
development. Table 2.5 summaries changes made to each release. We only consider releases (1-3
and 5-6) and exclude (R4, R7, R8) due to the nature of the evolution. R4 is produced by evolving the
R3 through adding Set Favorite, View Favorite and Sorting to R3. These features are implemented
by modifying already existing source code classes, which means they are implemented using lower
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Table 2.5 : Summary of evolution in MobileMedia.

Release Description Type of Change

R1 MobilePhoto core (album and photo management)

R2 Exception handling included Inclusion of non-functional con-
cern.

R3 New feature added to count the number of times a photo has been viewed
and sorting photos by highest viewing frequency. New feature added to edit
the photo’s label.

Inclusion of optional and manda-
tory features.

R4 New feature added to allow users to specify and view their favorite photos. Inclusion of optional feature.

R5 New feature added to allow users to keep multiple copies of photos. Inclusion of optional feature.

R6 New feature added to send photo to other users by SMS. Inclusion of optional feature.

R7 New feature added to store, play, and organize music. The management of
photo (e.g. create, delete and label) was turned into an alternative feature. All
extended functionalities (e.g. sorting, favourites and SMS transfer) were also
provided

Changing of one mandatory fea-
ture into two alternatives.

R8 New feature added to manage videos Inclusion of alternative feature

source code granularity (such as methods) but not classes. We ignore the R4 because we assume that
in this thesis a feature is implemented by a set of classes. The evolution in R7 and R8 involve merging
two or more features (resp. their implementations) together. This means that the same feature does
not has the same implementation in R7 and R8, and hence violate our assumption about the feature
implementations (see section 5.2). Figure 2.14 shows FM of the releases considered.

Table 2.6 shows variant configurations of the MobileMedia. In these variants, there are group of
features that are implemented by the same set of classes with differences in method bodies. These
groups are: (Create Album and Delete Album), (Create Photo, Delete Photo, View Photo) and (Send
Photo and Receive Photo). We consider the parent of these group as representative of these features.
For example as shown in MobileMedia’s FM, AlbumManagment is a representative of (Create Album
and Delete Album). This means that we locate the implementation of the representative features. To
establish ground truth links between features and their source code classes, we analyze manually the
source code. The description of MobileMedia5 features are obtained by official website of Mobile-
Media, descriptions of its use cases and analyzing source code comments. Table 2.7 shows statistical
information for MobileMedia source code in terms of number of packages (NOP), number of classes
(NOC) and number of line of code (LOC).

2.4.3 BerkeleyDB-SPL

BerkeleyDB-SPL is an open source database engine, entirely implemented in JAVA. It can work as a
standalone database (run as .jar file), or be embedded as a third party library in the JAVA applica-
tion. It provides the embedded storage, with open interfaces designed for programmers. Originally,
BerkeleyDB was a single application, but Kästner and others have re-engineered it as a SPL [Chris-
tian, 2007]. Core assets of BerkeleyDB-SPL implement (42) features. Most of these features are im-
plemented by low source code granularity (such as methods) [Christian, 2007]. There are only (25)

5http://www.ic.unicamp.br/ tizzei/mobilemedia/
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Figure 2.14 : FM of Considered MobileMedia Releases.

Table 2.6 : Product configuration for MobileMedi’s releases.

Release Configuration
R1 Album Management (Create Album, Delete Album), Basic Photo Operations (Create Photo, Delete Photo, View

Photo).
R2 Exception Handling, Album Management, Basic Photo Operations.
R3 Exception Handling, Edit Photo Label, Album Management , Basic Photo Operations.
R5 Exception Handling, Copy Photo, Edit Photo Label, Album Management, Basic Photo Operations.
R6 Exception Handling, SMS Transfer (Send Photo, Receive Photo), Copy Photo, Edit Photo Label, Album Management,

Photo Management.

Table 2.7 : Statical information of source code of MobileMedia’s releases.

Products NOP NOC LOC
Release1 6 15 1,758
Release2 7 24 2,182
Release3 7 25 2,481
Release5 7 31 2,969
Release6 9 38 3,889

features that their associated classes are known and available6. Therefore, we create core assets
only containing these features. Table 2.8 presents the features considered. Figure 2.15 shows FM
of BerkeleyDB-SPL.

6http://www.fosd.de/FeatureVisu/
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Table 2.8 : Features of BerkeleyDB-SPL

Features

CheckLeaks EnvironmentLocking NIO
CheckpointerDaemon Evictor RenameOp
Checksum FileHandleCache Statistics
ChunkedNIO FSync TruncateOp
CleanerDaemon INCompressor Verifier
CPBytes IO
CPTime Latches
CriticalEviction Logging
DeleteOp LookAHEADCache
DiskFullErro MemoryBudget

Figure 2.15 : FM of BerkeleyDB-SPL.

2.5 Summary

In this chapter, we presented fundamental concepts in software product line engineering, techniques
on which our work is built on and case studies used in the evaluation. We first described the software
product line engineering framework and detailed main processes in this framework: domain and
application engineering processes. We explained the notion of variability and its importance in SPLE.
Next, we presented necessary background about IR techniques, namely LSI and VSM. We described
the steps of these techniques and their evaluation metrics. Then, we explained the basic definitions
in FCA along with an illustrative example. Finally, we described case studies used in the experimental
evaluation during the thesis.
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IR-Based Feature Location

Preamble

In this chapter, we present a state-of-the-art IR-based feature location. In section 3.1, we present types
of software traceability links to understand the type of links identified by our approach. In section 3.2,
we give a general classification of feature location approaches. Section 3.3 focuses on IR-based feature
location, as our approach relies on IR to locate feature implementations in a collection of product vari-
ants. In section 3.4, we present a comparison of IR-based feature location approaches, following a set
of criteria that are relevant to our contribution. Section 3.5 concludes this chapter by showing the need
to propose a new IR-based feature location in a collection of product variants.
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3.1 Traceability Links Types

Software traceability “is the ability to relate artifacts created during the development of a software
system to describe the system from different perspectives and levels of abstraction with each

other, the stakeholders that have contributed to the creation of the artifacts, and the rationale that
explains the form of the artifacts” [George et Andrea, 2004]. Software traceability refers to different
types of traceability links. These different types have been classified based on two criteria [Robert et
Matthias, 2008][George et Andrea, 2004]: (i) the semantics associated with each type of link, and (ii)
the abstraction level of the linked software artifacts.

3.1.1 The Semantics Associated with each Type of Link

Based on this criterion, there are nine types of traceability links: dependency, generalization/refine-
ment, evolution, satisfaction, overlapping, conflicting, rationalization, contribution and realization
(implementation) [Robert et Matthias, 2008] [George et Andrea, 2004].

• Dependency link: In this type, a software artifact (a1) depends on another software artifact
(a2), if the existence of a1 relies on the existence of a2 or if changes made to a2 have to be
propagated to a1. Dependencies between use cases in UseCase diagrams is an example of this
type.

• Generalization/refinement link: It refers to how a compound software artifact of a system
can be split into sub-artifacts, how sub-artifacts of a system can be combined to form a com-
pound artifact and how an artifact can refine another one. Dividing a requirement into sub-
requirements is an example of such a type.

• Evolution link: It refers to the evolution of software artifacts. In this type, a software artifact (a1)
evolves into a software artifact (a2), if a1 is replaced by a2 during the maintenance or evolution
of the system. Replacing a source code class with another class during the maintenance is an
example of this type.

• Satisfaction link: In this type, a software artifact (a1) satisfies a software artifact (a2), if a1 meets
the expectation, needs and desires of a2; or if a1 complies with a condition represented by a2.
Linking requirements to the system components (e.g. architectural components) that satisfy
these requirements is an example of this type.

• Overlap link: In this type, a software artifact (a1) overlaps with another software artifact (a2), if
a1 and a2 have common parts or characteristics. Textual matching between code information
(comments and identifiers) and textual description of requirement is an example of this type.

• Conflict link: It refers to conflicts between two software artifacts. For example, when two re-
quirements (functionalities) conflict with each other.

• Rationalization link: It refers to the rationale behind the creation and evolution of software
artifacts through different levels of abstraction. For example, adding a new requirement to the
existing requirements involves changing the implementation of other requirements.
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• Contribution link: It refers to the associations between requirements and stakeholders who
have contributed to generate the requirements. The relation between customers’ wishes and
system requirements is an example of this type because customers’ wishes represent a trigger
for the creation of system requirements.

• Realization or implementation link: It refers to implementation link between software arti-
facts across different levels of abstraction. Linking a system requirement (r1) to a portion of
source code that implement (r1) is an example of this type.

In this classification, it is possible that the same link has more than one meaning (semantic). For
example, the textual matching between source code information and textual information of require-
ments refers to overlap and implementation links.

3.1.2 The Level of Abstraction of the Linked Software Artifacts

Depending on whether traceability links relate software artifacts of the same level of abstraction or
different levels, traceability links can be classified into horizontal or vertical links [Lindvall et San-
dahl, 1996][Boldyreff et al., 1996]. The former refers to links among software artifacts belonging to
the same level of abstraction (e.g., among related requirements). The later refers to links between
software artifacts belonging to different levels of abstractions (e.g., between requirements and source
code elements). Sometimes, the authors swap the definition of horizontal and vertical ([Lindvall et
Sandahl, 1996], e.g. compare [Boldyreff et al., 1996]). Figure 3.1 shows an example of horizontal and
vertical traceability links.

Figure 3.1 : An Example of Vertical and Horizontal Traceability Links.

3.1.3 Variability Traceability in SPLE

In addition to horizontal and vertical traceability links, variability in SPLE adds a third dimension to
these links by linking elements (features) of FM as representative of the variability in SPLE to elements
of other models at different levels of abstraction [Anquetil et al., 2010][Pohl et al., 2010]. This dimen-
sion is called variability traceability [Pohl et al., 2010]. There are two types of variability traceability:
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(i) variability traceability among only the domain engineering artifacts, (ii) variability traceability be-
tween domain engineering and application engineering artifacts. The former is used “to relate the
variability defined in the variability model (FM) to software artifacts specified in other models, tex-
tual documents, and code” [Pohl et al., 2010]. Such traceability links are restricted to SPL core asset
artifacts (domain engineering) where variability is defined. Solid circles in Figure 3.2 refer to this type.
The later is used “to link application artifacts to the underlying domain artifact” [Pohl et al., 2010].
Such type of variability traceability is used to relate application engineering artifacts (artifacts for a
specific product, application, in a SPL) to domain engineering artifacts. Dashed circles in Figure 3.2
refer to the second type of variability traceability.

Figure 3.2 : Software Product Line Framework [Pohl et al., 2010].

3.2 Classification of Feature Location Approaches

As mentioned earlier, the well-known term of the process of finding traceability links between fea-
tures and source code elements that implement those features is feature location. Feature location is
one of the most important and common activities performed by programmers during software main-
tenance and evolution, as any maintenance activity can not be performed with first understanding
and locating the code relevant to the task at hand [Bogdan et al., 2013]. There is a large body of
research on feature location approaches [Bogdan et al., 2013][Cornelissen et al., 2009]. The distin-
guishing factor between these approaches is the type of analysis that they use. The various types of
analysis refer to dynamic, static and textual.

3.2.1 Dynamic-Based Feature Location Approaches

Dynamic analysis refers to collecting information from a system during runtime. For the purpose of
feature location, it is used to locate feature implementations that can be called during runtime by
test scenarios [Koschke et Quante, 2005][Asadi et al., 2010]. Feature location using dynamic analysis
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depends on the analysis of execution traces. An execution trace is a sequence of source code entities
(classes, methods, etc.). Usually, one or more feature-specific scenarios are developed that invoke
only the implementation of feature of interest. Then, the scenarios are run and execution traces are
collected, recording information about the code that was invoked. These traces are obtained by in-
strumenting the system code. Using dynamic analysis, the source code elements pertaining to a fea-
ture can be determined in several ways. Comparing the traces of the feature of interest to other feature
traces in order to find source code elements that only is invoked in the feature-specific traces [Eisen-
barth et al., 2003][Wilde et Scully, 1995]. Alternatively, the frequency of execution parts of source code
can be analyzed to determine the implementation of a feature [Eisenberg et De Volder, 2005][Safyal-
lah et Sartipi, 2006]. For example, a method exercised multiple times and in different situations by
test scenarios relevant to a feature is more likely to be relevant to the feature being located than a
method used less often.

Feature location by using dynamic analysis has some limitations. The test scenarios used to col-
lect traces may invoke some but not all the code portions that are relevant to a given feature; this
means that some of the implementation of that feature may not be located. Moreover, it may be dif-
ficult to formulate a scenario that invokes only the required feature, which leads to obtain irrelevant
source code elements. Additionally, developing test scenarios involves well-documented systems to
understand the system functionalities [Bogdan et al., 2013]. Such maintainers may be not always
available, especially in legacy product variants.

3.2.2 Static-Based Feature Location Approaches

Feature location using static analysis refers to the analysis of the source code to explore structural
information such as control or data flow dependencies. Static feature location approaches require
not only dependence graphs, but also a set of source code elements which serve as a starting point
for the analysis. This initial set is relevant to features of interest and usually specified by maintainers.
The role of static analysis is to determine other source code elements relevant to the initial set using
dependency graphs [Kunrong et Václav, 2000].

Static approaches allow maintainers to be very close to what they are searching for in the source
code, as they start from source code elements (initial set) specific to a feature of interest. However,
these approaches often exceed what is pertinent to a feature and are prone to returning irrelevant
code [Bogdan et al., 2013]. This is because following all dependencies of a section of code that is rel-
evant to a feature may catch source code elements that are irrelevant. In addition, static approaches
need maintainers who are familiar with the code in order to determine the initial set.

3.2.3 Textual-Based Feature Location Approaches

Textual information embedded in source code comments and identifiers provides important guid-
ance about where features are implemented. Feature location using textual analysis aims to analyze
this information to locate a feature’s implementation [Savage et al., 2010]. This analysis is performed
by three different ways: pattern matching, Natural Language Processing (NLP) and Information Re-
trieval (IR).
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3.2.3.1 Pattern Matching

Pattern matching usually needs a textual search inside a given source code using a utility tool, such as
grep [Petrenko et al., 2008]. Maintainers formulate a query that describes a feature to be located then
they use a pattern matching tool to investigate lines of code that match the query. Pattern matching
is not very precise due to the vocabulary problem; the probability of choosing a query’s terms, using
unfamiliar source code maintainers, that match the source code vocabulary is relatively low [Furnas
et al., 1987].

3.2.3.2 Natural Language Processing

NLP-based feature location approaches analyze the parts of the words (such as noun phrases, verb
phrases and prepositional phrases) used in the source code [Shepherd et al., 2006]. They rely on
the assumption that verbs in object-oriented programs correspond to methods, whereas nouns cor-
respond to objects. As an input for these approaches, the user formulates a query describing the
feature of interest and then the content of the query is decomposed into a set of pairs (verb, object).
These approaches work by finding methods and objects inside the source code, which are similar to
the input verbs and objects, respectively. NLP is more precise than pattern matching but relatively
expensive [Bogdan et al., 2013].

3.2.3.3 Information Retrieval

As mentioned in preliminaries chapter, IR-based techniques, such as LSI and VSM, are textual match-
ing techniques to find textual similarity between a query and given corpus of textual documents. For
the purpose of locating a feature’s implementation, a feature’s description represents the subject of
a query while source code documents represent corpus documents. A feature description is a natu-
ral language description consisting of short paragraph(s). A source code document contains textual
information of certain granularity of source code, such as a method, a class or a package. IR-based
feature location approaches find a code portion that is relevant to the feature of interest by conduct-
ing a textual matching between identifiers and comments of a given source code portion and the
description of the feature to be located [Lucia et al., 2007]. IR lies between NLP and pattern matching
in terms of accuracy and complexity [Bogdan et al., 2013].

Regardless of the type of textual analysis used (pattern matching, NLP and IR), generally the qual-
ity of these approaches mainly depends on the quality of the source code naming conventions and
the query. In the remainder of this chapter, we focus only on IR-based feature location approaches
because our feature location approach aims at improving the performance of IR for locating feature
implementations in a collection of product variants.

3.3 IR-based Feature Location Approaches

The application of IR techniques in software engineering has been considered by several re-
searchers [Poshyvanyk et al., 2007][Xue et al., 2012][Poshyvanyk et Marcus, 2007][Marcus et al., 2004].
One of the most important applications of IR in software engineering is the feature location [Lucia et
al., 2007]. We classify the IR-based feature location approaches into two categories based on how they
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deal with product variants. The first category includes all approaches that consider product variants
as singular independent products. We call this group feature location in single software product. The
second category includes all approaches considering product variants as a collection of similar and
related products. We call this group feature location in a collection of product variants.

3.3.1 Feature Location in Single Software Product with IR

All approaches that belong to this category represent the conventional application of IR for the pur-
pose of locating feature implementations. Figure 3.3 shows an example of the conventional applica-
tion of IR in a collection of three product variants. We notice that this application involves conducting
a textual matching between all features (i.e., their descriptions) and entire source code of each prod-
uct in product variants independently. These features and the source code represent the IR search
spaces. In case of having a large-scale system, such an application of IR may lead to retrieve irrelevant
source code elements for features, especially in case of having similar features and trivial descrip-
tions. In the literature, different strategies have been proposed to improve the performance of this
conventional application of IR concerned with locating feature implementations. In the beginning,
VSM was used for this purpose. Then, LSI was proposed to overcome polysemy and synonymy prob-
lems that occur in VSM. Then, the performance of both LSI and VSM is improved using other source
code information such as static information, dynamic information or their combinations. Below, we
list the approaches of this category based on the strategy used in chronological order.

Figure 3.3 : An Example of the Conventional Application of IR for Locating Feature Implementations
in a Collection of Three Product Variants.
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3.3.1.1 VSM-based Feature Location

In [Antoniol et al., 2002], Antoniol et al. who first used VSM to recover traceability links between
source code and free text documentation (e.g., requirement specifications, design documents, error
logs, etc.). In their approach, VSM is applied to trace C++ and Java source classes to manual pages and
functional requirements, respectively. In their approach, documentation pages were used to create
IR’s corpus documents while source code files are used as queries. They compare the identifiers in
source code and the words in corpus documents to recover traceability links.

In [Gay et al., 2009], Gay et al. introduce the notion of relevance feedback from maintainers into
feature location process to improve VSM results. Relevance feedback represent a maintainer feedback
about the list of source code elements retrieved by VSM. After VSM returns a ranked list of source code
elements relevant to a query (e.g., feature description), the maintainer ranks the top n source code
elements as relevant or irrelevant. Then, a new query is automatically formulated by modifying the
previous one and new ranked list is returned, and the process repeats until achieving satisfactory
results.

In [Ali et al., 2011], Ali et al. propose an approach, called COPARVO, to improve the performance
of VSM for recovering traceability links between source code and requirements by partitioning the
source code into different sources of information (class names, comments, methods names and class
variables). Each information source acts as an expert recommending traceability links established
between requirements and code classes using VSM. The top rated experts score each existing link
and decide via majority voting if the link is still valid or should be rejected due to evolution in source
code, requirements or both.

3.3.1.2 LSI-based Feature Location

In [Marcus et Maletic, 2003a], Marcus and Maletic use for the first time LSI for recovering traceabil-
ity links between documentation and source code. In their approach, source code files without any
parsing are used to create LSI’s corpus while sections of documentation pages are used as queries.
These sections may describe functional requirements, error logs, etc. The experiments prove that the
performance of LSI is at least as well as VSM in spite of LSI do not use source code comments. In
addition, it requires less preprocessing of the source code and documentation.

In [Marcus et al., 2004], Marcus et al. use LSI to link features with their respective source code
functions. Maintainers formulate a query describing a feature. Then, LSI is applied to return a list of
functions ranked by the relevance to the query. Maintainers inspect this list to decide which ones are
actually parts of the feature implementation.

In [Poshyvanyk et Marcus, 2007], Poshyvanyk and Marcus propose combining LSI and FCA to link
features of a given system to their respective source code methods. LSI is used to return a ranked list
of source code methods against each feature. This list may contain a set of irrelevant methods to the
feature being located. Therefore, FCA is employed to reduce this list by analyzing the relation between
methods and terms that appear in these methods. The top k terms of the first n methods ranked by
LSI are used to construct FCA’s formal context and create a lattice. The objects of the formal context
are methods while the attributes are terms. Concepts in the generated lattice associate terms and
methods. Therefore, programmers can focus on the nodes with terms similar to their queries (feature
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descriptions) to find feature-relevant methods.

In [Kuhn et al., 2007], Kuhn et al. propose an approach to identify linguistic topics that reveal the
intention of the source code. A linguistic topic is a cluster of similar object-oriented source code ele-
ments that are grouped together based on their contents. These linguistic topics can be composed of
different source code granularity ( package, class and method). The authors interpret these linguistic
topics as features implemented by source code. They rely on LSI to compute similarity among a given
set of methods, classes or packages. Then, hierarchal clustering is used to cluster similar elements
together as linguistic topics.

In [Lucia et al., 2008a], De Lucia et al. present an incremental LSI-based approach to link re-
quirements with their respective source code classes. Requirements represent queries while class
documents represent LSI’s corpus. They use a threshold on the similarity value to cut the ranked list
of class documents returned by LSI against requirements. In their approach, the similarity thresh-
old value is incrementally decreased to give maintainers control of the number of validated correct
classes and the number of discarded false positives classes. This is why their approach is called incre-
mental LSI-based approach. Furthermore, they conduct a comparative study between one-shot and
incremental approaches. In one-shot approach, a full ranked list of classes that are textually similar
to a requirement is submitted to maintainers for checking. The results prove that the incremental
process reduces the effort required to complete a traceability recovery task compared with one-shot
approaches.

Lucia et al. [Lucia et al., 2008b] develop a tool called ADAMS Re-Trace to recover traceability links
between software artifacts of different levels of abstraction by using LSI. Based on this tool, traceabil-
ity links are recovered by following three steps. In the first step, the software engineer selects artifacts
that represent the source (e.g., requirements, sequence diagrams, test cases, code classes). In the sec-
ond step, he/she selects the artifacts that represent the target. Finally, the software engineer selects
the mechanism that is used to show the list of candidate links: threshold based or full ranked list. As
a final output, the tool links the source artifacts to their target artifacts.

3.3.1.3 Feature Location by Combining IR with Static Analysis

In [Zhao et al., 2006], Zhao et al. use VSM and static analysis to link each feature with their relevant
source code functions. Their proposal consists of a two-phase process. In the first phase, VSM is ap-
plied to return a ranked list of functions that are similar to a given feature. Then, this list is reduced
to a set of feature-specific functions using some algorithm. In the second phase, the authors use a
static representation of the source code called Branch-Reserving Call Graph (BRCG). This represen-
tation is explored using theses feature-specific functions to identify other relevant functions for these
feature-specific functions.

In [Shao et Smith, 2009], Shao and Smith combine LSI and static analysis for supporting feature
location. First, LSI is applied to rank all methods of a given software system against a given query
(feature description). Next, a call graph for each method in the ranked list is created. Next, a method’s
call graph is investigated to assign it a score. The score represents the number of a method’s direct
neighbors that are listed in LSI’s ranked list. Finally, the cosine similarity from LSI and the scores of
call graphs are combined using predefined transformation to produce a new ranked list.
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In [Peng et al., 2013], Peng et al. propose an iterative context-aware approach to link features with
their source code elements (classes and methods). Their approach employs an iterative process with
several rounds of feature-to-code mapping. The initial round is based on textual similarity only, and
in following rounds textual and structural similarities are combined. Textual similarity between fea-
ture descriptions and source code is computed using LSI. The structural similarity between a feature
(f) and a program element (P) was computed by evaluating how much of f’s neighboring features and
their relations can be mapped to P’s neighboring program elements and their relations according to
predefined mapping schema.

3.3.1.4 Feature Location by Combining IR with Dynamic Analysis

In [Poshyvanyk et al., 2007], Poshyvanyk et al. propose an approach to combine LSI and a dynamic
technique called scenario-based probabilistic ranking (SPR) to link features with their respective
source code methods. Both LSI and SPR return a ranked list of code methods relevant to a feature.
Each method in both lists takes a weight expressing the maintainer’s confidence about LSI and SPR.
Their approach combines both LSI and SPR results to overcome the uncertainty in decision mak-
ing of feature-to-method linking because methods that are classified as relevant by using LSI can be
irrelevant by using SPR.

In [Liu et al., 2007], Liu et al. propose a feature location approach called SITIR (SIngle Trace +
Information Retrieval). Their approach combines dynamic analysis (i.e., execution traces) and LSI so
that for each feature there is only a single execution trace. Then, LSI is used to rank only executed
methods in the obtained trace against a given feature instead of ranking all methods in the software
system.

In [Asadi et al., 2010], Asadi et al. propose to combine LSI, dynamic-analysis and a search-based
optimization technique (genetic algorithms) to locate cohesive portions of execution traces that cor-
respond to a feature. Their approach is based on the assumptions that methods implementing a
feature are likely to have shared terms and called close to each other in an execution trace. Their ap-
proach takes as input a set of scenarios (test cases) that exercise the features. The approach starts by
executing the system using these scenarios to collect execution traces so that each trace is a sequence
of methods and each feature has one execution trace. Finally, genetic algorithms (GAs) are used to
separate methods of an execution trace into segments in order to find the segment that maximizes
the cosine similarity between its methods. Similarity between methods is computed using LSI. This is
performed by creating a document for each method containing method information (identifiers and
comments). Method documents represent at the same time queries and corpus. The similarity be-
tween two method document vectors in LSI sub-space is quantified using the cosine similarity. The
methods of the obtained segment implement the feature of interest.

In [Eaddy et al., 2008], Eaddy et al. propose a feature location approach called Cerberus. Their ap-
proach uses three types of analysis: dynamic, static and textual. Their approach is the only approach
that leverages together all three types of analysis. The core of Cerberus is a technique called prune
dependency analysis (PDA). By using PDA, a relationship between a program element and a feature
exists if the program element should be removed or altered, when that feature is pruned (removed)
from the software system. They use the approach proposed by [Poshyvanyk et al., 2007] to combine
rankings of program elements from execution traces, with rankings from IR to produce seeds for PDA.
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Figure 3.4 : An Example of Feature and Implementation Partitions for IR according to [Xue et al.,
2012].

Then, PDA finds additional relevant elements by analyzing different kinds of relationships (such as a
method call, inheritance, composition dependency among classes, etc.).

3.3.2 Feature Location in a Collection of Product Variants with IR

Considering product variants together as a set of similar and related products allows the reduction
of IR search spaces. This reduction refers to the division of all features and source code elements
of given product variants into minimal portions so that this reduction allows to conduct a textual
matching between a few features and source code elements that only implement those features. This
helps to reduce the number of irrelevant source code elements (false-positive links) returned by IR-
based feature location approaches due to similar feature descriptions and implementations. Such a
reduction is performed by exploring commonality and variability across product variants at feature
and source code levels. Commonality refers to features (resp. their source code elements) that are
part of each product while variability refers to features (resp. their source code elements) that are
part of one or more (but not all) products.

In the literature, there are only two works that exploit commonality and variability across product
variants to support feature location [Xue et al., 2012][Rubin et Chechik, 2012]. One of them uses IR,
namely LSI while the other is applicable to any feature location approach.

In [Xue et al., 2012], Xue et al. use LSI to link features and their source code units (functions
and procedures) in a collection of product variants. They explore commonality and variability of
product variants using software differencing tools and FCA to improve the effectiveness of LSI. In
their approach, LSI spaces (i.e., feature and source code spaces) are reduced into minimal disjoint
partitions of feature and source code units. These partitions represent groups of features (resp. their
source code elements) that can not be divided further and also without shared members between
these groups. Figure 3.4 shows an example of feature and source code partitions of a collection of
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three product variants according to their approach. Each slot in this figure represents a minimal
disjoint partition of features and source code elements.

In [Rubin et Chechik, 2012], Rubin and Chechik suggest two heuristics to improve the accuracy
of feature location approaches when these approaches are used to locate implementations of dis-
tinguishing features –those that are present in one product variant while absent in another. Their
heuristics are based on identifying a code region that has a high potential to implement distinguish-
ing features. This region is called set diff and identified by comparing pair-wisely the code of a variant
that provides distinguishing features to one that does not. Figure 3.5 shows an example of all possible
partitions (set diffs) of features and source code elements obtained by pair-wise comparison of a col-
lection of three product variants according to their approach. In this figure, for example, (B-A) means
a set of features (resp. their source code elements) that are present in B and absent in A ({F3, F8, F6},
{I3, I8, I6}). Although their approach helps to reduce IR’s search spaces, the achieved reduction is not
minimal. For example, F7 (resp. its code elements) is grouped with other features (resp. their code
elements) while F7 (resp. its code elements) in Xue et al.’s work is grouped alone (see Figure 3.4).
Additionally, their work does not pay attention to how code portion that implements shared features
among all product variants can be obtained.

In the literature, there are two works [Ziadi et al., 2012][Al-Msie’Deen et al., 2013] similar to some
extent to approaches mentioned in this category, in spite of the fact that they do not use feature de-
scriptions and IR for determining feature implementations. We consider these works because they
exploit what product variants have in common at the source code level to identify feature implemen-
tations. These works are as follows:

In [Ziadi et al., 2012], Ziadi et al. propose an approach to identify portions of source code elements
that potentially may implement features in a collection of product variants. They exploit what prod-
uct variants have in common at the source code level by performing several rounds of intersections
among source code elements of product variants. In the first round, the source code elements shared
between all product variants are obtained. In the next rounds, source code elements shared among
some product variants are obtained. The result of each intersection may potentially represent fea-
ture implementation(s). According to their approach, they consider source code elements (packages,
classes, methods and attributes) that are shared between all product variants as implementation of
a single feature. However, this implementation may correspond to more than one feature when all
product variants share two features or more. Moreover, their approach does not distinguish the im-
plementation of features that always appear together, such as AND-Group of features.

In [Al-Msie’Deen et al., 2013], Al-Msie’Deen et al. propose an approach similar to Ziadi et al.’s
approach. Their approach exploits common source code elements across product variants to identify
segments of source code elements, which potentially may implement features. They rely on FCA for
conducting several intersections between source code elements of product variants to identify these
segments. The formal context is defined as follows: objects represent names of product variants,
attributes represent all unique source code elements of product variants and the relation between
objects and attributes refers to which products possess which source code elements. Based on their
approach, the intent of each concept in the generated lattice may correspond to the implementation
of one or more features. Therefore, they rely on LSI and again on FCA to divide intent of each concept
into sub-segments of textual similar source code elements. The idea behind this division is that code
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Figure 3.5 : An Example of Feature and Implementation Partitions for IR According to [Rubin et
Chechik, 2012].

elements that collaborate to implement a feature share similar terms, and hence they can be grouped
together as a feature implementation. However, it is not necessary that the intent of each concept
represent implementation of feature(s) because source code elements that are shared between two
or more features appear as a separated concept. This leads to identify features more than the features
actually provided by a given collection of product variants, and hence missing source code elements
that are relevant to features that actually are provided by this collection.

3.4 Evaluation of IR-based Feature Location Approaches

In this section, we present the evaluation criteria of IR-based feature location approaches. Also, we
compare surveyed approaches according to these criteria.

3.4.1 Evaluation Criteria

As we contribute to improve the IR-based feature location in a collection of product variants, we
propose a set of criteria related to this contribution. We mainly organized these criteria into two
categories: (i) criteria related to strategies used to reduce IR search spaces, and (ii) criteria related to
information used to improve IR-based feature location.

• Criteria related to strategies used to reduce IR search spaces. This category consists of two
criteria as follows:

1. Awareness of commonality and variability: whether the studied work consider common-
ality and variability across software product variants to reduce IR spaces. As mentioned
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earlier, this reduction improves the performance of IR for locating feature implementa-
tions.

2. Awareness of abstraction gap between feature and source code levels: whether the stud-
ied work considers the big abstraction gap between feature and source levels, as they be-
long to different levels of abstraction. The basic idea behind this criterion is as a follows.
Terms of feature descriptions may be scattered over a large number of source code ele-
ments (e.g., classes, methods), which may hinder finding textual matching between fea-
tures and their implementing source code elements. This scattering is due to the fact that
a feature’s implementation spans multiple source code elements (e.g., classes, methods,
etc.). We assume that source code elements that contribute to implementing a feature
have shared terms and they also are invoked near to each other. We believe that by group-
ing together these source code elements as a cluster(s), we may obtain a better textual
matching with a given feature description, than considering each source code element in-
dividually. Such clusters represent an intermediate level between feature and source code
levels. Also, such clusters reduce the source code space of IR by grouping source code el-
ements that collaborate to support the same function (functional requirement) together
and linking this group as a single unit to the same feature that provides that function. This
leads to a reduction in the number of source code elements that should be linked to fea-
tures, and hence decreases the opportunity of establishing false-positive links between
features and individual source code elements.

• Criteria related to information used to improve IR-based feature location. This category con-
sists of two criteria as follows:

1. Using static source code information: whether the studied work uses static source code
information, such as control dependency and data flow for supporting feature location.
Static analysis represents and additional source of information for supporting feature lo-
cation process.

2. Using textual information describing features: whether the studied work exploits avail-
able feature information, such as feature description to locate a feature implementation.
Feature description is like a guide for IR during the source code to locate the correct im-
plementation of given feature(s).

• Using well-known metrics for evaluation: whether the studied work evaluate the obtained
results using the well-known metrics of IR, which are precision, recall and F-measure. The way
in which a feature location approach is evaluated provides researchers with useful information
about the approach quality and robustness.

3.4.2 Evaluation

In this section, we compare IR-based feature location approaches. Table 3.1 summarizes the studied
approaches according to the evaluation criteria.

All approaches that belong to the first category of IR-feature location (feature location in single
software product with IR) do not consider commonality and variability across product variants. This
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Table 3.1 : Summary of IR-feature location approaches.
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[Ali et al., 2011] no no no yes yes class VSM

[Poshyvanyk et Marcus, 2007] no no no yes no method LSI, FCA

[Zhao et al., 2006] no no yes yes yes function LSI, static analysis

[Marcus et al., 2004] no no no yes yes function LSI

[Lucia et al., 2008a] no no no yes yes class LSI

[Peng et al., 2013] no no yes yes yes class, method LSI, static analysis

[Liu et al., 2007] no no no yes no method LSI, dynamic analysis

[Shao et Smith, 2009] no no yes yes yes method LSI, static analysis

[Gay et al., 2009] no no no yes no method VSM

[Poshyvanyk et al., 2007] no no no yes no method LSI, dynamic analysis

[Eaddy et al., 2008] no no yes yes yes method, attribute
LSI, dynamic analysis,
static analysis

[Asadi et al., 2010] no no no no yes method
LSI, dynamic analysis,
genetic algorithm

[Kuhn et al., 2007] no no no no no package, class,
method

LSI, hierarchal clustering

[Antoniol et al., 2002] no no no yes yes class VSM, probabilistic model

[Marcus et Maletic, 2003a] no no no yes yes class LSI

[Lucia et al., 2008b] no no no yes yes class LSI
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ts [Xue et al., 2012] yes no no yes yes function LSI

[Rubin et Chechik, 2012] yes-partially no no no yes

code region
(class, method,
attributes, function,
procedure)

own algorithm

[Al-Msie’Deen et al., 2013] yes-partially no no no yes package, class, method, attributes LSI, FCA

[Ziadi et al., 2012] yes-partially no no no no package, class, method, attributes own algorithm
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is because these approaches are designed to deal with product variants as individual and unrelated
entities. For approaches that belong to the second category (feature location in a collection of product
variants), the works of Ziadi et al. [Ziadi et al., 2012] and Al-Msie’Deen et al. [Al-Msie’Deen et al., 2013]

only consider reducing source code space of product variants by only exploiting what these variants
have in common at the source code level. Therefore, the achieved reducing is not minimal because
their approaches do not consider differences at source code level among product variants. The work
of Rubin and Chechik [Rubin et Chechik, 2012] partially reduces the feature and source code spaces
of product variants, as their approach considers only differences and ignores commonality across
product variants. The work of Xue et al. [Xue et al., 2012] reduces feature and source code spaces
of product variants into minimal disjoint partitions by considering both what these variants have in
common and how they differ.

Table 3.1 shows that none of the surveyed approaches consider the abstraction between feature
and source code levels. It also shows that most surveyed approaches use feature information as input
of feature location process except the works of Kuhn et al. [Kuhn et al., 2007], Asadi et al. [Asadi et al.,
2010], Ziadi et al. [Ziadi et al., 2012] and Al-Msie’Deen et al. [Al-Msie’Deen et al., 2013], as these works
support feature identification.

Table 3.1 shows that most surveyed approaches use the well-known metrics (precision, recall and
F-measure) for evaluation IR results. However, the works of (Ziadi et al. [Ziadi et al., 2012], Poshy-
vanyk and Marcus [Poshyvanyk et Marcus, 2007], Liu et al. [Liu et al., 2007], Gay et al. [Gay et al.,
2009], Poshyvanyk et al. [Poshyvanyk et al., 2007] and Kuhn et al. [Kuhn et al., 2007]) use specific met-
rics for evaluation. Also, the Table 3.1 shows that few works use static source code information for
supporting the IR-based feature location process and all these works belong to the first category of
IR-feature location. Additionally, it shows that the surveyed approaches deal with different source
code granularities that could be linked to features (classes, methods, functions and a combination of
classes, methods and attributes).

3.5 Conclusion

In this chapter, we presented state-of-the-art information about feature location, namely IR-based
feature location. Feature location approaches are classified into three classes based on the type of
analysis used: dynamic, static and textual. IR-based feature location approaches belong to the tex-
tual class. We classified IR-based feature location approaches based on how they deal with product
variants into two categories: feature location in single software and feature location in a collection of
product variants. All approaches of the first category are designed for locating feature implementa-
tions in single software product, and hence they can not be able to exploit commonality and vari-
ability to reduce features and source code space of IR. These approaches represent the conventional
application of IR. Few approaches are proposed in the second category, which deals with product
variants as a family of similar and related products. Dealing with product variants in such a way
provide additional input to the feature location process, and hence improves the performance of IR-
feature location compared with the conventional application. This input represents commonality
and variability distribution across product variants at the feature and source code levels. This input
helps to reduce IR search spaces (feature and code spaces). Only one of these approaches (Xue et
al. [Xue et al., 2012]) reduces these spaces into minimal disjoint partitions while others achieve non-
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minimal reduction of these spaces and some of them only consider reducing source code space, as
we have seen. We started to work in parallel with [Xue et al., 2012] on improving the IR-based feature
location in a collection of product variants by reducing the IR search spaces. None of the surveyed
approaches consider the abstraction gap between feature and source code levels. Additionally, none
of the approaches of the second category consider static source code information during the feature
location process and some of them do not consider information related to features (feature descrip-
tions).

Based on our analysis of state-of-the-art related to IR-based feature location, none of the surveyed
approaches meet all criteria presented in this chapter. For this, we propose an approach effectively
analyzes commonality and variability in product variants, which leads to reducing the search spaces
of IR into minimal disjoint sets. Also, our approach considers together other factors to improve the
effectiveness of IR for locating feature implementations, which include bridging the abstraction gap
between feature and source code levels, using static source code information and feature descrip-
tions.
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Applications of Feature Location:

Feature-Level CIA and Supporting
Reverse-Engineering SPLA

Preamble

In this chapter, we present a state-of-the-art application of feature location for feature-level Change
Impact Analysis (CIA) and supporting reverse engineering Software Product Line Architecture (SPLA)
from product variants. Section 4.1 deals with feature-level CIA. During this section, we present the
main concepts of CIA and a comparison of the CIA approaches, following a set of criteria that we con-
sider relevant to our contribution. Section 4.2 is dedicated to software product line architecture (SPLA).
In this section, we present the main concept in SPLA. Then, we survey the approaches related to re-
verse engineering SPLA and conduct a comparison based on a set of criteria that are relevant to our
contribution. Section 4.3 concludes this chapter by showing the need to propose approaches for both
feature-level CIA and reverse engineering SPLA.
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4.1 Feature Level Change Impact Analysis

As feature-level CIA is one of the applications of feature location in our work, we study in this
section state-of-the-art CIA. In the beginning, we present the main concepts in the CIA process.

Next, we review studied works. Finally, we evaluate these works following a set of criteria.

4.1.1 Change Impact Analysis: Main Concepts

Change impact analysis (CIA) is defined as “identifying the potential consequences of a change, or
estimating what needs to be modified to accomplish a change” [Bixin et al., 2012][Arnold, 1996].
Changes made to one part of a software system may cause unpredictable and undesirable effects on
other parts of the same software, called ripple effects [Bixin et al., 2012]. CIA approaches determine
the ripple effects of a given change proposal. They take as input the changes that the maintainer
plans to achieve (called the change set) and determine which other parts could be affected, called the
estimated impact set (EIS). The EIS set also includes the members of change set.

Figure 4.1 shows the whole CIA process [Bohner, 2002][De Lucia et al., 2008]. This process starts by
analyzing both the change request specifications and the system code to identify the change set (e.g.,
source code, requirements, use cases, test cases, etc.). Artifacts in the change set are then analyzed
to identify other artifacts estimated to be affected (EIS). When the change is implemented, the Actual
Impact Set (AIS) is discovered. AIS is the set of artifacts actually modified. As shown in Figure 4.1, CIA
is an iterative process. During the implementation of a change request, new affected artifacts that
are not included in the EIS may be discovered. The set of such artifacts is called false negative impact
set. Moreover, it is also possible that some artifacts in the EIS are not impacted by the change being
implemented. The set of these artifacts is called the false positive impact set.

4.1.2 CIA Approaches: Classification and Presentation

Bohner and Arnold describe two categories of CIA approaches [Bohner, 2002]: traceability-based CIA
and dependency-based CIA.

• Traceability-based CIA: refers to approaches that perform CIA between software artifacts be-
longing to the same level of abstraction and the corresponding artifacts at other abstraction
levels by exploiting traceability between them (e.g., code-to-design). Figure 4.2 shows an ex-
ample of traceability links between different levels of abstraction.

• Dependency-based CIA: refers to approaches that perform CIA among software artifacts be-
longing to the same level of abstraction (e.g., between source code elements). This is performed
by analyzing dependency between considered artifacts.

Feature-level change impact analysis (CIA) is the process of determining the affected features for
a given change proposal before a change is implemented. We are interested in traceability-based CIA
as feature-level CIA belongs to this category. In the following, we detail the approaches that belong
to this category. For dependency-based CIA, we only give a synthesis of existing work that belongs to
this category.
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Figure 4.1 : Change Impact Analysis Process [Bixin et al., 2012].

4.1.2.1 Traceability-based CIA

When a software system is changed, the impact of change is not limited to a certain type of software
artifacts but goes through artifacts of all software life cycle phases. A survey about traceability-based
CIA approaches is proposed by De Lucia et al. [De Lucia et al., 2008]. They analyzed the role of trace-
ability relations in the impact analysis. However they do not study and compare specific traceability-
based CIA approaches.Below, we present the studied work that supports CIA across different levels of
abstraction.

In [Revelle et al., 2011], Revelle et al. proposed a feature coupling metric based on source code
information: structural (e.g., method calls) and textual (e.g., comments and identifiers) information.
In their approach, feature coupling metric is composed of textual feature coupling and structural
feature coupling. The former is measured by computing textual similarity between two methods as
well as between a method and a given feature. The later is measured as the ratio of the number
of methods shared by the features to the total number of methods associated with the two features.
They assumed that traceability links exist between features and source code elements that implement
those features. In their work, feature coupling was used to perform CIA. It is the degree to which the
source code elements of a feature (e.g., methods, attributes, classes) depends on elements outside
the feature [Apel et Beyer, 2011]. The idea behind feature coupling is that features that are strongly
coupled to a feature being modified are the most likely to be affected. According to their approach, the
coupled features can be determined by setting a threshold value for coupling strength, since features
with a coupling value equal to or above a given threshold are considered as coupled features to the
feature being modified.

Figure 4.3 shows the architecture of the feature coupling component proposed by[Revelle et al.,
2011]. First, the source code of a system is parsed into methods. Then, the text of the methods is
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Figure 4.2 : Traceability links between different levels of abstraction represented as multigraph.

preprocessed to form the documents of the corpus. Pre-processing always removes stop words and
programming language keywords and splits compound identifiers. Options include removing com-
ments from the corpus and performing stemming. Then, LSI is used to create a word-by-document
matrix that describes the distribution of terms in the methods of the corpus. Through the use of SVD,
a semantic subspace is constructed in which each method from the corpus is represented as a vector.
The cosine similarity between two vectors is a measure of the textual similarity between two meth-
ods. Given the similarities between methods and the mappings of features to methods, the proposed
approach can compute textual feature coupling. To compute structural feature coupling, the tool
simply requires feature-method maps as well as dependency information.

In [Ibrahim et al., 2005], Ibrahim et al. present an approach for CIA of object oriented applica-
tions. The CIA is performed at requirements, design, source code and test case levels by connecting
artifacts of these levels. This connection enables a comprehensive impact analysis as proposed by
the authors. In their approach, packages and classes are considered as design elements while meth-
ods are considered as source code elements. They gather traceability relations from different sources.
Requirements and test cases are linked by using system documentation. Test cases and methods
are linked via test execution. Methods and classes are linked by static program analysis. In their ap-
proach, the change may occur at different levels of abstraction and traceability is used to study impact
analysis at these levels. Figure 4.4 shows a traceability from the point of view of requirements. For ex-
ample, R1 is a requirement that has direct impacts on test cases T1 and T2. R1 also has direct impacts
on the design D1, D2, D3 and on the code component C1, C3, C4. Meanwhile T1 has its own direct
impact on D1 and D1 on C4, C6, etc which reflect the indirect impacts to R1. The same principle also
applies to R2. R1 and R2 might have an impact on the same artifacts e.g., on T2, D3, C4, etc.

In [Xiao et al., 2007], Xiao et al. propose an approach to study CIA at source code level for changes
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Figure 4.3 : Architecture of the feature coupling component [Revelle et al., 2011].

Figure 4.4 : Traceability from the requirement traceability perspective [Ibrahim et al., 2005].

induced at the business level in service-oriented business applications. For a given change request
to modify the implementation of a business process such as,online money order transferring), their
approach studies the impact of the change at both business and source code levels at the same time.
Firstly, it identifies the elements of other business processes that may require a modification to imple-
ment the change request. Then, it uses existing traceability links between source code elements and
business process elements that are either changed or impacted in order to find their corresponding
source code elements. Finally, these identified elements are used as staring point to find other code
elements that could be modified by using the call graph.

In [Briand et al., 2009], Briand et al. propose an approach for supporting the selection of regres-
sion test cases based on impact analysis of software architectures modeled in UML. Regression testing
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is used only to verify the correctness of changes implemented because executing all test cases after
each change is not feasible in practice. The change in their work occurs at the design level to create
a new design for a new version of a current software system. They assume that there are traceabil-
ity links between design elements and test cases. These links propagate change impact to test level
and hence they can be used to estimate regression testing effort which is usually substantial [Leung
et White, 1991]. Using these links, test cases are classified into: obsolete, re-testable and reusable.
Obsolete is a test case that cannot be executed on a new version of the system as it is invalid in the
new version. Re-testable is a test case that is still valid but needs to be rerun for the regression testing.
Reusable is a test case that is still valid and does not need to rerun to ensure regression testing. In
their work, the impact estimation and the selection of test cases is based on identifying differences
between two versions of the system architecture.

In [Bo Yu, 2004], Yu et al. propose the concept of requirements change probability to estimate
whether a change to one component, due to requirements evolution will spread to other compo-
nents. Requirements propagation probability is the probability that a change made to a component
(A) causes a change to a neighboring component (B). To compute this probability, firstly, architectural
components of a given system are extracted and organized into a N × N matrix, called requirements
propagation probability. This matrix is used to store the propagation probabilities between pairs of
components. Secondly, the probabilities are computed by applying three matrices on each compo-
nent: backward functional call dependency, forward functional call dependency and total functional
call dependency. Those matrices with size N-1 × N-1 and the semantic of their values are as follows
respectively: how many functions of component (i) are called by other components (j); how many
functions from other components (j) are called by a component (i); combining the previous two. The
semantic of each row in requirements propagation probability matrix is as a follows: if the row corre-
sponding to a component A has higher values, we deduce that changes to this component (A) must
be avoided because they propagate widely throughout the system. Impacted components can then
be determined by applying a probability threshold.

In [Hammad et al., 2011], Hammad et al. propose an approach to automatically determine if a
given source code change impacts the design (i.e., UML class diagram) of a system. Their goal is to
keep the architecture synchronized with the source code. They distinguish between code changes
that impact a system architecture (such as adding/deleting a method or class), and those that do not
(such as changing a control loop). For a given code change causing two versions of the source code,
firstly their approach transforms source code of the two versions into XML format by using srcML tool
in order to support the static analysis required. Secondly, the differences between the two versions are
determined by applying srcDiff tool to the XML output. Finally, the changes that impact the design
are identified from the code differences via a number of queries. For example, if the results of a query
detect a source code class which is not represented in design models, this means that there is an
impact on the architecture and a design change took place.

In [Khan. Simon Lock, 2009], Khan utilizes dependencies between requirement-level concerns
and architectural components to study the impact of requirement changes at the architecture level.
They investigate whether dependencies between them help to identify unstable components and
anticipate changes. Taxonomy of dependencies is established as the basis of their CIA approach. De-
pendencies are divided based on their nature into goal, task, service, conditional, infrastructural and
usability. Also, they classify the granularity of a dependency into: overlap, intertwine and conform.
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For example, overlap dependency holds when a set of requirements belonging to different concerns
are linked to the same operation of an architectural component. These granularities are used as pre-
dictors for determining architectural components that are more receptive to change made to require-
ments.

In [Chechik et al., 2009], Chechik et al. propose a model-based approach for propagating
changes between requirements and design models. Their approach propagates changes between
requirements-level activity diagrams, and design-level sequence diagrams. A change propagation
algorithm is proposed to identify and localize the effects of requirement changes at design level.

4.1.2.2 Dependency-based CIA

Most of dependency-based CIA approaches are code-based CIA (i.e., change impact analysis at source
code level). A survey about these approaches can be found in [Bixin et al., 2012]. According to [Steffen,
2011][Bixin et al., 2012], there are many approaches proposed for supporting CIA at source code level.
Below, we give an overview of these approaches by presenting them based on the technique used.

1. Call Graphs: the methods/procedures that are changed may impact other source code meth-
ods/procures directly or indirectly. Therefore, analyzing the call-behavior of system’s meth-
ods/procedures can help to assess the impact of changed methods/procedures. By statically
analyzing the source code, method calls are extracted and stored in a graph or matrix. Then,
this graph is used by maintainers to estimate the propagation of a given change [Ryder et Tip,
2001][Xia et Srikanth, 2004] [Badri et al., 2005].

2. Dependency Analysis: there are several types of dependencies between source code elements,
such as composition and inheritance dependencies. They can be extracted by static source
code analysis. These dependencies can be used to estimate the change propagation between
source code elements. [Briand et al., 1999][Kung et al., 1994][Rajlich, 1997][Zalewski et Schupp,
2006][Petrenko et Rajlich, 2009][Black, 2001][Li et Offutt, 1996][Jász et al., 2008][Gwizdala et al.,
2003][Pirklbauer et al., 2010][Hoffman, 2003].

3. Program Slicing: is the computation of the set of programs statements (i.e., the program slice)
that may affect the value of a variable. Slicing removes all code statements which are irrelevant
to the slicing criterion, i.e. which do not affect the state of a variable and thereby being of no
use for impact analysis. Slicing is performed by statistical source code analysis [Gallagher et
Lyle, 1991][Hutchins et Gallagher, 1998][Tonella, 2003][Binkley et Harman, 2005][Vidács et al.,
2007].

4. Dynamic Analysis: allows producing execution traces containing only methods which have
been invoked during the execution of a program. They allow estimation of the impact of a
method change by determining which methods were called after the changed method, thus
being possibly impacted, too [Law et Rothermel, 2003b][Law et Rothermel, 2003a][Orso et al.,
2003][Breech et al., 2006][Apiwattanapong et al., 2005][Beszédes et al., 2007][Vanciu et Rajlich,
2010].

5. Information Retrieval (IR): IR techniques exploit textual source code information (e.g., iden-
tifiers) to find similar terms in different source code elements (e.g., classes, methods) in order
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to establish a relation between these elements. This relation can be used to study the change
propagation among source code elements [Antoniol et al., 2000][Poshyvanyk et al., 2009].

6. History Mining: is a technique related to mining software repository (MSR) [Kagdi et al., 2007].
It identifies clusters or patterns of entities from software repositories which are often changed
together so that a change made to one entity of a cluster is likely to affect all the other members
within that cluster as well [Fluri et al., 2005][Fluri et Gall, 2006][Gall et al., 2003][Zimmermann
et al., 2005][Gîrba et al., 2005][Gîrba et Ducasse, 2006][Robbes07, 2007][Gîrba et al., 2007][Ying
et al., 2004][Bouktif et al., 2006][Zimmermann et Weißgerber, 2004][Robbes et al., 2007].

4.1.3 Evaluation of Traceability-based CIA

4.1.3.1 Evaluation Criteria

We consider a set of criteria for evaluating the existing traceability-based CIA approaches that support
change management from a SPL manager’s point of view. This view involves studying the impact of
a change at the feature level and providing quantitative measures to help SPL’s manager for making
decisions.

• Abstraction level considered for performing CIA: this criterion aims to determine the level
of abstraction that CIA process supports. By evaluating the studied works according to this
criterion, we can explore the approaches that perform CIA at the feature level.

• Quantitative measures for evaluation of the change impact: this criterion aims to determine
approaches that provide quantitative measures to evaluate the impact of a given change. Such
measures help stakeholders relevant to the abstraction level considered by CIA process to eas-
ily make a decision either committing the change or finding another solution to implement a
change. This criterion is divided into two criteria:

– The impact degree of EIS members: whether the studied work computes to which degree
the EIS members are impacted. Based on this criterion, we can determine and evaluate
which feature-level CIA approach can compute the impact degree of each affected feature.
This is because SPL’s manager may be interested to know the impact degree of specific
features for their importance.

– The changeability of a whole system: whether the studied work estimates the change-
ability of a whole system. Based on this criterion, we can determine and evaluate which
feature-level CIA approach provides quantitative measure to compute the percentage of
affected features for a given change proposal (i.e. the ratio of affected features to all fea-
tures.). Such a changeability is classified into low, medium or high [Sun et Li, 2011]. There-
fore, SPL’s manager can select appropriate modification strategy according to the change-
ability level as a change can be implemented in different ways.

• Using efficient metrics for evaluation: whether the studied work uses metrics to quantify el-
ements in the EIS that are not impacted (false-positive), and evaluates the elements that are
not identified but are impacted (false-negative). The way in which CIA approach is evaluated
provides information about the approach quality and robustness.
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Table 4.1 : Summary of traceability-based CIA approaches.
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[Ibrahim et al., 2005] requirement no no no

[Xiao et al., 2007] source code no no no

[Briand et al., 2009] architecture no yes no

[Bo Yu, 2004] architecture yes no no

[Revelle et al., 2011] Feature no no yes

[Hammad et al., 2011] design (class digram) no yes no

[Chechik et al., 2009] design (sequence diagram) no no no

[Khan. Simon Lock, 2009] architecture no no no

4.1.3.2 Evaluation

Table 4.1 summarizes the studied approaches according to the evaluation criteria. Below, we evaluate
our review of CIA approaches that belong only to the traceability-based CIA category following the
proposed criteria.

Among all studied approaches, there is only one approach that supports feature-level CIA for
source code changes (see Table 4.1) [Revelle et al., 2011]. As we mentioned before, the approach
of Revelle et al. [Revelle et al., 2011] considers that features (resp. their implementations) that are
strongly coupled to the feature being modified are the most likely to be affected. The remaining works
perform CIA at other levels of abstraction (requirement, architecture, etc.)

Most studied approaches do not pay attention to compute the impact degree of each member of
the EIS, as these approaches only concerned with finding a list of affected elements. The approach
of Yu et al. [Bo Yu, 2004] is the only one that computes the impact degree of EIS members that repre-
sent architectural components. In their approach, the impact probability of each component due to
changes made to requirements is computed.

Most studied approaches do not consider the changeability of the whole system considered
against a given change request except the work of Briand et al. [Briand et al., 2009] and Hammad
et al. [Hammad et al., 2011]. The work of Briand et al. estimates the regression testing efforts due to
changes made to software architectures through classifying the test cases of a given system into three
groups, as we have seen. The work of Hammad et al. determines the number of design changes of the
whole UML class diagram of a given system, due to changes made to source code level.

The work of Revelle et al. [Revelle et al., 2011] is the only one that uses efficient metrics to evaluate
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the EIS. These metrics are inspired from IR: precision and recall. Precision measures the accuracy of
the EIS according to the actual impact set. Recall measures to what degree the EIS covers the actual
impact set. Based on these definitions, we believe that these metrics are efficient because they help
to quantify elements in the EIS that are not impacted and the elements that are not identified but are
impacted. All other studied approaches assume that the computed EIS is safe in terms of not exclud-
ing any entity that is actually impacted without any confirmation. Considering that these approaches
use static and dynamic analyses that may return false-positive and false-negative entities [Bogdan et
al., 2013].
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4.2 Software Product Line Architecture Development:
Feature-to-Architecture Traceability

In this section, we present the main concepts in SPLA and study research works related to building
Software Product Line Architecture (SPLA).

4.2.1 Software Product Line Architecture: Main Concepts

According to Pohl et al. [Pohl et al., 2010], software product line architecture is a core architecture that
captures the high level design for the products of the SPL, including the variation points and variants
documented in the variability model (feature model). These decisions concern the organization of
components and general rules that these components have to obey. A component is a well-known
building unit to build an architectural view of a software system. A software component is a unit of
composition with contractually specified interfaces, explicit context dependencies only, subject to
composition by third parties and also it can be deployed independently. In object-oriented appli-
cations, a component can be considered as a group of classes collaborating to provide a function of
the application [Allier et al., 2011]. Components in SPLA are organized into mandatory components
that are part of each architecture of SPL’s products, and a set of variation points (VPs) that represent
switching points where the SPLA offers different variants (i.e., components) to choose from [Pohl et
al., 2010][Zhang et al., 2008]. Architectural components for all SPL’s products are derived from SPLA
by making a choice at each variation point to select the appropriate component(s) taking into account
the rules defined in SPLA.

Globally, commonality and variability in SPLA (i.e., mandatory components and VPs of compo-
nents) originate from commonality and variability of customers’ requirements/features [Pohl et al.,
2010]. As mentioned earlier, variability in customer’s requirements is represented by feature groups
in the feature model (FM) so that customers can choose feature(s) from each group depending on the
customer’s needs. Each group represents a VP of features. This VP is reflected in SPLA as a VP of com-
ponents. Therefore, to utilize the potential for variation in customer requirements/features to build
SPLA, an explicit link is needed between features where variation can occur (VPs of features) and the
places in the SPLA architecture (VPs of components) that are designed to support those VPs of fea-
tures. An example to clarify the concept of VP of features and components is shown in Figure 4.5. This
figure shows all available alternatives for a customer to choose a phone that only supports color, high
resolution or basic screens. It shows that each screen option is realized by a combination consisting
of two components, and the appropriate combination is based on customer choice. Therefore, se-
lecting the appropriate combination of components involves an explicit link between VPs of features
and VPs of components. These links bind variability in SPLA (VPs) according to customers’ needs.

Different terms have been used to refer to architecture in SPLE, such as software product line ar-
chitecture, domain architecture, domain-specific architecture, configuration architecture and some-
times called reference architecture [Nakagawa et al., 2011]. In this thesis, we use the term software
product line architecture or SPLA for short.
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Figure 4.5 : An Example of a Variation Point at the Feature and Architecture Levels.

4.2.2 Presentation of SPLA Engineering Approaches

Although SPLA is a key asset in SPL core assets and building such architecture is a costly task, re-
verse engineering SPLA from software product variants is not considered in the literature. Below, we
present approaches that provide mapping between features and architectural components in order
to build SPLA into SPLE context (i.e., forward engineering way for SPLA development).

In [Liu et Mei, 2003], Liu and Mei propose the notion of a natural mapping between a FM and
architecture. The natural mapping refers to the fact that each feature should be linked to compo-
nent(s)/subsystem(s). They propose a feature–oriented requirements modeling process to build a
FM from a set of relevant detailed requirements. Then, the mapping between features and compo-
nents is performed manually without any details about how this mapping should be executed.

In [Sochos et al., 2006], Sochos et al. propose creating SPLA based on FM. In their approach (called
Feature-Architecture Mapping, for short FArM), a strong mapping between features and components
is established based on four transformations of the initial FM leading to SPLA. During the transfor-
mation process, feature tangling (i.e. when two or more features are implemented by a single com-
ponent) and feature scattering (i.e. when two or more components implement a single feature) are
minimized. The transformed FM contains only functional features. According to their approach,
components are developed from scratch to implement the transformed features. The interactions
among components is based on feature interactions (relations between features in the FM).

In [Trinidad et al., 2007], Trinidad et al. propose automatically building a component model from
a FM for developing dynamic SPL. The main problem that they address is to build an architecture that
dynamically adapts itself to changing requirements. They propose respectively mapping mandatory
and optional features to mandatory and optional components. They create for each feature a com-
ponent and relations among features become relations among components.

In [Zhang et al., 2008], Zhang et al. propose mapping feature to architectural components for
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building SPLA. Features are extracted from FM. In their approach, features are classified according to
the variability type into mandatory and optional. Also, mandatory and optional features are further
classified according to the impact of their implementation on each other into non-crosscutting and
crosscutting features. In their approach, a component is created for each feature. The components of
crosscutting features are implemented by object-oriented techniques while the components of non-
crosscutting features are implemented by aspect-oriented techniques.

In [Diana L. et Hassan, 2004], Diana and Hassan propose an approach called the Variation Point
Model (VPM), which models variability at the architecture level, beginning with requirements. Ac-
cording to this model, variability is modeled as variation points. The concept of variation point sup-
port four views: requirements, component, static and dynamic views. The requirements variation
point view shows the variation point in terms of the requirements. Such a view takes an enumerated
statement form. The component variation point view is a composite view that shows all the variation
points that belong to a particular component. This view also shows if a variation point belongs to
more than one component and if several variation points belong to one component. In this model,
each variation point at the requirement level is traced to one or more components. The static varia-
tion point view shows which classes, methods or attributes constitute the component variation point.
The dynamic variation point view shows the interaction needed between components.

In [Bachmann et Bass, 2001], Bachmann et al. presents experience with explicitly managing vari-
ability within a software architecture. The basic idea in their work is to prepare the software for change
in order to minimize efforts required for maintenance and especially when an architecture for a fam-
ily of products is designed. They study some sources of variations that are composed of: Variation
in function, Variation in data, Variation in control flow, Variation in technology, Variation in quality
goals and Variation in environment. They classify the variation in software architecture regardless
of the source of variation into: a variation can be optional, a variation can be an instance out of
several alternatives (XOR-Group) and a variation can be a set of instances out of several alternatives
(OR-Group). They propose two basic techniques implement variation:module replacement and data
controlled variation. The former is the technique of having multiple code-based versions of a partic-
ular module and choosing the correct one. The latter is the technique of maintaining the variation
information in a data structure and having a single module that understands how to navigate the data
structure to determine the correct actions.

In [Matinlassi, 2004], Matinlassi compares five methods for product line architectural design:
COPA, FAST, FORM, KobrA and QADA. Most of these methods do not focus on SPLA as software de-
velopment process because they define a full product line engineering process with activities and
artifacts i.e., architecture, process, business, organization and etc.

Existing approaches that are interested to extract FM from available software artifacts of product
variants is related to our work because the main source code of variability in SPLA is the variability at
features level. These approaches as a follows:

In [Ryssel et al., 2011], Ryssel et al. use formal concept analysis to generate a feature model. The
input of their approach is a set of product configurations. The process of extraction feature model is
based on NP-hard problem (e.g., set cover to identify OR-groups). Furthermore, architecture variabil-
ity is not taken into account in this approach.
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In [Acher et al., 2011], Acher et al. propose an approach to reverse engineering architectural fea-
ture model. Their approach is based on the software architect’s knowledge, architecture plugins de-
pendencies and feature model extracted based on a reverse engineering approach proposed by She
et al. [Steven et al., 2011]. The basic idea in the proposed approach is to take the software architect’s
variability point of view to extract feature model so their work is named architectural feature model.
However, the major limitations of this approach are firstly that the software architect is not available
in most cases of legacy software products, and secondly that the architecture plugins dependencies
are generally missing, too.

In [Steven et al., 2011], She et al. propose an approach to extract feature model of given set of
features. The input of the extraction process is feature names, feature descriptions and dependencies
among available features. Based on this input data, they recover feature groups and cross tree con-
strains (i.e., Require and Exclude). A strong assumption behind this approach is that feature names,
feature descriptions and dependencies among features are available. However, feature dependences
are not always available especially in legacy software product variants.

4.2.3 Evaluation of Building SPLA Approaches

4.2.3.1 Evaluation Criteria

We consider a set of criteria relevant to our contribution to evaluate the studied approaches. This
contribution aims to support reverse engineering SPLA from product variants by documenting com-
monality and variability at the architectural level as an important step toward this reverse engineering
task.

• Type of engineering process: whether the studied work uses reverse engineering or forward
engineering processes to build SPLA. Only in the reverse engineering process, we can exploit
the existing software product variants to build SPLA.

• Documenting commonality and variability at the architectural level: whether the studied
work defines mandatory components and VPs of components. This organization of compo-
nents represents the variability aspects in SPLA, and hence enable to derive concrete architec-
ture for each product in SPL.

• Multiplicity of variability traceability between feature and architectural levels: whether the
studied work creates one-to-one mapping between variation points at feature level and varia-
tion points at architectural level. Such a mapping between variation points at both feature and
architectural levels provides more flexibility and evolvability of SPLA [Pohl et al., 2010].

4.2.3.2 Evaluation

Table 4.2 summarizes the studied approaches according to the evaluation criteria. As shown in this
table, all studied approaches do not exploit existing product variants to reverse engineering SPLA.
This is because these approaches represent forward engineering way to build SPLA, which means
SPLA is developed from scratch. In forward engineering, the SPLA development is driven by the FM
so that components are developed to implement the features offered by the FM.
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Table 4.2 : Summary of approaches supporting SPLA development.

Studied Work Type of engineering process
Documenting commonality and
variability at the architectural level

Multiplicity of variability
traceability between feature
and architectural levels

[Sochos et al., 2006] Forward Engineering no ——

[Trinidad et al., 2007] Forward Engineering yes one-to-one

[Zhang et al., 2008] Forward Engineering yes one-to-one

[Liu et Mei, 2003] Forward Engineering no ——

[Diana L. et Hassan, 2004] Forward Engineering yes one-to-many

[Bachmann et Bass, 2001] Forward Engineering yes ——

The works of Trinidad et al. [Trinidad et al., 2007] and Zhang et al. [Zhang et al., 2008] docu-
mented commonality and variability at architectural level as mandatory components and a single
group of optional components (i.e., a VP of optional components). This organization is inspired from
the organization of features in the FM, as SPLA encompasses the commonality and variability in the
FM. Moreover, these works established one-to-one mapping between VPs at feature level and VPs at
architectural level as a single group of optional features is mapped to a single group of components.
Also in these works, a component is created to each feature. The work of Diana and Hassan [Diana L.
et Hassan, 2004] documented variability at architecture level as components equipped with VPs as
we have seen. The source of variability at the architecture level is the variability at requirement level.
In their model, a VP at requirement level may be mapped to one or more component, as each com-
ponent is equipped one or more VPs. The remaining approaches do not pay attention to describe
commonality and variability at the architectural level.

4.3 Conclusion

In this chapter, we have presented state-of-the-art information about feature-level CIA and develop-
ment SPLA, as these subjects represent the applications of feature location in our work.

In the literature CIA approaches are organized into two categories: traceability-based CIA and
dependency-based CIA. Feature-level CIA is traceability-based CIA. It is used to predict and deter-
mine affected features (resp. their implementations) for a given change proposal. Most existing ap-
proaches perform CIA at the source code level while few works perform CIA at other different levels
of abstraction. The work proposed by Revelle et al. [Revelle et al., 2011] is the only one that performs
CIA at the feature level. This work does not provide quantitative measures for SPL’s manger to help
him for decision making. In their work, a feature (resp. its implementation) is described as affected
or not affected (boolean value) without any indicator about to which degree the implementation of
a feature is affected and also the percentage of affected features. In addition, they use a threshold
mechanism to determine affected features. According to this mechanism, the implementations of
coupled features under a given threshold are not investigated in spite of these features being affected
by a change (as shown in their experimental results). For these limitations, we propose feature-level
CIA which allows SPL’s manger for decision making concerning change management. This approach
meets all criteria mentioned in this chapter.
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The SPLA is a key asset within SPL’s core assets. It enables creation of architecture for each prod-
uct in SPL. As such, it must support the scope of the product line and encompass commonality and
variability among SPL members. Therefore, developing SPLA from scratch is a costly task. This has
lead to the need for exploiting the existing product variants for creating SPLA in order to reduce the
development cost. In the literature, all existing approaches support building SPLA from scratch (for-
ward engineering for development) while reverse engineering SPLA from product variants has not
been considered. Therefore, we propose an approach that takes advantage of the existence of prod-
uct variants to support revere engineering SPLA from these variants, as we will have seen in chapter 7.
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Feature Location in a Collection of Product

Variants: Reducing IR Spaces

Preamble

In this chapter, we propose our approach to improve the IR-based feature location in a collection of
object-oriented product variants. This improvement follows two strategies: reducing feature and source
code spaces where IR applies and reducing abstraction gap between feature and source code levels. In
section 5.1, we introduce these strategies. Next, sections 5.2 and 5.3 present core assumptions used in
our approach and motivate the need for these strategies. In section 5.4, we give an overview about our
feature location process. Sections 5.5 and 5.6, we present how our approach implements the strategies
considered for improvement. In section 5.7, we describe the mapping between features and their imple-
menting classes. In section 5.8, we show and explain the experimental evaluation of our approach and
the obtained results. Finally, we conclude the chapter in section 5.9.
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5.1 Introduction

The conventional application of IR for locating feature implementations in a collection of product
variants involves conducting a textual matching between all features (i.e., their descriptions)

and source code elements (e.g., classes, methods, etc.) of each product in product variants indepen-
dently. On one hand, this may lead to retrieve irrelevant source code elements for features, especially
in case of having similar features and trivial descriptions. On the other hand, as a feature implemen-
tation span multiple source code elements, this means that feature description is scattered across
vocabulary used by these elements. Therefore, such conventional application hinders IR to find tex-
tual matching between features and their implementing source code elements. As a result, this leads
to reduce the relevant source code elements that should be retrieved by IR.

In this chapter, we introduce our first contribution, which improves the conventional application
of IR for locating feature implementations in a collection of object-oriented product variants. This
improvement involves following two strategies.

Firstly, we exploit commonality and variability across product variants for reducing IR spaces (i.e.,
feature and source code spaces) into portions of features and their corresponding portions of source
code elements. These portions represent minimal disjoint sets of features and their corresponding
source code elements. These sets at the feature level represent the smallest number of features so
that together their implementations can be isolated from source code of product variants. Moreover,
these sets are disjoint (i.e., no shared features among them).

Secondly, we reduce the abstraction gap between the features and source code of the new ob-
tained IR spaces by introducing the concept of code-topic. A code-topic is a cluster of similar classes
that have common terms and they also are called near to each other. A code-topic can be a function
implemented by the source code and provided by a feature. A code-topic allows the grouping of terms
describing a feature implemented by code-topic’s classes together rather than scattering these terms
over many source code elements.

We mainly rely on Formal Concept Analysis (FCA) to reduce IR spaces. Also, we identify code-
topics by investigating the results of two techniques: Agglomerative Hierarchical Clustering (AHC)
and FCA. IR namely, LSI is used to link each feature to their implementing source code elements by
taking the advantages of reducing feature and source code spaces, and reducing the abstraction gap
between feature and source code levels.

5.2 Core Assumptions

The proposed IR-based feature location approach focuses on functional features. This is because typ-
ically software product variants implement a set of functional features [El Kharraz et al., 2010]. Thus,
we consider the following definition of the feature [Kang et al., 1990]: “Feature is a prominent or dis-
tinctive user-visible aspect, quality or characteristic of a software system or systems”. This definition
focuses on external functional aspects of software system(s) that are observed by end users. These as-
pects represent functional features provided by product variants. Also, the proposed approach relies
on the following assumptions:
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• We assume that the functional feature is implemented by a set of classes. The concept of class
represents a main building unit in all object-oriented languages and most often developers
think about the class as a set of responsibilities that simulate a concept or functionality from
the application domain [Marcus et Poshyvanyk, 2005].

• We assume that the functional feature always has the same source code classes where it is im-
plemented. This is because product variants are developed by ad-hoc copying of existing fea-
ture implementations of existing variants. Therefore, the feature that is provided by different
variants may have the same implementation.

• We assume that developers use the same vocabularies to name source code identifiers across
product variants. This is because any product in product variants is developed by ad-hoc copy-
ing of existing products, which means there is a common vocabulary between identifiers across
product variants.

5.3 Motivating the Reduction of IR Search Spaces

Our focus here is in applying IR-feature location techniques in the context of product variants where
a feature can be implemented by multiple variants. As mentioned earlier, these variants provide fea-
tures (resp. their source code elements) that are shared among all variants (mandatory features),
among some variants and product-specific features. By considering software product variants to-
gether as a set of similar and related products, we can get additional input to IR-based feature loca-
tion process. This input represents commonality and variability distribution across product variants.
Commonality refers to mandatory features (resp. their source code elements) that are part of each
product in product variants. Variability refers to optional features (resp. their source code elements)
that are part of one product or more (but not all product variants). Analyzing commonality and vari-
ability across product variants allows the reduction of IR spaces into minimal disjoint set of features.
This reduction enables a textual matching between the smallest number of features (i.e., their de-
scriptions) and the source code elements that only implement those features. This leads to reducing
the number of irrelevant source code elements (false-positive links) retrieved by IR techniques.

By grouping source code classes that collaborate together to constitute a code-topic, the number
of retrieved source code classes that are relevant to a given feature may increase. To clarify the idea
behind the code-topic, we exemplify it on the following example. Consider that a document Q con-
tains the definition of the SPL and also assume that there are other documents so that each contains
a part of this definition according to three scenarios. The first scenario consists of ten documents; the
second scenario consists of four documents while the last one consists of two documents. The doc-
uments of each scenario together constitute the entire SPL’s definition. Then, IR is used to compute
the textual similarity between the document Q and the other documents according to the mentioned
scenarios. The obtained textual similarity in the first scenario as [min, max] is [17%,69%] while the
similarity in the second and third scenarios respectively is [61%,78%] and [86%,88%]. Based on the
obtained similarity in each scenario, we notice that the similarity incrementally increases along with
grouping together documents so that the documents of the third scenario are more relevant to the Q.
This because the these documents have more information related to Q. The concept of code-topic is
based on this idea. Therefore, we propose the code-topic, as a coherent cluster of classes that have
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Figure 5.1 : Representation of the Relationship between Feature, Code-Topic and Object-Oriented
Source Code Elements by MetaModel.

common terms and can be called near to each other. Figure 5.1 shows a meta model depicting the
relationship between feature, code-topic and object-oriented source code elements.

The concept of code-topic also represents another aspect of reducing IR source code space. This
aspect is concerned with reducing the number of established links between features and source code
elements (classes). Before introducing the code-topic, the links are established between features and
source code elements independently with mapping many-to-many while, after introducing the con-
cept of code-topic, the links are established between features and code-topics (i.e. cluster of source
code elements). Figure 5.2 clarifies this reduction. Such a reduction decreases the opportunity of es-
tablishing false-positive links between features and individual source code elements, as having many
source code elements leads to a high probability to establish false-positive links. On the other hand,
such a reduction increases the opportunity of linking together a set of source code elements (code-
topic) that collaborate supporting a function to the same feature. As a result, such a reduction allows
improvement to the accuracy of feature location.
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Figure 5.2 : Established Traceability Links before and after Introducing Code-Topics.

5.4 Feature Location Process in Our Approach

To implement the strategies mentioned in the previous section, we propose the process shown in
Figure 5.3. This figure shows that our feature location process consists of three phases: reducing IR
(namely, LSI) spaces, reducing the abstraction gap between feature and source code levels and identify-
ing feature-to-code’s classes traceability links.

In the first phase, we group all features (resp. their classes) of a given set of product variants into
common and variable partitions at feature and source code levels. At the feature level, common and
variable partitions respectively consist of all mandatory and optional features across product variants.
At the source code level, common and variable partitions respectively consist of source code classes
that implement mandatory and optional features. Also in this phase, the variable partitions at both
levels are further fragmented into minimal disjoint sets. Each minimal disjoint set at feature level
corresponds to its minimal disjoint set at source code level. In the second phase, we identify code-
topics from the partition of common classes and each minimal disjoint set of classes. In the third
phase, we link features and their possible corresponding code-topics using LSI. Such linking is used
as a means to connect features with their source code classes by decomposing each code-topic to its
classes. In the coming sections, we detail these phases.

As an illustrative example through this chapter, we consider four variants of a bank system, as it is
shown in the Table 5.1, Bank_V1.0 supports just core features for any bank system: CreateAccount, De-
posit, Withdraw and Loan. Bank_V1.1 has, in addition to the core features, OnlineBank, Transfer and
MobileBank features. Bank_V1.2 supports not only core features but also new features: OnlineBank,
Conversion, Consortium and BillPayment. Bank_V2.0 is an advanced application. It supports all pre-
vious features together.
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Figure 5.3 : An Overview of our Feature Location Process.

Table 5.1 : Feature set of four text bank systems.

Variant Features

Bank_V1.0 Core (CreateAccount, Deposit, Withdraw, Loan).

Bank_V1.1 Core, OnlineBank, Transfer, MobileBank.

Bank_V1.2 Core, OnlineBank, Conversion, Consortium, BillPayment.

Bank_V2.0 Core, OnlineBank, Transfer, Conversion, Consortium, Bill-
Payment, MobileBank.

5.5 Reducing IR Search Spaces

In this section, we address how to improve the conventional application of IR techniques (namely,
LSI) for locating features in a collection of product variants by reducing feature and source code
spaces. For this, we need to analyze and understand the commonality and variability distribution
across product variants. Such analysis allows the reduction of IR spaces into fragments. We follow
two steps at feature and source code levels for performing the reduction. The first step at both levels
aims to determine common and variable partitions of features and source code’s classes by analyzing
commonality across product variants. The second step at both levels aims to fragment variable par-
titions of features and classes into minimal disjoint sets by analyzing variability using FCA. Figure 5.4
highlights how commonality and variability analysis can be used to reduce feature and source code
spaces. In this figure, green portions refer to commonality while other colored portions refer to vari-
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Figure 5.4 : Commonality and Variability Analysis across Product Variants.

ability distribution across product variants. Each colored portion at the feature level is composed of
one or more features while the colored portion at the source code level is composed of source code
classes that implement the corresponding portion of features. Below, we detail these steps.

5.5.1 Determining Common and Variable Partitions at the Feature Level

Product variants may have features with the same descriptions but have different names, due to
changes in software environment or to the adoption of different technology [Yinxing et al., 2010].
Therefore, we should determine correspondences among features across all product variants before
going to reduce the feature space. We rely on Longest Common Subsequence (LCS) to find these cor-
respondences [Bergroth et al., 2000]. LCS computes pair-wisely the longest common subsequence
of terms for two feature descriptions. We consider two features identical if and only if they have the
same subsequence terms of their descriptions. Then, we rename corresponding features with the last
name used.

As the common partition at the feature level is composed of mandatory features of product vari-
ants, we do textual matching among all feature names of product variants to find these mandatory
features. The features that are part of each product in product variants form the common partition
while the remaining features (i.e., optional features) in each variant form together the variable par-
tition. In our illustrative example, all core features form the common partition while OnlineBank,
Transfer, Conversion, Consortium, BillPayment and MobileBank features form the variable partition.
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5.5.2 Determining Common and Variable Partitions at the Source Code Level

To group the source code classes of a given collection of product variants into common and variable
partitions, we need to compare classes of product variants. Such comparison helps to determine
classes that are part of each product (common partition of classes), and hence the remaining classes
form the variable partition. For this, we first represent the source code classes for each variant as a
set of Elementary Construction Units (ECUs). Each ECU has the following format:

ECU = Packag eN ame@C l assN ame

This representation is necessary to be able to compare source code classes of product variants.
Each product variant Pi is abstracted as a set of ECUs as follows: Pi = {ECU1,ECU2, . . . ,ECUn}. In
this way, an ECU reveals differences in source code’s packages and classes from one variant to an-
other variant (e.g. adding or removing packages or classes). These differences at the source code level
occur due to adding or removing features to create a new variant. Common ECUs shared by all prod-
uct variants represent common classes that form the common partition at source code level. The
remaining ECUs in each variant represent classes that form together the variable partition at source
code level. The common ECUs are computed by conducting a textual matching among ECUs of all
product variants, as we assume that developers use the same vocabulary to name source code iden-
tifiers. The representation of source code as ECUs is inspired from [Blanc et al., 2008].

5.5.3 Fragmentation of the Variable Partitions into Minimal Disjoint Sets

In this step, we reduce further the variable partitions at the feature and source code levels computed
in the previous step. Our approach aims to fragment these partitions into minimal disjoint sets of
optional features and their respective minimal disjoint sets of classes by using FCA (see Figure 5.4).
These sets represent the final output of the process of reducing IR spaces. These sets are minimal
because each set can not be reduced more. They also are disjointed because there are no shared
members among them.

5.5.3.1 Determining Minimal disjoint Sets of Optional Features with FCA

Minimal disjoint sets of optional features can be obtained by analyzing optional features distribution
across product variants. This analysis involves comparing all optional features of product variants.
With referring again to Figure 5.4, we can see an example of optional features distribution across
product variants. Blue, red and orange portions in this figure refer to features (resp. their classes) that
are specific to Product1, Product2 and Product3 respectively. Black, yellow and grey portions refer
to features that are shared between products pair-wisely. Such analysis allows determining minimal
disjoint of features. We rely on FCA to perform such analysis in order to group optional features via
concepts of GSH into minimal disjoint sets.

We apply FCA to all variant-differences extracted from a collection of product variants. For two
product variants P1 and P2, we create three variant-differences. P1 −P2 (a set that contains features
existing only in P1 but not in P2), P2 −P1 (a set that contains features existing only in P2 but not in
P1) and P1

⋂
P2 (a set that contains all the optional features that P1 and P2 have in common). If we

consider, for example, variants Bank_V1.2 (V1.2) and Bank_V2.0 (V2.0) of our illustrative example,
three variant-differences can be created as follows: V1.2-V2.0 = φ , V2.0-V1.2 = {Transfer, MobileBank}
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Table 5.2 : Formal context for describing variant-differences of bank systems.
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. . .

and V1.1
⋂

V1.2 = {OnlineBank, Conversion, Consortium, BillPayment}. The variant-differences aim
at identifying all possible common and differences between each pair of variants in terms of provided
features taking into account all combinations between product variants pair-wisely. Such strategy for
using FCA to reduce IR search spaces is similar to the one proposed by Xue et al. [Xue et al., 2012].

After extracting all variant-differences of a given collection of product variants, we define the for-
mal context of FCA as follows:

• Variant-differences represent objects (extent)

• Optional features represent attributes (intent)

• The relation between an object and attribute refers to which optional feature is possessed by
which variant-difference.

Table 5.2 shows the formal context of optional features and variant-differences corresponding to
our illustrative example. Figure 5.5 shows the resulting GSH corresponding to the formal context de-
fined in Table 5.2. Such a GSH shows the distribution of optional features across product variants.
Each concept in this GSH consists of three fields. The upper field refers to a concept name (gener-
ated automatically). The middle field represents a set of optional features (intent). The bottom field
shows variant-differences (extent). We are interested in the concepts associated with a set of optional
features (such as the Concept_5 in Figure 5.5) because these features represent the minimal disjoint
set of features. The variant-differences of these concepts determine which product variants should
be compared to obtain the implementation of these features.

5.5.3.2 Determining Minimal Disjoint Sets of Classes with FCA

For a given concept having a minimal disjoint set of features as intent, the extent (i.e. variant-
differences) of such a concept determine which product variants should be compared to determine
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classes that implement only those features in that concept. The obtained classes represent the min-
imal disjoint set of classes corresponding to the minimal disjoint set of features in that concept. In
this way, we encounter two cases. Firstly, if the concept’s extent is not empty, we randomly select only
one variant-difference from the variant-differences listed in its extent. For instance, to compute the
minimal disjoint set of classes corresponding to the minimal disjoint set of features for Concept_5 in
Figure 5.5, we can select the first variant-difference (V 2.0−V 1.1) to identify a set of classes that are
present in B ank_V 2.0 but absent in B ank_V 1.1. The resulting set of classes implements only the fea-
tures located in the Concept_5 (Consortium, BillPayment and Conversion). Secondly, if the concept’s
extent is empty. i.e. it does not have own variant-differences but it inherits in a down-up manner
variant differences from other concepts. In this case, we randomly select only one variant-difference
from each concept located immediately below and directly related to this concept. For example, to
compute the minimal disjoint set of classes corresponding to the minimal disjoint set of features for
Concept_6 in Figure 5.5, we select randomly a variant-difference from Concept_1 and another one
from Concept_2. Considering that the selected variant-differences are (V1.1

⋂
V2.0 and V1.2

⋂
V2.0).

According to these variant-differences, classes that implement the Onl i neB ank feature located in
Concept_6 are present at the same time in B ank_V 1.1, B ank_V 2.0 and B ank_V 1.2.

Figure 5.5 : GSH for the Formal Context of Table 5.2.

In both cases, commonalities and differences among source code classes of product variants are
computed by lexically comparing their ECUs. For example, the corresponding classes of features of
Concept_5 are a set of ECUs that are present in V 1.2 but are not present in V 1.1.
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5.6 Reducing the Abstraction Gap between Feature and Source Code
Levels Using Code-Topic

As features and source code belong to different levels of abstraction, we propose code-topic to reduce
the gap between these two levels of abstraction. In the section 5.3, we motivated the concept of code-
topic. In this section, we address how to reduce this gap using code-topic in a collection of product
variants. For this, we propose to identify code-topics from the common partition’s classes and any
minimal disjoint set of classes in order to benefit from the reduction of IR spaces. As the code-topic is
a cluster of classes, we first formulate the identification of the code-topic as a partitioning problem.
Next, we compute similarity among a given set of classes, as the code-topic is a cluster of similar
classes. This similarity refers to textual similarity and structural dependency. Textual similarity refers
to textual matching between terms derived from identifiers of the source code’s classes. Structural
dependency refers dependencies among classes (e.g. method call, inheritance, etc.) where classes
that depend on each other are expected to constitute the members of the same code-topic. Then, we
cluster similar classes together as code-topics by using a clustering technique.

Figure 5.6 shows an example to exemplify the code-topics identification process. In this figure,
we assume that a given collection of product variants provides a set of features {F1, F2, . . . , F13} and
contains a set of classes {C1, C2, . . . , C47}. This figure shows that similarity among the common par-
tition’s classes and each minimal disjoint set of classes is separately computed. Next, similar classes
are clustered together to identify code-topics. Then, LSI is used to link the identified code-topics to
their features.

5.6.1 Code-Topic Identification as a Partitioning Problem

According to our definition of the code-topic, the content of the code-topic matches a set of classes.
Therefore, in order to determine a set of classes that can represent a code-topic, it is important to
formulate the code-topic identification as a partitioning problem. This is because we need to group
the classes of the common partition and any minimal disjoint set into groups. Each resulting group
(partition) can be a candidate code-topic. The input of the partition process is a set of classes (C). This
set could be classes of the common partition or classes of any minimal disjoint set (see Figure 5.6).
The output is a set of code-topics (T) of C . C = {c1,c2, ...,cn} and T (C ) = {T1,T2, . . . ,Tk } where:

• ci is a class belonging to C .

• Ti is a subset of C .

• k is the number of identified code-topics.

• T (C ) does not contain empty elements: ∀Ti ∈ T (C ),Ti 6=Φ .

• The union of all T (C ) elements is equal to C:
⋃k

i=1 Ti =C . This property is called completeness.
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Figure 5.6 : An Overview of the Code-Topic Identification Process.

5.6.2 Computing Similarity Between Classes for Supporting Code-Topic Identification

As the code-topic is a cluster of similar classes, we need to compute this similarity which refers to
textual similarity and structural dependency between classes to support the process of code-topic
identification. In the following, we detail these two types of similarity.

5.6.2.1 Textual Similarity

To compute textual similarity among given sets of classes, we rely on VSM. We follow the same steps
of VSM explained in section 2.2 of preliminaries chapter however we create a document for each
class. Each document is a list of all identifiers of its corresponding class. All class documents are used
as queries and corpus documents at the same time for VSM. In VSM, the textual similarity between
two class documents is measured by using cosine similarity between their corresponding vectors.
One of these documents is treated as a query while the other is treated a corpus document. Two
documents are considered similar if the cosine of the angle between their corresponding vectors is
greater than or equal to 0.70. As we mentioned in the preliminaries chapter, this value represents
the most widely used threshold for the cosine similarity [Marcus et Maletic, 2003b]. After computing
the cosine similarity among all class documents, we build a cosine similarity matrix whose columns
and rows are identical and represent the class documents. An entry in this matrix refers to the cosine
similarity value. As an example of a matrix, we can imagine the cosine similarity matrix of classes of
a bank system using the illustrative example as shown in Table 5.3.
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Table 5.3 : The cosine similarity matrix of the illustrative Example.
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Bill@BillAcount 100% 0.0% 75% 0.0% 75% 0.0% 75% 0.0%
Conversion@converter 0.0% 100% 0.0% 0.0% 0.0% 75% 75% 0.0%
Bill@OldBills 75% 0.0% 100% 0.0% 75% 0.0% 75% 0.0%
Transfer@TargetAccount 0.0% 0.0% 0.0% 100% 0.0% 0.0% 0.0% 75%
Bill@PayPartially 75% 0.0% 75% 0.0% 100% 0.0% 75% 0.0%
Conversion@CurrencyInfo 0.0% 75% 0.0% 0.0% 0.0% 100% 75% 0.0%
Bill@PaymentMethod 75% 75% 75% 0.0% 75% 75% 100% 0.0%
Transfer@SourceAccount 0.0% 0.0% 0.0% 75% 0.0% 0.0% 0.0% 100%
. . .

5.6.2.2 Structural Dependency

To compute structural dependency among a given set of classes, we should determine classes that
depend on each other. Therefore, we rely on a coupling metric that captures different types of in-
teractions among classes. These interactions include [Shyam et Chris, 1994] [Churcher et Shepperd,
1995][Sun et al., 2011]:

1. Inheritance relationship: when a class inherits attributes and methods of another class.

2. Method call: when method(s) of one class use method(s) of another class.

3. Attribute access: when method(s) of one class use attribute(s) of another class.

4. Shared method invocation: when two methods of two different classes invoke the same
method belonging to a third class.

5. Shared attribute access: when two methods of two different classes access an attribute belong-
ing to a third class.

These interactions among classes allow us to determine a cohesive unit of classes as code-topic
should be. The structural dependency is computed pair-wisely between classes. We consider two
classes to depend on each other if they have at least one of the above mentioned interactions. We
quantify structural dependency as discrete values either 1 (if there is an interaction between the two
focused classes) or 0 (if there is no interaction). After computing the structural dependency among
all classes, we build a structural dependency matrix. The structure of this matrix is the same as the
cosine similarity matrix shown in Table 5.3. An entry in the structural dependency matrix refers to the
value of structural dependency.
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5.6.3 Clustering Classes as Code-Topics

After computing the similarity between classes of a given set, in this section we cluster similar classes
together as a candidate code-topic. Clustering techniques group similar classes together and aggre-
gate them into clusters [Jain et al., 1999]. Each cluster is considered as a code-topic. In our approach,
we rely on two techniques for clustering purpose: Formal Concept Analysis (FCA) and Agglomerative
Hierarchal clustering (AHC).

5.6.3.1 FCA for Code-Topics Identification

As we mentioned in the preliminaries chapter, FCA identifies meaningful groups of objects sharing
common attributes. In our approach, we exploit this grouping property for FCA to identify mean-
ingful groups (clusters) of similar classes. These groups represent code-topics. As we need to extract
code-topics from each minimal disjoint set of classes and from the common partition of classes, we
should create a separated formal context for each one. The objects and attributes for each formal
context are identical and represent the same set of focused classes. The relation between objects and
attributes refer to the similarity between classes. This similarity can be textual similarity, structural
dependency or a combination thereof.

In case of using the textual similarity, the cosine similarity matrix (defined in the previous subsec-
tion) is used to build the formal context. As the values of this matrix are continuous while the formal
context is a binary context (i.e. their values either 0 or 1), we can generate several binary contexts
from this matrix by specifying threshold values β ∈ [0,1]. Therefore, we consider the most commonly
used threshold for the cosine similarity (β = 0.70). All matrix values that are greater than or equal
to β are scaled to 1 while other values are scaled to 0. The obtained matrix after normalization rep-
resents the required formal context. In our illustrative example, the binary context that is extracted
from Table 5.3 at β= 0.70 is shown in Table 5.4. In this table the symbol (X) refers to 1.

In case of using the structural dependency, the structural dependency matrix (defined in the pre-
vious subsection) is used to build the formal context. The values of this matrix do not need a normal-
ization because they are binary values by nature.

In case of using a combination of textual similarity and structural dependency, we consider two
classes similar in the formal context if they at least are textually similar or depend on each other.

After building the required formal contexts, the concept GSH corresponding to each formal con-
text is generated. In the resulting GSH, clusters of similar classes can be identified by the concepts
having equal extent and intent sets. These concepts are known as square concepts [Azmeh et al.,
2011]. The extent of each square concept is a cluster of similar classes that can be a candidate code-
topic. Each class in such a cluster is similar to all other cluster classes. Figure 5.7 shows the generated
GSH corresponding to the formal context of our illustrative example defined in Table 5.4. The notion
of square concepts can be better recognized by performing column-line interchange for the formal
context defined in Table 5.4. The resulting interchanged context is shown in Table 5.5. The highlighted
portions in this table represent clusters of similar classes (square concepts). From the interchanged
context or from the GSH in Figure 5.7, we can identify the following code-topics:

• Code-topic 1: {Bill_BillAcount, Bill_OldBills, Bill_PayPartially}.
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Table 5.4 : The formal context extracted from Table 5.3 at β= 0.70.
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Bill_BillAcount X X X X
Conversion_converter X X X
Bill_OldBills X X X X
Transfer_TargetAccount X X
Bill_PayPartially X X X X
Conversion_CurrencyInfo X X X
Bill_PaymentMethod X X X X X X
Transfer_SourceAccount X X
. . .

Figure 5.7 : The Corresponding GSH for the Formal Context Shown in Table 5.4.

• Code-topic 2: {Conversion_converter, Conversion_CurrencyInfo}.

• Code-topic 3: {Transfer_SourceAccount, Transfer_TargetAccount}.

Additionally, we considered the extent of non-square concepts (such as, Concept_1 in Figure 5.7)
as a code-topic because such a concept always inherits from its ascendants an intent set containing
its extent members.
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Table 5.5 : The interchanged formal context.
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Bill_BillAcount X X X X
Bill_OldBills X X X X

Bill_PayPartially X X X X
Bill_PaymentMethod X X X X X X

Conversion_converter X X X
Conversion_CurrencyInfo X X X
Transfer_SourceAccount X X
Transfer_TargetAccount X X

. . .

Although FCA can identify a cluster of classes such that each class must be similar to all other clus-
ter’s classes, it does not merge together similar clusters. For example, although Bill_PaymentMethod
class is similar to classes Bill_BillAccount, Bill_OldBills and Bill_PayPartially, it appears in a separated
concept as shown in Figure 5.7. Moreover, FCA deals with only binary context and needs a threshold
mechanism to deal with multi-value context. In our case, this means that all cosine similarity values
over (0.70) are equivalent, however these values are not. For example, considering three class docu-
ments (D1, D2 and D3) and the cosine similarities between D1 and other documents (D2 and D3) are
respectively (0.71 and 100). Based on FCA, D1 is similar to D2 and D3 with the same degree of simi-
larity, as both values are scaled to 1. In the following, we show how AHC overcomes these limitations.

5.6.3.2 AHC For Code-Topics Identification

Agglomerative Hierarchal Clustering (AHC) is the second option to cluster similar classes into code-
topics in our approach. AHC starts with singleton clusters (i.e. clusters having only one object) and re-
cursively merges the two most similar cluster in each stage. In our approach, these singleton clusters
initially consist of individual class documents and later of clusters of class documents formed during
the previous stages. Based on this description of AHC, we can deduce that AHC computes similar-
ity among class documents, among clusters, and between clusters and class documents. Therefore, it
overcomes the limitation of FCA concerned with computing similarity only between class documents.
Our application of AHC relies on the following two steps:

Building a Hierarchy of Clusters

For a given set of classes, AHC aggregate similar classes into clusters. The basis for clustering
classes is the strength of the relationship between them. This relationship may refer to textual simi-
larity, structural dependency or a combination thereof. In AHC, we use the textual similarity. We rely
on VSM to compute this similarity like FCA.
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Algorithm 1: BuildingDendrogram

Input: cl asses
Output: Dendr og r amTr ee(dend g r )

1 st ack cl uster s ← cl asses
2 while (|cluster s| > 1) do
3 (C l u1,C l u2) ← mostSi mi l arC l uster s(cluster s)
4 Pop(C l u1,cluster s)
5 Pop(C l u2,cluster s)
6 C l u3 ← Mer g e(C l u1,C l u2)
7 Push(C l u3,cluster s)

8 end
9 dend g r ← g et (cluster s)

10 return dend g r ;

AHC works by creating a tree of nested clusters, called a dendrogram. A dendrogram is a tree di-
agram frequently used to illustrate the arrangement of the clusters produced by hierarchical cluster-
ing [Haifeng et Zijie, 2010]. We adapt AHC to build a dendrogram from a given set of class documents
according to Algorithm 1. This algorithm relies on a series of successive binary mergers, initially of in-
dividual class documents and later of clusters formed during the previous stages. In the beginning, it
puts each class document in its own cluster. Among all current clusters, the two most textually similar
clusters (mostSimilarClusters()) are picked. Then, these two clusters are replaced with a new cluster
by merging the two original ones. The process continues until only one cluster remains such that at
each iteration only one pair of clusters that have the highest relationship strengths are merged. We
obtain from this single cluster a dendrogram (dendgr) that contains a set of nested clusters. Based on
this description about how clusters are formed, AHC overcome the limitation of FCA concerning with
threshold mechanism used to scale multi-value context.

Figure 5.8 shows an example of dendrogram tree. At the lowest level, each class document is in its
own cluster. At the highest level, all classes belong to the same cluster. The internal nodes represent
new clusters formed by merging the clusters that appear as their children in the tree.

Selection of Candidate Code-Topics

Breaking the generated dendrogram tree based on predefined criteria groups classes into clus-
ters. Each resulting cluster can be a candidate code-topic. Therefore, we must select the appropriate
breaking points to obtain code-topics. This selection is performed by an algorithm based on a depth-
first search (refer to Algorithm 2) [Kebir et al., 2012a]. This algorithm takes as input the dendrogarm
tree and returns a set of clusters. We interpret these clusters as code-topics. This algorithm starts by
comparing the textual similarity value (Sim()) of each node in the dendrogram (starting from the root)
and its sons. If the similarity value of the focused node is less than the average of the similarity values
of its two sons, then the algorithm continues to the next son nodes. Otherwise, the focused node is
identified as a code-topic, added to the code-topics accumulator (T) and the algorithm computes the
next node in the stack (traversedClusters). In this way, the most relevant code-topics will be identified
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Figure 5.8 : An Example of Dendrogram Tree.

as the traversal continues.

To visualize how the algorithm 2 selects clusters (i.e.,code-topic), we again refer to Figure 5.8. The
red horizontal line determines the cutting points. Based on these points, we obtain four clusters as
follows. A first cluster contains only class 4. A second cluster contains classes 5, 3, 9 and 7 while
classes 10 and 1 belong to a third cluster. Finally, classes 6, 8 and 2 form a fourth cluster. Each cluster
represents a candidate code-topic.

5.7 Locating Features by LSI

In this section, we present how to link features with their implementing classes taking advantage of
reducing IR search spaces and abstraction gap between feature and source code levels. We achieve
this by following two steps: establishing a mapping between features and their respective code-topics
and then decomposing the code-topics to their classes.

5.7.1 Establishing a Mapping between Features and Code-Topics

We rely on LSI to link features to their code-topics as shown in Figure 5.6. We link features of the
common partition to the code-topics extracted from this partition. Also, we link features of each
minimal disjoint set to code-topics extracted from its corresponding minimal disjoint set of classes.

LSI is applied by following the steps described in the preliminaries chapter (see section 2.2) how-
ever we build LSI’s corpus and queries as follows. LSI’s corpus consists of code-topic documents. We
create a document for each code-topic containing terms extracted from identifiers of code-topic’s
classes. For LSI’s queries, we create s document for each feature containing a feature name and the
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Algorithm 2: CodeTopicDendrogramTraversal

Input: Dendr og r am(dend g r )
Output: Code-Topi cs(T )

1 st ack tr aver sedC l uster s
2 push(r oot (dend g r ), tr aver sedC luster s)
3 while (|tr aver sedC luster s| > 0) do
4 par ent ← pop(tr aver sedC luster s)
5 son1 ← g etSon1C l uster (par ent ,dend g r )
6 son2 ← g etSon2C l uster (par ent ,dend g r )
7 av g ← aver ag e(Si m(son1),Si m(son2))
8 if (Si m(par ent ) > (av g )) then
9 add(par ent ,T )

10 else
11 push(son1, tr aver sedC luster s)
12 push(son2, tr aver sedC luster s)

13 end
14 end
15 return T

description. Each feature document represents a query. We rely on Term frequency-inverse document
frequency (tf-idf ) metric to assign a weight for each term extracted from feature and code-topic doc-
uments (refer to Equation 5.1). This metric is commonly used for the purpose of feature location [Ali
et al., 2011][Peng et al., 2013].

Wi , j =
ni , j∑
k nk, j

× log2(
| D |

| d : ti ∈ d | ) (5.1)

In equation 5.1, Wi , j is the weight the term of ti in document d j , ni , j is the number of occurrences
of term ti in document d j ,

∑
k nk, j is the sum of occurrences of all terms in document d j , | D | is the

total number of documents in the collection, and | d : ti ∈ d | is the number of documents in which
the term ti appears.

LSI takes code-topic and feature documents as input. Then, LSI measures the similarity between
the code-topics and features using the cosine similarity. LSI returns a list of code-topics ordered by
their cosine similarity values against each feature. The code-topics retrieved should have a cosine
similarity value greater than or equal to 0.70, as this value represents the most widely used threshold
for the cosine similarity [Marcus et Maletic, 2003b].

5.7.2 Decomposing Code-Topics into their Classes

After linking each feature to all its corresponding code-topics, we can easily determine relevant classes
for each feature by decomposing each code-topic to its classes. For instance, imagine that we have
a feature (F1) that is linked to two code-topics: code-topic1= {c1, c4} and code-topic2= {c7, c6}. By
decomposing these code-topics into their classes; we find that F1 is implemented by five classes {c1,
c4, c7, c6}.
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5.8 Experimental Evaluation

In this section, we provide a validation of our approach for supporting feature location in a collection
of product variants. During this section, we present evaluation measures used. Also, we discuss the
obtained results and present threats of validity to our approach.

5.8.1 Evaluation Measures

The effectiveness of IR techniques is commonly measured by their precision, recall and F-
measure [Salton et McGill, 1986]. We adapt these metrics in our context as follows. Precision is the
percentage of retrieved links (i.e. class documents) that are relevant to the total number of retrieved
links. Recall is the percentage of retrieved links that are relevant to the total number of relevant links.
F-measure makes a trade-off between precision and recall so that it gives a high value only in the
case that both recall and precision values are high. These measures can be computed for each feature
separately, or for a set of features provided by a single product or a collection of product variants.
Equations 5.2, 5.3 and 5.4 represent respectively precision, recall and F-measure.

Pr eci si on = |{Relevant Li nks}
⋂

{Retr i eved Li nks}|
|{Retr i eved Li nks}| ×100% (5.2)

Recal l = |{Relevant Li nks}
⋂

{Retr i eved Li nks}|
|{Relevant Li nks}| ×100% (5.3)

F _measur e = 2
1

Reacl l + 1
Pr eci si on

×100% (5.4)

All measures have values in a range [0, 1]. If the precision value equals 1, this means that all the
retrieved links are relevant but also this does not mean that all relevant links are retrieved ( i.e., there
are false negative links). If the recall value equals 1, this means that all relevant links are retrieved but
also this does not mean that all retrieved links are relevant (i.e., there are false positive links). Higher
precision, recall and F-measure mean better results [Salton et McGill, 1986].

5.8.2 Results and Analysis

The most important parameter of LSI is the number of chosen term-topics. As mentioned in the
preliminaries chapter (see section 2.2.3.2), this number differs from one case study to another and
there is no recommended value for this parameter in the literature. In our work, we cannot use a
fixed number of term-topics because we have different sizes of class documents and code-topic doc-
uments. Thus, we use a factor K between 0.1 and 0.5 as well as between 0.01 and 0.05 to determine
the number of term-topics. The number of term-topics (#Term-topics) equals to “k ×Ddi m”, where
Ddi m is a document dimensionality of the term-by-document matrix that is generated by LSI.

We organize and explain the obtained results into three parts. In the beginning, we compare
our approach (called feature-to-code tractability in product variants or FCT for short) with both the
conventional application of LSI (Conv) and the most recent and relevant work on the subject, called
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PL-PV (proposed by Xue et al. [Xue et al., 2012]). Next, we compare results obtained using textual sim-
ilarity, structural dependency and their combination with FCA to identify code-topics for supporting
feature location. Finally, we compare the results obtained using FCA and AHC to identify code-topics
for supporting feature location.

5.8.2.1 Comparing FCT, Conv and FL-PV Approaches

Table 5.6 summarizes the average precision, recall and F-measure values obtained by CONV and FCT
approaches for all products considered of ArgoUML-SPL and MobileMedia case studies (section 2.4
details these case studies) at different values of K. We compute the values of these measures in both
approaches as follows. We first determine the total number of retrieved links, the total number of
retrieved links that are relevant and the total number of relevant links for all features of each product
at each value of K. Next, we compute precision, recall and F-measure for each product at different
values of K. Then, we compute the average of precision, recall and F-measure values for all products
considered. The results of FCT shown in Table 5.6 is based on using textual similarity measure and
FCA to identify code-topics. We can deduce from this table that recall and precision results of FCT
are better than those of the CONV in both case studies. This is attributed to two main reasons. Firstly,
FCT maps small sets of features to small sets of their respective source code classes by reducing the LSI
spaces. Secondly, FCT bridges the abstraction gap between feature and source code levels using the
code-topics. The F-measure results confirm that FCT gives higher precision and recall comparing with
CONV. This is because when the F-measure is high, then precision and recall are also high (according
to the F-measure definition).

Table 5.7 summarizes the precision, recall and F-measure values of FCT and FL-PV approaches
at different values of K. We compute the values of these measures in both approaches as follows. We
determine the total number of retrieved links, the total number of retrieved links that are relevant
and the total number of relevant links for all features in a collection of variants of ArogUML-SPL
and MobileMedia. Then, we compute precision, recall and F-measure for all features together of a
given collection at different values of K. From the Table 5.7, we can deduce that FCT outperforms
FL-PV in terms of precision, recall and F-measure metrics. This is attributed to the fact that FCT
does not only consider reducing LSI spaces like FL-PV but also reduces the abstraction gap between
feature and source code levels. This means that reducing LSI spaces is not the only important factor
to improve LSI results but also reduction the abstraction gap is another important factor. In addition,
Table 5.7 shows that FCT and FL-PV give the same results in case of MobileMedia for the following
reasons. Firstly, most minimal disjoint sets of optional features consist of only one feature, and hence
their corresponding minimal disjoint sets of classes contain only the implementation of that feature
(no more and no less). Thus, in this case we do not require LSI and code-topics. Secondly, each of
MobileMedia features is implemented by a few classes and sometimes by only two classes, and do
not have enough information to build code-topics.

5.8.2.2 Comparing Textual Similarity, Structural Dependency and their Combination with FCA

Table 5.8 compares the precision, recall and F-measure values obtained by considering textual simi-
larity, structural dependency and their combination as a similarity measure for identifying code-topics
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Table 5.6 : Average Precision, Recall and F-measure of FCT and CONV.

Case Study ArgoUML-SPL

Precision Recall F-measure

K FCT CONV FCT CONV FCT CONV

0.01 51% 21% 99% 91% 68% 34%

0.02 52% 22% 86% 82% 65% 35%

0.03 52% 29% 85% 59% 65% 39%

0.04 52% 42% 87% 39% 65% 40%

0.05 56% 63% 73% 25% 63% 36%

Case Study MobileMedia

Precision Recall F-measure

K FCT CONV FCT CONV FCT CONV

0.1 70% 25% 100% 63% 82% 40%

0.2 70% 26% 99% 60% 82% 40%

0.3 79% 30% 84% 50% 82% 41%

0.4 79% 32% 80% 35% 80% 39%

0.5 84% 43% 76% 27% 80% 38%

using FCA. Also, Table 5.9 shows average precision, recall and F-measure values of similarity measures
shown in the Table 5.8.

Based on these tables, we notice that only considering structural dependency achieves minor
enhancement in precision, recall and F-measure values compared to considering only textual sim-
ilarity, and their combination in case of ArgoUML-SPL. This minor enhancement is due to the fact
that ArgoUML-SPL is a large-scale case study, which leads to a lot of interactions between its source
code classes. Therefore, the structural dependency is a good choice to capture classes that depend
on each other, which leads to identifying more relevant code-topics. This minor difference between
the results of three measures confirm our assumption about code-topics’ classes, as classes that con-
tribute to form a code-topic sharing similar terms and are called near to each other. However, in case
of MobileMedia, the three similarity measures give the same results. This is due to reasons already
mentioned (see section 5.8.2.1).

5.8.2.3 Comparing AHC and FCA

Table 5.10 summarizes precision, recall and F-measure results obtained by using AHC and FCA for
identifying code-topics for ArgoUML-SPL and MobileMdia.

On a large-scale system (ArgoUML-SPL), we notice that AHC significantly improves the recall val-
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Table 5.7 : Precision, Recall and F-measure values of FCT against FL-PV.

Case Study ArgoUML-SPL

Precision Recall F-measure

K FCT FL-PV FCT FL-PV FCT FL-PV

0.1 70% 34% 40% 29% 51% 31%

0.2 57% 7% 9% 4% 16% 5%

0.3 57% 2% 5% 1% 9% 2%

0.4 62% 1% 4% 0% 8% 1%

0.5 57% 0% 2% 0% 3% 0%

Case Study MobileMedia

Precision Recall F-measure

K FCT FL-PV FCT FL-PV FCT FL-PV

0.1 85% 85% 100% 100% 92% 92%

0.2 85% 85% 100% 100% 92% 92%

0.3 93% 93% 93% 93% 93% 93%

0.4 93% 93% 93% 93% 93% 93%

0.5 96% 96% 89% 89% 93% 93%

Table 5.8 : Precision, recall and F-measure of textual similarity, structural dependency and their com-
bination using FCA

Case Study ArgoUML-SPL

Precision Recall F-measure

K Textual Structural Combination Textual Structural Combination Textual Structural Combination

0.1 70% 64% 71% 40% 51% 51% 51% 56% 59%

0.2 57% 95% 60% 9% 20% 6% 16% 33% 11%

0.3 57% 88% 89% 5% 3% 3% 9% 5% 6%

0.4 62% 67% 60% 4% 1% 2% 8% 2% 4%

0.5 57% 67% 80% 2% 0% 1% 3% 1% 2%

Case Study MobileMedia

Precision Recall F-measure

K Textual Structural Combination Textual Structural Combination Textual Structural Combination

0.1 85% 85% 85% 100% 100% 100% 92% 92% 92%

0.2 85% 85% 85% 100% 100% 100% 92% 92% 92%

0.3 93% 93% 93% 93% 93% 93% 93% 93% 93%

0.4 93% 93% 93% 93% 93% 93% 93% 93% 93%

0.5 96% 96% 96% 89% 89% 89% 93% 93% 93%
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Table 5.9 : Average precision, recall and F-measure of textual similarity, structural dependency and
their combination using FCA

Case Study Precision Recall F-measure
Textual Structural Combined Textual Structural Combined Textual Structural Combined

ArgoUML-SPL 61% 76% 72% 12% 15% 13% 17% 19% 16%

MobileMedia 90% 90% 90% 95% 95% 95% 92% 92% 92%

ues with a minor decrease in the precision compared to FCA. This improvement in recall is due to the
fact that AHC identifies code-topics by determining a set of clusters so that classes of each cluster are
similar among themselves and dissimilar to classes of other clusters. For FCA, it identifies code-topics
by determining a set of clusters (i.e. square concepts) in which all cluster’s members are similar to
each other but it does not consider similarity between clusters. This means that FCA computes the
textual similarity only among classes while AHC computes the similarity not only among classes but
also among clusters. Therefore, the total number of code-topics extracted from all minimal disjoint
set of classes using FCA is higher than AHC (423, 17 respectively). By identifying a small number of
code-topics, we can get more relevant information describing features that are implemented by the
identified code-topics’ classes. Regarding the minor decrease in precision, this is due to the fact that
AHC depends a lot on VSM compared to FCA. AHC uses VSM to compute similarity among classes,
among clusters, and between classes and clusters while FCA uses VSM to compute similarity only
between classes. This means that the number of false-positive links in the case of AHC is higher than
FCA because VSM may retrieve false-positive links which leads to impression. Table 5.10 also shows
that AHC significantly improves F-measure results compared to FCA. Considering the significant im-
provement in recall and minor decrease in precision. We believe that this improvement in F-measure
is expected; as F-measure is a harmonic mean between recall and precision values. This means that
using AHC leads to better compromising between precision and recall than FCA.

On a small system (MobileMedia), it is observed that AHC, FCA produce the same precision, recall
and F-measure results because of the reasons already mentioned (see section 5.8.2.1).

Table 5.11 presents some code-topics extracted from the minimal disjoint partition of classes that
correspond to two features of ArgoUML-SPL (UseCase and Sequence features). These code-topics
are extracted based on AHC to cluster similar classes as code-topics. We present in this table a
cluster of ECUs that correspond to each code-topic. We observe that classes of code-topic 1 are re-
lated, as their names share the term (ActionNew) and most of them belong to the same package
(argouml.uml.ui.behavior.usecases). Moreover, the term UseCase is shared among class and pack-
age names. Based on this observation, we can deduce that these classes collaborate to support a
function provided by UseCase feature. This similarity in their class and package names indicate that
the content of these classes is also textually similar, and hence AHC groups them as a code-topic.
For code-topic 2, most the classes of this code-topic belong to packages that their names consists
of the term sequence and also the names of these classes share the term Fig. Fig is acronym for
Figure, as these classes are responsible for showing objects on a sequence diagram. Therefore, these
classes may collaborate to support a function provided by Sequence feature. Also, we can notice that
this code-topic contains two classes (ActorPortFigRect and FigMyCircle) belonging to a package (ar-
gouml.uml.diagram.use_case.ui) that may concern with UseCase feature. This is due to one of the
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Table 5.10 : Precision, recall and F-measure of AHC against FCA for ArgoUML-SPL and MobileMedia.

ArgoUML-SPL

Precision Recall F-measure

K AHC FCA AHC FCA AHC FCA

0.1 52% 70% 99% 40% 68% 51%

0.2 52% 57% 99% 9% 68% 16%

0.3 52% 57% 98% 5% 68% 9%

0.4 52% 62% 98% 4% 68% 8%

0.5 52% 57% 96% 2% 67% 3%

MobileMedia

Precision Recall F-measure

K AHC FCA AHC FCA AHC FCA

0.1 85% 85% 100% 100% 92% 92%

0.2 85% 85% 100% 100% 92% 92%

0.3 93% 93% 93% 93% 93% 93%

0.4 93% 93% 93% 93% 93% 93%

0.5 96% 96% 89% 89% 93% 93%

following reasons. Firstly, a function supported by the classes of code-topic 2 may be shared between
the UseCase and Sequence features, as Sequence feature is “an interaction diagram to model the be-
havior of use cases by describing the way groups of objects interact to complete the task”1. Secondly,
these two classes are linked to other classes due to false-positive similarity may be computed by VSM,
as AHC depends on VSM to compute textual similarity between classes.

Table 5.12 presents an example of a feature implantation obtained by our approach. This im-
plementation represents a set of ECUs associated to the UseCase feature. We notice that most of the
classes presented in this table belong to the same package (argouml.uml.ui.behavior.use_cases) and
the term UseCase is apart of their names.

5.8.3 Threats to Validity

We identify two threats of validity to our approach. The first threat is that developers may not use the
same vocabularies to name source code identifiers across product variants. This would mean that
textual matching at source code level to determine minimal disjoint sets of classes and code-topics
identification would be affected. Nonetheless, when a company has to develop a new product that is
similar, but not identical, to existing ones, an existing product is cloned and later modified according
to new demands. Consequently, there are common terms between identifiers across product variants.
In case of having product variants with different vocabulary for source code identifiers, we can rely

1http://argouml-spl.tigris.org/
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Table 5.11 : Examples of code-topics

Code-Topic 1

argouml.uml.diagram.use_case.ui@StylePanelFigUseCase
argouml.uml.ui.behavior.use_cases@ActionNewExtendExtensionPoint
argouml.uml.ui.behavior.use_cases@ActionNewExtensionPoint
argouml.uml.ui.behavior.use_cases@ActionNewUseCase
argouml.uml.ui.behavior.use_cases@ActionNewUseCaseExtensionPoint

Code-Topic 2
argouml.uml.diagram.sequence.ui@FigActivation
argouml.uml.diagram.sequence.ui@FigBirthActivation
argouml.uml.diagram.sequence.ui@SelectionMessage
argouml.uml.diagram.sequence.ui@TempFig
sequence2.diagram@FigMessageSpline
argouml.uml.diagram.use_case.ui@ActorPortFigRect
argouml.uml.diagram.use_case.ui@FigMyCircle

Table 5.12 : Example of a feature implementation

Feature Name: UseCase

argouml.uml.ui.behavior.use_cases@ActionAddExtendExtensionPoint
argouml.uml.ui.behavior.use_cases@ActionNewActor
argouml.uml.ui.behavior.use_cases@ActionNewExtendExtensionPoint
argouml.uml.ui.behavior.use_cases@ActionNewExtensionPoint
argouml.uml.ui.behavior.use_cases@ActionNewUseCase
argouml.uml.ui.behavior.use_cases@ActionNewUseCaseExtensionPoint
argouml.uml.diagram.use_case.ui@StylePanelFigUseCase
argouml.uml.ui.behavior.use_cases@PropPanelActor
argouml.uml.ui.behavior.use_cases@PropPanelExtend
argouml.uml.ui.behavior.use_cases@PropPanelExtensionPoint
argouml.uml.ui.behavior.use_cases@PropPanelInclude
argouml.uml.ui.behavior.use_cases@PropPanelUseCase
argouml.uml.ui.behavior.use_cases@UMLExtendBaseListModel
argouml.uml.ui.behavior.use_cases@UMLExtendExtensionListModel
argouml.uml.ui.behavior.use_cases@UMLExtendExtensionPointListModel
argouml.uml.ui.behavior.use_cases@UMLExtensionPointExtendListModel
argouml.uml.ui.behavior.use_cases@UMLExtensionPointLocationDocument
argouml.uml.ui.behavior.use_cases@UMLExtensionPointUseCaseListModel
argouml.uml.ui.behavior.use_cases@UMLIncludeAdditionListModel
argouml.uml.ui.behavior.use_cases@UMLIncludeBaseListModel
argouml.uml.ui.behavior.use_cases@UMLIncludeListModel
argouml.uml.ui.behavior.use_cases@UMLUseCaseExtendListModel
argouml.uml.ui.behavior.ues_cases@UMLUseCaseExtensionPointListModel
argouml.uml.ui.behavior.use_cases@UMLUseCaseIncludeListModel
.........
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on natural language processing tools to find matching between different vocabularies that have the
same semantic.

The second threat is that our approach assumes that features are implemented by source code
classes. However, features also can be implemented by methods, especially in the case of small-scale
systems and in applications that are implemented by procedural languages. Our approach is easily
adapted to work with source code methods and procedures, as our strategies to improve IR-based
feature location are applicable to support any granularity of source code.

5.9 Conclusion

In this chapter, we have presented an approach to improve the effectiveness of IR namely LSI, as a
feature location technique in a collection of product variants. Our approach followed two strategies to
achieve this improvement: reducing IR search spaces (feature and source code spaces) and reducing
the abstraction gap between feature and source code levels. Firstly, we analyzed commonality and
variability distribution across product variants to reduce features and source code of a collection of
product variants into a minimal disjoint set of features and their corresponding minimal disjoint set
of classes. Secondly, we introduced the concept code-topic to reduce the abstraction gap between
feature and source code levels. We made a comparison between two techniques to identify code-
topics: formal concept analysis (FCA) and agglomerative hierarchal clustering (AHC).

In our experimental evaluation using two case studies of different domains and sizes, we demon-
strated that our approach outperforms the conventional application of LSI as well as the most recent
and relevant work on the subject in terms of precision, recall and F-measure [Xue et al., 2012]. We
also showed that advantages and disadvantages of FCA and AHC to identify code-topics. Moreover,
we showed that using AHC for identifying code-topics significantly improves the recall values of LSI-
based feature location with a minor decrease in the precision compared to FCA.
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6
Feature-Level Change Impact Analysis

Based on Feature Location

Preamble

In this chapter, we propose a feature-level CIA approach based on feature location to study the impact of
changes made to implementation of features obtained from product variants. Given a change proposal,
the goal of our approach is to allows SPL’s manager conducting change management from his point
of view by computing a ranked list of features and providing quantitative measures for this purpose.
In section 6.1, we motivate our approach. In section 6.2, we give a general overview of feature-level
CIA process. We detail the proposed approach steps in sections 6.3, 6.4 and 6.5. In section 6.6, we
show experimental results and effectiveness of the proposed approach. Finally, section 6.7 concludes
the chapter.
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6.1 Introduction

Before committing to the source code changes made to the implementation of features obtained
from product variants, SPL’s manager may need to understand the change from his point of

view rather than the technical details. Often, this point of view is related to market issues and takes
into account economic considerations. Feature-level CIA allows for conducting change management
from a SPL manager’s point of view, as a feature is an agreement between all stakeholders (including
managers) about what SPL should do. It provides a sound basis to judge whether the change is worth
the effort [Passos et al., 2013], or if inevitable, which features should be changed as a consequence.
Consequently, it allows SPL’s manager to decide which change strategy should be executed based on
affected features. Additionally, feature-level CIA detect the introduction of undesired interactions
between feature implementations.

Feature-level CIA is far from a trivial task when we have a large number of features. Manually
tracing feature implementations to determine affected features is time-consuming, error-prone and
tedious. As we have seen in the state-of-the-art, the CIA is seldom considered at the feature level for
changes made to the source code level. Most the existing approaches performs CIA at the source code
level with few approaches completed at other levels. There is only one approach that performs CIA at
the feature level however it does not support change management form SPL manager’s point of view,
as we have seen [Revelle et al., 2011].

In this chapter, we propose a feature-level CIA based on Formal Concept Analysis (FCA). This ap-
proach represents an application of feature location. In fact, feature-level CIA mainly relies on the
identified traceability links between features and their implementing source code classes in order to
determine which features will be impacted for a change induced at the source code level. The pro-
posed approach takes, as input, a change set composed of classes to be changed and computes, as
output, a ranked list of affected features. Each feature in the ranked list has a degree to be affected
representing the feature priority to be checked by maintainers. Additionally, we propose two met-
rics to support feature level CIA: impact degree and changeability assessment metrics. The former
is used to measure to which degree a specific feature can be affected. The latter is used to measure
the percentage of features that are affected. This metrics give SPL manager a general overview about
the affected features to help him for change management. Our CIA approach provides the following
benefits:

1. Performing CIA at the feature level for changes induced at class level before a change is imple-
mented.

2. Quantitative measures to evaluate the ease of implementing a proposed change where there is
often more than one change that can solve the same problem.
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Figure 6.1 : Main Steps of Our Feature-Level CIA Approach.

6.2 Feature-Level CIA Process

When source code classes that contribute to implementing a feature are changed during the mainte-
nance, the change may be propagated to the neighbor classes which the changed classes are coupled
to. Classes that are strongly coupled to the modified classes are the most likely to be impacted. For ex-
ample, suppose that a given class (C1) inherits the class (C2). If any method declared in C2 is changed,
this change may impact the methods defined in C1. This is because the inheritance relationship prop-
agates the impact of change from super class to the derived class. As a feature’s implementation may
span multiple classes and it also may be shared between features, a change may lead to impact the
implementation of other features. Therefore to perform feature-level CIA, we should first determine
the impact set of classes of a given change set of classes and then determine coupled features. In our
approach, we rely on structural and feature couplings to support these purposes respectively. Struc-
tural coupling refers to interdependencies between classes, such as inheritance, method invocation,
etc. Feature coupling is the degree to which the source code elements implementing a feature (e.g.,
methods, attributes, classes) depend on elements outside the feature [Apel et Beyer, 2011].

Figure 6.1 gives an overview of the proposed approach. This approach relies on three main steps:
(i) computing the impact set of classes for source code changes, (ii) analyzing coupled features using
FCA, (iii) querying the generated GSH to compute a ranked list of affected features. As shown in the
Figure 6.1, the two first steps are executed in parallel. The first step takes as input the change set of
classes (CSC) and source code of a given set of feature(s). The objective of this step is to compute the
impact set of classes that could be affected by changes made to the source code (i.e., CSC) of features.
Of course, this impact set also contains the change set members. The second step takes as input a
feature-to-class traceability matrix. In this matrix, each feature is linked to its implementing classes.
Column and row labels respectively refer to feature and class names. The matrix values refer to which
feature is implemented by which class. The objective of this step is to build the GSH corresponding
to a formal context obtained by feature-to-class traceability matrix. This GSH is used to analyze and
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determine coupled features. Finally, the third step takes the output of the first two steps (i.e., the
impact set of classes and resulting GSH) to compute a ranked list of affected features.

6.3 Determining the Impact Set of Classes

Analyzing the interdependencies between classes helps to determine the coupled classes, and hence
determine the impact set of classes. We rely on the following interdependencies that represent cou-
pling aspects in object-oriented applications for CIA purpose [Shyam et Chris, 1994] [Churcher et
Shepperd, 1995][Sun et al., 2011]:

1. Inheritance relationship: when a class inherits attributes and methods from another class.

2. Method call: when a method of one class calls a method of another class. For example, when a
changed method is called by a method from different a class.

3. Attribute access: when a class accesses an attribute of another class. For example, when a class
accesses an changed attribute belonging to different class.

4. Shared attribute access: when two classes access the same attribute of another class. For ex-
ample, classes (A and B) accesses the same attribute (AT) that belongs to the class C. Class A
updates the value of AT then B reads the written value. For some reason, the call statement of
AT in class A is removed. Then, such a change impacts the class B indirectly.

Each one of these interdependencies works as a coupling connection to propagate different kinds
of source code changes. Therefore, we depend on them to determine the impact set of classes. To
capture these interdependencies, we build a dependency matrix. Columns and rows are identical
and represent all source code classes of all features. Matrix values refer to coupling strength between
classes. This matrix is constructed by statically analyzing the source code of features through build-
ing an abstract syntax tree (AST) [Fluri et al., 2007]. We consider the implementation of all features
together as a single application, and then we parse the source code of this application to build AST.
This tree is traversed to determine coupled classes based on interdependencies mentioned above.
After building such a matrix, classes that are coupled to the change set classes constitute members of
the impact set.

This step represents CIA at the source code level. In the literature, there many approaches that
can be used to perform this step [Bixin et al., 2012]. We use such a CIA only as a step (not as a research
goal) to perform feature-level CIA. Therefore, this step is flexible to be implemented by any existed
approach supporting CIA at the source code level.

6.4 Determining Coupled Features Using FCA

As stated before (see section 6.2), determining coupled features is essential for feature-level CIA. In
this step, we rely on FCA for this purpose. This is because it allows analyzing and visualizing source
code classes that are shared among all features, among a subset of features and those that are specific
to each feature through the hierarchical organization of GSH concepts. Therefore, we build the formal
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Table 6.1 : Formal context of features and classes.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

F1 X X X X X

F2 X X X X X

F3 X X X X

F4 X X X

F5 X X X X X

F6 X X

F7 X X

context where objects are features and attributes are classes. The relation between a feature (F) and
a class (C) refers to that F is implemented by C. Such a formal context represents the feature-to-
class traceability matrix which is an input of this step (see Figure 6.1). According to this definition of
the formal context, we can obtain a GSH containing concepts that are composed of a set of features
sharing a set of classes. The generated GSH represents a hierarchical organization of features and
classes, so that a certain concept inherits its extent (features) from its descendants (sub-concepts)
and its intent (classes) from its ascendants (super-concepts). Such a GSH represents dependencies
between features and classes (feature coupling).

Table 6.1 is an example of the formal context to be analyzed where objects =
{F 1,F 2,F 3,F 4,F 5,F 6,F 7} and attributes = {C 1,C 2,C 3,C 4,C 5,C 6,C 7,C 8,C 9,C 10,C 11,C 12}. Fig-
ure 6.2 shows the corresponding GSH of the formal context shown in Table 6.1. Based on this
GSH and FCA definitions (see section 2.3 of the preliminaries chapter), we notice the following
observations:

Figure 6.2 : The GSH for the Formal Context of Table 6.1.
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- The impact of changes made to classes of GSH concepts that are located at the top of the GSH
is propagated to all extents (features) of GSH concepts. For example, if C1 and C10 respectively
at Concept_7 and Concept_13 are modified or impacted, all features (F1 to F7) will be affected.
This is due to the fact that classes of concepts located at the top are shared among all or most of
GSH concepts. Based on this observation, we can find exactly which classes should not be mod-
ified or impacted as much as possible during the maintenance because they may lead to risk
of changing the implementation of all features, and hence increasing the maintenance costs.
Moreover, it is important during regressing testing to pay attention to these classes because
they represent core classes of implementation of features obtained from product variants.

- The impact of changes made to classes of GSH concepts that are located at the bottom is local.
For example, if C8 at Concept_4 belongs to the impact set, only F 5 will be affected. Based on this
observation, we can determine which classes have less impact on system features. Determining
these classes is useful to guide the maintainers to choose from available change strategies the
one that considers only such classes to implement the change request.

- By descending vertically throughout the GSH, the impact of changes is gradually decreased.
For example, if changes are made to {C 1}, the set of affected features will be composed of
{F 1,F 2,F 3,F 4,F 5} but if changes are made to {C 7}, the set of affected features will be only com-
posed of {F 3,F 5}.

- The features of GSH concepts that are downwardly reachable from jointly changed classes have
a high probability to be affected. For example, assuming that the impact set is composed of
{C 2,C 3,C 5}, then F 1 has a higher probability to be affected than F 2. This is because F 1 will be
affected by three joint classes {C 2,C 3,C 5}, while F 2 will be affected by two joint classes {C 2,C 3}.

- Based on the generated GSH, we can determine groups of features that are isolated from oth-
ers. These groups may constitute subsystems that are maintained by specific teams. The GSH
help to determine required maintenance teams based on the affected subsystems. By refer-
ring to the Figure 6.2, we can notice that features are organized into sub-systems (Part1 and
Part2) based on the dependency between their implementations. Imagine that the impact set
of classes consists of classes (C10, C11), and hence the affected features are F6 and F7 of part2.
If these features are entrusted to a certain team in the organization, a product manager can
exclude other maintenance teams and ask only the interested team to execute the change.

6.5 Querying GSH for Determining a Ranked List of Affected Features

In this section, we present how to determine and rank the affected features for a given change pro-
posal based on the GSH generated in the previous step.

6.5.1 Determining the Affected Features

After generating the GSH of features and classes in the previous step, we use the impact set of classes
as a query to retrieve affected features by enquiring this GSH. The retrieved features represent two
subsets of affected features, following the two steps below:
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- Step I: locating a set of GSH concepts that have as intent (excluding inherited intent) one or
more of classes that are impacted. The extents of these concepts represent the first subset of
affected features.

- Step II: determining all downwardly reachable concepts from concepts determined in the step
I. The extents of these concepts represent the second subset of affected features.

To perform step I mentioned before, we propose Algorithm 3 to locate the GSH concepts having
as intent one or more impacted classes. This algorithm takes as input the impact set of classes (ISC)
and the GSH (C L). The algorithm returns as output a list of GSH concepts (CON ) that one or more of
their intent elements belong to the ISC set. This list is used as input for the step II.

Algorithm 3: LocatingAffectedConcepts

Input: ISC, CL
1 //ISC: Impact Set of Classes, CL: GSH

Output: CON // a list of concepts associated with ISC
2 CON ←φ

3 foreach CO from 1 to |C L| // CO is the current concept do
4 if (is intent of the concept CO has one or more of ISC members) then
5 add(CON, CO)

6 return CON

To perform step II mentioned before, we propose the Algorithm 4 based on depth-first search
(DFS) to determine a set of GSH concepts that are downwardly reachable from concepts obtained
in the step I. Algorithm 4 takes as input a list of concepts computed in step I (CON) and the GSH to
be queried (CL). Lines 1-11 check each concept in CON in turn so that each one becomes the root
of a new tree of the DFS. The extents of concepts that constitute such a tree represent all affected
features for changes made to intent (classes) of its parent concept. The function getAdjacentCon-
cepts() returns all concepts that are located immediately below and directly related to the current
concept (Co). LCF is an accumulator for all traversed concepts. These traversed concepts repre-
sent all downwardly reachable concepts from CON concepts. LCF may contain some concepts that
do not have own extent and LCF also can contain redundant concepts due to the overlap between
DFS’s trees. Therefore, lines 12-15 remove concepts having only inherited extents using the function
(RemovingConHavingEmptyExt()) and also redundant concept using the function (RemovingRedun-
dantConcepts()). Line 16 extracts the extent of LCF concepts using the function ExtractingExtent().
The extents of these concepts represent all the affected features (AF).

6.5.2 Ranking the Affected Features

Based on the observations mentioned in section 6.4, we notice that the GSH hierarchically organizes
features according to their degree of impaction for a given change proposal. Based on this hierarchy,
we propose two metrics to support our feature-level CIA: Impact Degree Metric (IDM) and Change-
ability Assessment Metric (CAM).
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Algorithm 4: LocatingAffectedFeatures

Input: CON, CL
Output: AF // list of affected features

1 LCF ←φ // a list of concepts downward reachable from CON
2 foreach j from 1 to |CON | do
3 ConceptStack ← CON[j]
4 while (ConceptSt ack is not empty) do
5 Co ← pop(ConceptStack)
6 AdjCos ← getAdjacentConcepts(Co, CL)
7 if (AdjCos is empty) then
8 LCF ← Co

9 else
10 push(AdjCos)
11 LCF ← Co

12 foreach i from 1 to |LCF | do
13 if Extent(LCF [i]) is empty then
14 RemovingConHavingEmptyExt( LCF , i) // remove the concept i from LCF

15 RemovingRedundantConcepts (LCF )
16 AF ← ExtractingExtent(LCF )
17 return AF

6.5.2.1 Impact Degree Metric (IDM)

IDM is used to measure the degree to which the implementation of a given feature can be affected.
Features having high IDM values, the functional requirements provided by these features have a high
probability to be affected. Therefore, such a metric may give a SPL’s manager an indicator about im-
pacting certain features. They may represent mandatory features or critical features in terms of some
aspects related to, for example, economic considerations. We think that IDM is useful for this purpose
by giving an indicator about to what extend such features can be impacted and help SPL’s manager
for making decisions. A list of affected features may contain features whose implementations are in
fact not impacted (false-positive features) but features having higher IDM values are expected to be
actually affected. We propose the following equation for IDM :

I DM(F ) = |{I }
⋂

{ImpactSetOfClasses}|
|{I }| ×100% (6.1)

In Equation 6.1, F is an affected feature while I is the intent (classes) of a GSH concept having F
as an extent and also I includes all intents inherited in a top-down manner from that concept. Thus,
we need to compute the inherited intents of GSH concepts (LCF ) having the affected features. This is
performed using the DFS algorithm to compute all upwardly reachable concepts from each concept
in LCF . This algorithm is similar to the Algorithm 4, and for prohibiting repetition it is not written.
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IDM values are in the range [0, 1]. Using IDM metric, we can rank the affected features from the
feature that has a higher IDM value to the feature that has a lower IDM value.

6.5.2.2 Changeability Assessment Metric (CAM)

CAM is a metric for determining the percentage of features that are affected by a given change. It
describes the changeability of features in order to help product managers to decide whether a change
proposal is accepted or to find another change plan more suitable to employ. We propose to use the
following equation for CAM:

C AM = #Affected_Features

#All_Features
×100% (6.2)

In Equation 6.2, Affected_Features represent a set of features that are potentially affected by a given
impact set of classes. All _Featur es represent all features (including affected feature and others).
CAM values take a range [0, 1]. If the computed CAM value is high, this means that features (resp.
their implementation) is more sensitive for a given change proposal and vice versa.

The value of CAM metric is strongly dependent on the coupling between features. Features that
are coupled to the implementation of feature(s) being modified are the most likely to be affected,
and hence the obtained CAM value is high. However, features that are not coupled to other features
can be changed almost in isolation, and hence CAM value for any change proposal will be low. With
reference to Figure 6.2 and considering that the impact set is composed of {C 3,C 5,C 6}, we find the
IDM and CAM values of this impact set as shown in Table 6.2. The columns (Concept_No, Features
and Rank) show respectively a set of concepts having affected features, their affected features and the
rank of these features according to IDM values. From Table 6.2, we notice that F4 has the highest IDM
value, so its implementation is checked first by maintainers. Also, Table 6.2 shows that CAM for this
impact set is equal to (71%). This means that most of the features will be affected by the given impact
set.

6.6 Experimental Evaluation

In this section, we provide an experimental evaluation of our feature-level CIA approach to demon-
strate its feasibility. We have applied it to core assets of three different case studies: ArgoUML-SPL1,

1http://argouml.tigris.org/

Table 6.2 : Impact results for {C3, C5, C6} changes.

Concept_No Features |{I }| |{I }
⋂

{I SC }| IDM Rank CAM

Concept_3 F4 3 2 66% 1

71%

Concept_1 F2 5 2 40% 2

Concept_0 F1 5 2 40% 2

Concept_2 F3 4 1 25% 3

Concept_4 F5 5 1 20% 4
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Table 6.3 : Subject core assets and their respective information.

Core Assets #Features #Classes

ArgoUML-SPL 8 515

MobileMedia 6 28

BerkeleyDB-SPL 25 227

MobileMedia2 and BerkelyDB-SPL3. These case studies were described in the preliminaries chapter
(see section 2.4) . Table 6.3 summarizes relevant information of these core assets in terms of number
of features and source code classes. In the coming subsections, we present respectively evaluation
measures, effectiveness of our approach and threats to validity.

6.6.1 Evaluation Measures

We relied on three measures from information retrieval, namely precision, recall and F-measure to
evaluate our CIA approach [Salton et McGill, 1986][Hattori et al., 2008]. Precision measures the accu-
racy of the estimated affected features according to the actual affected features. Recall measures to
what degree the estimated affected features covers the actual affected features. F-measure makes a
trade-off between precision and recall, so that it gives a high value only in the case that both recall
and precision values are high. Based on the definitions above, we can see that precision also quanti-
fies affected features that actually are not affected (false-positive). Also, recall quantifies the features
that are affected but not identified (false-negatives). In our study, we use the following definitions of
precision, recall and F-measure.

Pr eci si on = |{E AF }
⋂

{A AF }|
|{E AF }| ×100% (6.3)

Recal l = |{E AF }
⋂

{A AF }|
|{A AF }| ×100% (6.4)

F _measur e = 2
1

Recal l + 1
Pr eci si on

×100% (6.5)

In the equations above, EAF represents the estimated affected features retrieved by our CIA ap-
proach, while AAF represents the actual affected features. To compute AAF, we manually trace all fea-
ture implementations to identify the actual affected set of features for a given impact set of classes.
Higher precision, recall and F-measure mean better results. This means that the EAF represents all
features actually affected and nothing else. All measures have values within [0,1]. If the EAF has a

2http://www.ic.unicamp.br/ tizzei/mobilemedia/
3http://www.fosd.de/FeatureVisu/
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high precision, this means that maintainers spend less time and effort to locate affected features. If
the EAF has a high recall, this gives maintainers the confidence that all of affected features have been
considered.

6.6.2 Results and Effectiveness

Table 6.4 summarizes results obtained by our CIA approach. Columns describe respectively: change
set of classes (CSC), the size of CSC (|C SC |), the total number of estimated affected features (|E AF ),
precision, recall, F-measure and CAM. We randomly select three different CSCs for both ArgoUML-SPL
and MobileMedia, and two CSCs for BerkeleyDB-SPL. Therefore, we have 8 CSCs to be analyzed. These
selected CSCs are modified by considering different change types, including changes made to class
signature, class body, attributes, method signature and method body.

Table 6.4, shows that precision values are fluctuated and take a value in the range between 60%
and 100%. This fluctuation can be attributed to two reasons. Firstly, some changes made to CSC do
not have any impact on feature implementations. These changes include deleting dead source code
(e.g., conditional branch that logically will never be entered), adding output statements, etc. Sec-
ondly, the impact set of classes may contain some classes that, in fact, are not impacted. Such classes
are called false-positive classes. For example, consider that C1 and C2 are two classes connected by
a method invocation and C1 is proposed to be changed by adding an attribute. In this case, C2 is
considered as affected classes in spite of the fact that it is not affected by this change. Such a case
indicates features that are implemented by false-positive classes are actually not affected. Based on
precision values, we notice that our approach reduces 60% of maintainers’ burden to locate change
effects. The precision value can be improved by filter out the false-positive classes. However, this task
increases the maintainers’ burden. Even though we use another approach to compute the impact set
of classes, the result of that approach should be checked by maintainers to determine false-positive
elements as with any CIA approach.

Recall values shown in Table 6.4 are high where these values take a range between 75% and 100%,
and in most cases they reach 100%. The reason that hinders our approach achieving 100% for all
CSCs is that we do not consider classes that are not neighbors of CSCs. These classes may contribute
to implement feature(s). F-measure values confirm that our CIA approach gives a good compromise
between precision and recall, as these values are high taking a range between 67% and 100%.

Table 6.4 shows the changeability of features (CAM) of each case study against each CSC consid-
ered. We notice that all CSCs of MobileMedia affect more than half of its features. This is because
MobileMedia is a small-scale system, and hence its source code classes are strongly coupled so that
any change may impact many features. For ArgoUML-SPL, all changes made to its features affect al-
most half of its features. This is due to ArgoUML-SPL’s features being loosely coupled. They seem as
isolated subsystems for example, cognitive feature is implemented by 221 classes. For BerkeleyDB-
SPL, changes made to its features affect most of its features. By investigating the changed classes and
the GSH corresponding to this case study, we find that one of the changed classes (EnvironmentImpl)
is located at the top of the GSH. This means that changes made to this class are propagated to the
implementation of most features, which leads to a rise in the value of CAM. Based on CAM values,
we notice that these values quantify the changeability of the extracted features against each change
proposal. This allows SPL’s manager to select the change strategy with lowest possible CAM value.
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Table 6.4 : Precision, Recall and F-measure of our CIA Approach.

CSC |C SC | |E I S| Precision Recall F-measure CAM

MobileMedia

CSC1 5 5 60% 75% 67% 100%

CSC2 5 6 83% 100% 90% 83%

CSC3 8 6 67% 100% 80% 100%

ArgoUML-SPL

CSC1 9 5 80% 100% 88% 62%

CSC2 8 4 75% 100% 86% 50%

CSC3 18 5 80% 100% 88% 62%

BerkeleyDB-SPL

CSC1 6 25 92% 100% 96% 92%

CSC2 5 25 100% 100% 100% 100%

6.6.3 Threats to Validity

We identify three issues that constitute limitations of our study and impact the results. The first two
issues are related to CIA at the source code level, which is outside of scope of our concern in this work.

• Firstly, our approach studies many different source code changes, such as deletion of a class
and changes made to a class body. Deleting the dead source code and outputting statements
are also studied, but actually, such changes do not impact system features. As a result, this will
cause false-positive impact set of classes.

• Secondly, our approach does not consider classes that are not neighbors of modified classes
although these classes may be impacted, and hence degrades the recall values.

• Finally, the change set is randomly selected, which may not be the actual proposed changes in
subject systems. Therefore, this may affect the results.

6.7 Conclusion

In this chapter, we have proposed a feature-level CIA approach to study the impact of changes made
to source code elements of features obtained from product variants. This approach leveraged the
traceability links between given features and their implementing source code elements to perform
CIA at the feature level.

Our approach helps SPL managers to conduct change management from their point of view.
Therefore, it returns a ranked list of affected features, as a feature is better understood by a SPL’s
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manager. Also, two metrics are suggested to support change management from a manager’s point of
view: IDM and CAM. The form is used to compute to which degree a given feature is affected and
compute the changeability of all features.

The proposed approach takes, as input, a change set of classes, feature-to-class traceability matrix
and source code of features. It computes a ranked list of potentially affected features. In the proposed
approach, we employed structural and feature couplings. Structural coupling was used to determine
the impact set of classes of a given change request. Feature coupling was used determine features
coupled to the implementation of feature(s) being modified. We used formal concept analysis to
determine coupled features. Our experiments on three core assets of three case studies of different
domains and sizes proved the effectiveness of our approach in terms of the most widely used metrics
on the subject (precision, recall and F-measure).
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Toward Reverse Engineering of SPLA from

Product Variants and Feature to
Architecture Traceability

Preamble

In this chapter, we propose an approach to support reverse engineering SPLA taking advantage of exist-
ing software product variants. This reverse engineering task represents the second application of feature
location in our work. In this reverse engineering task, we focus on identifying mandatory components
and variation points of components as an important step toward SPLA. In section 7.1, we motivate the
need for our approach. In section 7.2, we present an overview of the process of identifying mandatory
components and variation points of components. We detail the process phases in sections 7.3 and 7.4.
Section 7.5 shows the experimental evaluation to demonstrate the feasibility of the proposed approach.
Finally, this chapter ends with a conclusion in section 7.6.
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Chap 7. Toward Reverse Engineering of SPLA from Product Variants and Feature to Architecture

Traceability

7.1 Introduction

SOftware Product Line Architecture (SPLA) constitutes the backbone of successful SPL. It provides
a coherent picture of the different components that must be developed and to equip them with

generic interfaces that can be used throughout the different products [Linden et al., 2007]. It is used
to develop several concrete architectures for SPL’s products. To that end, it must encompass com-
monality and variability of requirements of SPL’s products.

Developing SPLA from scratch is a costly task because it should encompass the components re-
alizing all the mandatory and varying features in a particular domain [Pohl et al., 2010]. SPLA can be
reverse engineered from software product variants by exploiting commonality and variability across
product variants and extracting components from their source code. Reverse engineering SPLA from
software product variants has not been considered in the literature. As mentioned in the respective
state-of-the-art, most existing works support reverse engineering software architecture from single
existing software system.

In this chapter, we propose an approach to contribute for building SPLA taking advantage of ex-
isting product variants. Our contribution is twofold:

• Identifying mandatory features and variation points (VPs) of features of a given collection of
product variants as this identification represents the main source of commonality and variabil-
ity of SPLA.

• Exploiting the commonality and variability in terms of features to identify mandatory compo-
nents and VPs of components, as this organization of components represent an important step
toward building SPLA.

We propose a set of algorithms to identify mandatory features and VPs of features. Then, we
adapt a component extraction approach (called, ROMANTIC) proposed by my team to extract com-
ponents from the implementation of feature groups (mandatory features and VPs of features) instead
of extracting components from the entire source code of each software product independently, as
this approach is usually used [Chardigny et al., 2008][Kebir et al., 2012b]. This adaptation is based
on traceability links between features and source code. These links allow determination of the im-
plementation of each feature group where ROMANTIC can be applied. Also, these links are used to
link features to the extracted components. Such links between features and components represent
variability traceability links to bind variability at architectural level (SPLA).
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Figure 7.1 : An Example of Extraction VP of Components.

7.2 Overview of the Proposed Approach

Reverse engineering SPLA from existing software product variants involves the extraction compo-
nents from source code of these variants as the component represents the main building unit in SPLA.
The extracted components, as mentioned in the state-of-the-art chapter (see section 4.2), should be
organized as mandatory components and a set of VPs of components. This organization is driven by
commonality and variability across product variants in terms of features. Therefore, we should first
identify mandatory features (commonality) and VPs of features (variability) across product variants.
Then, we need to exploit this commonality and variability to identify mandatory components and
VPs of components. In our approach, components are extracted from the implementation of each
group of features (i.e., mandatory features group and VPs of features). Figure 7.1 shows an example of
components extraction from the source code classes of a VP of features (Basic, Color and HighReso-
lutio). Such a method for component extraction allows to extract components as groups because the
VP in SPLA is a group of components [Pohl et al., 2010]. Also, it allows to create only one VP for each
VP at feature level for more flexibility and evolvability of SPLA.

Figure 7.2 shows an overview of the process of commonality and variability identification at fea-
ture and architectural level. This process takes three inputs: (i) product configurations (PCs) in which
each is a set of features provided by some product in product variants; (ii) the implementation of all
features in product variants; and (iii) feature descriptions. Our process steps are organized into two
phases. In the first phase, we identify mandatory features and VPs of features. In the second phase,
we identify mandatory components and VPs of components.

The first phase takes as input PCs and feature descriptions. It first starts by identifying mandatory
features of product variants. Next, configurations are pruned by excluding mandatory features. In this
way, the remaining features in each configuration represent the optional features. Then, the optional
features are organized into four group types : AND-Group, XOR-Group, OR-Group and OP-Group (the
semantic of each group is defined in section 2.1.3 of the preliminaries chapter). We exclude from
the members of identified groups before identifying the members of the next type of groups. Each
identified group represents a VP at the feature level.

In the second phase, we identify mandatory components and VPs of components. This phase
starts by extracting components from source code classes of each VP of features and from mandatory
features group. Next, each feature is linked to its corresponding component(s) for binding common-
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Figure 7.2 : An overview of the Process of Identifying VPs of Components and Features.

Figure 7.3 : Representation of Linking Feature and Component by MetaModel.

ality and variability at the architectural level in order to identify mandatory components and VP of
components. Such linking is performed by exploiting transitive relation between feature and com-
ponent, as both can be linked to source code classes. Figure 7.3 shows a meta model depicting the
transitive relation between features and components through source code classes. Below, we describe
these phases in more details.
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Figure 7.4 : FM of MobilePhone SPL Adapted from [Benavides et al., 2010].

7.3 Identifying Mandatory Features and Variation Points of Features

As commonality and variability in terms of features represent the main source of commonality and
variability in SPLA, we need to identify this commonality and variability of given product configura-
tions of product variants. To this end, we propose a set of algorithms. The algorithms are designed
by considering the definition of each type of VPs. The algorithms also are applied in a specific se-
quence so that firstly, mandatory features are identified then AND-Groups, XOR-Groups, OR-Groups
and OP-Group. The idea behind this sequence is that features that always exhibits regular behavior
in product configurations (like mandatory features and AND-Groups) should be firstly identified in
order to reduce the search space for identifying other types of VPs that exhibit irregular behavior.

7.3.1 Basic Definitions

To explain our proposed algorithms, we use FM shown in Figure 7.4 in order to generate valid prod-
uct configurations (PCs). We treat the generated configurations as product variant configurations.
Table 7.1 shows all possible valid configurations that can be generated from FM in Figure 7.4. We use
as column labels the shortest distinguishable prefix of the feature names (e.g. Co for Color feature
shown in Figure 7.4). The check symbol (3) refers to the features provided by each configuration.
Before presenting our algorithms, we start by defining the key concepts which are shared among the
proposed algorithms.

Definition 5 (Feature List) Feature list (FL) is a list of all unique features in all product configurations.
All unique features provided by FM shown in Figure 7.4 represent an example of FL.

Definition 6 (Feature Set) Feature set is a tuple F S = [se f , se f ] where se f and se f are respectively the
set of selected and non-selected features of a given product configuration (PCi ) [Haslinger et al., 2011].
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Table 7.1 : product configurations of mobile phone SPL

Product Ca S R P B H Co Ca M G

PC1 3 3
PC2 3 3
PC3 3 3
PC4 3 3 3
PC5 3 3 3
PC6 3 3 3
PC7 3 3 3
PC8 3 3 3
PC9 3 3 3

PC10 3 3 3 3
PC11 3 3 3 3
PC12 3 3 3 3
PC13 3 3 3 3
PC14 3 3 3 3 3
PC15 3 3 3 3 3
PC16 3 3 3 3 3
PC17 3 3 3 3 3
PC18 3 3 3 3 3 3
PC19 3 3 3 3 3 3
PC20 3 3 3 3 3 3
PC21 3 3 3 3 3 3
PC22 3 3 3 3 3 3
PC23 3 3 3 3 3 3
PC24 3 3 3 3 3 3 3
PC25 3 3 3 3 3 3 3
PC26 3 3 3 3 3 3 3
PC27 3 3 3 3 3 3 3
PC28 3 3 3 3 3 3 3 3

Thus PCi .se f ∩ PCi .se f =Φ and PCi .se f ∪ PCi .se f = F L.

An example of a F S is the product configuration PC18 = [{ Call, SendPhoto, ReceivePhoto, PhotoEx-
plorer, HighResolution, GPS}, {Basic, Color, Camer, MP3}] in Table 7.1. In this configuration, PC18.se f
is composed of {Call, SendPhoto, ReceivePhoto, PhotoExplorer, HighResolution, GPS} while PC18.se f
is composed of {Basic, Color, Camer, MP3}.

Definition 7 (Feature Set Table) Feature set table (FST) is a collection of F Ss. Each row in this table
represents a PC so that for every product Pi we have PCi .se f ∪ PCi .se f = F L. Table 7.1 is an example
of FST.

The functions add() and remove() during the algorithms presented below mean respectively
adding and removing the second argument to/from the values of the first argument. Notice that we
assume a pass-by-reference argument semantic throughout the algorithms.

7.3.2 Identifying Mandatory Features

The behavior of mandatory features imposes existing these features in all products variants. Based
on this behavior, we propose algorithm 5 for identifying mandatory features. The algorithm takes as
input FST and FL of a given collection of product variants, and returns as output a set of mandatory
features (MAF). The algorithm works by conducting a textual matching between feature names of
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given product configurations (steps 1-3) to find features that are part of all configurations. These
features represent the mandatory features. The function (smallestProducts()) returns feature names
of the smallest product in terms of provided features. After identifying mandatory features, we prune
FST and FL (step 4) by excluding mandatory features from their contents using the function (Prune()).
The time complexity of the algorithm 5 is O(n) where n is the number of available configurations.

Algorithm 5: Identifying Mandatory Features

Input: FST, FL
Output: MAF //Mandatory Features

1 Set MAF ← smallestProduct(FST)
2 foreach i from 1 to |FST| do
3 MAF ← MAF ∩Pi .Sef

4 Purne(FST, FL, AGF)
5 return MAF

7.3.3 Identifying AND-Variation Points of Features

The behavior of an AND-Group of features across product configurations seems like an atomic set
whose members always appear or disappear together. Considering features f1 and f2 as an AND-
Group, this means that for each product configuration (PCi ), if f1 ∈ PCi .se f iff f2 ∈ PCi .se f and if f1

∈ PCi .se f iff f2 ∈ PCi .se f .

Based on the regular behavior of AND-Groups, we propose Algorithm 6 to determine their mem-
bers. The main data structure used during this algorithm is a multiset. The algorithm starts by in-
tersecting pair-wisely all selected feature sides (PCi .se f ) for all product configurations in FST (steps
3-5). This intersection aims at finding candidate sets (Intersect_sef ) that their members (features)
may appear together. Of course, not each set in Intersect_sef represents AND-Group. Therefore, we
pair-wisely check the elements of each set in Intersect_sef against the semantic of the AND-Group
(steps 6-11). Any pair of features that respects this semantic is put in AGF, otherwise it is rejected. As
a result, each set in AGF is either an AND-Group only consisting of two members or a pair of features
that complies to a require constraint like HighResolution and Camera features in Figure 7.4. Step 12
uses feature descriptions (ApplyFeaDes()) to filter out pairs of features in AGF that comply to a require
constraint. The idea behind using feature descriptions is that features that belong to the same group
should have common terms in their descriptions. Therefore, a pair of features that does not share
terms in their description is rejected. As a result, the remaining pairs in AGF represent only AND-
Groups only consisting of two features. Steps (13-16) merge together pairs in AGF that have transitive
relations to form AND-Groups of three or more members.

Actually, the members of an obtained AND-Group after merging may belong to two or more AND-
Groups. For example, according to our algorithm, features (F1 to F6) in Figure 7.6.A will be identified
a single AND-Group, as they appear and disappear together. However, these features belong to two
AND-Groups. To deal with such a situation, we again rely on feature description (step 17). The idea
behind using feature descriptions is the same as we explained previously. Next, we prune FST and FL
by removing AND-Group members (step 18). By referring to Table 7.1 and applying this algorithm, we
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Algorithm 6: Identifying AND-Group Variation Points

Input: FST, FL, Feature Description
Output: AGF // AND-Groups of Fetures

1 Intersect_sef ←Φ // Multisets of features
2 AGF ←Φ // Multisets of features
3 foreach i from 1 to |F ST |−1 do
4 foreach j from i+1 to |F ST | do
5 intersect_Sef ← Pi .se f ∩P j .se f

6 foreach Set S ∈ Intersect_sef, with |S| > 1 do
7 foreach i from 1 to |S|−1 do
8 foreach j from i+1 to |S| do
9 Set temp, add(temp, Si ), add(temp, S j )

10 if temp isn’t partially present in any FST’s products then
11 add(AGF, temp)

12 AGF ← ApplyFeaDes(AGF)
13 foreach i from 1 to |AGF|-1 do
14 foreach j from i+1 to |AGF| do
15 if (AGFi and AGF j are transitive) then
16 merge(AGFi , AGF j )

17 AGF ← ApplyFeaDes(AGF)
18 Purne(FST, FL, AGF)
19 return AGF

found that there is only one AND-Group consisting of {SendPhoto, RecievePhoto and PhotoExplorer}
and FM in Figure 7.4 confirms that also. The time complexity of the algorithm 6 is O(n5) where n is
the number of available configurations.

7.3.4 Identifying XOR-Variation Points of Features

According to the semantic of XOR groups, the behavior of members of a XOR-Group across product
configurations entails the existence of only one member in PCi .se f while the remaining members in
PCi .se f . Based on this behavior, we propose Algorithm 7 to identify members of XOR-Groups. The
main data structures used through the algorithm are Multiset and HashMap (step 1). In steps (2-6),
we assume that each feature (F) in FL is a member of a XOR-Group. This means that PCi .se f where F
belongs to PCi .se f includes all other members of that group. Therefore, if F belongs to many product
configurations in FST, we obtain many sets corresponding to F. Of course, not all elements of these
sets have exclusive relations with F. Therefore, we intersect all these sets to filter out irrelevant ele-
ments (features) as much as possible. After the intersection, F corresponds to a unique set. Then,
F and the unique resulting set is kept as an entry in a HashMap called ExRe, where F and its corre-
sponding set respectively represent the key and value of this HashMap. Each entry in ExRe represents
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Algorithm 7: Identifying XOR-Group Variation Points

Input: FST, FL, Feature Descriptions
Output: XGF (XOR-Groups of Fetures)

1 XGF ←φ, //multiset ExRe ←φ //HashMap
2 foreach F ∈ FL do
3 foreach i from 1 to |F ST | do
4 if F ∈ Pi .sef then
5 intersect ← intersect ∩ Pi .sef

6 ExRe.put(F, intersect) //ExRe.put(key, value)

7 foreach entry En ∈ ExRe do
8 Set RHS ← En.getValue(), count ← 0
9 Set CurExRe ← RHS, add(CurExRe, En.getKey())

10 if !( CurExRe ∈ XGF ) then
11 foreach feature f ∈ RHS do
12 Set temp1 ← CurExRe, remove (temp1, f)
13 if temp1 ⊆ ExRe.getValue(f) then
14 count++

15 if count = |RHS| then
16 add(XGF, CurExRe)

17 XGF ← ApplyFeaDesForEx(XGF)
18 XGF ← ApplyFeaDesForGroup(XGF)
19 Purne(FST, FL, XGF)
20 return XGF

excluded-relation that takes the following formate [F ⇔ set of features]. F represents the left-hand side
(LHS) of a excluded-relation while the corresponding set of F represents the right-hand side (RHS).
Figure 7.5 shows excluded-relations obtained from our illustrative example.

Figure 7.5 : All Excluded-Relations of FM in Figure 7.4.

The elements of RHS of an entry in ExRe are a combination of features so that this combination
may only consist of a XOR-Group’s members or it may include members of other groups. Therefore,
steps (7-14) check each entry in ExRe against the definition of XOR-Group. Considering that an entry
(En) in ExRe is a XOR-Group, this means that each feature (f ) in the RHS of En must appear as a
LHS of another excluded-relation (Ex1) and RHS of Ex1 must contain all En’s features except f. By
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Figure 7.6 : An Example of Nested AND-Group and XOR-Group.

applying these steps, entries 2, 3 and 4 in Figure 7.5 are identified as candidate XOR-Groups and
put in XGF while others are rejected (steps 15-16). XGF may contain groups only consisting of two
members (e.g., entry 3 in Figure 7.5). Such groups are not necessary to be XOR-Groups. They may be
pairs of features that comply to an exclude-constraint such as GPS and Basic features in Figure 7.4.
Therefore in step 17, we use feature descriptions (ApplyFeaDesForEx()) to identify and then remove
such groups from XGF. Also, XGF may contain a group that has the semantic of a XOR-Group but in
fact their members can not be aggregated as a single XOR-Group. Such a group appears due to one of
the following reasons.

• Firstly, the members of such a group belong to two or more XOR-Groups. For example, ac-
cording to our algorithm, features (F1 to F6) in Figure 7.6.B are identified as single XOR-Group,
as inclusion any feature of them excludes others (considering that their parents marked as
mandatory). However, these features belong to two XOR-Groups. To deal with such a situa-
tion, we again rely on feature description (step 18) to re-organize members of each identified
XOR-Group.

• Secondly, such a group may appear due to cross tree constraints (i.e., require and exclude con-
straints). For example, entry 2 in Figure 7.5 is identified as XOR-Group in spite of Camera fea-
ture belongs to OR-Group. This happened due to the cross tree constraint between Camera
and HighResolution (see Figure 7.4) which generate an alternative relation between Camera,
Color and HighResolution features. To detect such a group, we use feature descriptions like the
previous situation. If we fail to re-organize members of such a group into one or more XOR-
Groups provided that the organizing process consumes all members, we reject such a group.
Consequently, the remaining exuded-relations in Figure 7.5 represent XOR-Groups.

Finally, in step 19 we prune FST and FL by removing members of XOR-Groups. The time com-
plexity of the algorithm 7 is O(n4) where n is the number of available configurations.
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7.3.5 Identifying OR and OP Variation Points of Features

Although the remaining features in FST are only OR-Groups and OP-Groups, the identification of
their members is a challenge because the behavior of members of these groups is arbitrarily. For the
identification of OP-Groups, we completely rely on feature descriptions. We consider features that
have common keywords in their descriptions as belonging to the same OR-Group. In this way, we
can identify OR-Groups. The time complexity of the proposed algorithm for identifying members of
OR-VP is O(F 2) where F is the number of remaining features in FL.

After identifying OR-Groups, the remaining features represent the members of a single OP-Group.

7.4 Identifying Mandatory Components and Variation Points of
Components

In this phase, we extract components from source code of feature groups and then we identify manda-
tory components and VPs of components based on commonality and variability identified in the pre-
vious phase.

7.4.1 Component Extraction

As mentioned earlier, a component is a well-known building unit to build an architectural view of
a system [Allier et al., 2011][Oussalah, 2014]. In our approach, a component is extracted based on
ROMANTIC approach as a cluster of classes [Chardigny et al., 2008]. Each cluster is extracted based
on the quality metrics defined in ROMANTIC (see Appendix C). ROMANTIC is applied to source code
classes implementing feature groups: mandatory features, AND-Group, XOR-Group, OR-Group and
OP-Group. Such an application of ROMANTIC respects the components organization in SPLA (i.e.,
mandatory components and VPs of components). We obtain source code classes that implement
each feature group using our IR-based feature location approaches. Components that are extracted
from the implementation of mandatory features constitute the mandatory components, while com-
ponents extracted from each identified feature group constitute members of a VP in SPLA. In our
approach, each VP at feature level corresponds to only one VP at the architectural level. Additionally,
such an application of ROMANTIC reduces source code space where ROMANTIC can be applied so
that this space only represents feature implementations. This means that we filter out source code
elements related to the platform used to execute the product variants and hence the extracted com-
ponents only implement features.

The implementation of feature groups may have shared source code classes across different fea-
ture groups. Such classes are not specific to a certain feature group and they may implement features
that have cross cutting behavior across all other features. Therefore, we determine such classes and
then we apply ROMANTIC to these classes as a group. The extracted components represent a com-
ponent group called Shared-Com. They are not specific to a certain VP in SPLA and the selection of
these components for products development depends on the selection of their associated features.
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Figure 7.7 : An Example for Linking VP of Features to VP of Components.

7.4.2 Recovering Feature-to-Component Traceability Links

From the previous step, we notice that components of a VP do not necessary have the semantic of
that VP. For example, consider that Color and HighResolution are two features which belong to XOR-
Group, and components extracted from the source code implementing this group are [com1, com2,
com3 and com4]. Also, assume that the first three components implement Color, while com4 im-
plements HighResolution. In this case the relation among the first three components is not exclu-
sive, although they belong to an exclusive VP. This is because the mapping between components and
features is many-to-many [Pohl et al., 2010]. This means that a feature’s implementation may be
scattered over more than one component inside a VP and also a component may implement more
than one feature (refer to Figure 7.3). This mapping should be considered during the creation of
VPs through establishing explicit links between features and their corresponding components. These
links are useful for:

• Binding variability in SPLA. This means that such links determine a combination of compo-
nents inside each VP so that each combination represents a variant of that VP. For example,
[com1, com2 and com3] mentioned above represents only one variant. Determining variants
of each VP in SPLA is important to specify the constraints among components. Choosing a
variant of components depends on customer choices at feature level. Therefore, such links
bind variability in SPLA.

• Determining the components that implement each feature. This facilitates and automates the
derivation of architectures of SPL products from the SPLA and makes the architecture deriva-
tion process driven by customers’ needs (features).
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Such traceability links between features and components can be established by exploiting the
transitive relation between features and components through source code classes. Based on meta
model shown in Figure 7.3, a feature is implemented by set of classes and a component is composed
of set of classes. Therefore, classes are a shared element between features and components, which
allow them (components and features) to link together.

After linking features and components, it is normal to have shared components between all fea-
tures belonging to the same VP due to the many-to-many mapping between features and compo-
nents. Therefore, these components are not specific to a certain feature but they are related to the
parent of those features and form a parent of VP of components in SPLA. To clarify this idea, see
Figure 7.7. In this figure, there is a VP at feature level of type XOR called Screen consisting of three fea-
tures (Basic, Color, HighResolution). The corresponding VP at architecture level of Screen is VP1 which
consists of seven components [Com1 to Com7]. Highlighted boxes represent pairs of components so
that each pair excludes others. Dotted lines refer to traceability links between each feature and their
implementing components. From this figure, we notice that Com1 is shared among three features so
it is not specific to a certain feature. Therefore, Com1 forms the parent of remaining components in
VP1.

7.5 Experimental Evaluation

In this section, we present an experimental evaluation to demonstrate the feasibility of our approach.
We apply it to three case studies: MobilePhone, ArgoUML-SPL and MobileMedia. MobilePhone is only
a FM without codebase so it is only used to evaluate the proposed algorithms. This FM is an enhanced
version of FM of our illustrative example (see Figure 7.4). We design this FM by considering all VPs
types which are not present in real case studies. This FM contains four VPs from different sizes and
types. In addition, it includes two cross tree constraints, two optional features and two mandatory
features. Figure 7.8 shows MobilePhone’s FM. ArgoUML-SPL and MobileMedia are presented and
detailed in the preliminaries chapter.

Table 7.2 presents mandatory features and VPs of features provided by MobilePhone’s FM,
ArgoUML-SPL’s FM and MobileMedia’s FM respectively. We label each VP based on its type, for pur-
pose of comparison. We organize our evaluation into two parts. In the first part, we validate the
algorithms used to identify mandatory features and VPs of features. In the second part, we validate
the identification of mandatory components and VPs of components.

7.5.1 Validating the Identification of VPs of Features

7.5.1.1 Evaluation Measures

As a base for evaluation, we match each VP identified by our approach with its corresponding VP in
the focused FM. This matching is measured by using three metrics inspired from information retrieval
field, namely precision, recall and F-measure [Baeza-Yates et Ribeiro-Neto, 1999][Hattori et al., 2008].
Precision measures the accuracy of identified members of a VP according to the relevant members of
that VP. Recall measures to what degree the identified members of a VP cover the relevant members of
that VP. F-measure is used to find the best possible compromise between precision and recall values.
The relevant members of each VP are determined by FM. All measures have values within [0,1]. For a
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Figure 7.8 : FM of MobilePhone.

Table 7.2 : Mandatory features and VPs of features for MobilePhone, ArgoUML-SPL and MobileMedia

MobilePhone

Mandatory Features and VPs Members
Mandatory Call, SMS
AND-Group VP1 SendPhoto, ReceivePhoto, PhotoExplorer
XOR-Group VP1 Basic, HighResolution, Touch
XOR-Group VP2 Android, IOS
OR-Group VP1 Camera, MP3, Radio
OP-Group VP1 GPS, Recorder

ArgoUML-SPL

Mandatory Class
OR-Group VP1 State, Activity, UseCase, Collboration, Deployment, Sequence
OP-Group VP1 Logging, CognitiveSupport

MobileMedia

Mandatory Album Management, Basic Photo Operations
OR-Group VP1 Copy Photo, Edit Photo Label, SMS Transfer
OP-Group VP1 Exception Handling

given VPi , if precision equals 1, this means that all identified members are relevant. However, some
relevant members might not be identified. If recall equals 1, this means that all relevant members of
VPi are identified. However, some identified members might not be relevant. If F-measure equals 1,
this means that all relevant members are identified and only them. Our proposed algorithms aim to
achieve high precision, recall and F-measure. We propose the equations 7.1 and 7.2 to adapt Preci-
sion, Recall and F-measure in our context. In these equation, IM_VP and RM_VP refers to Identified
Members and Relevant Members of a given VP.

Pr eci si on(V Pi ) = |I M_V Pi
⋂

RM_V Pi |
|I M_V Pi |

×100% (7.1)
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Recal l (V Pi ) = |I M_V Pi
⋂

RM_V Pi |
|RM_V Pi |

×100% (7.2)

F −measur e(V Pi ) = 2
1

Recal li
+ 1

Pr eci si oni

×100% (7.3)

7.5.1.2 Results

We randomly generate three sets of configurations from MobilePhone’s FM, two sets from ArgoUML-
SPL’s FM and three sets from MobileMedia using FeatureIDE tool1 (well-known SPL tool). Each gen-
erated set has a different size and it also covers all features shown in its corresponding FM. The size
of MobilePhone’s sets is as follows: sets from 1 to 3 respectively (224,112 and 10 ) configuration. The
size of ArgoUML-SPL’s sets is as follows: sets from 1 to 2 respectively (256 and 8) configuration. The
size of MobileMedia’s sets is as follows: sets from 1 to 3 respectively (16, 8 and 5) configuration. The
set1 in all case studies represents all possible configurations can be generated from its corresponding
FM. All generated product configurations are available in the Appendix B.

Table 7.3 shows obtained results by applying our algorithms to product configurations generated
from FMs of case studies considered. In this table, we present precision, recall and F-measure for each
VP identified and average precision, recall and F-measure for all identified VPs corresponding to each
set of configurations. Highlighted rows refer to VPs that have been identified by our algorithms but
they actually do not exist in FMs of cases studies considered (false-positive VPs).

In MobilePhone, we notice that the proposed algorithms give 100% Precision, 100% Recall and
100% F-measure for each VP in both Set1 (containing all possible configurations) and Set3 (containing
only 10 configurations). This means that the number of available configurations is not only the domi-
nant parameter in the proposed algorithms to achieve 100% for Precision, Recall and F-measure. This
also means that the proposed algorithms can identify all relevant members (and only those mem-
bers) for each VP in the case of having a few configurations, provided that these configurations have
a high diversity of feature combinations to detect the behavior of each member of each VP. This fact
is confirmed by the results of Set2. InSet2, although the number of configurations is large (half of all
possible configurations that can be generated from the FM), the proposed algorithms identify false-
positive VP (OR-Group VP2) and fail to identify VP present in MobilePhone’s FM (XOR-Group VP1).
This is because the configurations of Set2 lack the diversity to distinguish the members of each VP
Similarly in MobileMedia case study, the proposed algorithms give 100% Precision, 100% Recall and
100% F-measure for each VP in both Set1 (containing all possible configurations) and Set3 (contain-
ing only 5 configurations). This is because these configurations have a high diversity of feature com-
binations to distinguish the members of each VP. In Set2, although the number of configurations is
half of all possible configurations, the proposed algorithms fail to identify two VPs (OR-Group VP1,
OP-Group VP1) and return two false positive VPs (XOR-Group VP1, XOR-Group VP2). This is because
the configurations of Set2 lack the diversity to distinguish the members of each VP.

In ArgoUML-SPL, the identified VPs from Set1 and Set2 have the same precision, recall and F-
measure values, in spite of the fact that set1 represents all possible configurations, while Set2 rep-

1http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
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Table 7.3 : Precision, recall and F-measure of identified mandatory features and VPs of features for
case studies considered.

MobilePhone

Set1: No. Configurations = 224 (All possible configurations)
Precision Recall F-measure Average Precision Average Recall Average F-measure

Mandatory 100% 100% 100%

100% 100% 100%
AND-Group VP1 100% 100% 100%
XOR-Group VP1 100% 100% 100%
XOR-Group VP2 100% 100% 100%
OR-Group VP1 100% 100% 100%
OP-Group VP1 100% 100% 100%

Set2: No. Configurations = 112
Mandatory 100% 100% 100%

71% 71% 71%
AND-Group VP1 100% 100% 100%
XOR-Group VP1 0.0% 0.0% 0.0%
XOR-Group VP2 100% 100% 100%
OR-Group VP1 100% 100% 100%
OR-Group VP2 0.0% 0.0% 0.0%
OP-Group VP1 100% 100% 100%

Set3: No. Configurations = 10
Mandatory 100% 100% 100%

100% 100% 100%
AND-Group VP1 100% 100% 100%
XOR-Group VP1 100% 100% 100%
XOR-Group VP2 100% 100% 100%
OR-Group VP1 100% 100% 100%
OP-Group VP1 100% 100% 100%

ArgoUML-SPL

Set1: No. Configurations = 256 (All possible configurations)
Mandatory 100% 100% 100%

58% 67% 62%
OR-Group VP1 67% 100% 80%
OP-Group VP1 0.0% 0.0% 0.0%

Set2: No. Configurations = 7
Mandatory 100% 100% 100%

58% 67% 62%
OR-Group VP1 67% 100% 80%
OP-Group VP1 0.0% 0.0% 0.0%

MobileMedia

Set1: No. Configurations = 16 (All possible configurations)
Mandatory 100% 100% 100%

100% 100% 100%
OR-Group VP1 100% 100% 100%
OP-Group VP1 100% 100% 100%

Set2: No. Configurations = 8
Mandatory 100% 100% 100%

25% 25% 25%
OR-Group VP1 0.0% 0.0% 0.0%
OP-Group VP1 0.0% 0.0% 0.0%
XOR-Group VP1 0.0% 0.0% 0.0%
XOR-Group VP2 0.0% 0.0% 0.0%

Set3: No. Configurations = 5
Mandatory 100% 100% 100%

100% 100% 100%
OR-Group VP1 100% 100% 100%
OP-Group VP1 100% 100% 100%
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resents a very small number of configurations. This is due to the fact that the FM of ArgoUML-SPL
just offers two types of VPs (OR-Group VP1, OP-Group VP1) and the configurations of these sets have a
high diversity to distinguish members of each VP. This means that feature descriptions play important
role to identify these VPs. We also notice that the algorithms have failed to identify CognitiveSupport
and Logging (their label is OP-Group VP1 in Table 7.2) features as a VP of type OP-Group but they are
identified as OR-Group. This is because these features share keywords with all other features as they
have a crosscutting behavior in all ArgoUML-SPL features. Therefore, (CognitiveSupport and Log-
ging) are identified as members of OR-Group VP1. This leads to degradation of Precision and Recall
values of OP-Group VP1 and OR-Group VP1 as shown in Table 7.3.

7.5.2 Validating the Identification of VPs of Components

In the ideal case, we should compare the identified mandatory components and VPs of components
with already existing mandatory components and VPs of components of SPLA, which is recovered
from software product variants. Unfortunately, reverse engineering SPLA from product variants has
not been considered in the literature. Therefore, we demonstrate the performance of our approach
through the interpretation of the obtained results.

We generate 7 products corresponding to the Set2 of ArgoUMl-SPL (see Table 7.3). These prod-
ucts provide all features offered by ArgoUML-SPL’s FM. Also, we use 5 existing releases of MobileMe-
die. The configurations of these releases correspond to the Set3 of MobileMedia (see Table 7.3). All
considered variants of both case studies are described in preliminaries chapter (see section 2.4).

Table 7.4 shows the identified mandatory components and VPs of components by applying our
approach to the 7 products generated from ArgoUML-SPL code base. Parent Components column
presents components that form the parent of a VP while Member Components column presents com-
ponents that form members of that VP. In this table, we show for each VP at the architectural level its
corresponding VP at the feature level. The label of the identified VPs of components are as follows:
OR-VP1 and OP-VP1.

For components of OR-VP1, we notice that all names of parent components of OR-VP1 share the
term “Diagram”. This means that they are not specific to a certain feature (UML Diagram) but they
may support all UML diagrams. By referring to ArgoUML-SPL’s FM, we find out the name of the
parent of group of features corresponding to OR-VP1 is “Diagrams”. Consequently, our approach
can distinguish between parent components and member components. For components of OP-
VP1 which corresponds to CognitiveSupport and Logging features, our approach identifies no parent
components for this VP. This is because its components are only extracted from the implementation
of only one feature (CognitiveSupport) while the Logging feature is implemented by external library
(Log4J) [Couto et al., 2011]. Thus, the OP-VP1 only consists of components of cognitiveSupport fea-
ture, and hence they represent only one variant of OP-VP1. Based on the names of these components,
we notice that they are specific to CognitiveSupport because their names contain “Cr ” term which
refers to Critics supported by CognitiveSupport feature, as this feature is used to detect design er-
rors made by end users. For mandatory components which are extracted from the implementation
of mandatory feature (Class diagram), the names of these components show that these components
implement this feature as their names contain the term “Classdiagram”. Of course, there are no par-
ent components for mandatory components because they are extracted from the implementation of



132
Chap 7. Toward Reverse Engineering of SPLA from Product Variants and Feature to Architecture

Traceability

Table 7.4 : Mandatory components and variation points at architectural level for ArgoUML-SPL.

At Architecture Level: OR-VP1

At Feature Level: OR-Group VP1 (State, Activity, UseCase, Collaboration, Deployment, Sequence)
Parent Components Member Components
Fig Prop Diagram Action Mode List State Action Fig Button New Prop State Selection
Fig Diagram State Sequence Model Activity Renderer UML Model List Fig Prop Case Use
UML Fig Diagram Init Model Action List Action Fig Mode Iterator Message State Attributes
Go Fig To State Diagram Collaboration Machine

At Architecture Level: OP-VP1

At Feature Level: OP-Group VP1 (CognitiveSupport, Logging)
Parent Components Member Components

No Parent Components

Cr Wiz Child Many Conflict No Gen
Cr To Name Do By Missing Class
List To Go Cr Init Wiz
Cr Resolved Abstract Transitions Name Todo Math
Wiz Default Step To Renderer Tree Prop
Cr Goals Dialog Add Param Type To
Node Decision Knowledge Goal Priority Type
Cr Go Wiz No Name Oper Invalid
List Action To Object Tab Do
Table Cr Checklist To Abstract UML Model

At Architecture Level: Mandatory Components

At Feature level: Mandatory Features: Class
Parent Components Member Components

No Parent Components

Fig Style List Class Panel Class diagram Model
Package Character Port Rect Fig
Action Show Hide Visibility Stereotype
Classdiagram Fig Subsystem Association Edge
Classdiagram Fig Event Class Diagram Edge Object
Selection Fig Class Node List Math Stereotype

At Architecture Level: Shared-Com

Cr Without Instance Classifier
Cr Without Class Component
Cr Without Instance Node Comp
Cr Without Instance Classifier Node Collection Iterator
Cr Without Node Component
Cr Without Instance Classifier Component
Cr Interface Without Component

only one feature (Class diagram). For components of Shared-Com, all components of this group re-
lated to only CognitiveSupport feature as their names include “Cr ”terms. This is expected because
this feature has cross cutting behavior through all other features. This means the implementation of
this feature is shared among the implementation of other feature groups, which represents the se-
mantic of Shared-Com group. Consequently, our approach can extract and determine components
that are shared between VPs of components (Shared-Com).

Table 7.5 shows the identified mandatory components and VPs of components by applying our
approach to the 5 releases of MobileMedia. The structure of this table is the same as the Table 7.4.
This table shows two identified VPs of components (OR-VP1 and OP-VP1) and mandatory compo-
nents. For OR-VP1, the components of this VP is extracted from the implementation of three features
(CopyPhoto, EditPhotoLabel and SMS Transfer). This VP has only member components and does not
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Table 7.5 : Mandatory components and variation points at architectural level for MobileMedia.

At Architecture Level: OR-VP1

At Feature Level: OR-Group VP1 (Copy Photo, Edit Photo Label, SMS Transfer)
Parent Components Member Components

Photo String Screen Controller Thread Base Network

Sms Sender Controller
Photo View Controller
Sms Controller Receiver
Sms Messaging
Sms Receiver Thread
Class New System Print Screen Stream Label
Album Controller

At Architecture Level: OP-VP1

At Feature Level: OP-Group VP1 (Exception Handling)
Parent Components Member Components
No Parent Components Exception Invalid Image Album Format Unavailable Persistence

At Architecture Level: Mandatory Components

At Feature level: Mandatory Features: Album Management, Basic Photo Operations
Parent Components Member Components
Photo Screen Album New Add List System No Members Components

At Architecture Level: Shared-Com

No Components

have parent components. The names of these member components refer to features corresponding
to that VP (OR-VP1). For example, the terms sms, messaging, sender, receiver refer to SMS Transfer fea-
ture, the term label refers to EditPhotoLabel feature and the term Photo refers to both CopyPhoto and
EditPhotoLabel features. For OP-VP1, this VP correspond to only one feature (Exception handling) so
there are no parent components for this VP. Also, this VP consists of only one member component as
shown in the table. The name of this component refers to the Exception handling feature, as his name
includes terms (exception, invalid, unnavigable) that are related to this feature. Table 7.5 shows there
is only one mandatory component that is extracted from the implementation of two mandatory fea-
tures (Album Management and Basic Photo Operations). This component represents a parent com-
ponent because it is shared between these features, and hence there are no member components.
The name of this component refers to these features together, as its name includes the terms (Album,
Photo, New and Add) that are related to these features.

7.5.3 Threats to Validity

Our approach identifies commonality and variability at feature level and exploits them to identify
mandatory components and variation points of components for SPLA. Thus, the quality of the pro-
posed approach depends on the quality of identifying commonality and variability in terms of fea-
tures. In the case of having a few configurations with less diversity, we need the expert intervention to
validate all VPs of features. The expert’s burden depends on the available configurations for product
variants. If there are many configurations with high diversity, the expert’s burden will be reduced and
vice versa.

Sometimes, we can encounter optional features that have crosscutting behavior throughout all
SPL’s features (e.g., CognitiveSupport in ArgoUML-SPL). In such a situation, we also need an expert
intervention to identify such features.
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7.6 Conclusion

In this chapter, we have proposed an approach to contribute towards supporting reverse engineer-
ing SPLA from object-oriented product variants. Our approach focused on identifying mandatory
components and variation points of components, as this identification represents an important step
toward building SPLA.

As SPLA encompasses commonality and variability at feature level, we first analyze commonality
and variability across product variants in terms of features in order to identify mandatory features and
variations points of features. This commonality and variability are reflected at architectural level as
mandatory components and variation points of components. We have proposed a set of algorithms
to identify different types of variation points at the feature level: AND-Group, OR-Group, XOR-Group
and OP-Group. These algorithms were designed based on the semantic of each type of variation
point. Then, we relied on a reverse engineering tool called ROMANTIC to extract components from
source code of product variants. We applied ROMANTIC to the implementation of each variation
point of features individually. Based on this application of ROMANTIC, we identified, for each VP at
the feature level, its corresponding VP at architectural level. Next, we exploited the transitive relation
between features and components to link them. These links played two roles: implementation link
and variability traceability link to bind variability at the architectural level.

In our experimental evaluation using three case studies, we showed that if we have many product
configurations with high diversity and precise feature descriptions, the proposed algorithms achieve
high precision and recall of identified variation points of features, and hence this leads to identify
relevant variation point of components. Also, we proved the effectiveness of our approach for identi-
fying mandatory components and variation points of components.
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Conclusion and Future Work

The general goal of this thesis is to support re-engineering product variants into SPLs. Towards
that goal, we studied the problem of finding traceability links between features and their imple-

menting source code elements in context of product variants. Then, we addressed how to use such
traceability links for the following tasks concerning that goal.

1. Supporting change impact analysis at feature level.

2. Contributing to build Software Product Line Architecture (SPLA).

Traceability links between features and their implementing source code elements are essential for
understanding source code of product variants, and then reusing features (resp. their implementa-
tions) for developing new products taking advantage of SPLE. Such traceability is also necessary for
facilitating and automating new product derivation from SPL’s core assets when the re-engineering
process is completed. Information Retrieval (IR) techniques are used widely for identifying such
traceability links. These techniques deal with product variants as separated and independent enti-
ties. However, commonality and variability across product variant should be exploited to improve
the process of finding such traceability links.

The implementing source code elements of features obtained from product variants may need
to be changed for adapting SPLE context by adding or removing requirements (resp. their source
code elements) to meet new needs of customers. In this case, feature-level Change Impact Analysis
(CIA) is needed to determine feature(s) that may be impacted for a given change proposal before the
change is implemented. It is helpful to conduct change management from a SPL manager’s point of
view for economic consideration related to the re-engineering process. Feature-level CIA is seldom
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considered. Most survey approaches performs CIA at the source code level with a few approaches
completed at requirement and design levels.

The development of SPLA from scratch is a costly task because it represents an infrastructure to
derive components not only for one architecture but also for all architectures of SPL’s products. As a
result, existing product variants should be reused as much as possible to support reverse engineer-
ing SPLA by extracting components and organizing these components as mandatory and members
of variation points. This organization represents an important step toward this reverse-engineering
task. In the literature, reverse engineering SPLA from product variants has not been considered and
surveyed approaches follow forward engineering way for SPLA development.

8.1 Summary of Contributions

To summarize, the contributions of this thesis are as follows:

• IR-feature location in a collection of product variants
We proposed an approach to locate feature implementations in a collection of product variants.
The proposed approach is based on IR. In the approach, we improved the effectiveness of IR-
feature location by: (i) reducing IR search spaces (feature and source code spaces) where IR are
applied. This is performed by analyzing commonality and variability across product variants
using formal concept analysis. (ii) reducing the abstraction gap between feature and source
code levels. This is performed by introducing the concept of code-topic as an intermediate
level. In our experimental evaluation, we showed that our approach outperforms the conven-
tional application of IR as well as the most recent and relevant work on the subject, in terms of
the widely used metrics for evaluation: precision, recall and F-measure.

• Feature-level change impact analysis: based on feature location
We proposed an approach for studying the impact of changes made to the source code of fea-
tures obtained from product variants based on formal concept analysis. This approach helps to
conduct change management from a SPL’s manager point of view, as the feature is an agreement
among all stakeholders (including managers) about what the system should do. This allows a
SPL’s manager to decide which change strategy should be executed, as there is often more than
one change that can solve the same problem. Two metrics are suggested for such change man-
agement: IDM and CAM. The former is used to measure the degree to which a given feature
can be affected. The latter is used to compute the changeability of all features obtained from
product variants. Our approach mainly leverages the identified traceability links between fea-
ture and source code classes to detect and study change impact at the feature level for changes
made at the source code level. Such traceability links propagate the impact of source code
changes at the feature level to be studied on that level. In our experimental evaluation, we
proved the effectiveness of our approach in terms of the most commonly used metrics on the
subject (precision, recall and F-measure).

• Toward reverse engineering SPLA from product variants: based on feature location
We proposed an approach towards for reverse engineering Software Product Line Architec-
ture (SPLA) from product variants. In this reverse engineering task, we focused on identify-
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ing mandatory components and variation points of components as an important step toward
this architecture. This organization of components represents the commonality and variabil-
ity in SPLA, which is driven by commonality and variability at the feature level. Our proposed
approach represents the second application of feature location that help us to determine the
implementation of feature groups from where components are extracted. Also based on fea-
ture location, we established traceability links between features and extracted components to
bind variability at the architecture level (SPLA). We proposed a set of algorithms to determine
this commonality and variability in terms of features of a given set of product configurations.
According to the experimental evaluation, the efficiency of these algorithms mainly depends
on the available product configurations and feature descriptions. If we have a large number
of configurations with high diversity and precise feature descriptions, our approach achieves
high precision and recall of identified mandatory features (commonality) and variation points
of features (variability), and hence this leads to identify relevant mandatory components and
variation point of components.

8.2 Direct Perspectives

In this section, we discuss some possible extensions of our current work and issues that are not han-
dled.

• Experiments with large number of case studies:
The performance of our proposed approaches depends on the availability of well-documented
product variants in terms of feature descriptions and truth ground links between features and
their implementing source code elements, which are difficult to collect. Thus, we plan to extend
our evaluation by conducting more experiments to better test our approaches.

• Supporting different granularities of source code:
In our work, we assume that a feature is implemented at source code level by classes. However,
a feature can be implemented by different low source code granularities (such as, methods,
statement), especially in case of small-scale systems. Thus, we plan to extend our approaches
to work on granularity below class level, e.g. methods.

• Extracting feature model:
We plan to extend our proposed algorithms to identify commonality and variability in terms of
features across product variants in order to extract feature models. The current algorithms de-
termine only mandatory features and feature groups but we need to determine the hierarchical
organization of these features to extract the feature model.

• Feature interactions:
“A feature interaction is a situation in which the composition of multiple feature implementa-
tions leads to emergent behavior that does not occur when one of them is absent” [Apel et al.,
2011]. The emergent behavior can be undesirable and cause failures in SPLs. Feature inter-
actions occur during the product derivation process to combine different features together for
generating SPLs. We plan to detect undesired feature interactions during product derivation
process.
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Implementation Architecture of Proposed

Approaches

We have implemented our proposals in JAVA. The implementation architecture consists of two layers:
feature location layer and feature location applications layer (see Figure A.1). The top layer receives
three inputs concerning product variants: product configurations, source code and feature descrip-
tions. This layer aims to locate feature implementations in a collection of product variants. Under
the feature location layer is the feature location applications layer. This layer is a group of two sub-
systems called respectively: feature-level CIA and SPLA. Feature-level CIA receives change request
and feature implementations, and returns a ranked list of affected features. SPLA receives feature
descriptions, product configurations and feature implementations, and returns mandatory compo-
nents and variation points of components. Below, we detail each layer as a separated architecture.
Each architecture is a set of components with required and provided interfaces.
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Figure A.1 : Layered Implementation Architecture.

A.1 Implementation Architecture of our Feature Location Approach

Figure A.2 shows the implementation architecture of feature location approach as a set of compo-
nents. Below, we detail these components according to the order of their use in the feature location
process:

• FCA. This component implements Formal Concept Analysis (FCA) technique. It provides GSH
corresponding to the given formal context. In our work, this component deals with different
formal contexts: product configurations, cosine similarity matrix, structural dependency ma-
trix and combination of cosine similarity and structural dependency matrices. The usage of
GSH corresponds to these contexts as follows:

– Analysis variability distribution in terms of features across product variants. For this ser-
vice, FCA component requires product configurations and provides the corresponding
GSH Minimal Disjoint Sets of Features and Classes Finder component.

– Clustering similar classes together. For this service, FCA component requires the men-
tioned above matrices to provide the corresponding GSH to Code-Topics Generator com-
ponent.

Most of the existing tools implementing FCA are referenced from the web page of Uta Priss1.

1http://www.upriss.org.uk/fca/fca.html
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Figure A.2 : Feature Location Implementation Architecture.

For this work, we used the eclipse eRCA 2.

• Minimal Disjoint Sets of Features and Classes Finder. This component is responsible for re-
ducing IR search spaces (feature and source code) into minimal disjoint sets of features (resp.
source code classes). It requires feature descriptions, source code of product variants in XML
format and GSH generated by FCA. It provides minimal disjoint sets of features and classes.

• ASTParser. This component is responsible for obtaining all source code information: names of
packages, classes, methods, attributes, local variables, method invocation. Also, it is used to ob-
tain structural dependency information, such as inheritance relation, attributes access, method
invocation. It saves all this information in XML formate. It requires source code of all product
variants and provides source code information in XML format for each variant separately. We
used Java parser JDT/AST to parse source code of a given collection of product variants. Also,
we used JDOM parser to save source code information in XML format.

• VSM. This component is responsible for computing textual similarity of a given set of classes.
It requires a minimal disjoint set of classes. The textual information related to these classes
is obtained by calling ASTParser component. Then, VSM creates a document for each class
containing its textual information. The collection of class documents represents the corpus

2https://code.google.com/p/erca/
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and query documents. We used the TD/IDF formula to assign a weight for each term extracted
from class documents. VSM component provides a similarity matrix of these given classes. I
have implemented VSM according to the description mentioned in the preliminaries chapter 3.

• Structural Dependency Detector. This component is responsible for determining structural
dependencies of a given set of classes. It requires a minimal disjoint set of classes. Also, this
component builds a data structure to save source code of a given a collection of product vari-
ants. This data structure is explored to determine structural dependencies among a given min-
imal disjoint set of classes. This component provides a structural dependency matrix of these
given classes.

• AHC. The role of this component is to group similar classes of a given minimal disjoint set of
classes into clusters according to agglomerative hierarchical clustering principles. It invokes
the VSM components to compute textual similarity, initially among class documents, then be-
tween class documents and cluster documents during the clustering process and among only
cluster documents. This component provides a set of clusters. Each cluster can be a candidate
code-topic.

• Code-Topics Generator. This component is responsible for identifying code-topics from each
minimal disjoint set of classes. It requires FCA and Agglomerative Hierarchical Clustering
(AHC) components to cluster similar classes together. It provides a set of code-topics that can
be derived from a given minimal disjoint set of classes.

• LSI. The role of this component is to compute textual similarity between feature descriptions
and code-topics information. It requires both minimal disjoint sets of features and code-topics
derived from the minimal disjoint set of classes. To create LSI’s corpus, a document is created
for each code-topic containing the source code information for that code-topic. Also to cre-
ate query documents, a document is created for each feature containing the feature descrip-
tion. The TD/IDF formula is used to assign a weight for each term extracted from corpus and
query documents. We used an external library to implement SVD technique called JAMA 4. Co-
sine similarity equation is used to measure textual similarity between corpus and query docu-
ments. After linking features to their corresponding code-topics, this component also decom-
poses each code-topic into its classes. This component provides the implementation of each
feature as a set of classes. I have implemented LSI according to the description mentioned in
the preliminaries chapter 5.

Table A.1 presents statistical source code information of the the feature location approach in
terms of number of packages (NOP), number of classes (NOC) and number of line of codes (LOC).

3https://code.google.com/p/tool-vsm
4http://math.nist.gov/javanumerics/jama/
5https://code.google.com/p/tool-lsi
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Table A.1 : Statistical source code information of feature location approach.

Approach NOP NOC LOC
Feature Location with IR 21 61 5,221

A.2 Implementation Architecture of our Feature-Level CIA Approach

Figure A.3 shows the implementation architecture of feature-level CIA approach as a set of compo-
nents. Below, we detail these components according to the order of their use in the feature-level CIA
process.

• Affected Classes Finder. This component is responsible for determining impact set of classes
for a given change set of classes. In this component, we build data structure to save source
code of obtained features from product variants. This data structure contains packages, classes
of these features. We explore this data structure to find classes that are coupled to the change
set according to predefined coupling relations (see section 6.3). We parse the source code of
features using JDT/AST. This is performed by building a Java project containing source code of
all features. This component provides the impact set of classes.

• FCA. The role of this component is to generate a GSH corresponding to formal context that rep-
resents the feature-to-code traceability matrix. This component is the same FCA component
presented in the architecture of feature location process. We again presented it because it is
shared between these architectures.

• Affected Features Finder. The role of this component is to determine a ranked list of affected
features. It requires the GSH generated by the FCA component and impact set of classes ob-
tained by Affected Classes Generator component. In this component, we query the GSH by the
impact set of classes according to algorithms proposed in section 6.5. It provides a ranked list
of affected features as a final output.

Table A.2 presents statistical source code information of the feature level CIA approach in terms
of number of packages (NOP), number of classes (NOC) and number of line of codes (LOC).

Table A.2 : Statistical source code information of feature-level CIA approach.

Approach NOP NOC LOC
Feature-Level CIA 7 25 2,223
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Figure A.3 : Feature-Level CIA Implementation Architecture.

A.3 Implementation Architecture of our SPLA reverse-engineering
approach

Figure A.4 shows the implementation architecture of SPLA approach as a set of components. We
detail these components according to the order of their uses.

• Feature-Level Commonality & Variability Analyzer. This component is responsible for deter-
mining mandatory features (commonality) and variation points (VPs) of features (variability)
across product variants. It requires product configurations and feature descriptions. In this
component, we implement the algorithms proposed in section 7.3. It provides mandatory fea-
tures, AND-Groups, XOR-Groups, OR-Groups and OP-Groups of features.

• Feature Group Implementation Finder. The role of this component is to determine the im-
plementation of feature groups (i.e., VPs and mandatory features). It requires all feature im-
plementations. This implementation consists of all source code classes corresponding to each
feature.

and provides feature group implementations.

• ROMANTIC. This component is responsible for extracting components from the implementa-
tion of feature groups. It requires a feature group implementation and provides a set of compo-
nents. We dedicated the Appendix C to detail how ROMANTIC works.

• Architectural-Level Commonality & Variability Analyzer. The role of this component is to de-
termine mandatory components and VPs of components. It requires components extracted
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Figure A.4 : SPLA Implementation Architecture.

Table A.3 : Statistical source code information of Reverse Engineering SPLA Approach.

Products NOP NOC LOC
Reverse Engineering SPLA 20 56 5,269

using the ROMANTIC. In this component, we link each feature to the corresponding compo-
nent(s). We also conduct textual matching between component names for all features of each
VP to find parent components. This component provides mandatory components and VPs of
components.

Table A.3 presents statistical source code information of the reverse engineering SPLA approach
in terms of number of packages (NOP), number of classes (NOC) and number of line of codes (LOC).
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In chapter Toward Reverse Engineering SPLA from Product Variants: based on Feature Location, we
generated different sets of product configurations for ArgoUML-SPL, MobileMedia and MobilePhone.
Below we present these sets for each case study as follows:

B.1 ArgoUML-SPL

Table B.1: Set 1 of product configurations for ArgoUML-SPL (256
Configuration)

Product Features
Product1 Class
Product2 Class,State
Product3 Class,Activity
Product4 Class,State,Activity
Product5 Class,UseCase
Product6 Class,State,UseCase
Product7 Class,Activity,UseCase
Product8 Class,State,Activity,UseCase
Product9 Class,Collaboration

Product10 Class,State,Collaboration

Continued on next page
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Table B.1 – Continued from previous page
Product Features

Product11 Class,Activity,Collaboration
Product12 Class,State,Activity,Collaboration
Product13 Class,UseCase,Collaboration
Product14 Class,State,UseCase,Collaboration
Product15 Class,Activity,UseCase,Collaboration
Product16 Class,State,Activity,UseCase,Collaboration
Product17 Class,Deployment
Product18 Class,State,Deployment
Product19 Class,Activity,Deployment
Product20 Class,State,Activity,Deployment
Product21 Class,UseCase,Deployment
Product22 Class,State,UseCase,Deployment
Product23 Class,Activity,UseCase,Deployment
Product24 Class,State,Activity,UseCase,Deployment
Product25 Class,Collaboration,Deployment
Product26 Class,State,Collaboration,Deployment
Product27 Class,Activity,Collaboration,Deployment
Product28 Class,State,Activity,Collaboration,Deployment
Product29 Class,UseCase,Collaboration,Deployment
Product30 Class,State,UseCase,Collaboration,Deployment
Product31 Class,Activity,UseCase,Collaboration,Deployment
Product32 Class,State,Activity,UseCase,Collaboration,Deployment
Product33 Class,Sequence
Product34 Class,State,Sequence
Product35 Class,Activity,Sequence
Product36 Class,State,Activity,Sequence
Product37 Class,UseCase,Sequence
Product38 Class,State,UseCase,Sequence
Product39 Class,Activity,UseCase,Sequence
Product40 Class,State,Activity,UseCase,Sequence
Product41 Class,Collaboration,Sequence
Product42 Class,State,Collaboration,Sequence
Product43 Class,Activity,Collaboration,Sequence
Product44 Class,State,Activity,Collaboration,Sequence
Product45 Class,UseCase,Collaboration,Sequence
Product46 Class,State,UseCase,Collaboration,Sequence
Product47 Class,Activity,UseCase,Collaboration,Sequence
Product48 Class,State,Activity,UseCase,Collaboration,Sequence
Product49 Class,Deployment,Sequence
Product50 Class,State,Deployment,Sequence

Continued on next page
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Table B.1 – Continued from previous page
Product Features

Product51 Class,Activity,Deployment,Sequence
Product52 Class,State,Activity,Deployment,Sequence
Product53 Class,UseCase,Deployment,Sequence
Product54 Class,State,UseCase,Deployment,Sequence
Product55 Class,Activity,UseCase,Deployment,Sequence
Product56 Class,State,Activity,UseCase,Deployment,Sequence
Product57 Class,Collaboration,Deployment,Sequence
Product58 Class,State,Collaboration,Deployment,Sequence
Product59 Class,Activity,Collaboration,Deployment,Sequence
Product60 Class,State,Activity,Collaboration,Deployment,Sequence
Product61 Class,UseCase,Collaboration,Deployment,Sequence
Product62 Class,State,UseCase,Collaboration,Deployment,Sequence
Product63 Class,Activity,UseCase,Collaboration,Deployment,Sequence
Product64 Class,State,Activity,UseCase,Collaboration,Deployment,Sequence
Product65 Class,Cognitive
Product66 Class,State,Cognitive
Product67 Class,Activity,Cognitive
Product68 Class,State,Activity,Cognitive
Product69 Class,UseCase,Cognitive
Product70 Class,State,UseCase,Cognitive
Product71 Class,Activity,UseCase,Cognitive
Product72 Class,State,Activity,UseCase,Cognitive
Product73 Class,Collaboration,Cognitive
Product74 Class,State,Collaboration,Cognitive
Product75 Class,Activity,Collaboration,Cognitive
Product76 Class,State,Activity,Collaboration,Cognitive
Product77 Class,UseCase,Collaboration,Cognitive
Product78 Class,State,UseCase,Collaboration,Cognitive
Product79 Class,Activity,UseCase,Collaboration,Cognitive
Product80 Class,State,Activity,UseCase,Collaboration,Cognitive
Product81 Class,Deployment,Cognitive
Product82 Class,State,Deployment,Cognitive
Product83 Class,Activity,Deployment,Cognitive
Product84 Class,State,Activity,Deployment,Cognitive
Product85 Class,UseCase,Deployment,Cognitive
Product86 Class,State,UseCase,Deployment,Cognitive
Product87 Class,Activity,UseCase,Deployment,Cognitive
Product88 Class,State,Activity,UseCase,Deployment,Cognitive
Product89 Class,Collaboration,Deployment,Cognitive
Product90 Class,State,Collaboration,Deployment,Cognitive

Continued on next page
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Table B.1 – Continued from previous page
Product Features

Product91 Class,Activity,Collaboration,Deployment,Cognitive
Product92 Class,State,Activity,Collaboration,Deployment,Cognitive
Product93 Class,UseCase,Collaboration,Deployment,Cognitive
Product94 Class,State,UseCase,Collaboration,Deployment,Cognitive
Product95 Class,Activity,UseCase,Collaboration,Deployment,Cognitive
Product96 Class,State,Activity,UseCase,Collaboration,Deployment,Cognitive
Product97 Class,Sequence,Cognitive
Product98 Class,State,Sequence,Cognitive
Product99 Class,Activity,Sequence,Cognitive

Product100 Class,State,Activity,Sequence,Cognitive
Product101 Class,UseCase,Sequence,Cognitive
Product102 Class,State,UseCase,Sequence,Cognitive
Product103 Class,Activity,UseCase,Sequence,Cognitive
Product104 Class,State,Activity,UseCase,Sequence,Cognitive
Product105 Class,Collaboration,Sequence,Cognitive
Product106 Class,State,Collaboration,Sequence,Cognitive
Product107 Class,Activity,Collaboration,Sequence,Cognitive
Product108 Class,State,Activity,Collaboration,Sequence,Cognitive
Product109 Class,UseCase,Collaboration,Sequence,Cognitive
Product110 Class,State,UseCase,Collaboration,Sequence,Cognitive
Product111 Class,Activity,UseCase,Collaboration,Sequence,Cognitive
Product112 Class,State,Activity,UseCase,Collaboration,Sequence,Cognitive
Product113 Class,Deployment,Sequence,Cognitive
Product114 Class,State,Deployment,Sequence,Cognitive
Product115 Class,Activity,Deployment,Sequence,Cognitive
Product116 Class,State,Activity,Deployment,Sequence,Cognitive
Product117 Class,UseCase,Deployment,Sequence,Cognitive
Product118 Class,State,UseCase,Deployment,Sequence,Cognitive
Product119 Class,Activity,UseCase,Deployment,Sequence,Cognitive
Product120 Class,State,Activity,UseCase,Deployment,Sequence,Cognitive
Product121 Class,Collaboration,Deployment,Sequence,Cognitive
Product122 Class,State,Collaboration,Deployment,Sequence,Cognitive
Product123 Class,Activity,Collaboration,Deployment,Sequence,Cognitive
Product124 Class,State,Activity,Collaboration,Deployment,Sequence,Cognitive
Product125 Class,UseCase,Collaboration,Deployment,Sequence,Cognitive
Product126 Class,State,UseCase,Collaboration,Deployment,Sequence,Cognitive
Product127 Class,Activity,UseCase,Collaboration,Deployment,Sequence,Cognitive
Product128 Class,State,Activity,UseCase,Collaboration,Deployment,Sequence,Cognitive
Product129 Class,Logging
Product130 Class,State,Logging

Continued on next page
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Table B.1 – Continued from previous page
Product Features

Product131 Class,Activity,Logging
Product132 Class,State,Activity,Logging
Product133 Class,UseCase,Logging
Product134 Class,State,UseCase,Logging
Product135 Class,Activity,UseCase,Logging
Product136 Class,State,Activity,UseCase,Logging
Product137 Class,Collaboration,Logging
Product138 Class,State,Collaboration,Logging
Product139 Class,Activity,Collaboration,Logging
Product140 Class,State,Activity,Collaboration,Logging
Product141 Class,UseCase,Collaboration,Logging
Product142 Class,State,UseCase,Collaboration,Logging
Product143 Class,Activity,UseCase,Collaboration,Logging
Product144 Class,State,Activity,UseCase,Collaboration,Logging
Product145 Class,Deployment,Logging
Product146 Class,State,Deployment,Logging
Product147 Class,Activity,Deployment,Logging
Product148 Class,State,Activity,Deployment,Logging
Product149 Class,UseCase,Deployment,Logging
Product150 Class,State,UseCase,Deployment,Logging
Product151 Class,Activity,UseCase,Deployment,Logging
Product152 Class,State,Activity,UseCase,Deployment,Logging
Product153 Class,Collaboration,Deployment,Logging
Product154 Class,State,Collaboration,Deployment,Logging
Product155 Class,Activity,Collaboration,Deployment,Logging
Product156 Class,State,Activity,Collaboration,Deployment,Logging
Product157 Class,UseCase,Collaboration,Deployment,Logging
Product158 Class,State,UseCase,Collaboration,Deployment,Logging
Product159 Class,Activity,UseCase,Collaboration,Deployment,Logging
Product160 Class,State,Activity,UseCase,Collaboration,Deployment,Logging
Product161 Class,Sequence,Logging
Product162 Class,State,Sequence,Logging
Product163 Class,Activity,Sequence,Logging
Product164 Class,State,Activity,Sequence,Logging
Product165 Class,UseCase,Sequence,Logging
Product166 Class,State,UseCase,Sequence,Logging
Product167 Class,Activity,UseCase,Sequence,Logging
Product168 Class,State,Activity,UseCase,Sequence,Logging
Product169 Class,Collaboration,Sequence,Logging
Product170 Class,State,Collaboration,Sequence,Logging

Continued on next page
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Table B.1 – Continued from previous page
Product Features

Product171 Class,Activity,Collaboration,Sequence,Logging
Product172 Class,State,Activity,Collaboration,Sequence,Logging
Product173 Class,UseCase,Collaboration,Sequence,Logging
Product174 Class,State,UseCase,Collaboration,Sequence,Logging
Product175 Class,Activity,UseCase,Collaboration,Sequence,Logging
Product176 Class,State,Activity,UseCase,Collaboration,Sequence,Logging
Product177 Class,Deployment,Sequence,Logging
Product178 Class,State,Deployment,Sequence,Logging
Product179 Class,Activity,Deployment,Sequence,Logging
Product180 Class,State,Activity,Deployment,Sequence,Logging
Product181 Class,UseCase,Deployment,Sequence,Logging
Product182 Class,State,UseCase,Deployment,Sequence,Logging
Product183 Class,Activity,UseCase,Deployment,Sequence,Logging
Product184 Class,State,Activity,UseCase,Deployment,Sequence,Logging
Product185 Class,Collaboration,Deployment,Sequence,Logging
Product186 Class,State,Collaboration,Deployment,Sequence,Logging
Product187 Class,Activity,Collaboration,Deployment,Sequence,Logging
Product188 Class,State,Activity,Collaboration,Deployment,Sequence,Logging
Product189 Class,UseCase,Collaboration,Deployment,Sequence,Logging
Product190 Class,State,UseCase,Collaboration,Deployment,Sequence,Logging
Product191 Class,Activity,UseCase,Collaboration,Deployment,Sequence,Logging
Product192 Class,State,Activity,UseCase,Collaboration,Deployment,Sequence,Logging
Product193 Class,Cognitive,Logging
Product194 Class,State,Cognitive,Logging
Product195 Class,Activity,Cognitive,Logging
Product196 Class,State,Activity,Cognitive,Logging
Product197 Class,UseCase,Cognitive,Logging
Product198 Class,State,UseCase,Cognitive,Logging
Product199 Class,Activity,UseCase,Cognitive,Logging
Product200 Class,State,Activity,UseCase,Cognitive,Logging
Product201 Class,Collaboration,Cognitive,Logging
Product202 Class,State,Collaboration,Cognitive,Logging
Product203 Class,Activity,Collaboration,Cognitive,Logging
Product204 Class,State,Activity,Collaboration,Cognitive,Logging
Product205 Class,UseCase,Collaboration,Cognitive,Logging
Product206 Class,State,UseCase,Collaboration,Cognitive,Logging
Product207 Class,Activity,UseCase,Collaboration,Cognitive,Logging
Product208 Class,State,Activity,UseCase,Collaboration,Cognitive,Logging
Product209 Class,Deployment,Cognitive,Logging
Product210 Class,State,Deployment,Cognitive,Logging

Continued on next page
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Table B.1 – Continued from previous page
Product Features

Product211 Class,Activity,Deployment,Cognitive,Logging
Product212 Class,State,Activity,Deployment,Cognitive,Logging
Product213 Class,UseCase,Deployment,Cognitive,Logging
Product214 Class,State,UseCase,Deployment,Cognitive,Logging
Product215 Class,Activity,UseCase,Deployment,Cognitive,Logging
Product216 Class,State,Activity,UseCase,Deployment,Cognitive,Logging
Product217 Class,Collaboration,Deployment,Cognitive,Logging
Product218 Class,State,Collaboration,Deployment,Cognitive,Logging
Product219 Class,Activity,Collaboration,Deployment,Cognitive,Logging
Product220 Class,State,Activity,Collaboration,Deployment,Cognitive,Logging
Product221 Class,UseCase,Collaboration,Deployment,Cognitive,Logging
Product222 Class,State,UseCase,Collaboration,Deployment,Cognitive,Logging
Product223 Class,Activity,UseCase,Collaboration,Deployment,Cognitive,Logging
Product224 Class,State,Activity,UseCase,Collaboration,Deployment,Cognitive,Logging
Product225 Class,Sequence,Cognitive,Logging
Product226 Class,State,Sequence,Cognitive,Logging
Product227 Class,Activity,Sequence,Cognitive,Logging
Product228 Class,State,Activity,Sequence,Cognitive,Logging
Product229 Class,UseCase,Sequence,Cognitive,Logging
Product230 Class,State,UseCase,Sequence,Cognitive,Logging
Product231 Class,Activity,UseCase,Sequence,Cognitive,Logging
Product232 Class,State,Activity,UseCase,Sequence,Cognitive,Logging
Product233 Class,Collaboration,Sequence,Cognitive,Logging
Product234 Class,State,Collaboration,Sequence,Cognitive,Logging
Product235 Class,Activity,Collaboration,Sequence,Cognitive,Logging
Product236 Class,State,Activity,Collaboration,Sequence,Cognitive,Logging
Product237 Class,UseCase,Collaboration,Sequence,Cognitive,Logging
Product238 Class,State,UseCase,Collaboration,Sequence,Cognitive,Logging
Product239 Class,Activity,UseCase,Collaboration,Sequence,Cognitive,Logging
Product240 Class,State,Activity,UseCase,Collaboration,Sequence,Cognitive,Logging
Product241 Class,Deployment,Sequence,Cognitive,Logging
Product242 Class,State,Deployment,Sequence,Cognitive,Logging
Product243 Class,Activity,Deployment,Sequence,Cognitive,Logging
Product244 Class,State,Activity,Deployment,Sequence,Cognitive,Logging
Product245 Class,UseCase,Deployment,Sequence,Cognitive,Logging
Product246 Class,State,UseCase,Deployment,Sequence,Cognitive,Logging
Product247 Class,Activity,UseCase,Deployment,Sequence,Cognitive,Logging
Product248 Class,State,Activity,UseCase,Deployment,Sequence,Cognitive,Logging
Product249 Class,Collaboration,Deployment,Sequence,Cognitive,Logging
Product250 Class,State,Collaboration,Deployment,Sequence,Cognitive,Logging

Continued on next page
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Table B.1 – Continued from previous page
Product Features

Product251 Class,Activity,Collaboration,Deployment,Sequence,Cognitive,Logging
Product252 Class,State,Activity,Collaboration,Deployment,Sequence,Cognitive,Logging
Product253 Class,UseCase,Collaboration,Deployment,Sequence,Cognitive,Logging
Product254 Class,State,UseCase,Collaboration,Deployment,Sequence,Cognitive,Logging
Product255 Class,Activity,UseCase,Collaboration,Deployment,Sequence,Cognitive,Logging
Product256 Class,State,Activity,UseCase,Collaboration,Deployment,Sequence,Cognitive,Logging

Table B.2 : Set 2 of product configurations for ArgoUML-SPL (7 Configuration)

Product Features
Product1 Class, Cognitive, Sequence, Collaboration, Deployment, Usecase, Activity, State, Logging
Product2 Class, Cognitive, Sequence, Collaboration, Deployment, Usecase.
Product3 Class, Cognitive, Sequence, Activity, State, Usecase.
Product4 Class, Cognitive, Activity, Collaboration, Deployment, State.
Product5 Class, Cognitive.
Product6 Class, Cognitive, Sequence, Usecase.
Product7 Class, Cognitive, Collaboration, Deployment.
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B.2 MobileMedia

Table B.3 : Set 1 of product configurations for MobileMedia (16 Configuration)

Product Features
Product1 Album_Management,Photo_Management
Product2 Album_Management,Photo_Management,Edit_Photo_Label
Product3 Album_Management,Photo_Management,Copy_Photo
Product4 Album_Management,Photo_Management,Edit_Photo_Label,Copy_Photo
Product5 Album_Management,Photo_Management,SMS_Transfer
Product6 Album_Management,Photo_Management,Edit_Photo_Label,SMS_Transfer
Product7 Album_Management,Photo_Management,Copy_Photo,SMS_Transfer
Product8 Album_Management,Photo_Management,Edit_Photo_Label,Copy_Photo,SMS_Transfer
Product9 Album_Management,Photo_Management,Exception_Handling

Product10 Album_Management,Photo_Management,Edit_Photo_Label,Exception_Handling
Product11 Album_Management,Photo_Management,Copy_Photo,Exception_Handling
Product12 Album_Management,Photo_Management,Edit_Photo_Label,Copy_Photo,Exception_Handling
Product13 Album_Management,Photo_Management,SMS_Transfer,Exception_Handling
Product14 Album_Management,Photo_Management,Edit_Photo_Label,SMS_Transfer,Exception_Handling
Product15 Album_Management,Photo_Management,Copy_Photo,SMS_Transfer,Exception_Handling
Product16 Album_Management,Photo_Management,Edit_Photo_Label,Copy_Photo,SMS_Transfer,Exception_Handling

Table B.4 : Set 2 of product configurations for MobileMedia (8 Configuration)

Product Features
Product1 Album_Management,Photo_Management
Product2 Album_Management,Photo_Management,Edit_Photo_Label
Product3 Album_Management,Photo_Management,Copy_Photo
Product4 Album_Management,Photo_Management,Edit_Photo_Label,Copy_Photo
Product5 Album_Management,Photo_Management,SMS_Transfer
Product6 Album_Management,Photo_Management,Edit_Photo_Label,Exception_Handling
Product7 Album_Management,Photo_Management,Exception_Handling
Product8 Album_Management,Photo_Management,SMS_Transfer,Exception_Handling
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Table B.5 : Set 3 of product configurations for MobileMedia (5 Configuration)

Product Features
Product1 Album_Management, Photo_Management
Product2 Exception_Handling, Album_Management, Photo_Management
Product3 Exception_Handling, Edit_Photo_Label, Album_Management,

Photo_Management
Product4 Exception_Handling, Copy_Photo, Edit_Photo_Label, Album_Management,

Photo_Management
Product5 Exception_Handling, SMS_Transfer, Copy_Photo, Edit_Photo_Label, Al-

bum_Management, Photo_Management

B.3 MobilePhone

Table B.6: Set 1 of product configurations for MobilePhone (224
Configuration)

Product Features
Product1 Basic, Call, SMS, Android
Product2 Basic, Call, SMS, IOS
Product3 HighResolution, Call, SMS, Android
Product4 HighResolution, Call, SMS, IOS
Product5 Touch, Call, SMS, Android
Product6 Touch, Call, SMS, IOS
Product7 GPS, HighResolution, Call, SMS, Android
Product8 GPS, HighResolution, Call, SMS, IOS
Product9 GPS, Touch, Call, SMS, Android
Product10 GPS, Touch, Call, SMS, IOS
Product11 HighResolution, Call, Camera, SMS, Android
Product12 HighResolution, Call, Camera, SMS, IOS
Product13 Basic, Call, MP3, SMS, Android
Product14 Basic, Call, MP3, SMS, IOS
Product15 HighResolution, Call, MP3, SMS, Android
Product16 HighResolution, Call, MP3, SMS, IOS
Product17 Touch, Call, MP3, SMS, Android
Product18 Touch, Call, MP3, SMS, IOS
Product19 HighResolution, Call, Camera, MP3, SMS, Android
Product20 HighResolution, Call, Camera, MP3, SMS, IOS
Product21 Basic, Call, Radio, SMS, Android
Product22 Basic, Call, Radio, SMS, IOS
Product23 HighResolution, Call, Radio, SMS, Android

Continued on next page
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Table B.6 – Continued from previous page
Product Features
Product24 HighResolution, Call, Radio, SMS, IOS
Product25 Touch, Call, Radio, SMS, Android
Product26 Touch, Call, Radio, SMS, IOS
Product27 HighResolution, Call, Camera, Radio, SMS, Android
Product28 HighResolution, Call, Camera, Radio, SMS, IOS
Product29 Basic, Call, MP3, Radio, SMS, Android
Product30 Basic, Call, MP3, Radio, SMS, IOS
Product31 HighResolution, Call, MP3, Radio, SMS, Android
Product32 HighResolution, Call, MP3, Radio, SMS, IOS
Product33 Touch, Call, MP3, Radio, SMS, Android
Product34 Touch, Call, MP3, Radio, SMS, IOS
Product35 HighResolution, Call, Camera, MP3, Radio, SMS, Android
Product36 HighResolution, Call, Camera, MP3, Radio, SMS, IOS
Product37 GPS, HighResolution, Call, Camera, SMS, Android
Product38 GPS, HighResolution, Call, Camera, SMS, IOS
Product39 GPS, HighResolution, Call, MP3, SMS, Android
Product40 GPS, HighResolution, Call, MP3, SMS, IOS
Product41 GPS, Touch, Call, MP3, SMS, Android
Product42 GPS, Touch, Call, MP3, SMS, IOS
Product43 GPS, HighResolution, Call, Camera, MP3, SMS, Android
Product44 GPS, HighResolution, Call, Camera, MP3, SMS, IOS
Product45 GPS, HighResolution, Call, Radio, SMS, Android
Product46 GPS, HighResolution, Call, Radio, SMS, IOS
Product47 GPS, Touch, Call, Radio, SMS, Android
Product48 GPS, Touch, Call, Radio, SMS, IOS
Product49 GPS, HighResolution, Call, Camera, Radio, SMS, Android
Product50 GPS, HighResolution, Call, Camera, Radio, SMS, IOS
Product51 GPS, HighResolution, Call, MP3, Radio, SMS, Android
Product52 GPS, HighResolution, Call, MP3, Radio, SMS, IOS
Product53 GPS, Touch, Call, MP3, Radio, SMS, Android
Product54 GPS, Touch, Call, MP3, Radio, SMS, IOS
Product55 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, Android
Product56 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, IOS
Product57 Basic, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product58 Basic, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product59 HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product60 HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product61 Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product62 Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS

Continued on next page
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Table B.6 – Continued from previous page
Product Features
Product63 GPS, HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, An-

droid
Product64 GPS, HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product65 GPS, Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product66 GPS, Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product67 HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Android
Product68 HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

IOS
Product69 Basic, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product70 Basic, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product71 HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, An-

droid
Product72 HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product73 Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product74 Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product75 HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product76 HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, IOS
Product77 Basic, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product78 Basic, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product79 HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, An-

droid
Product80 HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product81 Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product82 Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product83 HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product84 HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, IOS
Product85 Basic, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product86 Basic, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product87 HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product88 HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, IOS
Product89 Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product90 Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS

Continued on next page
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Table B.6 – Continued from previous page
Product Features
Product91 HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Android
Product92 HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, IOS
Product93 GPS, HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product94 GPS, HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, IOS
Product95 GPS, HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Android
Product96 GPS, HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

IOS
Product97 GPS, Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product98 GPS, Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product99 GPS, HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Android
Product100 GPS, HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, IOS
Product101 GPS, HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product102 GPS, HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, IOS
Product103 GPS, Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product104 GPS, Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, IOS
Product105 GPS, HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Android
Product106 GPS, HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, IOS
Product107 GPS, HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Photo-

Explorer, Android
Product108 GPS, HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Photo-

Explorer, IOS
Product109 GPS, Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Android
Product110 GPS, Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

IOS
Product111 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto,

PhotoExplorer, Android
Product112 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto,

PhotoExplorer, IOS

Continued on next page
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Table B.6 – Continued from previous page
Product Features
Product113 Basic, Call, SMS, Recorder, Android
Product114 Basic, Call, SMS, Recorder, IOS
Product115 HighResolution, Call, SMS, Recorder, Android
Product116 HighResolution, Call, SMS, Recorder, IOS
Product117 Touch, Call, SMS, Recorder, Android
Product118 Touch, Call, SMS, Recorder, IOS
Product119 GPS, HighResolution, Call, SMS, Recorder, Android
Product120 GPS, HighResolution, Call, SMS, Recorder, IOS
Product121 GPS, Touch, Call, SMS, Recorder, Android
Product122 GPS, Touch, Call, SMS, Recorder, IOS
Product123 HighResolution, Call, Camera, SMS, Recorder, Android
Product124 HighResolution, Call, Camera, SMS, Recorder, IOS
Product125 Basic, Call, MP3, SMS, Recorder, Android
Product126 Basic, Call, MP3, SMS, Recorder, IOS
Product127 HighResolution, Call, MP3, SMS, Recorder, Android
Product128 HighResolution, Call, MP3, SMS, Recorder, IOS
Product129 Touch, Call, MP3, SMS, Recorder, Android
Product130 Touch, Call, MP3, SMS, Recorder, IOS
Product131 HighResolution, Call, Camera, MP3, SMS, Recorder, Android
Product132 HighResolution, Call, Camera, MP3, SMS, Recorder, IOS
Product133 Basic, Call, Radio, SMS, Recorder, Android
Product134 Basic, Call, Radio, SMS, Recorder, IOS
Product135 HighResolution, Call, Radio, SMS, Recorder, Android
Product136 HighResolution, Call, Radio, SMS, Recorder, IOS
Product137 Touch, Call, Radio, SMS, Recorder, Android
Product138 Touch, Call, Radio, SMS, Recorder, IOS
Product139 HighResolution, Call, Camera, Radio, SMS, Recorder, Android
Product140 HighResolution, Call, Camera, Radio, SMS, Recorder, IOS
Product141 Basic, Call, MP3, Radio, SMS, Recorder, Android
Product142 Basic, Call, MP3, Radio, SMS, Recorder, IOS
Product143 HighResolution, Call, MP3, Radio, SMS, Recorder, Android
Product144 HighResolution, Call, MP3, Radio, SMS, Recorder, IOS
Product145 Touch, Call, MP3, Radio, SMS, Recorder, Android
Product146 Touch, Call, MP3, Radio, SMS, Recorder, IOS
Product147 HighResolution, Call, Camera, MP3, Radio, SMS, Recorder, Android
Product148 HighResolution, Call, Camera, MP3, Radio, SMS, Recorder, IOS
Product149 GPS, HighResolution, Call, Camera, SMS, Recorder, Android
Product150 GPS, HighResolution, Call, Camera, SMS, Recorder, IOS
Product151 GPS, HighResolution, Call, MP3, SMS, Recorder, Android
Product152 GPS, HighResolution, Call, MP3, SMS, Recorder, IOS

Continued on next page
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Product153 GPS, Touch, Call, MP3, SMS, Recorder, Android
Product154 GPS, Touch, Call, MP3, SMS, Recorder, IOS
Product155 GPS, HighResolution, Call, Camera, MP3, SMS, Recorder, Android
Product156 GPS, HighResolution, Call, Camera, MP3, SMS, Recorder, IOS
Product157 GPS, HighResolution, Call, Radio, SMS, Recorder, Android
Product158 GPS, HighResolution, Call, Radio, SMS, Recorder, IOS
Product159 GPS, Touch, Call, Radio, SMS, Recorder, Android
Product160 GPS, Touch, Call, Radio, SMS, Recorder, IOS
Product161 GPS, HighResolution, Call, Camera, Radio, SMS, Recorder, Android
Product162 GPS, HighResolution, Call, Camera, Radio, SMS, Recorder, IOS
Product163 GPS, HighResolution, Call, MP3, Radio, SMS, Recorder, Android
Product164 GPS, HighResolution, Call, MP3, Radio, SMS, Recorder, IOS
Product165 GPS, Touch, Call, MP3, Radio, SMS, Recorder, Android
Product166 GPS, Touch, Call, MP3, Radio, SMS, Recorder, IOS
Product167 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, Recorder, Android
Product168 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, Recorder, IOS
Product169 Basic, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, Android
Product170 Basic, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, IOS
Product171 HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder,

Android
Product172 HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder,

IOS
Product173 Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, Android
Product174 Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, IOS
Product175 GPS, HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product176 GPS, HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, IOS
Product177 GPS, Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product178 GPS, Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, IOS
Product179 HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product180 HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, IOS
Product181 Basic, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product182 Basic, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, IOS
Product183 HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android

Continued on next page
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Product184 HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, IOS
Product185 Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product186 Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, IOS
Product187 HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product188 HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, IOS
Product189 Basic, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product190 Basic, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, IOS
Product191 HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product192 HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, IOS
Product193 Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product194 Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, IOS
Product195 HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product196 HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, IOS
Product197 Basic, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder,

Android
Product198 Basic, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder,

IOS
Product199 HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product200 HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, IOS
Product201 Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product202 Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, IOS
Product203 HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Recorder, Android
Product204 HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Recorder, IOS

Continued on next page
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Product205 GPS, HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product206 GPS, HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, IOS
Product207 GPS, HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product208 GPS, HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, IOS
Product209 GPS, Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder,

Android
Product210 GPS, Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder,

IOS
Product211 GPS, HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Recorder, Android
Product212 GPS, HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Recorder, IOS
Product213 GPS, HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product214 GPS, HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, IOS
Product215 GPS, Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product216 GPS, Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, IOS
Product217 GPS, HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Recorder, Android
Product218 GPS, HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Recorder, IOS
Product219 GPS, HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Photo-

Explorer, Recorder, Android
Product220 GPS, HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Photo-

Explorer, Recorder, IOS
Product221 GPS, Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product222 GPS, Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, IOS
Product223 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto,

PhotoExplorer, Recorder, Android
Product224 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto,

PhotoExplorer, Recorder, IOS
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Table B.7: Set 2 of product configurations for MobilePhone(112
Configuration)

Product Features
Product1 HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product2 Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product3 HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Recorder, Android
Product4 GPS, HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product5 GPS, HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Photo-

Explorer, Recorder, Android
Product6 GPS, Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product7 GPS, Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, IOS
Product8 Basic, Call, SMS, Android
Product9 HighResolution, Call, SMS, Android
Product10 Touch, Call, SMS, Android
Product11 GPS, HighResolution, Call, SMS, Android
Product12 GPS, Touch, Call, SMS, Android
Product13 HighResolution, Call, Camera, SMS, Android
Product14 Basic, Call, MP3, SMS, Android
Product15 HighResolution, Call, MP3, SMS, Android
Product16 GPS, HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product17 GPS, Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder,

Android
Product18 GPS, HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Recorder, Android
Product19 GPS, HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product20 GPS, Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product21 GPS, HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Recorder, Android
Product22 Touch, Call, MP3, SMS, Android
Product23 HighResolution, Call, Camera, MP3, SMS, Android

Continued on next page



B.3. MobilePhone 167

Table B.7 – Continued from previous page
Product Features
Product24 Basic, Call, Radio, SMS, Android
Product25 HighResolution, Call, Radio, SMS, Android
Product26 Touch, Call, Radio, SMS, Android
Product27 HighResolution, Call, Camera, Radio, SMS, Android
Product28 Basic, Call, MP3, Radio, SMS, Android
Product29 HighResolution, Call, MP3, Radio, SMS, Android
Product30 Touch, Call, MP3, Radio, SMS, Android
Product31 GPS, HighResolution, Call, Camera, SMS, Android
Product32 GPS, HighResolution, Call, MP3, SMS, Android
Product33 GPS, Touch, Call, MP3, SMS, Android
Product34 GPS, HighResolution, Call, Camera, MP3, SMS, Android
Product35 GPS, HighResolution, Call, Radio, SMS, Android
Product36 HighResolution, Call, Camera, MP3, Radio, SMS, Android
Product37 GPS, Touch, Call, Radio, SMS, Android
Product38 GPS, HighResolution, Call, MP3, Radio, SMS, Android
Product39 GPS, Touch, Call, MP3, Radio, SMS, Android
Product40 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, Android
Product41 Basic, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product42 HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product43 Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product44 GPS, HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, An-

droid
Product45 GPS, HighResolution, Call, Camera, Radio, SMS, Android
Product46 GPS, Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product47 HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Android
Product48 Basic, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product49 Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product50 HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, An-

droid
Product51 HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product52 Basic, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product53 HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, An-

droid
Product54 HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product55 Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product56 Basic, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android

Continued on next page



168 Appendix B. Product Configurations Used for Evaluation
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Product57 HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product58 HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Android
Product59 Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product60 GPS, HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product61 GPS, HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Android
Product62 GPS, Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product63 GPS, HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Android
Product64 GPS, HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Android
Product65 GPS, Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product66 GPS, HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, Pho-

toExplorer, Android
Product67 GPS, Touch, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Android
Product68 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto,

PhotoExplorer, Android
Product69 Basic, Call, SMS, Recorder, Android
Product70 GPS, HighResolution, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Photo-

Explorer, Android
Product71 HighResolution, Call, SMS, Recorder, Android
Product72 Touch, Call, SMS, Recorder, Android
Product73 GPS, HighResolution, Call, SMS, Recorder, Android
Product74 GPS, Touch, Call, SMS, Recorder, Android
Product75 Basic, Call, MP3, SMS, Recorder, Android
Product76 HighResolution, Call, MP3, SMS, Recorder, Android
Product77 Touch, Call, MP3, SMS, Recorder, Android
Product78 HighResolution, Call, Camera, SMS, Recorder, Android
Product79 HighResolution, Call, Camera, MP3, SMS, Recorder, Android
Product80 Basic, Call, Radio, SMS, Recorder, Android
Product81 HighResolution, Call, Radio, SMS, Recorder, Android
Product82 Touch, Call, Radio, SMS, Recorder, Android
Product83 HighResolution, Call, Camera, Radio, SMS, Recorder, Android
Product84 Basic, Call, MP3, Radio, SMS, Recorder, Android
Product85 HighResolution, Call, MP3, Radio, SMS, Recorder, Android
Product86 Touch, Call, MP3, Radio, SMS, Recorder, Android

Continued on next page
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Product87 HighResolution, Call, Camera, MP3, Radio, SMS, Recorder, Android
Product88 GPS, HighResolution, Call, Camera, SMS, Recorder, Android
Product89 GPS, HighResolution, Call, MP3, SMS, Recorder, Android
Product90 GPS, Touch, Call, MP3, SMS, Recorder, Android
Product91 GPS, HighResolution, Call, Camera, MP3, SMS, Recorder, Android
Product92 GPS, HighResolution, Call, Radio, SMS, Recorder, Android
Product93 GPS, Touch, Call, Radio, SMS, Recorder, Android
Product94 GPS, HighResolution, Call, Camera, Radio, SMS, Recorder, Android
Product95 GPS, HighResolution, Call, MP3, Radio, SMS, Recorder, Android
Product96 GPS, Touch, Call, MP3, Radio, SMS, Recorder, Android
Product97 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, Recorder, Android
Product98 Basic, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, Android
Product99 HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder,

Android
Product100 Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, Android
Product101 GPS, HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product102 GPS, Touch, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product103 HighResolution, Call, Camera, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product104 Basic, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product105 HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product106 Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product107 HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product108 Basic, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product109 HighResolution, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product110 Touch, Call, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product111 HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, PhotoEx-

plorer, Recorder, Android
Product112 Basic, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder,

Android
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Table B.8 : Set 3 of product configurations for MobilePhone (10 Configuration)

Product Features
Product1 GPS, HighResolution, Call, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, An-

droid
Product2 Basic, Call, SMS, Android
Product3 Touch, Call ,Radio, SMS, Android
Product4 Basic, Call, MP3, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product5 GPS, HighResolution, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Android
Product6 HighResolution, Call, Camera, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, An-

droid
Product7 Basic, Call, MP3, SMS, Recorder, Android
Product8 Touch, Call, MP3, SMS, SendPhoto, ReceivePhoto, PhotoExplorer, Recorder, Android
Product9 HighResolution, Call, Camera, Radio, SMS, SendPhoto, ReceivePhoto, PhotoExplorer,

Recorder, Android
Product10 GPS, HighResolution, Call, Camera, MP3, Radio, SMS, SendPhoto, ReceivePhoto, Photo-

Explorer, Recorder, IOS
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Component Extraction from

Object-Oriented Source Code: ROMANTIC
Approach

ROMANTIC (Re-engineering of Object-oriented systeMs by Architecture extractioN and migraTIon to
Component based ones.) is an approach to automatically recover a component-based architecture
from the source code of an existing object-oriented software [Kebir et al., 2012b][Chardigny et al.,
2008]. ROMANTIC relies on two models: mapping model and quality model.

• A mapping model between object-oriented concepts (i.e. classes, interfaces, packages,
etc.) and component-based software engineering ones (i.e. components, interfaces, sub-
component, etc.).

• A measurement model of semantic-correctness of a component. This model refines charac-
teristics of a component to measurable metrics. Based on these metrics, a fitness function is
defined to measure the semantic-correctness of a component.

C.1 Mapping Model between Component and Object Concepts

In ROMANTIC, components are as disjoint collections of classes. Each collection is named shape
and contains classes which can belong to different object-oriented packages (see Figure C.1). The
classes of a shape are organized into two sets to constitute respectively shape interface and center.
The shape interface classes have links with some classes from the outside of the shape using a method
call or attribute use; while the remaining classes represent the shape center. Figure C.1 shows the

171
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Figure C.1 : Shape Structure [Kebir et al., 2012b][Chardigny et al., 2008].

Figure C.2 : Object-Component Mapping Model [Kebir et al., 2012b][Chardigny et al., 2008].

shape (resp. component) structure. Figure C.2 shows the component-object mapping model that
was proposed to handle the correspondence between object and component concepts.

C.2 Semantic-Correctness of Components

The semantic correctness of a component is based on the component characteristics. These charac-
teristics are identified by studying the most commonly admitted definitions of software component.
By combining and refining the common elements of different definitions of the component concept,
three semantic characteristics of software components were identified: composability, autonomy and
specificity.



C.2. Semantic-Correctness of Components 173

Figure C.3 : MetaModel of Refinement Software Characteristics Norm ISO-9126 [Kebir et al.,
2012b][Chardigny et al., 2008].

C.2.1 From Characteristics to Properties

The identified semantic correctness characteristics are measured by using the refinement model
given by the norm ISO-9126 (see Figure C.3) [ISO, 2001]. Based on this model, the semantic cor-
rectness of a component represents a characteristic and the components characteristics represent
sub-characteristics. Also according to this model, these sub-characteristics are refined into mea-
surable properties. This refinement is done using the semantic which is associated with these sub-
characteristics. Below, we present such a refinement.

• Autonomy: A component is autonomous if it has no required interfaces, and hence the prop-
erty number of required interfaces should lead to a good measure of the component autonomy.

• Composability: A component can be composed by means of its provided and required inter-
faces. A component was considered more easily composed with another if services provid-
ed/required in each interface are cohesive. The property average of service cohesion of com-
ponent interface was used to measure composability.

• Specificity: The specificity characteristic of a component is refined to properties by the evalua-
tion of the number of provided services, which are based on the following statements. Firstly, a
component which provides many interfaces may provide various services, as an interface can
offer different services. Thus the higher the number of interfaces is, the higher the number
of provided services. Secondly, if interfaces (resp. services in each interface) are cohesive (i.e.
share resources), they probably offer closely related functionalities. Thirdly, if the code of the
component is loosely coupled (resp. cohesive), the different parts of the component code use
each other (resp. common resources). Consequently, they probably work together in order to
offer a few functionalities. From these statements, the specificity characteristic was refined to
the following properties: number of provided interfaces, average of service cohesion of compo-
nent interface, component interface cohesion, and component cohesion and coupling.

C.2.2 From Properties to Metrics

According to the refinement model given by the norm ISO-9126, a set of metrics are needed to mea-
sure the components properties mentioned above. In order to define these metrics, a link between
component properties and shape properties is needed. Such a corresponding link is established as
follows:
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Figure C.4 : The Refinement Model for Semantic-Correctness [Kebir et al., 2012b][Chardigny et al.,
2008].

• Firstly, according to the mapping model, component interface set is linked to the shape in-
terface set. Thus, the average of the interface-class cohesion gives a correct measure for the
property of the average of service cohesion of a component interface.

• Secondly, the component interface cohesion, the internal component cohesion and the inter-
nal component coupling can respectively be measured by the properties of interface class co-
hesion, shape class cohesion and shape class coupling.

• Thirdly, to link the property of the number of provided interfaces to a shape property, a com-
ponent provided interface is associated to each shape-interface class having public methods.
Thus, the number of provided interfaces is measured using the number of shape interface
classes having public methods.

• Finally, the number of required interfaces is evaluated by using coupling between the compo-
nent and the outside. This coupling is linked to shape external coupling. Thus, this property is
measured using the property shape external coupling.

The properties shape class coupling and shape external coupling require a coupling measurement.
Thus, the metric Coupl(E) and CouplExt(E) are defined to measure respectively the coupling of a
shape E and the coupling of E with the outside classes. They measure two types of dependencies be-
tween objects: method calls and use of attributes of another class. Moreover, they are related through
the equation below:

couplE xt (E) = 100− coupl (E). (C.1)

The properties average of interface-class cohesion, interface-class cohesion, and shape-class cohesion
require a cohesion measurement. The metric Loose Class Cohesion (LCC), proposed by Bieman and
Kang [Bieman et Kang, 1995], was used to measure the percentage of pairs of methods which are
directly or indirectly connected. The refinement model of the semantic correctness of a component
is summarized in Figure C.4.



C.3. Naming Components 175

C.2.3 Evaluation of the Semantic-Correctness

According to the established mapping between the sub-characteristics, properties and metrics, three
evaluation functions were proposed Spe, A and C respectively for specificity, autonomy and compos-
ability, where nbPub(I) is the number of interface classes having a public method and I is the shape
interface of the shape E:

1. Spe(E) = 1
5 · ( 1

|I | ·
∑

i∈I LCC (i )+LCC (I )+LCC (E)+Coupl (E)+nbPub(I ))

2. A(E) = couplE xt (E) = 100− coupl (E)

3. C (E) = 1
|I | ·

∑
i∈I LCC (i )

The function S(E) defined below represents the semantic-correctness function of a shape E. This
function is based on the evaluation of each sub-characteristic. That is why it is as a linear combination
of each fitness function of sub-characteristics (i.e. Spe, A and C):

4. S(E) = 1
3∑

i=1
λi

· (λ1 ·Spe(E)+λ2 · A(E)+λ3 ·C (E))

C.3 Naming Components

In ROMANTIC, naming component was performed based on the following observations: in many
object-oriented languages, class names are a sequence of nouns concatenated using a camel-case
notation (i.e. StringBuffer, ElementFilter, etc). The first word of a class name indicates the main
purpose of the class; the second word indicate a complementary purpose of the class and so on.
On the other hand, an interface name should be an adjective that qualifies its implementing class.
According to these observations, three steps were proposed for naming components: extracting and
tokenizing class and interface names from identified components, weighting tokens and constructing
the component name.

C.3.1 Extracting and Tokenizing Class and Interface Names

In this step, class and interface names are extracted and then split into tokens according to the camel-
case syntax. For example: StringBuffer is split into String and Buffer.

C.3.2 Weighting Tokens

In this step, a weight is assigned to each extracted token. A large weight is given to tokens that con-
stitute the first word of class names. A medium weight is given to tokens that are the first word of
interface names. Finally a small weight is given to the other tokens.

As a component consists of two sets of classes (center and interface), two strategies were pro-
posed to deal with these classes for naming component purpose. A large weight was given to tokens
extracted from classes that belong to the provided interface of a component because these classes
constitute the provided functionalities and services that it offers to other components, thus, its main
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purpose. A small weight was given to tokens extracted from classes that belong to the center of a
component because these classes are less concerned with the main purpose of the component and
are mainly utility classes that do not interact with the outside. For a given word (w), the weight is
calculated as follows:

wei g ht (w) = 1
5∑

i=1
Ni

· (1.0× (N1 +N2)0.75×N3 +0.5× (N4 +N5) (C.2)

Where:

• N1: Number of appearance as the first word of a class name belonging to the provided interface.

• N2: Number of appearance in an entity name belonging to the provided interface of a compo-
nent shape.

• N3: Number of appearance as the first word of an interface name.

• N4: Number of appearance other than the first word in an entity name.

• N5: Number of appearance in an entity name belonging to the center of a component shape.

C.3.3 Constructing the Component Name

In this step, a component name is constructed based on the strongest weighted tokens. The strongest
weighted token constitutes the first word of the component name; the second strongest weighted
word constitutes the second word of the component name and so on. The number of words used in
a component name is chosen by the user. When many tokens have the same weight, all the possible
combinations are presented to the user and he can choose the appropriate one.
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