
Délivré par l'Université Montpellier II

Préparée au sein de l'école doctorale I2S∗

Et de l'unité de recherche UMR 5506

Spécialité: Informatique

Présentée par Ra'Fat AL-Msie'Deen

Construction de lignes de

produits logiciels par

réingénierie de modèles de

caractéristiques à partir de

variantes de logiciels :

l'approche REVPLINE

Soutenue le 10/07/2014 devant le jury composé de :

Mme. Marianne Huchard Prof. Université Montpellier II Directeur de thése

M. Philippe Lahire Prof. Université de Nice Sophia Antipolis Examinateur

M. Sébastien Ferré Mdc. Université de Rennes 1 Examinateur

M. Stefano Cerri Prof. Université Montpellier II Président

M. Camille Salinesi Prof. Université de Paris 1 Rapporteur

M. Salah Sadou Mdc. Université de Bretagne Sud Rapporteur

M. Abdelhak-Djamel Seriai Mdc. Université Montpellier II Encadrant

Mme. Christelle Urtado Mdc. Ecole des Mines d'Alés Encadrant

M. Sylvain Vauttier Mdc. Ecole des Mines d'Alés Encadrant

∗
I2S : École doctorale Information Structures Systèmes

ACADÉMIE DE MONTPELLIER

U N I V E R S I T É M O N T P E L L I E R I I

— SCIENCES ET TECHNIQUES DU LANGUEDOC —

PH.D THÈSE

présentée au Laboratoire d’Informatique de Robotique
et de Microélectronique de Montpellier pour

obtenir le diplôme de doctorat

SPÉCIALITÉ : INFORMATIQUE

Formation Doctorale : Informatique
École Doctorale : Information, Structures, Systèmes

Reverse Engineering Feature Models From Software Variants to Build
Software Product Lines

RIVEPLINE Approach

par

Ra’Fat AL-MSIE’DEEN

Soutenue le April 18, 2014, devant le jury composé de :

Mme. Marianne HUCHARD, Professeur, Université Montpellier II . Directeur de Thèse
M. Philippe LAHIRE, Professeur, Université de Nice - Sophia Antipolis . Examinateur
M. Sébastien FERRÉ, Maître de Conférences, Université de Rennes 1, . Examinateur
M. Camille SALINESI, Université de Paris 1 . Rapporteur
M. Salah SADOU, Maître de Conférences, Université de Bretagne Sud . Rapporteur
M. Stefano CERRI, Professeur, Université Montpellier II . Président
M. Abdelhak-Djamel SERIAI, Maître de Conférences, Université Montpellier IICo-Encadrant de Thése
M. Christelle URTADO, Maître de Conférences, Ecole des Mines d’Alés Co-Encadrant de Thése
M. Sylvain VAUTTIER, Maître de Conférences, Ecole des Mines d’AlésCo-Encadrant de Thése

http://www.univ-montp2.fr
http://www.edi2s.univ-montp2.fr
http://www.lirmm.fr/~seriai/encadrements/theses/rafat/
http://www.lirmm.fr/~huchard/
http://www.i3s.unice.fr/~lahire/english/E-index.html
http://www.irisa.fr/LIS/ferre/index.fr.html
http://www.univ-paris1.fr/recherche/page-perso/page/?tx_oxcspagepersonnel_pi1%5Buid%5D=camille
https://www-archware.irisa.fr/members/salah-sadou/
http://www.lirmm.fr/~cerri/
http://www2.lirmm.fr/~seriai/
http://www.lgi2p.ema.fr/~urtado/
http://www.lgi2p.ema.fr/~vauttier/

Version of April 18, 2014

CONTENTS

Contents iii

Acknowledgements vii

Abstract ix

Résumé xi

Personal Bibliography xiii

List of Abbreviations xv

1 Introduction: Context and Motivation 1
1.1 Context: Software Product Line . 2
1.2 Motivation and Problem . 2
1.3 Contribution . 5
1.4 Thesis Outline . 6

I Background and State of the Art 9

2 Background 11
2.1 Software Product Line and Software Variants . 12

2.1.1 Software Product Line Engineering . 12
2.1.2 Software Product Variants . 18

2.2 Formal and Relational Concept Analysis . 19
2.2.1 Formal Concept Analysis . 20
2.2.2 Relational Concept Analysis . 23

2.3 Latent Semantic Indexing . 26
2.3.1 The Singular Value Decomposition Model . 28
2.3.2 Singular Value Decomposition Numerical Example 28
2.3.3 Evaluation Metrics . 31
2.3.4 Latent Semantic Indexing Through Example . 32

2.4 Conclusion . 35

3 State of the Art 37
3.1 Introduction . 38
3.2 Key Concepts . 38

3.2.1 Feature Location . 38
3.2.2 Source Code Documentation . 39
3.2.3 Reverse Engineering Feature Model . 39

3.3 Related work . 40

iii

iv Contents

3.3.1 Feature Location Approaches . 40
3.3.2 Source Code Documentation Approaches . 50
3.3.3 Reverse Engineering FMs Approaches . 59

3.4 Summary . 68

II RIVEPLINE Approach: Contributions 71

4 REVPLINE: Feature Location in a Collection of Software Product Variants 73
4.1 Presentation of the Problem . 74
4.2 Principles of the Proposal . 75

4.2.1 Goal and Core Assumptions . 75
4.2.2 Object-oriented Source Code Variation . 76
4.2.3 Features versus Object-oriented Building Elements: the Mapping Model 77
4.2.4 The Lexical Versus Structural Similarity . 79
4.2.5 An Illustrative Example: Drawing Shapes Software Variants 80

4.3 The Feature Mining Process into Details . 81
4.3.1 Identifying the Common Block and Blocks of Variation 82
4.3.2 Identifying Atomic Blocks . 83

4.4 Threats to validity . 92
4.5 Conclusion . 94

5 REVPLINE: Documenting the Mined Feature Implementation 97
5.1 Introduction . 98
5.2 Specify Use-case Diagrams of Software Variants with Variability 99

5.2.1 Exploiting Use-cases to Support Feature Documentation 99
5.2.2 An Illustrative Example: Mobile Tourist Guide Software Variants 101

5.3 Principles of Feature Documentation . 102
5.4 Feature Documentation Overview . 104
5.5 Feature Documentation Step by Step . 106

5.5.1 Reduce LSI Search Space: Identifying Hybrid Blocks Based on RCA 106
5.5.2 Exploring the Hybrid Blocks CLF to Identify Features Documentation 108
5.5.3 Measuring Hybrid block contents’ Similarity Based on LSI 109
5.5.4 Identifying Feature Name and Description Based on FCA 112

5.6 Naming Feature Implementation Based on OBE Names . 114
5.7 Threats to validity . 115
5.8 Conclusion . 116

6 Reverse Engineering Feature Models from Software Configurations 117
6.1 Introduction . 118
6.2 FM Reverse Engineering Process . 119
6.3 Step-by-Step FM Reverse Engineering . 121

6.3.1 Extracting the AOC-poset . 121
6.3.2 Extracting root feature . 123
6.3.3 Extracting mandatory features . 123
6.3.4 Extracting atomic set of features (AND-group) . 124
6.3.5 Extracting exclusive-or relation . 124
6.3.6 Extracting inclusive-or relation . 126
6.3.7 Extracting requires constraint . 127
6.3.8 Extracting Exclude constraint . 127
6.3.9 The Resulting Feature Model . 128

6.4 FM Evaluation . 129

Contents v

6.5 Conclusion . 131

III Experimentation 133

7 Experimentation 135
7.1 Introduction . 136
7.2 ArgoUML-SPL Case Study . 136

7.2.1 ArgoUML-SPL Description . 136
7.2.2 ArgoUML Validation . 138

7.3 Health complaint-SPL Case Study . 145
7.3.1 Health complaint-SPL Description . 145
7.3.2 Health Complaint Validation . 148

7.4 Mobile Media Case Study . 155
7.4.1 Mobile Media Description . 155
7.4.2 Mobile Media Validation . 157

7.5 Reverse Engineering FMs from Samples of Program Configurations 163
7.6 Conclusion . 164

IV Conclusion and Perspectives 167

8 Conclusion and Future Directions 169
8.1 Summary of Contributions . 170
8.2 Future Directions . 172

8.2.1 Extending the Scope . 172
8.2.2 Improving the Approach with Natural Language Processing Tools 173
8.2.3 Improving techniques . 173

A Implementation 175
A.1 Introduction . 176
A.2 REVPLINE Components . 176
A.3 External Libraries . 182

A.3.1 eRCA . 182
A.3.2 Graphviz . 184

A.4 Eclipse Plugins . 185
A.4.1 UML2 Plugin . 185
A.4.2 FeatureIDE Plugin . 186

A.5 Statistical information regarding REVPLINE source code . 187
A.6 Conclusion . 189

List of Figures 190

List of Tables 192

List of Listings 194

Bibliography 195

ACKNOWLEDGEMENTS

When you make the finding yourself - even if you’re the last
person on Earth to see the light - you never forget it.

Carl SAGAN

Iwould like to express my gratitude to all those who gave me the possibility to complete this thesis.
First, I would like to thank my supervisors: Marianne Huchard, Christelle Urtado, Abdelhak-Djamel

Seriai and Sylvain Vauttier. They brought me into the domain of software engineering and software
product line engineering. They taught me in some many aspects: paper writing, presentation skills, or
even programming skills. And thanks to their guidance and encouragement, I found the suitable topic
and learned the methods to do research. I would also like to thank the thesis committee members, for
their time in reading and commenting on my thesis. To the MaREL group, I say: Thank you!

Thanks to my families’ support, that enable me to focus on my research. Especially, I would thank my
mother and father, who encouraged me a lot when my research progress did go well. And my brothers
also supported and encouraged me a lot. They also helped to take care of my parents when I was busy
with my research work. For my family, I also wish my PhD thesis is a gift to them.

I am deeply and forever indebted to the people in my life that touched my heart and gave me
strength to move forward to something better. The people who inspire me to breathe, who encourage
me to understand who I am, and who believe in me when no one else does. Am also thankful to all
my colleagues and friends in Jordan and France, especially from the Tafila Technical University and
University Montpellier 2 for their help and support, with whom I shared pleasant times.

LIRMM — 161, rue Ada — 34095 Montpellier cedex 5 — France

Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)

Équipe MaREL — LIRMM @ UM2

vii

ABSTRACT

framework tackles the consumer related part of Web service utilization, including Web service discov-
ery, selection for independent or composition utilization, and substitution. Therefore, each layer of our
framework corresponds to a level of the described problem in the previous section, and they are as fol-
lows:

The idea of Software Product Line (SPL) approach is to manage a family of similar software products
in a reuse-based way. Reuse avoids repetitions, which helps reduce development/maintenance

effort, shorten time-to-market and improve overall quality of software. To migrate from existing software
product variants into SPL, one has to understand how they are similar and how they differ one from
another. Companies often develop a set of software variants that share some features and differ in other
ones to meet specific requirements. To exploit existing software variants and build a software product
line, a feature model must be built as a first step. To do so, it is necessary to extract mandatory and
optional features in addition to associate each feature with its name. Then, it is important to organize
the mined and documented features into a feature model. In this context, our thesis proposes three
contributions.

Thus, we propose, in this dissertation as a first contribution a new approach to mine features from
the object-oriented source code of a set of software variants based on Formal Concept Analysis, code de-
pendency and Latent Semantic Indexing. The novelty of our approach is that it exploits commonality and
variability across software variants, at source code level, to run Information Retrieval methods in an effi-
cient way. The second contribution consists in documenting the mined feature implementations based
on Formal Concept Analysis, Latent Semantic Indexing and Relational Concept Analysis. We propose a
complementary approach, which aims to document the mined feature implementations by giving names
and descriptions, based on the feature implementations and use-case diagrams of software variants. The
novelty of our approach is that it exploits commonality and variability across software variants, at feature
implementations and use-cases levels, to run Information Retrieval methods in an efficient way. In the
third contribution, we propose an automatic approach to organize the mined documented features into
a feature model. Features are organized in a tree which highlights mandatory features, optional features
and feature groups (and, or, xor groups). The feature model is completed with requirement and mutual
exclusion constraints. We rely on Formal Concept Analysis and software configurations to mine a unique
and consistent feature model. To validate our approach, we applied it on three case studies: ArgoUML-
SPL, Health complaint-SPL, Mobile media software product variants. The results of this evaluation vali-
date the relevance and the performance of our proposal as most of the features and its constraints were
correctly identified.

Keywords: Software Product Line Engineering, Software Product Variants, Re-engineering, Feature lo-
cation, Feature model, Variability, Formal Concept Analysis, Latent Semantic Indexing, Relational Con-
cept Analysis, Feature documentation, Code comprehension, Use-case diagram.

ix

RÉSUMÉ

Les lignes de produits logicielles constituent une approche permettant de construire et de main-
tenir une famille de produits logiciels similaires mettant en œuvre des principes de réutilisation.

Ces principes favorisent la réduction de l’effort de développement et de maintenance, raccourcissent le
temps de mise sur le marché et améliorent la qualité globale du logiciel. La migration de produits logi-
ciels similaires vers une ligne de produits demande de comprendre leurs similitudes et leurs différences
qui s’expriment sous forme de caractéristiques (features) offertes. Dans cette thèse, nous nous intéres-
sons au problème de la construction d’une ligne de produits à partir du code source de ses produits et
de certains artefacts complémentaires comme les diagrammes de cas d’utilisation, quand ils existent.
Nous proposons des contributions sur l’une des étapes principales dans cette construction, qui consiste
à extraire et à organiser un modèle de caractéristiques (feature model) dans un mode automatisé.

La première contribution consiste à extraire des caractéristiques dans le code source de variantes de
logiciels écrits dans le paradigme objet. Trois techniques sont mises en œuvre pour parvenir à cet ob-
jectif : l’Analyse Formelle de Concepts, l’Indexation Sémantique Latente et l’analyse des dépendances
structurelles dans le code. Elles exploitent les parties communes et variables au niveau du code source.
La seconde contribution s’attache à documenter une caractéristique extraite par un nom et une de-
scription. Elle exploite le code source mais également les diagrammes de cas d’utilisation, qui conti-
ennent, en plus de l’organisation logique des fonctionnalités externes, des descriptions textuelles de ces
mêmes fonctionnalités. En plus des techniques précédentes, elle s’appuie sur l’Analyse Relationnelle
de Concepts afin de former des groupes d’entités d’après leurs relations. Dans la troisième contribu-
tion, nous proposons une approche visant à organiser les caractéristiques, une fois documentées, dans
un modèle de caractéristiques. Ce modèle de caractéristiques est un arbre étiqueté par des opérations
et muni d’expressions logiques qui met en valeur les caractéristiques obligatoires, les caractéristiques
optionnelles, des groupes de caractéristiques (groupes ET, OU, OU exclusif), et des contraintes complé-
mentaires textuelles sous forme d’implication ou d’exclusion mutuelle. Ce modèle est obtenu par anal-
yse d’une structure obtenue par Analyse Formelle de Concepts appliquée à la description des variantes
par les caractéristiques. L’approche est validée sur trois cas d’étude principaux : ArgoUML-SPL, Health
complaint-SPL et Mobile media.

Mots clefs: Ingénierie des lignes de produits, variante de logiciel, Réingénierie, identification de car-
actéristique, modèle de caractéristiques, Variabilité, Analyse Formelle de Concepts, Indexation Séman-
tique Latente, Analyse Relationnelle de Concepts, Documentation de caractéristiques, Compréhension
du code, Diagramme de cas d’utilisation.

xi

PERSONAL BIBLIOGRAPHY

Search for the truth is the noblest occupation of man, its
publication is a duty.

Anne Louise Germaine de Staël-Holstein

This research activity has led to several publications. This thesis reuses and extends publications of
the author. These publications are summarized below.

International Conferences:

¶ R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H. E. Salman, "Feature location in a collec-
tion of software product variants using formal concept analysis,". In Proceedings of the 13th International
Conference on Software Reuse (ICSR), ser. Lecture Notes in Computer Science, J. M. Favaro and M. Morisio,
Eds., vol. 7925. Springer, 2013, pp. 302–307.

· R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H. E. Salman, "Mining features from the
object-oriented source code of a collection of software variants using formal concept analysis and latent se-
mantic indexing,". In Proceedings of the 25th International Conference on Software Engineering and Knowl-
edge Engineering (SEKE). Knowledge Systems Institute Graduate School, 2013, pp. 244–249.

¸ R. Al-Msie’deen, A.-D. Seriai, M. Huchard, C. Urtado, and S. Vauttier, "Mining features from the object-
oriented source code of software variants by combining lexical and structural similarity,”. In Proceedings
of the 14th International Conference on Information Reuse and Integration (IRI). IEEE, 2013, pp. 586–593.

¹ R. Al-Msie’deen, M. Huchard, A.-D. Seriai, C. Urtado, S. Vauttier, and A. Al-Khlifat, "Concept lattices: a rep-
resentation space to structure software variability,". In Proceedings of the 5th International Conference on
Information and Communication Systems (ICICS). IEEE, 2014, pp. 72–77.

Book:

à R. Al-Msie’deen, A. Seriai, and M. Huchard, Reengineering Software Product Variants Into Software Product
Line: REVPLINE Approach. LAP Lambert Academic Publishing, 2014, pp. 1-120.

PHD Symposium:

à R. Al-Msie’deen, "Mining feature models from the object-oriented source code of a collection of software
product variants,". In Doctoral Symposium - The 27th European Conference on Object-Oriented Program-
ming (ECOOP), 2013, pp. 1–10.

National Conference:

à R. AL-Msie’deen, A. D. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H. E. Salman, "An approach to recover
feature models from object-oriented source code,". In Actes de la Journée Lignes de Produits 2012, Lille,
France, Novembre 2012, pp. 15–26.

xiii

xiv Personal Bibliography

Poster:

à R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H. E. Salman, "A methodology to recover
feature models from object-oriented source code," 2012, poster presented at VARY Workshop (VARY: VARi-
ability for You @ MODELS 2012), September 30, Innsbruck, Austria.

International Workshops:

¶ H. Eyal-Salman, A.-D. Seriai, C. Dony, and R. Al-msie’deen, "Recovering traceability links between feature
models and source code of product variants,". In Proceedings of the VARiability for You Workshop: Variability
Modeling Made Useful for Everyone, ser. VARY ’12. New York, NY, USA: ACM, 2012, pp. 21–25.

· H. Eyal-Salman, A.-D. Seriai, C. Dony, and R. Al-msie’deen, "Identifying traceability links between product
variants and their features,". In Proceedings of the First International Workshop on Reverse Variability Engi-
neering, ser. REVE ’13, 2013, pp. 17–23.

LIST OF ABBREVIATIONS

REVPLINE REengineering Software Product Variants into Software Product LINE

SPLE Software Product Line Engineering

SPL Software Product Line

FMs Feature Models

FCA Formal Concept Analysis

RCA Relational Concept Analysis

RCF Relational Context Family

CLF Concept Lattice Family

IR Information Retrieval

LSI Latent Semantic Indexing

VSM Vector Space Model

LSA Latent Semantic Analysis

FODA Feature Oriented Domain Analysis

LoC Lines of Code

CB Common Block

BV Block of Variation

CAB Common Atomic Block

ABV Atomic Blocks of Variation

LSM Lexical Similarity Matrix

CM Combined Matrix

DSM Dependency Structure Matrix

xv

C
H

A
P

T
E

R

1
INTRODUCTION: CONTEXT AND MOTIVATION

The past is but the beginning of a beginning, and all that is or
has been is but the twilight of the dawn.

Herbert G. WELLS

Preamble

This chapter introduces the context, motivation, problem statement and contribution of our proposal. Sec-
tion 1.1 presents the context of our work. The context is software engineering and more specifically software
product line engineering. In Section 1.2, we present the motivation of our proposal. This section also ex-
plains the problems regarding the existing approaches in this domain and the strategies they are using to
build a software product line and this is what we do in this dissertation. In Section 1.3, we introduce our
contribution regarding the problem statements. Finally, in Section 1.4, we present characteristics of the
contributions and organization of the document.

2 Chap 1. Introduction: Context and Motivation

1.1 Context: Software Product Line

Similarly to car developers who propose a full range of cars with common characteristics and numer-
ous variants, software developers may cater to various needs and propose as a result a software fam-

ily instead of one single product. Such software family is called a software product line (SPL) [Clements
and Northrop, 2002]. The SPL approach targets at improving software productivity and quality by relying
on the similarity that exists among software systems and related development process. The idea of the
SPL approach is to manage a family of software systems in a reuse-based way. The motivation of SPL lies
in the fact that companies most of the time develop and maintain multiple variants of the same software
system customized for the needs of different customers. All such system variants are namely similar, but
they also differ in customer-specific features [Xue et al., 2012]. This forms possibility for reuse. Reuse
avoids duplications, which helps decrease development and maintenance effort and cost, shorten time-
to-market and improves quality of software [Jacobson et al., 1997] [Xue, 2011].

In an SPL, core assets [Bass et al., 2003] [Clements and Northrop, 2002] are identified and built. Prod-
uct variants are derived from core assets. Variability among software variants is described in terms of
features [Kang, 1990]. Constraints between features are described via Feature Models (FMs). FMs are the
de facto standard to model the mandatory and optional features of an SPL and their relationships [Acher
et al., 2013b].

A SPL is usually characterized by two sets of features: the features that are shared by all products in
the family, which represent the SPL’s commonality, and the features that are shared by some, but not all,
products in the family, which represent the SPL’s variability.

1.2 Motivation and Problem

In common software development processes software product variants often evolve from an initial prod-
uct developed for and successfully used by the first customer. Mobile Media Systems [Tizzei et al., 2011]

are an example of such a product evolution. These product variants usually share some common fea-
tures but they are also different from one another due to subsequent customization to meet the specific
requirements of different customers [Xue et al., 2012].

As the number of features and the number of software product variants grows, it is worth reengineer-
ing software product variants into a SPL for systematic reuse [Clements and Northrop, 2002]. SPLs are
often set up after the implementation of numerous similar software product variants using ad hoc reuse
techniques such as copy-paste-modify [Ziadi et al., 2012]. In practice, most organizations cannot afford to
start a SPL development from scratch and therefore have to use as much existing software assets (source
code, design artefacts) as possible [Beuche, 2009]. When variants become numerous, switching to a rig-
orous software product line engineering (SPLE) process is a solution to tame the increasing complexity
of all the engineering tasks. To switch to SPLE starting from a collection of existing variants, the first step
is to mine the FM that describes the SPL. This implies to identify the software family’s common and vari-
able features. Manual reverse engineering of a feature model for software variants is time-consuming,
error-prone, and requires substantial efforts [Ziadi et al., 2012].

Building a SPL from existing software product variants, a number of open problems must be solved.
Those open problems include how to discover or extract the variability amongst the software product
variants, how to model variability and commonality, how to build the real FM that expresses the variabil-
ity and commonality across these software variants.

In order to re-engineer existing software variants into a SPL, numerous important fundamentals must
be satisfied [van der Linden et al., 2007]. Variability and commonality amongst the software variants
must be clearly identified and should be systematically managed via FM [Xue, 2011]. In the following we
present the sub-problems that we identified as important in order to answer the question: "How do we
want to re-engineer the code of software variants into a SPL?".

1.2. Motivation and Problem 3

¶ Mining features from the source code of software variants: In order to re-engineer software variants
into a SPL, there is a need to extract all features from these variants’ source code. Source code of software
variants is considered as the most important source of information. To mine software variants feature
we must distinguish between two types of features, optional (i.e. variable) and mandatory (i.e. common)
features. Mandatory features appear in all software variants, while optional features appear in some but
not all software variants.

Many approaches presented for feature location in a single software system. In our work, we focus
on feature location in a collection of software product variants. The existing approaches fail to address
efficiently this problem (i.e. feature location in a collection of software variants). The majority of existing
approaches are designed to locate the program elements of a particular feature in a single software sys-
tem. In the context of software product variants, most of the existing approaches investigate variability
at the package or class levels. In addition, these approaches accept as input two sources of information
such as source code of software variants and feature/feature description.

The majority of existing works (cf. Chapter 3) identifies the traceability link between features and
source code of a single software system [Rubin and Chechik, 2013b]. An inclusive survey about ap-
proaches linking features and source code in single software is proposed in [Dit et al., 2013]. The iden-
tification of relationships (i.e. traceability links) between use-case diagrams and source code of a single
software is the subject of the work by Grechanik et al. [Grechanik et al., 2007]. In [Marcus and Maletic,
2003], the authors propose an approach to recover documentation-to-source-code traceability links us-
ing Latent Semantic Indexing (LSI) in a single software system.

Existing work linking features and source code in collections of software variants such as [Linsbauer
et al., 2013] [Xue et al., 2012] [Salman et al., 2013] rely on pre knowledge, where these approaches use
software variants features and features descriptions as input in addition to the source code itself. In [Xue,
2011], the authors provide an approach that can automatically and systematically recover the variability
at both the requirement and the code implementation levels. The proposed approach integrates model
differencing, clone detection and information retrieval techniques. The proposed approach uses as input
in addition to the source code the feature set and feature descriptions to recover Feature-to-Code trace-
ability links in a software product family [Xue et al., 2012]. In our work, we only rely on the source code
as input of the mining process (i.e. we don’t know features in advance).

Existing approaches that extract features from software variants source code only such as [Ziadi et
al., 2012] and [Rubin and Chechik, 2013a] have some limits. In [Ziadi et al., 2012], the authors propose
an approach to extract commonality and variability at source code level from existing SPL. In their work,
they never distinguish amongst mandatory features (i.e. their approach gathers all mandatory features
as a single mandatory feature under a title base feature). Their approach does not distinguish between
the feature implementation for those set of features (i.e. optional features) that always appear together
in a set of product variants. On the other hand, their work only considers software variants in which
the variability represents at package, class, attribute and method level. Their work does not consider
software variants where variability is mainly present at method body level. In [Rubin and Chechik, 2012],
authors present an approach to locate optional features from two software variants’ source code as one
set of source code (i.e. diff set). They do not consider common features. They also are limited to only
two software variants. They do not distinguish between the several optional features (i.e. their approach
gather all optional features as a single feature).

· Documenting the mined feature implementations: The implementation of each feature in the soft-
ware variants source code may correspond to a huge number of source code elements; the mined feature
must be documented. The goal of this documentation is to reflect feature roles at the domain level. Ad-
ditionally, for purposes of constructing a FM and reusing existing features in other software, each feature

4 Chap 1. Introduction: Context and Motivation

implementation that is presented to the human user must have a meaningful name. In addition, feature
documentation is needed in order to understand existing software variants and facilitate their mainte-
nance. Feature documentation means giving a name and a description for the mined feature implemen-
tation.

The majority of existing approaches (cf. Chapter 3) are designed to extract labels, names, topics or
code summarization in a single software system. The majority of existing approaches manually assign
feature names to the feature implementations. In the literature there is no work which gives a name or
description for the mined feature implementation.

Existing approaches extract labels, names or topics from the source code of single software and they
aim to facilitate source code comprehension. Kuhn et al. [Kuhn, 2009] present a lexical approach to au-
tomatically provide labels for components of a single software. Kebir et al. [Kebir et al., 2012] propose an
approach to identify components from the object-oriented source code of a single software and provide
names for the identified components. De Lucia et al. [Lucia et al., 2012] propose an approach to extract
labels from the source code of a single software, based on Information Retrieval (IR) techniques. Falleri
et al. [Falleri et al., 2010] present a wordNet-like approach to extract the structure of a single software by
using the relationships among identifier names (e.g. packages, classes, methods, variables, etc.). Haiduc
et al. [Haiduc et al., 2010] propose a technique for automatically summarizing source code of single soft-
ware. Kuhn et al. [Kuhn et al., 2007] use a Latent Semantic Indexing (LSI) based approach for identifying
topics in source code of a single software by semantically clustering software artifacts such as methods,
files or packages based on identifier names and comments.

In case of software variants, no one proposes name or description for the mined feature implemen-
tations. Ziadi et al. [Ziadi et al., 2012] propose an approach to identify features across software variants.
In their work, they propose manually the feature names. In [Yang et al., 2009], the authors analyze open
source applications with similar functionality in order to extract an initial FM. In their work, they manu-
ally propose the feature name for each cluster (by analysts). Davril et al. [Davril et al., 2013] present an
approach to construct FMs from product descriptions. They develop a cluster-naming process that in-
volves selecting the most frequently occurring phrase among all of the feature descriptors in the cluster.
This work deals with product descriptions, not with source code. In [Xue et al., 2012] [Linsbauer et al.,
2013] [Salman et al., 2013], the authors recover Feature-to-Code traceability links in a software product
family. In their work, the feature name and its description was known in advance. In their work there is
no assumption about how features are named, described and expressed.

¸ Expressing the mined and documented feature as feature model: The FM represents valid software
configurations in addition to constraints between features (i.e. a feature A requires or excludes feature B).
The mined FM and core assets (i.e. feature implementations) from software variants represent the core
of the SPL.

The majority of existing approaches (cf. Chapter 3) are designed to reverse engineering FM from high
level models (e.g. product description and requirements) and other approaches deal directly with low
level model (i.e. source code) with a lot of limitations. Some approaches offer a solution acceptable but
not able to identify important parts of feature model such as cross-tree constraints (require and exclude),
and-group, or-group and xor-group.

Many approaches propose to extract FMs from different artifacts such as components of single soft-
ware, variability descriptions, product descriptions, product configurations, feature sets, domain appli-
cation’s source code, textual feature descriptions and feature dependencies, requirements or incidence
matrix.

In [Paškevičius et al., 2012], authors present a framework for the automated derivation of features
and FMs from the existing software artefacts (components, libraries, classes, etc.). They extract a basic

1.3. Contribution 5

FM without dependencies between its features. The extracted FM is from a single software. In [Acher et
al., 2013b] [Acher et al., 2011], the authors propose a reverse engineering process for producing a vari-
ability model (i.e. a feature model) of a plugin-based architecture. They develop automated techniques
to extract and combine different variability descriptions, including a hierarchical software architecture
model, a plugin dependency model and the software architect’s knowledge. In [Acher et al., 2012], au-
thors present an approach to synthesize a FM based on the product descriptions. Their approach takes as
its input product descriptions for a collection of product variants to build the FM. Products are described
by characteristics (language, license, etc.) with different patterns on values (many-valued, one-valued,
etc.).

In [Davril et al., 2013], authors present a novel algorithm for automating the generation of a FM from
a set of informal and incomplete product descriptions. In [Loesch and Ploedereder, 2007], the authors
present a method for restructuring and simplifying the provided variability in an SPL. Their work does
not produce FMs. They apply Formal Concept Analysis (FCA) to analyze the variability in a SPL based on
product configurations (described by features), and construct a concept lattice that provides a classifica-
tion of the used features. They identify the exclusive-or relation, in addition to cross-tree constraints (i.e.
includes and requires constraints). In [Ryssel et al., 2011], authors extract a basic FM without constraints
(dependencies) from an incidence matrix describing products by their characteristics. They identify the
exclusive-or/inclusive-or relations.

In [Yang et al., 2009], authors analyze open source applications for multiple existing domain applica-
tions with similar functionalities. Therefore, they use the data access semantics of program units (limited
only to methods) as the analysis basis, supported by the data schema mapping among different appli-
cations. They recover initial domain FMs using data access semantics, FCA, concept pruning/merging,
structure reconstruction and variability analysis. Their approach is limited only to three applications. In
[She et al., 2011], authors propose a reverse engineering approach combining two distinct sources of in-
formation: textual feature descriptions and feature dependencies. They developed an efficient synthesis
procedure to compute variability information (i.e. feature groups) and proposed heuristics for identifying
the most likely parent feature candidates of each feature.

In [Weston et al., 2009] authors develop a tool which creates FMs from natural language requirements
specifications. First, they divided the specifications in fragments and then used clustering techniques to
identify features. In [Chen et al., 2005] authors propose an approach to build FMs from application speci-
fications. Authors introduce a classification of relationships between requirements. For each application,
the procedure first elicits a set of functional requirements and models the relationships between them in
an undirected graph. Features are then identified by clustering the functional requirements. Finally, the
resulting FMs a merged as one. Some approaches extract FM from product configurations (i.e. feature
sets) such as [Haslinger et al., 2011] [Acher et al., 2013a] [Acher et al., 2012]. The main challenge of these
works is that numerous candidate FMs can be extracted from the same input configurations, yet only a
few of them are meaningful and maintainable.

Companies often develop a set of software variants that share some features and differ in other ones
to meet specific requirements. To exploit existing software variants and build a software product line, a
feature model must be built as a first step. To do so, it is necessary to extract mandatory and optional fea-
tures in addition to associate each feature with its name. Then, It is important to organize the mined and
documented features into a feature model: features are organized in a tree which highlights mandatory
features, optional features and feature groups (and, or, xor groups). The feature model is completed with
require constraints and mutual exclusion constraints.

1.3 Contribution

To exploit existing variants and build a SPL, a feature model of this SPL must be built as a first step. To do
so, it is necessary to mine mandatory and optional features from the source code of software variants, in

6 Chap 1. Introduction: Context and Motivation

addition to document each feature implementation by assigning its name. The proposed approach takes
as its input the source code and use-case diagrams of software variants. The first step is to extract the
feature implementations through these variants. The second step is to document the mined feature im-
plementations using use-case diagrams (or identifier names). The third step is to extract the FM with its
constraints from software configurations (i.e. from the mined and documented features). In this section,
we summarize our main contributions.

¶ Contrarily to previous work which mainly address feature location in a single software system, we
focus on locating features from object-oriented source code of a collection of software systems. To
locate optional and mandatory features across the source code of software variants we propose the
REVPLINE1 approach. The novelty of our approach is that we exploit commonality and variability
across the source code of software variants, to apply Information Retrieval (IR) methods in an ef-
ficient way. In the REVPLINE approach, we rely on lexical (i.e. textual) and structural similarity to
mine feature implementation as an atomic set of source code elements. The REVPLINE approach
considers software variants in which the variability is represented at different levels of source code
elements such as the name of packages, classes, attributes, methods, and method body elements
such as local variables, method invocations and attribute accesses. The REVPLINE feature location
approach uses two techniques : Formal Concept Analysis (FCA) and Latent Semantic Indexing (LSI)
(cf. Chapter 4).

· We extend the REVPLINE approach to document the mined feature implementations. Previous
work which extracts labels or topics deal with a single software. In the context of software variants,
previous work manually named the extracted feature implementations. In our work, the docu-
mentation of the mined feature implementation is done in two ways. Firstly, we document the
mined features based on the names of the source code elements themselves (i.e. identifier names).
Secondly, we document the mined features based on the feature implementations and use-case
diagrams of software variants. Our approach gives each feature implementation a name and de-
scription based on the use-case name and description. The novelty of our approach is that we
exploit commonality and variability across software variants, at feature implementation and use-
cases levels, to apply Information Retrieval (IR) methods in an efficient way. The feature documen-
tation process takes the variants’ use-cases and the mined feature implementations as its inputs.
REVPLINE documentation approach uses three techniques : Formal Concept Analysis (FCA), La-
tent Semantic Indexing (LSI) and Relational Concept Analysis (RCA) (cf. Chapter 5).

¸ In this dissertation, we propose an automatic approach to organize the mined documented fea-
tures into a feature model. Features are organized in a tree which highlights mandatory features,
optional features and feature groups (and, or, xor groups). The feature model is completed with
requirement and mutual exclusion constraints. We rely on Formal Concept Analysis and software
configurations to mine a unique and consistent feature model. Our technique constructs a concept
lattice from product configurations. The constructed lattice provides a classification of the manda-
tory and optional features in addition to the constraints between these features. Our technique
could be used to extract a FM that expresses the same set of valid product configurations in a way
that may be easier to understand for the human reader or manager (cf. Chapter 6).

1.4 Thesis Outline

The remainder of this dissertation is structured to gradually present precise definitions for the concepts
informally addressed in this introductory chapter in addition to the REVPLINE approach. The contents
of the remaining chapters are as follows:

1REVPLINE stands for REengineering Software Product Variants into Software Product LINE

1.4. Thesis Outline 7

¶ Chapter 2 gives a background about software product line and software variants. It also presents
the techniques used in our approach supported by illustrative examples (i.e. Formal Concept
Analysis, Relational Concept Analysis and Latent Semantic Indexing).

· Chapter 3 presents the state of the art regarding our approach. It explains and compares the feature
location approaches (single software and software family), source code documentation (i.e. code
comprehension) approaches and approaches that extract feature models from different artifacts.
This chapter studies the related work, lists the different used technologies, and puts the light on
current issues. Some approaches are described in detail. Finally, when concluding this chapter, we
point on weaknesses and strengths (resp. comparing with our approach) of these approaches.

¸ Chapter 4 presents the first contribution of our proposal on feature location in a collection of
software product variants. In this chapter, we mine functional features from the source code
of software product variants as a set of source code elements. We exploit the commonality and
variability across software variants to reduce search space. Then, we rely on both lexical (i.e.
textual) and structural (i.e. code dependencies) similarity between source code elements to mine
feature implementations.

¹ Chapter 5 describes the feature documentation process (i.e. the second contribution). We docu-
ment the mined feature implementations using two ways. Firstly, we rely on the use-case diagrams
of software product variants to document the mined feature implementation using use-case
names and descriptions. In the second way, we rely on the source code elements themselves to
document the mined feature implementations.

º Chapter 6 describes the process of feature model extraction from the source code of software
product variants. We rely on the mined and documented feature from the source code of the
software variants to extract all relations and dependencies between these features. The process is
based on the product-by-feature matrix which represents the valid configuration for each software.

» Chapter 7 presents the set of experiments that were conducted using real software variants and
software product lines to validate our approach. We present each experiment on two parts: a
use case part, where we present the use case that we used for conducting the experiment; and a
validation part, where we show and discuss the obtained results.

½ Chapter 8 draws some conclusions about the proposed approach and describes several future re-
search directions.

¼ Appendix A presents the prototype implementation in Java starting with the structural view of the
architecture of REVPLINE as a component diagram. We then explain the role of each component
in the proposed approach.

Part I

Background and State of the Art

9

C
H

A
P

T
E

R

2
BACKGROUND

Learn from science that you must doubt the experts. As a
matter of fact, I can also define science another way: Science is

the belief in the ignorance of experts.

Richard P. FEYNMAN

Preamble

In this chapter, we present the background needed to understand our proposal. Section 2.1 presents the
main concepts of Software Product Line Engineering and software product variants. Section 2.2 presents
the Formal Concept Analysis classification technique, as well as its extension called the Relational Concept
Analysis. We give the basic formal definitions for these two techniques, supported with illustrative exam-
ples. Finally, in Section 2.3 we present the Latent Semantic Indexing technique, supported with illustrative
examples.

12 Chap 2. Background

2.1 Software Product Line and Software Variants

Tth idea of Software Product Line approach is to manage a family of similar or related software prod-
ucts in a reuse-based way. Reuse helps to reduce development and maintenance effort, shorten

time-to-market and improve overall quality of software. In this section, we present the important issues
regarding Software Product Line Engineering and software product variants.

2.1.1 Software Product Line Engineering

The traditional focus of software engineering is to develop single software (one software system at a time).
A typical development process begins with the analysis of customers’ requirements and then several de-
velopment steps are performed (specification, design, implementation, testing). The result obtained is a
single software product. Software Product Line Engineering (SPLE) focuses on the development of multi-
ple similar software systems from common core assets [Clements and Northrop, 2002] [Pohl et al., 2005].

Definition 2.1. "A software product line is a set of software-intensive systems sharing a common, man-
aged set of features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way" [Clements and Northrop, 2002].

Reuse is one of the major goals of SPLE for its potential to reduce cost and time of software develop-
ment. With increasing count of lines of code the need for reuse grows. As the number of features and the
number of product variants grows, it is worth re-engineering software variants into a SPL for systematic
reuse [Xue et al., 2012].

Definition 2.2. Software reuse is the process of creating software systems from existing software rather than
building software systems from scratch [Krueger, 1992].

2.1.1.1 Motivations for SPLE

Firms are able to reduce their costs and time to market by a factor of 10 or more if they use a SPLE ap-
proach [Schmid and Verlage, 2002]. Figure 2.1 is taken from [Clements and Northrop, 2002], it compares
the traditional development approach (i.e. developing the individual product variants independently)
with a SPL approach. It shows the accumulated costs needed to develop n different systems. The solid
line sketches the costs of developing the systems independently, while the dashed line shows the costs for
SPLE. It shows that the initial costs of a SPL might be higher than the one of the traditional approach, but
it also shows that the more products there are in the product line, the cheaper a single product becomes.
The cumulative cost of a SPLE approach is cheaper than the traditional approach if there are more than
approximately three products [McGregor et al., 2002].

The main motivations for creating a SPL are [Pohl et al., 2005] [Clements and Northrop, 2002]: re-
duction of development costs and time, enhancement of quality, reduction of time to market, reduction
of maintenance effort, coping with evolution and complexity, improving cost estimation and increasing
customer satisfaction and decreasing labor cost.

SPLE relies on the idea of mass customization known from many industries [Pine, 1993]. Mass cus-
tomization takes advantage of similarity principle and modular design to massively produce customized
products. Many industries are building the same multiple similar software-intensive products over and
over again. Therefore, there is an opportunity to massively reuse common software artifacts. Software
mass customization focuses on the means of efficiently producing and maintaining multiple similar soft-
ware products, exploiting what they have in common and managing what varies among them. SPLE
aims at developing related variants in a systematic way and providing appropriate solutions for different
customers [Clements and Northrop, 2002]. Instead of individually developing each variant from scratch,
commonalities are considered only once.

2.1. Software Product Line and Software Variants 13

Figure 2.1 : Costs for developing n kinds of systems as single systems compared to SPLE [Clements and
Northrop, 2002].

2.1.1.2 Software Product Line Engineering Process

SPLE essentially is a two-phase approach which consists of domain engineering and application engi-
neering (cf. Figure 2.2 [Apel et al., 2013]). Application domain is a software area, which contains the
common parts among the similar software products. The mission of domain engineering is to build the
SPL architecture consisting of a core asset and the software variant features, while the application engi-
neering focus on the derivation of the new products by the different customizations of software variant
features applied onto the core asset. We present here the engineering process for software product lines.
Namely domain engineering and application engineering.

¶ Domain Engineering. A SPL must fulfil not only the requirements of a single customer but the
requirements of multiple customers in a domain, including both current customers and potential fu-
ture customers. Thus, the entire domain and its potential requirements are analyzed. The process to
develop a set of related software products instead of single software is called domain engineering. Do-
main Engineering is development for reuse; common and variable artifacts (requirements, source code,
components, test cases, etc.) are factored so that their reuse is enabled. During domain analysis, the com-
monalities and differences between potential software variants are identified and described (e.g. in terms
of features). Then, developers design and implement the SPL such that different software variants can be
constructed from common and variable parts [Apel et al., 2013] [Clements and Northrop, 2002]. Domain
engineering consists of four activities: domain analysis, domain design, domain realization (coding) and
domain testing [van der Linden et al., 2007].

· Application Engineering. Application engineering is the process of deriving a single variant tai-
lored to the requirements of a specific customer from a software product line, based on the results of
domain engineering. Application engineering is a development with reuse. The process of creating soft-
ware products from the domain assets is called product derivation. Real software products are derived
using the common and reusable artifacts developed in domain engineering. Application engineering is
composed of four activities (keeping with activities of domain engineering): application requirements
engineering, application design, application coding, and application testing [Apel et al., 2013]. This pro-
cess is built on the domain engineering process and consists in developing a final product, by reusing
the reusable artifacts (e.g. source code) and adapting the final product to specific requirements. Ideally,

14 Chap 2. Background

Figure 2.2 : Overview of an engineering process for software product lines [Apel et al., 2013].

the customer’s requirements can be mapped to elements (e.g. features) identified through domain en-
gineering, so that the software variant can be built from existing common and variable parts of the SPL
implementation [Clements and Northrop, 2002]. Depending on the form of implementation, there can
be different automation levels of the application engineering process, from manual development effort
to more advanced technology including automated variant configuration and generation [van der Linden
et al., 2007].

2.1.1.3 Variability Management

Central and unique to SPLE is the management of variability, i.e. the process of factoring out commonal-
ities and systematizing variabilities of requirements, source code, documentation, test artifacts, models.
It is one of the fundamental principles to successful SPLE. Variability management includes the activ-
ities of clearly representing variability in software artifacts throughout the life cycle, managing depen-
dencies among different variabilities, and supporting the instantiations of those variabilities. It includes
extremely complex and challenging tasks, which needs to be supported by appropriate approaches, tech-
niques, and tools. Systematically identifying and appropriately managing variabilities across different
software products of a family are the key characteristics that distinguish SPLE from other reuse-based
software development approaches [Chen et al., 2009]. Several definitions of variability have been given
in the literature:

r Weiss and Lai [Weiss and Lai, 1999] define variability in SPL as "an assumption about how members
of a family may differ from each other".

r Svahnberg et al. [Svahnberg et al., 2005] define variability as "the ability of a software system or ar-
tifact to be efficiently extended, changed, customized or configured for use in a particular context".

2.1. Software Product Line and Software Variants 15

r Pohl et al. [Pohl et al., 2005] define variability in time as "the existence of different versions of an
artifact that are valid at different times" and the variability in space as "the existence of an artifact
in different shapes at the same time".

2.1.1.4 Variability categories, levels, and classification

Variability may be identified from different viewpoints. Bachmann and Bass [Bachmann and Bass, 2001]

classify variabilities into categories: variability in function (a particular function may exist in some prod-
ucts and not in others), variability in control flow means (a particular interaction may occur in some
products and not in others), variability in data (a particular data structure may be used in one product
but not in another), variability in technology (hardware, OS, user interface, etc. may differ from one prod-
uct to another), variability in product quality goals means that goals (qualitative dimensions like security
or performance may be unique to one product), variability in space (variability in space covers the si-
multaneous use of a variable artefact in different shapes of different products such as keypads, magnetic
cards, and fingerprint scanners of the home automation system) [Clements and Northrop, 2002].

Svahnberg et al. [Svahnberg et al., 2005] have defined five levels of variability (SPL, product, compo-
nent, sub-component and code level) where different variability design issues appear. Extra classifica-
tion, based on the difference between essential and technical variability, has been proposed in [Halmans
and Pohl, 2004]. Essential variability refers to the customer’s point of view (and is also called external
variability [Pohl et al., 2005] or product line variability [Metzger et al., 2007]). Technical variability (also
called internal variability [Pohl et al., 2005] or software variability [Metzger et al., 2007]) refers to the SPL
engineer’s point of view who is mainly interested in implementation details.

Feature model is presently the most popular technique to model variability [Clements and Northrop,
2002]. Many extensions and dialects of feature models have been proposed in literature (e.g. FODA [Kang,
1990], FORM [Kang et al., 1998], and FeatureRSEB [Griss et al., 1998]) (cf. Section 2.1.1.6).

2.1.1.5 Feature and Variability

Feature models aim at describing the variability of a SPL in terms of features. Due to the diversity of
software engineering research, there are several definitions of a features, for example:

o [Apel et al., 2013]: "A feature is a characteristic or end-user-visible behavior of a software system.
Features are used in product-line engineering to specify and communicate commonalities and dif-
ferences of the products between stakeholders, and to guide structure, reuse, and variation across
all phases of the software life cycle".

o [Apel and Kästner, 2009]: "a structure that extends and modifies the structure of a given program in
order to satisfy a stakeholder’s requirement, to implement and encapsulate a design decision, and
to offer a configuration option".

o [Kang, 1990]: "a prominent or distinctive user-visible aspect, quality, or characteristic of a software
system or systems".

o [Kang et al., 1998]: "a distinctively identifiable functional abstraction that must be implemented,
tested, delivered, and maintained".

o [Czarnecki and Eisenecker, 2000]: "a distinguishable characteristic of a concept (e.g. system, com-
ponent, and so on) that is relevant to some stakeholder of the concept".

o [Czarnecki and Eisenecker, 2000]: "anything users or client programs might want to control about
a concept".

o [Zave and Jackson, 1997]: "an optional or incremental unit of functionality".

16 Chap 2. Background

o [Batory, 2005]: "an increment of program functionality".

o [Bosch, 2000]: "a logical unit of behavior specified by a set of functional and non-functional re-
quirements".

o [Chen et al., 2005]: "a product characteristic from user or customer views, which essentially con-
sists of a cohesive set of individual requirements".

o [Batory et al., 2003]: "a product characteristic that is used in distinguishing programs within a fam-
ily of related programs".

o [Classen et al., 2008]: "a triplet, f = (R, W, S), where R represents the requirements the feature satis-
fies, W the assumptions the feature takes about its environment and S its specification".

We consider that Kang [Kang, 1990] definition is the closest definition to our work. In our work, we
focus on functional features. Functional features express the behavior or the way users may interact with
a software system or systems [Al-Msie’deen et al., 2013b].

2.1.1.6 Feature Models

The terms Feature Model (FM) and feature diagram are employed in the literature, usually to denote the
same thing. The important aspect of FMs is the modelling of variability. The feature diagram notation was
first introduced by Kang et al. [Kang, 1990] in their Feature Oriented Domain Analysis (FODA) methodol-
ogy. FODA is a method to represent variability and commonality among related software systems. Several
definitions of FM have been given in the literature:

p Czarnecki et al. [Czarnecki et al., 2006] define FM as a tree-like hierarchy of features and constraints
between them (a FM is a hierarchy of features with variability).

p Kang [Kang, 1990] defines FM as a de facto standard to model the common and variable features of
a SPL and their relationships.

FMs were first introduced as a part of the FODA method. Since then, feature modelling has been
widely adopted by the SPL community. However, many extensions to the original proposal have been
presented and a consensus about a FM notation has not been reached yet.

FeatuRSEB [Griss et al., 1998], FORM [Kang et al., 1998] or the graphical notation proposed in [Czar-
necki and Eisenecker, 2000] are only slightly different from the FODA notation (boxes are added around
feature names or filled circles are used to represent mandatory features). In addition, a number of textual
FM languages were also proposed in the literature. The first textual language was Feature Description
Language (FDL) [van Deursen and Klint, 2002].

A FM defines which feature combinations lead to valid products within the SPL. The individual fea-
tures are depicted as labelled boxes and are arranged in a tree-like structure. There is always exactly one
root feature that is included in every valid program configuration. Each feature, apart from root, has a
single parent feature and every feature can have a set of child features. These child-parent relationships
are denoted via connecting lines. Notice here that a child feature can only be included in a program
configuration if its parent is included as well. There are four different kinds of relations in which a child
(resp. a set of children) can interrelate with its parent [Haslinger et al., 2011]:

n If a feature is optional (depicted with an empty circle at the child end of the relation) it may or may
not be selected if its parent feature is selected.

2.1. Software Product Line and Software Variants 17

n If a feature is mandatory (depicted with a filled circle at the child end of the relation) it has to be
selected whenever its parent feature is selected.

n If a set of features forms an inclusive-or relation (depicted as filled arcs) at least one feature of the
set has to be selected if its parent is selected (i.e. or relation).

n If a set of features forms an exclusive-or relation (depicted as empty arcs) exactly one feature of the
set has to be selected if its parent is selected (i.e. alternative relation).

Besides the child-parent relations there are also so called cross-tree constraints (CTCs). They capture
any arbitrary relation among features, usually denoted by propositional logic formulas [Benavides et al.,
2010]. The most common CTCs are the require and exclude relations. If feature A require feature B, then
feature B has to be included whenever feature A is included. If two features are in an exclude relation
then these two features cannot be selected together in any valid product configuration. FMs that do not
include any CTC are referred to as basic FMs.

Figure 2.3 : Cell phone SPL feature model.

Figure 2.3 shows the feature model of the cell phone SPL [Haslinger, 2012]. Feature Cell_Phone is the
root feature of this FM; hence it is selected in every program configuration. It has three mandatory child
features (i.e. the features Accu_Cell, Display and Games), which are also selected in every product config-
uration as their parent is always included. The children of feature Accu_Cell form an exclusive-or relation,
meaning that the programs of this SPL include exactly one of the features Strong, Medium or Weak. The
features Multi_Player and Single_Player constitute an inclusive-or, which necessitates that at least one of
these two features is selected in any valid program configuration. Single_Player has Artificial_Opponent
as a mandatory child feature. Feature Wireless is an optional child feature of root; hence it may or may
not be selected. Its child features Infrared and Bluetooth form an inclusive-or relation, meaning that if a
program includes feature Wireless then at least one of its two child features has to be selected as well.

The cell phone SPL also introduces three CTCs. While feature Multi_Player cannot be selected to-
gether with feature Weak, it cannot be selected without feature Wireless. Lastly, feature Bluetooth require
feature Strong.

P1 = {Cell_Phone, Accu_Cell, Strong, Display, Games, Single_Player, Artificial_Opponent}

LISTING 2.1 : Valid product configuration.

Listing 2.2 represents an illegal program configuration according to the FM shown in Figure 2.3, as
features Strong and Medium are both selected which is prohibited by the FM as these two features are in

18 Chap 2. Background

P2 = {Cell_Phone, Accu_Cell, Strong, Medium, Display, Games, Multi_Player}

LISTING 2.2 : Illegal product configuration.

an exclusive-or relation. Listing 2.1 represents a valid program configuration according to the FM shown
in Figure 2.3. Table 2.1 shows the 16 valid feature sets (i.e. product configurations) defined by the FM in
Figure 2.3.

Table 2.1 : Valid product configurations of cell phone SPL.

C
el

l_
P

h
o

n
e

W
ir

el
es

s

In
fr

ar
ed

B
lu

et
o

o
th

A
cc

u
_C

el
l

St
ro

n
g

M
ed

iu
m

W
ea

k

D
is

p
la

y

G
am

es

M
u

lt
i_

P
la

ye
r

Si
n

gl
e_

P
la

ye
r

A
rt

ifi
ci

al
_O

p
p

o
n

en
t

Product-1 7 7 7 7 7 7 7

Product-2 7 7 7 7 7 7 7

Product-3 7 7 7 7 7 7 7

Product-4 7 7 7 7 7 7 7 7 7

Product-5 7 7 7 7 7 7 7 7

Product-6 7 7 7 7 7 7 7 7 7 7

Product-7 7 7 7 7 7 7 7 7 7

Product-8 7 7 7 7 7 7 7 7

Product-9 7 7 7 7 7 7 7 7 7 7

Product-10 7 7 7 7 7 7 7 7 7

Product-11 7 7 7 7 7 7 7 7

Product-12 7 7 7 7 7 7 7 7 7 7

Product-13 7 7 7 7 7 7 7 7 7

Product-14 7 7 7 7 7 7 7 7 7 7

Product-15 7 7 7 7 7 7 7 7 7

Product-16 7 7 7 7 7 7 7 7 7 7 7

The primary purpose of a hierarchy in FM is to organize a potentially large number of features into
multiple levels of increasing detail. The hierarchy is usually represented as a rooted tree, the root feature
being the most general concept. Usually, the root feature refers to the product family name [Apel et al.,
2013]. FMs can be used in different phases of the SPL development, from high-level requirements to
code implementation. From an initial stage (e.g. requirements elicitation) to components and platform
modelling, FMs can be applied to any kind of artifacts (e.g. source code, documentation, models, etc.)
and at any level of abstraction [Clements and Northrop, 2002].

2.1.2 Software Product Variants

Software product variants are a collection of similar software variants which share some artifacts (e.g.
source code, requirement, etc.) and differ in other ones, to accommodate specific demands of customers
in a particular domain [Ye et al., 2009] [Xue et al., 2012]. Software product variants often evolve from first
software developed for and successfully used by the first customer. Wingsoft Financial Management Sys-
tems [Ye et al., 2009], Mobile Media, and Linux kernel [Xue et al., 2012] are some of the many examples of
such product evolution. These software product variants generally share some common features (source
code) but they are also different from one another due to subsequent customization to meet specific
requirements of different stakeholders.

Usually software product variants, developed by clone-and-own approach, form often a starting point
for building a SPL. The clone-and-own approach refers to the practice of creating a new software product
by "cloning" a copy of the source code of another software product and then modifying it, thereby taking
ownership of the newly cloned software which now has a development and maintenance life cycle of
its own [Rubin and Chechik, 2013a] [Dubinsky et al., 2013]. Existing software products, assets (including
requirements, architecture, source code, and so forth), decision models, and production mechanisms can

2.2. Formal and Relational Concept Analysis 19

often be reused and re-engineered when a SPL approach is established in order to save time and effort
[Rubin and Chechik, 2012]. Figure 2.4 shows an example of two new products (product Q and product R)
being created from the assets of product P .

Figure 2.4 : The clone-and-own approach.

Feature location techniques aim at locating software artifacts that implement specific program func-
tionality, a.k.a. a feature. These techniques support developers during various activities such as software
maintenance. In reality, software variants often emerge ad-hoc. Software developers often create new
products by using one or more of the available technology-driven software reuse techniques such as du-
plication (the "clone-and-own" approach), source control branching and preprocessor directives. Iden-
tification of the relationship between the features and their corresponding implementation in the source
code is the main goal of feature location techniques [Rubin and Chechik, 2013b]. The problem of feature
extraction is known under several names in software engineering research: feature mining [She et al.,
2011], feature identification [Ziadi et al., 2012], feature location [Xue et al., 2012], fact extraction [Basten
and Klint, 2009] and topic mining [Kuhn et al., 2007].

In software systems, a feature represents a functionality that is well-defined by requirements and
accessible to developers and users. Software maintenance and evolution involves adding new features
to programs, refining existing functionalities, and removing bugs, which is analogous to removing un-
wanted functionalities. Feature location is one of the most important and common activities performed
by developers during software maintenance [Dit et al., 2013], because no maintenance task can be com-
pleted without first locating and understanding the code that is relevant to the task at hand [Xue et al.,
2012].

2.2 Formal and Relational Concept Analysis

Formal Concept Analysis (FCA) is a classification technique that takes data sets of objects and their at-
tributes, and extracts relations between these objects according to the attributes they share [Ganter and
Wille, 1997]. It has many applications in software engineering: [Tilley et al., 2005] [Cellier et al., 2008]
[Bhatti et al., 2012]. Relational Concept Analysis (RCA) is an iterative version of FCA in which, the objects

20 Chap 2. Background

are classified not only according to the attributes they share, but also according to the relations between
these objects [Huchard et al., 2007]. In our work, we use FCA and RCA as clustering techniques to reduce
the search space for feature location, feature documentation and FM extraction.

2.2.1 Formal Concept Analysis

Galois lattices [Barbut and Monjardet, 1970] and concept lattices [Ganter and Wille, 1997] are core struc-
tures of a data analysis framework (Formal Concept Analysis, or FCA for short) for extracting an ordered
set of concepts from a dataset, called a Formal Context, composed of objects described by attributes.
We explain the FCA technique along with a case study about animals and their characteristics. We con-
sider the dataset of Table 2.2. This Table presents a dataset where several animals are described by their
characteristics.

Table 2.2 : Animals and their characteristics.

Animal Characteristics
flying squirrel flying, with_membrane
bat flying, nocturnal, with_membrane
ostrich feathered
flamingo flying, feathered, migratory
chicken flying, feathered, with_crest

Definition 2.3. A formal context is a triple K = (O, A,R) where O and A are sets (objects and attributes,
respectively) and R is a binary relation, (i.e. R ⊆ O × A).

A formal context can be graphically represented as a cross table in which, objects appear as row labels
and attributes as column labels. A cross in the cell (o, a) of this table indicates that the object o has the
attribute a.

From our case study, we can build a formal context of animals O = {flying squirrel, bat, ostrich,
flamingo, chicken} and their characteristics A = {flying, nocturnal, feathered, migratory, with_crest,
with_membrane} (cf. Table 2.3).

Table 2.3 : A formal context for animals and their characteristics.

fl
yi

n
g

n
o

ct
u

rn
al

fe
at

h
er

ed

m
ig

ra
to

ry

w
it

h
_c

re
st

w
it

h
_m

em
b

ra
n

e

flying squirrel 7 7

bat 7 7 7

ostrich 7

flamingo 7 7 7

chicken 7 7 7

Definition 2.4. A formal concept is a pair (E , I) composed of an object set E ⊆O and their shared attribute
set I ⊆ A. E = {o ∈O|∀a ∈ I , (o, a) ∈ R} is the extent of the concept, while I = {a ∈ A|∀o ∈ E , (o, a) ∈ R} is the
intent of the concept.

+ For example, concept 7 ({flamingo, chicken} {flying, feathered}) in Figure 2.5 is a concept of
our example.

Definition 2.5. Given a formal context K = (O, A,R), and two formal concepts C1 = (E1, I1) and
C2 = (E2, I2) of K , the concept specialization order ≤s is defined by C1 = (E1, I1) ≤s C2 = (E2, I2)

2.2. Formal and Relational Concept Analysis 21

if and only if E1 ⊆ E2 (or equivalently I2 ⊆ I1). C1 is called a sub-concept of C2. C2 is called a
super-concept of C1.

+ For example, concept 7 ({flamingo, chicken} {flying, feathered}) in Figure 2.5 is a sub-concept
of ({flamingo, chicken, ostrich} {feathered}).

Definition 2.6. Let CK be the set of all concepts of a formal context K . This set of concepts provided
with the specialization order (CK , ≤s) has a lattice structure, and is called the concept lattice
associated with K . It is denoted C (O, A,R).

In a concept lattice (cf. Figure 2.5) (built using Galicia [Valtchev et al., 2005]), labels can
be simplified by putting down each object and each attribute only once. In this way, a lattice
with reduced labels (simplified intents and extents) can be read in the same way without los-
ing any information such as Figure 2.6, which is built using the Con Exp1 (Concept Explorer)
[Yevtushenko et al., 2006]. In Figure 2.5 and 2.6, only the Hasse diagram of lattice (edges of the
transitive reduction) is shown.

Figure 2.5 : The concept lattice for the context in Table 2.3 via Galicia.

Figure 2.7 shows the another view (built with eRCA2) of the concept lattice structuring our
animals. In this diagram, extents and intents are presented in a simplified form: removing up-
down inherited attributes and down-up inherited objects.

The reader may have noticed that, applying the simplification of extents and intents, some
concepts, are represented having empty simplified extent and intent. These concepts introduce
neither objects nor attributes. In several FCA applications, they can be ignored (e.g. in [Godin
and Mili, 1993 ; Loesch and Ploedereder, 2007 ; Ryssel et al., 2011]). Reversely, the term object
concept (resp. attribute concept) refers to a concept which introduces at least one object (resp.
attribute).

1http://conexp.sourceforge.net/
2http://code.google.com/p/erca/

http://conexp.sourceforge.net/
http://code.google.com/p/erca/

22 Chap 2. Background

Figure 2.6 : The concept lattice for the context in Table 2.3 via Con Exp.

Figure 2.7 : The concept lattice for the formal context of Table 2.3 via eRCA.

Definition 2.7. The Galois Sub-Hierarchy (GSH) also called AOC-poset (for Attribute-Object-
Concept partially ordered set) of a concept lattice R is the sub-order of R induced by the sets of
attribute concepts and of object concepts.

In our approach, we will consider the AOC-poset. For our example, it would correspond to
the concept lattice of Figure 2.7 deprived of Concept_0, Concept_4 and Concept_5 (cf. Figure
2.8). Figures 2.7 and 2.8 built using eRCA [Falleri and Dolques, 2010]. In Figure 2.8, the concepts
have been renamed by the construction tool (e.g. concept_3 of the concept lattice (from Figure
2.7) is concept_5 of the AOC-poset (in Figure 2.8).

There is a drastic difference of complexity between the two structures (the concept lattice

2.2. Formal and Relational Concept Analysis 23

Figure 2.8 : The AOC-poset for the formal context of Table 2.3 via eRCA.

and AOC-poset), because the concept lattice may have 2mi n(|O|,|A|) concepts, while the number
of concepts in the AOC-poset is bounded by |O| + |A|. Algorithms for building AOC-posets are
introduced in [Arévalo et al., 2007] and [Berry et al., 2012].

2.2.2 Relational Concept Analysis

RCA [Huchard et al., 2007] is an iterative version of FCA in which, the objects are classified not
only according to the attributes they share, but also according to the relations between them.
Other close approaches are: [Prediger and Wille, 1999] [Ferré et al., 2005] [Baader and Distel,
2008]. Let us take the following example (the Mexican food example) [Azmeh et al., 2011]. In
this case study there is a list of countries, a list of restaurants, a list of Mexican dishes, a list of
ingredients, and finally a list of salsas. There are some relations between these entities (Country,
Restaurant, MexicanDish, Ingredient, Salsa), such that: a Country "has" a Restaurant; a Restau-
rant "serves" a MexicanDish; a MexicanDish "contains" an Ingredient; an Ingredient is "made-
in" a Country; and finally a Salsa is "suitable-with" a MexicanDish. These entities and their re-
lations are expressed by the directed cyclic graph (the graph contains a cycle) in Figure 2.9. The
relational context family (RCF) (cf. Table 2.5) is an instance of this entity-relationship diagram.

Figure 2.9 : The entities of the Mexican food example.

Definition 2.8. A relational context family (RCF) is a pair (K , R) where K is a set of formal (object-
attribute) contexts Ki = (Oi , Ai , Ii) and R is a set of relational (object-object) contexts ri j ⊆ Oi ×
O j , where Oi (domain of ri j) and O j (range of ri j) are the object sets of the contexts Ki and K j ,
respectively.

24 Chap 2. Background

The RCF corresponding to the Mexican food example consists of four formal contexts (Coun-
try, Restaurant, MexicanDish, Ingredient, and Salsa), illustrated in Table 2.4; and five relational
contexts (contains, has, serves, suitable-with, and made-in), illustrated in Table 2.5.

Table 2.4 : The formal contexts of the Mexican Food RCF.

Country

ca en fr lb m
x

es u
s

A
m

er
ic

a

A
si

a

E
u

ro
p

e

Canada 7 7
England 7 7
France 7 7
Lebanon 7 7
Mexico 7 7
Spain 7 7
USA 7 7

Restaurant

r1 r2 r3 r4 r5 r6 r7

Chili’s 7
Chipotle 7
El Sombrero 7
Hard Rock 7
Mi Casa 7
Taco Bell 7
Old el Paso 7 7

MexicanDish

d
1

d
2

d
3

d
4

d
5

d
6

Burritos 7
Enchiladas 7
Fajitas 7
Nachos 7
Quesadillas 7
Tacos 7

Ingredient

i1 i2 i3 i4 i5 i6 i7 i8 i9 i1
0

i1
1

i1
2

chicken 7
beef 7
pork 7
vegetables 7
beans 7
rice 7
cheese 7
guacamole 7
sour-cream 7
lettuce 7
corn-tortilla 7
flour-tortilla 7

Salsa

s1 s2 s3 s4 m
il

d

m
ed

iu
m

-h
o

t

h
o

t

Fresh Tomato 7 7
Roasted Chili-Corn 7 7
Tomatillo-Green Chili 7 7
Tomatillo-Red Chili 7 7

Table 2.5 : The relational context family of the Mexican Food RCF.

contains

ch
ic

ke
n

b
ee

f

p
o

rk

ve
ge

ta
b

le
s

b
ea

n
s

ri
ce

ch
ee

se

gu
ac

am
o

le

so
u

r-
cr

ea
m

le
tt

u
ce

co
rn

-t
o

rt
il

la

fl
o

u
r-

to
rt

il
la

Burritos 7 7 7 7 7 7 7 7 7 7 7
Enchiladas 7 7 7 7
Fajitas 7 7 7 7 7 7 7 7
Nachos 7 7 7 7
Quesadillas 7 7 7 7 7
Tacos 7 7 7 7 7 7 7

has C
h

il
i’s

C
h

ip
o

tl
e

E
lS

o
m

b
re

ro

H
ar

d
R

o
ck

M
iC

as
a

Ta
co

B
el

l

O
ld

el
P

as
o

Canada 7 7 7 7 7
England 7 7 7
France 7 7 7
Lebanon 7 7 7
Mexico 7 7 7
Spain 7 7
USA 7 7 7 7 7 7

serves

B
u

rr
it

o
s

E
n

ch
il

ad
as

Fa
ji

ta
s

N
ac

h
o

s

Q
u

es
ad

il
la

s

Ta
co

s

Chili’s 7 7 7
Chipotle 7 7
El Sombrero 7 7 7 7 7 7
Hard Rock 7 7
Mi Casa 7 7 7 7 7
Taco Bell 7 7 7 7
Old el Paso 7

made-in

chicken
beef
pork
vegetables
beans
rice
cheese
guacamole
sour-cream
lettuce
corn-tortilla
flour-tortilla

serves

B
u

rr
it

o
s

E
n

ch
il

ad
as

Fa
ji

ta
s

N
ac

h
o

s

Q
u

es
ad

il
la

s

Ta
co

s

Fresh Tomato 7 7 7 7 7 7
Roasted Chili-Corn 7 7
Tomatillo-Green Chili 7 7
Tomatillo-Red Chili 7 7 7 7 7 7

An RCF is used in an iterative process to generate at each step a set of concept lattices. Firstly,
concept lattices are built using the formal contexts only. Then, in the following steps, formal
contexts are concatenated with the relational contexts enriched with knowledge obtained at a
previous step. This enrichment is based on the notion of scaling operators that produce scaled

2.2. Formal and Relational Concept Analysis 25

relations.

The scaling mechanism translates the links between objects into conventional FCA at-
tributes (which we call here relational attributes) and derives a collection of lattices whose con-
cepts are linked by relations (cf. Figure 2.11 (built using eRCA)). For example, the existentially
scaled relation (which we will use in our work) captures the following information: if an object
os is linked to another object ot , then in the scaled relation, os will receive relational attributes
associated to concepts, which group ot with other objects. This is used to form new groups, for
example the group (See Concept_85) of Restaurant lattice, which serve at least one dish con-
taining sour cream (Concept_38) (such dishes are grouped in Concept_73) (cf. Figure 2.10).
The steps are repeated until the lattices become stable (i.e. when no more new concepts are
generated).

Figure 2.10 : Concept 85, 73 and 38 of the Restaurant, MexicanDish and Ingredient concept lattice.

Definition 2.9. Let us define ri j (oi) = {o j ∈ O j |(oi ,o j) ∈ ri j }. The exists scaled relation r ∃
i j asso-

ciated to ri j ⊆ Oi ×O j is defined as r ∃
i j ⊆ Oi ×C (O j), such that: (oi ,c) ∈ r ∃

i j ⇔ ∃x ∈ ri j (oi) : x ∈
E xtent (c). Thus, ∃ is a scaling operator (existential). Let us note that in this definition, C (O j) is
any lattice built on the objects of O j .

Definition 2.10. A concept lattice family (CLF) is a set of lattices that correspond to the formal
contexts, after enriching them with relational attributes.

For example, we used the exists scaled relations to generate the concept lattice family corre-
sponding to our case study. It consists of five lattices: Country lattice, Restaurant lattice, Mexi-
canDish lattice, Ingredient lattice and Salsa lattice. Here, we present only three lattices of them
in Figure 2.11. The complete concept lattice family is available on our web site3. For applying
FCA and RCA we used the Eclipse eRCA platform4. For more details, the reader is invited to refer
to [Hacene et al., 2013].

3http://www.lirmm.fr/~seriai/encadrements/theses/rafat//index.php?n=T.CLF
4http://code.google.com/p/erca/

http://www.lirmm.fr/~seriai/encadrements/theses/rafat//index.php?n=T.CLF
http://code.google.com/p/erca/

26 Chap 2. Background

Figure 2.11 : Part of the concept lattice family of the Mexican food example.

2.3 Latent Semantic Indexing

Information Retrieval (IR) refers to techniques that compute textual similarity among different
documents. The textual similarity is computed based on the occurrences of terms within doc-
uments [Grossman and Frieder, 2004]. If two documents share a large number of terms, those
documents are considered to be similar. Different IR techniques have been proposed, such as
Latent Semantic Indexing (LSI) and Vector Space Model (VSM), to compute textual similarity5.
The VSM is the basis for many advanced IR techniques and topic models. The VSM is a sim-
ple algebraic model directly based on the term-document matrix. The LSI is an IR model that
extends the VSM by reducing the dimensionality of the term-document matrix by means of Sin-
gular Value Decomposition (SVD).

LSI and VSM are examples of IR techniques. In reality, VSM suffers from the two following
drawbacks: i) VSM ignores the possible semantic relationship between the terms, and ii) fails
to do rank-reduced simplification. LSI became an improvement over the simplistic point of
view of term matching, taking into account term dependencies [Deerwester et al., 1990]. LSI
assumed that there are some implicit relationships among the words of documents that always
appear together even if they do not share any terms; that is to say, there are some latent semantic
structures (latent structure) in free text [Cullum and Willoughby, 2002].

In the LSI approach, documents and queries are represented as vectors of terms that oc-
cur within documents in a collection [Frakes and Baeza-Yates, 1992]. LSI begins with a term-
document matrix, TDM, to record the occurrences of the m unique terms within a collection
of n documents. In this term-document matrix, each term is represented by a row and each
document is represented by a column, with each matrix cell, tdmi j , denoting a measure of the
weight of the ith term in the jth document. The weight is actually defined according to the value
of term frequency for the ith term in the jth document.

In this thesis, we use the Term Frequency (T F) (l (i , j)) [Berry and Browne, 1999] as the local
term weight and the Inverse Document Frequency (I DF) (g (i)) [Berry and Browne, 1999] as the
global weighting functions. The weight wi j is in fact defined according to the value of term
frequency for the ith term in the jth document. Exactly, we can write:

5For the purpose of our approach, we developed our LSI tool. Available at https://code.google.com/p/lirmmlsi/

https://code.google.com/p/lirmmlsi/

2.3. Latent Semantic Indexing 27

wi j = l (i , j).g (i) (2.1)

Where, a local term weight, l (i , j), indicating the relative frequency of the ith term in the jth
document, and a global weight, g (i), representing the relative frequency of the ith term within
the entire collection of documents. In our work, the most popular weighting is T F I DF (Term
Frequency - Inverse Document Frequency) used according to the following equation [Berry and
Browne, 1999]:

T F I DFi j = (Ni , j /N∗
j) · log(

D

Di
) (2.2)

n where:

o Ni , j = the number of times word i appears in document j .

o N∗
j = the number of total words in document j .

o D = the number of documents.

o Di = the number of documents in which word i appears.

o In Equation 2.1 wi j is T F I DFi j , l (i , j) is (Ni , j /N∗
j) and g (i) is log(D

Di).

From a geometric point of view, each column of the term-document matrix represents a
point in the m-space of the terms. And the whole matrix has n points in this m-space of the
terms. Thus, the similarity between two documents can be measured by the cosine of the an-
gle (cosθ) between the two corresponding points in the m-space of the terms. Commonly, the
closer these two points are in the same direction, the more similar these two documents are.

The LSI has the same steps as VSM for the construction of the term-document matrix T DM .
LSI is an advanced IR method. The core of LSI is singular value decomposition technique. This
technique is used to mitigate noise introduced by stop words (e.g. "the", "an", "above") and
to overcome two classical problems arising in natural language processing: synonymy and pol-
ysemy [Grossman and Frieder, 2004]. Synonymy denotes multiple words that have the same
meaning and polysemy means that a single word has multiple meanings (cf. Listings 2.3 and
2.4).

Definition 2.11. Synonymy: two terms w1 and w2, w1 6= w2, are synonyms if they possess similar
semantic meanings.

Beautiful: attractive, pretty, lovely, stunning.
Lucky: auspicious, fortunate.

LISTING 2.3 : Two examples of synonymy.

Definition 2.12. Polysemy: a term w is polysomic if it has multiple semantic meanings.

The farm will fail unless the drought ends soon.
It is difficult to farm this land.

LISTING 2.4 : An example of polysemy.

28 Chap 2. Background

2.3.1 The Singular Value Decomposition Model

The LSI applies Singular Value Decomposition (SVD) to decompose the matrix T DM into the
product of three smaller matrices: an m × r term-concept vector matrix T , an r × r singular
values matrix S, and a r ×n concept-document vector matrix D (r is the rank of matrix T DM).
We can represent the relation as follows [Deerwester et al., 1990]:

T DM = Tm×r ·Sr×r ·Dr×n (2.3)

LSI allows the optimal approximation for the standard SVD by reducing the rank or truncat-
ing the singular value matrix S to size k ¿ r [Deerwester et al., 1990].

T DM ≈ T DMk = Tk ·Sk ·Dk (2.4)

By using the previous two steps of transformations (i.e. decomposition and approximation),
the initially associated terms are first grouped into a set of concepts at size of r , and then fur-
ther squeezed into an even smaller set of concepts at size of k. The benefit of such process is
to capture most of the important underlying "latent structure" in the association of terms and
documents [Cullum and Willoughby, 2002]. The challenges of using LSI are: i) the costly com-
putation of SVD (time complexity), and ii) difficulty in determining the optimal value of k [Xue
et al., 2012].

Thus, the choice of value of k is critical to the performance as well as accuracy of LSI. Dumais
et al. [Dumais, 1992] stated that better results can be obtained when the value of k (number of
concepts or topics) is between 235 and 250 for natural language. As the collection of source
code files may have a much larger vocabulary, Poshyvanyk et al. [Poshyvanyk et al., 2006] re-
ported that the number of topics at 750 produced the best results. But after 750, the result is not
stable: some queries got better results and some got worse. Selecting the appropriate number
of dimensions for the LSI representation is an open research question.

Similarity between documents in a corpus is described by a cosine similarity matrix whose
columns and rows both represent vectors of documents: documents as columns and queries
as rows. Similarity is computed as a cosine similarity given by Equation 2.5 [Berry and Browne,
1999], where dq is a query vector, d j is a document vector and Wi ,q and Wi , j range over weights
of query and document vectors, respectively.

cosine similarity (dq ,d j) =
−→
dq ·−→d j

|−→dq ||−→d j |
=

n∑
i=1

Wi ,q ∗Wi , j√
n∑

i=1
W 2

i ,q

√
n∑

i=1
W 2

i , j

(2.5)

2.3.2 Singular Value Decomposition Numerical Example

We show here, a SVD numerical example called "technical memo example"; this example is
taken from [Deerwester et al., 1990]. Table 2.6 presents a sample data set consisting of the titles
of 9 technical memoranda. Terms occurring in more than one title are italicized. There are two
classes of documents - five about human-computer interaction (c1-c5) and four about graphs
(m1-m4).

2.3. Latent Semantic Indexing 29

Table 2.6 : LSI example: technical memo example.

Titles Text body
c1 Human machine interface for Lab ABC computer applications
c2 A survey of user opinion of computer system response time
c3 The EPS user interface management system
c4 System and human system engineering testing of EPS
c5 Relation of user-perceived response time to error measurement
m1 The generation of random, binary, unordered trees
m2 The intersection graph of paths in trees
m3 Graph minors IV: Widths of trees and well-quasi-ordering
m4 Graph minors: A survey

This dataset can be described by means of a term-document matrix where each cell entry
indicates the frequency with which a term occurs in a document 6. Figure 2.12 part (a) shows a
representation of the singular value decomposition for a m ×n matrix of T DM .

Figure 2.12 : Graphical representation of the SVD (resp. reduced SVD) for TDM.

n Figure 2.12 explains the singular value decomposition of the term-document matrix,
T DM . Where [Deerwester et al., 1990]:

q T has orthogonal, unit-length columns.

q D has orthogonal, unit-length columns.

q S is the diagonal matrix of singular values.

q m is the number of rows of TDM.

q n is the number of columns of TDM.

q r is the rank of T DM (≤ mi n(t ,d)).

6The term-document matrix is available at http://www.lirmm.fr/~seriai/encadrements/theses/rafat/index.php?
n=T.TDM

http://www.lirmm.fr/~seriai/encadrements/theses/rafat/index.php?n=T.TDM
http://www.lirmm.fr/~seriai/encadrements/theses/rafat/index.php?n=T.TDM

30 Chap 2. Background

Figure 2.12 part (b) shows the reduced SVD of the term-document matrix, T DM . The no-
tation is the same in the previous figure (Figure 2.12 part (a)) except that k(≤ m) is the chosen
number of dimensions (factors) in the reduced model. In this example, we warily chose docu-
ments and terms so that SVD would produce an acceptable solution using just two dimensions.
Table 2.7 shows the two-dimensional geometric representation for terms and documents that
results from the SVD analysis.

Table 2.7 : The 12-term by 9-document matrix.

Terms Documents
c1 c2 c3 c4 c5 m1 m2 m3 m4

human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minors 0 0 0 0 0 0 0 1 1

n Computing the SV D of the T DM matrix presented above (Table 2.7) results in the follow-
ing three matrices for T , S, D (T DM = Tm×r ·Sr×r ·Dr×n) (rounded to three decimal places)
(cf. Tables 2.8, 2.9, and 2.10).

q T (9-dimensional left-singular vectors for 12 terms).

q S (diagonal matrix of 9 singular values).

q D (9-dimensional right-singular vectors for 9 documents).

Table 2.8 : SV D – The T (term) matrix.

-0.221 -0.113 0.289 -0.415 -0.106 -0.341 -0.523 0.060 0.407
-0.198 -0.072 0.135 -0.552 0.282 0.496 0.070 0.010 0.109
-0.240 0.043 -0.164 -0.595 -0.107 -0.255 0.302 -0.062 -0.492
-0.404 0.057 -0.338 0.099 0.332 0.385 -0.003 0.000 -0.012
-0.644 -0.167 0.361 0.333 -0.159 -0.207 0.166 -0.034 -0.271
-0.265 0.107 -0.426 0.074 0.080 -0.170 -0.283 0.016 0.054
-0.265 0.107 -0.426 0.074 0.080 -0.170 -0.283 0.016 0.054
-0.301 -0.141 0.330 0.188 0.115 0.272 -0.033 0.019 0.165
-0.206 0.274 -0.178 -0.032 -0.537 0.081 0.467 0.036 0.579
-0.013 0.490 0.231 0.025 0.594 -0.392 0.288 -0.255 0.225
-0.036 0.623 0.223 0.001 -0.068 0.115 -0.160 0.681 -0.232
-0.032 0.451 0.141 -0.009 -0.300 0.277 -0.339 -0.678 -0.183

We now approximate T DM keeping only the first two singular values and the corresponding
columns from the T and D matrices (Number of concepts K = 2) (T DMk = Tk ·Sk ·Dk [Dumais
et al., 1988]) (cf. Table 2.11).

Multiplying out the matrices T SD ′ gives the result shown in Table 2.12. This matrix con-
tains only the first k independent linear components of T DM , captures the major associational
structure in the matrix and throws out the noise.

2.3. Latent Semantic Indexing 31

Table 2.9 : SV D – The singular values (S) matrix.

3.341 0 0 0 0 0 0 0 0
0 2.542 0 0 0 0 0 0 0
0 0 2.354 0 0 0 0 0 0
0 0 0 1.645 0 0 0 0 0
0 0 0 0 1.505 0 0 0 0
0 0 0 0 0 1.306 0 0 0
0 0 0 0 0 0 0.846 0 0
0 0 0 0 0 0 0 0.560 0
0 0 0 0 0 0 0 0 0.364

Table 2.10 : SV D – The D (document) matrix.

-0.197 -0.606 -0.463 -0.542 -0.279 -0.004 -0.015 -0.024 -0.082
-0.056 0.166 -0.127 -0.232 0.107 0.193 0.438 0.615 0.530
0.110 -0.497 0.208 0.570 -0.505 0.098 0.193 0.253 0.079
-0.950 -0.029 0.042 0.268 0.150 0.015 0.016 0.010 -0.025
0.046 -0.206 0.378 -0.206 0.327 0.395 0.349 0.150 -0.602
-0.077 -0.256 0.724 -0.369 0.035 -0.300 -0.212 0.000 0.362
-0.177 0.433 0.237 -0.265 -0.672 0.341 0.152 -0.249 -0.038
0.014 -0.049 -0.009 0.019 0.058 -0.454 0.762 -0.450 0.070
0.064 -0.243 -0.024 0.084 0.262 0.620 -0.018 -0.520 0.454

Table 2.11 : The T DM = T SD ′(T ·S ·D).

-0.221 -0.113
-0.198 -0.072
-0.240 0.043
-0.404 0.057
-0.644 -0.167
-0.265 0.107
-0.265 0.107
-0.301 -0.141
-0.206 0.274
-0.013 0.490
-0.036 0.623
-0.032 0.451

3.341 0.000
0.000 2.542

-0.197 -0.606 -0.463 -0.542 -0.279 -0.004 -0.015 -0.024 -0.082
-0.056 0.166 -0.127 -0.232 0.107 0.193 0.438 0.615 0.530

Table 2.12 : The T DMk matrix.

0.161 0.400 0.378 0.467 0.175 -0.052 -0.115 -0.159 -0.092
0.141 0.371 0.330 0.401 0.165 -0.033 -0.070 -0.097 -0.043
0.152 0.504 0.357 0.409 0.235 0.024 0.060 0.086 0.124
0.258 0.842 0.607 0.698 0.392 0.033 0.084 0.122 0.188
0.448 1.234 1.050 1.265 0.555 -0.073 -0.154 -0.210 -0.049
0.159 0.581 0.375 0.417 0.276 0.056 0.132 0.189 0.217
0.159 0.581 0.375 0.417 0.276 0.056 0.132 0.189 0.217
0.218 0.550 0.511 0.628 0.242 -0.065 -0.142 -0.196 -0.107
0.097 0.533 0.230 0.211 0.267 0.137 0.316 0.445 0.426
-0.061 0.233 -0.138 -0.266 0.145 0.241 0.546 0.767 0.664
-0.065 0.336 -0.146 -0.302 0.203 0.306 0.696 0.977 0.849
-0.043 0.255 -0.096 -0.208 0.152 0.222 0.504 0.707 0.616

2.3.3 Evaluation Metrics

The effectiveness of IR methods is usually measured by metrics including recall, precision and F-
measure. For a given query, recall is the percentage of correctly retrieved documents to the total
number of relevant documents (cf. Equation 2.6), while precision is the percentage of correctly
retrieved documents to the total number of retrieved documents (cf. Equation 2.7). F-Measure

32 Chap 2. Background

defines a trade-off between precision and recall (cf. Equation 2.8), so that it gives a high value
only in cases where both recall and precision are high [Bissyande et al., 2013].

Recal l = |{relevant documents}
⋂

{retrieved documents}|
|{relevant documents}| (2.6)

Pr eci si on = |{relevant documents}
⋂

{retrieved documents}|
|{retrieved documents}| (2.7)

F −Measur e = 2× Pr eci si on ·Recal l

Pr eci si on +Recal l
(2.8)

All measures have values in [0, 1]. If recall equals 1, all relevant documents are retrieved.
However, some retrieved documents might not be relevant. If precision equals 1, all retrieved
documents are relevant. Nevertheless, relevant documents might not be retrieved. If F-Measure
equals 1, all relevant documents are retrieved. However, some retrieved documents might not
be relevant.

2.3.4 Latent Semantic Indexing Through Example

Let us take the following example (taken from [Grossman and Frieder, 2004]) to illustrate how
LSI works7. In this example, the corpus consists of three documents and one query. The docu-
ments, query, and k-topics are:

+ d1: Shipment of gold damaged in a fire.

+ d2: Delivery of silver arrived in a silver truck.

+ d3: Shipment of gold arrived in a truck.

+ q1: gold silver truck.

+ k-topics: = 2.

In this example, we use the T F I DF as term weights and query weights. The following docu-
ment indexing rules are also used in this example:

à Stop words, articles, punctuation marks, or numbers were removed.

à Text was tokenized and lower-cased.

à Text was split into terms.

à The stemming was performed (e.g. removing word endings) via WordNet [Fellbaum, 1998].

à Terms were sorted alphabetically.

¶ We use LSI to rank these documents (d1, d2 and d3) for the query "gold silver truck". As a

2.3. Latent Semantic Indexing 33

Table 2.13 : The term-document matrix and term-query matrix.

Terms Documents
D1 D2 D3

a 1 1 1
arrived 0 1 1
damaged 1 0 0
delivery 0 1 0
fire 1 0 0
gold 1 0 1
in 1 1 1
of 1 1 1
shipment 1 0 1
silver 0 2 0
truck 0 1 1

Terms Q1
a 0
arrived 0
damaged 0
delivery 0
fire 0
gold 1
in 0
of 0
shipment 0
silver 1
truck 1

first step, we set term weights and construct the term-document matrix T DM and term-query
matrix T QM (cf. Table 2.13).

· As a second step, we decompose T DM matrix and find the T , S and D matrices, where
T DM = Tm×r ·Sr×r ·Dr×n (cf. Table 2.14).

Table 2.14 : The T , S and D matrices.

-2.88051 -2.76080 -3.37152
-0.17259 0.03187 0.49087
-0.00521 0.64990 -0.21564
-0.43357 -0.01189 -0.08303
-0.00521 0.64990 -0.21564
-0.01449 0.27612 0.44193

0 0 0
0 0 0

-0.01449 0.27612 0.44193
-0.86715 -0.02379 -0.16607
-0.17259 0.03187 0.49087

0.31596 0 0
0 0.23872 0
0 0 0.10955

-0.01049 0.98855 -0.15052
-0.99758 -0.02067 -0.06624
-0.06859 0.14947 0.98638

¸ In a third step, we implement a rank 2 approximation (k = 2) by keeping the first two columns
of T and D , and the first two columns and rows of S (cf. Table 2.15).

Table 2.15 : The Tk , Sk and Dk matrices (T SD ′).

-2.88051 -2.76080
-0.17259 0.03187
-0.00521 0.64990
-0.43357 -0.01189
-0.00521 0.64990
-0.01449 0.27612

0 0
0 0

-0.01449 0.27612
-0.86715 -0.02379
-0.17259 0.03187

0.31596 0
0 0.23872

-0.01049 0.98855
-0.99758 -0.02067
-0.06859 0.14947

¹ In the fourth step, we find the new document vector coordinates in this reduced 2-

7We should mention here, that all values in this example are taken from our prototype.

34 Chap 2. Background

dimensional space. Rows of Dk hold eigenvector values. These are the coordinates of individual
document vectors, hence:

• d1(-0.01049, 0.98855)

• d2(-0.99758, -0.02067)

• d3(-0.06859, 0.14947)

º In the fifth step, we find the new query vector coordinates in the reduced 2-dimensional space
(cf. Table 2.16).

q = qT Tk S−1
k (2.9)

Table 2.16 : The new query vector coordinates in the reduced 2-dimensional space.

(qT) 0 0 0 0 0 1 0 0 0 1 1 (Tk)

-2.88051 -2.76080
-0.17259 0.03187
-0.00521 0.64990
-0.43357 -0.01189
-0.00521 0.64990
-0.01449 0.27612

0 0
0 0

-0.01449 0.27612
-0.86715 -0.02379
-0.17259 0.03187

(S−1
k)

1
0.31596 0

0 1
0.23872

(=) -1.08506 0.13788 (q)

These are the new coordinates of the query vector in two dimensions. Note how this matrix is
now different from the original term-query matrix TQM given in Step 1.

» In the last step, we rank documents (d1, d2 and d3) in decreasing order of query-document
cosine similarities. In this example, we use 0.70 as a threshold for cosine similarity.

cosθ
(q,d j)
0.70 =

−→
dq ·−→d j

|−→dq ||−→d j |

cosine similarity(q,d1) = (−1.08506)(−0.01049)+(0.13788)(0.98855)p
(−1.08506)2+(0.13788)2×

p
(−0.01049)2+(0.98855)2

=−0.0541

cosine similarity(q,d2) = (−1.08506)(−0.99758)+(0.13788)(−0.02067)p
(−1.08506)2+(0.13788)2×

p
(−0.99758)2+(−0.02067)2

= 0.98919 ≈ 0.99

cosine similarity(q,d3) = (−1.08506)(−0.06859)+(0.13788)(0.14947)p
(−1.08506)2+(0.13788)2×

p
(−0.06859)2+(0.14947)2

= 0.4478

v We can see that document d2 scores higher than d3 and d1. Its vector is closer to the query
vector than the other vectors. Thus, the descending order of documents based on the value of
the similarity to the query, is as follows: (d2 > d3 > d1).

2.4. Conclusion 35

2.4 Conclusion

In this chapter, we presented the context of our work, namely SPLE and software product vari-
ants. We also presented the background needed to understand the techniques used in our ap-
proach: FCA, RCA and LSI. We used these three techniques as a basis for our approach. We
presented an example for each technique for better understanding.

C
H

A
P

T
E

R

3
STATE OF THE ART

Competition is not only the basis of protection to the consumer,
but is the incentive to progress.

Herbert Clark HOOVER

Preamble

In this chapter, we present the state of the art relevant to our contributions. Section 3.1 gives an
introduction of this chapter. Section 3.2 explains the main concepts related to our study. Section
3.3 presents the related work. Section 3.4 concludes this chapter by providing a concise overview
of the different approaches and shows the need to propose REVPLINE approach.

38 Chap 3. State of the Art

3.1 Introduction

Research works on SPL and software variants have brought many advances in how to achieve
complex software development by reusing the software artifacts such as feature, architec-

tural elements, design entities and source code elements. This dissertation aims to reverse en-
gineering FM from the source code of software variants. In order to achieve this goal we present
three main contributions. The proposed approach consists of three main steps: ¶ feature min-
ing (or feature location), · documenting the mined feature implementations and ¸ reverse
engineering FM from the mined and documented features. In this chapter, we present the state
of the art relevant to our contributions. Firstly, we present the main concepts relevant to feature
location, source code documentation and reverse engineering FM approaches then, we present
the related work.

3.2 Key Concepts

In this section, we present the main concepts relevant to feature location, source code docu-
mentation and reverse engineering FM.

3.2.1 Feature Location

Definition 3.1. Feature location is the activity of identifying an initial location in the source code
that implements functionality in a software system [Dit et al., 2013].

According to Yoshimura et al. [Yoshimura et al., 2006] the portion of functional commonality
among two software products is about 60-75%; their implementations, however, share as little as
around 30% of code. Feature location techniques aim at locating software artifacts that imple-
ment specific program functionality, a.k.a. a feature. In our work and based on our knowledge
we must mention that feature location concept also can be known as feature mining or feature
identification. Feature location techniques mainly employ textual, static, and dynamic analy-
sis. Textual approaches such as [Poshyvanyk and Marcus, 2007] analyze words in source code
using IR techniques. Static analysis approaches such as [Marcus et al., 2004] examine structural
information such as program convergence, control and data dependencies. Dynamic analysis
approaches such as [Eisenberg and De Volder, 2005] examine execution traces of feature specific
execution scenarios. Hybrid approaches such as [Zhao et al., 2006] combine two or more types
of analysis (i.e. textual, static and dynamic analysis) with the goal of using one type of analysis
to compensate for the limitations of another, thus achieving better results.

Definition 3.2. Traceability is the ability to describe and follow the life cycle of an artifact (e.g.
requirements, design models, source code) created during the software life cycle in both forward
and backward directions [Gotel and Finkelstein, 1994].

Traceability link recovery pursues to connect different types of software artifacts (i.e. doc-
umentation with source code), while feature location is more worried with identifying source
code associated with functionalities, not with specific sections of a document. In traceability
link recovery contexts, the high-level descriptions of features are previously known and only the
code that implements them is unknown [Dit et al., 2013]. Our studies are limited to code-to-
document(e.g. feature, use-case) traceability link.

3.2. Key Concepts 39

Feature location supports developers during various activities such as software mainte-
nance. No maintenance task can be completed without first locating and understanding the
code that is relevant to the task at hand [Dit et al., 2013]. Software maintenance involves
adding new features to a system, improving and reengineering existing features and removing
unwanted features (e.g. bugs) [Xue, 2013]. Software maintenance usually takes 70% of overall
project costs [Xue et al., 2012].

3.2.2 Source Code Documentation

Several concepts are closely related to the source code documentation, such as program under-
standing and source code comprehension. We present here these main concepts.

Definition 3.3. Software comprehension is the process whereby a software practitioner under-
stands a software artefact using both knowledge of the domain and/or semantic and syntactic
knowledge, to build a mental model of its relation to the situation [Müller et al., 1993].

Comprehending software is one of the core software engineering activities. Software com-
prehension is required when a programmer maintains, reuses, migrates or enhances software
systems. Software comprehension (also known as "program understanding" or "source code
comprehension") is the process of taking computer source code and understanding it. Accord-
ing to Rajlich and Wilde [Rajlich and Wilde, 2002] software that is not comprehended cannot be
changed.

Source code documentation is very important in our work. The documentation process aims
to assign for each feature implementation its name and description. In order to reverse en-
gineering FM from the source code of software variants, and after feature mining process, it
is very important to document the mined feature implementations. In our work, we rely on
the use-case diagram of software variants to document the mined feature implementations. In
case of absence of the use-case diagram, we rely on the source code elements (OBE or identifier
names) to document each feature.

The comprehension or documentation of feature implementation is a complex problem-
solving task [Müller et al., 1993]. In order to give a precise definition of the feature documenta-
tion, we consider that the feature documentation is the process of taking feature implementa-
tion and understanding it by providing name or a more detailed description based on software
artifacts such as: use-case diagram or identifier names.

Existing approaches extract labels, topics, names, software structure, traceability link or code
summarization from the software in order to facilitate the comprehension of the code. Software
comprehension plays an important role in maintenance tasks [Rajlich and Wilde, 2002]. For
purposes of constructing a FM and reusing existing features in other software, each feature im-
plementation that is presented to the human user must have a meaningful name. In addition,
feature documentation is needed in order to understand existing software variants and facilitate
their maintenance.

3.2.3 Reverse Engineering Feature Model

There are many concepts that are relevant to the reverse engineering, such as forward engineer-
ing and re-engineering. We present here the main concepts related to reverse engineering and
some concepts that are relevant to our work.

40 Chap 3. State of the Art

Definition 3.4. Reverse engineering is the process of analyzing a subject system to identify the sys-
tem’s components and their interrelationships and create representations of the system in another
form or at a higher level of abstraction [Chikofsky and Cross II, 1990].

Reverse engineering involves analyzing a subject system in order to determine its compo-
nents and the relations between those components. It also involves the creation of alternative
representations of the system, usually at a higher level of abstraction. Reverse engineering does
not involve changing or replicating the system; it is only concerned with an examination of the
system and can occur at any stage in the software development life cycle.

Forward engineering is the traditional process of moving from high-level abstractions and
logical, implementation-independent designs to the physical implementation of a system
[Chikofsky and Cross II, 1990]. Forward engineering is the process of moving through the stages
of design, starting at the highest level of abstraction moving to a specific implementation. In the
context of SPL, the software derives from the core assets based on the selected features in the
feature model.

Re-engineering is the process of examination and alteration of a system to reconstitute it in a
new form. Re-engineering involves both forward engineering and reverse engineering [Chikof-
sky and Cross II, 1990]. The concept of reengineering is well-suited to the process of obtaining
an SPL from software variants. There are other related terms such as migration. Migration is
a term used more in the context of changing languages, databases, or platforms, often using
automated converters as a way of transforming software variants [Laguna and Crespo, 2013].
Software re-engineering is concept with a long history. The primary goal was to reach new lev-
els of efficiency of the existing assets, without recurring to the development of new systems from
scratch.

Existing approaches extract FMs from two levels: low level model (i.e. source code) and
high level models (e.g. product description, product configurations, requirements, etc.). In this
dissertation our goal is to reverse engineering a feature model from the source code of software
product variants.

3.3 Related work

In this section, we present the related work. We provide a concise overview of the different ap-
proaches and we show the need to propose our REVPLINE approach. Based on the research con-
tributions, we have identified three kinds of related work: feature location approaches, source
code documentation approaches and reverse engineering FM approaches.

3.3.1 Feature Location Approaches

In this section, we present the closest approaches that are related to the feature location in the
object-oriented source code. This section presents feature location approaches in software fam-
ily (cf. Section 3.3.1.1) then in a single software system (cf. Section 3.3.1.2). Finally, we present
a synthesis and comparison table between these approaches (cf. Section 3.3.1.3). In this section
we present feature location in software family before single software; the reason behind this
choice is that our approach relevant to software variants not to single software. We present the
selected papers in Table 3.1 clarified by their target software (family versus single).

We evaluate the studied works according to the following criteria: objectives of the study
(feature location or traceability link), target software (single software versus software family),

3.3. Related work 41

Table 3.1 : Summary of the feature location approaches (the selected papers).

ID Reference Feature Location
Software Family Single Software

1 [Ziadi et al., 2012] 7

2 [Rubin and Chechik, 2012] 7

3 [Duszynski et al., 2011] 7

4 [Xue, 2011] 7

5 [Xue et al., 2012] 7

6 [Linsbauer et al., 2013] 7

7 [Salman et al., 2013] 7

8 [Marcus et al., 2004] 7

9 [Poshyvanyk and Marcus, 2007] 7

10 [Eisenberg and De Volder, 2005] 7

11 [Zhao et al., 2006] 7

12 [Paškevičius et al., 2012] 7

13 [Rubin and Chechik, 2013b] 7

14 [Dit et al., 2013] 7

programmed method (automatic versus semi-automatic), type of code analysis (static, dy-
namic, textual or hybrid), inputs (source code, feature description), techniques (LSI, FCA, etc.),
outputs (feature implementation, code-to-feature traceability link, etc.), target languages (Java,
C or C++), type of evaluation (case study or empirical data), reduce search space and tool sup-
port.

3.3.1.1 Feature Location Approaches in Software Family

We present here a collection of relevant approaches to feature location in a set of software prod-
uct variants. In this section, we present each approach separately, and we do a synthesis in
section 3.3.1.3.

� Ziadi et al. [Ziadi et al., 2012] proposed a semi-atomic approach to identify features from
object-oriented source code. Their approach takes as input the source code of a set of product
variants but instead of analyzing the source code itself, they rely on higher-level abstractions.
A structural model (i.e. a simplified UML class diagram) of each product is first extracted by
reverse engineering. This model is then decomposed into a set of atomic pieces where each
atomic piece is an elementary model construction primitive (CP).

The construction primitives that they use to decompose the UML class diagram concern the
main elementary elements in class diagrams. This includes the set of construction primitives:
package, class, attribute, method. They assumed in their work that the product variants use the
same vocabulary to name packages, classes, attributes and methods in its source code.

They propose an ad hoc algorithm to identify the feature candidates of a given set of prod-
ucts. Their algorithm gathers all construction primitives that are common to all product vari-
ants as one feature (i.e. base feature). For the construction primitives that are unique to a single
product or common to two or more products but not all products, their algorithm gathers them
as one feature.

Their approach only investigates products in which the variability is represented in the name
of packages, classes, attributes and methods. Their approach does not consider product vari-
ants in which the variability was mainly represented in the body of methods (different local
variables, method invocations and attribute accesses). They neither consider the parameters of
operations nor the types of attributes.

42 Chap 3. State of the Art

Their approach does not split mandatory features they are stored in one unique mandatory
feature. They group optional features that are always together in the same set of product vari-
ants as one feature. They do not expect this problem to be a major one for several reasons.
First, considering more products may be enough to solve it. Second, splitting some features is
certainly much less time consuming and error-prone than browsing a large source code so that
the impact of the problem is probably limited. They manually named the extracted feature im-
plementations. They consider that feature implementations may overlap and they called the
shared construction primitives between two or more features a junction. In our work, we will
reuse this terminology.

� Rubin et al. [Rubin and Chechik, 2012] proposed an approach focused on locating distin-
guishing features of software product families realized via code cloning. In reality software fami-
lies often emerge ad-hoc, when companies have to release a new product that is similar to exist-
ing ones. In many cases, new products are created using code cloning mechanisms (the "clone-
and-own" approach) when an existing product is copied and later modified independently from
the original version. In cloning process, variants are created by duplicating a specific version
and continuing its development independently from the original [Rubin et al., 2012].

Their approach locate distinguishing features – those that are present in one but not all vari-
ants of a product family realized via code cloning. Their approach is limited to two software
variants. The features of interest are implemented in the unshared parts of the program. Their
work considers optional features only. They define a notion of a diff set – an artifact capturing
unshared parts of the program of interest.

They focus on distinguishing features of a program P (i.e. those that exist in P but not in
another variant P). They know a priori that all code of such features is present in P but absent
in P . That is, the implementation of such features fully resides in diff sets. So the output of
their approach is limited to common and unshared parts of source code obtained from com-
paring two program variants. Their approach does not require program execution. They rely on
static analysis. Their approach does not distinguish between optional features that appear in
unshared part of the source code. They validate their approach on a small but realistic example
and describe initial evaluation results.

� Duszynski et al. [Duszynski et al., 2011] said that not every SPLs starts from the scratch. In
reality, often companies face the problem that after a while their software is deployed in several
variants and the need arises to migrate to systematic variability and variant management using
a SPL approach. They describe a framework for the analysis and visualization of similarities
across related systems. After identifying corresponding files, the framework facilitates browsing
variants in large code bases.

They introduce variant analysis technique which visualizes commonalities and variabilities
in the source code of multiple software product variants. The goal of the technique is to support
reuse potential assessment by delivering precise quantitative information about the similarity
across the analyzed software variants (e.g. number of classes). Their approach used to identify
system parts suitable for transformation into reusable assets. In their work they define a visual-
ization concepts that enable easy interpretation of the results at any level of abstraction (source
code, files, subsystems, whole systems), even for many variants.

3.3. Related work 43

On the lowest level of detail, the variant analysis technique uses occurrence matrices for
organizing variability information. In the occurrence matrices each variant is represented as
a set of distinct atomic elements (classes). Then a matrix is created for each variant, the rows
of the matrix represent the atomic elements of the variant, and the columns represent all the
analyzed variants. Then union matrix is created for the union of all sets. Its rows represent
all the elements existing in any of the sets. Each matrix cell has a value of "1" if the element
represented by the field’s row belongs to the variant represented by the field’s column, or a value
of "0" if not. Each matrix has an additional summary column, which counts the number of
variants the given element belongs to. They define a method for finding and visualizing the
relationship between code variants. The authors map elements between system variants using
data models, element occurrence rates, and system models. The results are presented via Venn
diagrams and bar graphs to show the overlap and variability in the systems.

Occurrence matrices are well-suited for analyses of variability distribution amongst software
variants. The summary column, storing the number of variants the given element belongs to,
gives direct information about the reusability of the element: if the value is equal to the number
of all variants N, the element is a core element that is identical in all software variants. The
elements with a value of 1 exist in only one variant and are unique to this variant. The elements
with values in the 2...N −1 range are shared across some, but not all of the software variants. For
each element, it is known to which software variants it belongs and the corresponding elements
from other variants can be easily located. The core, shared, or unique status of the element can
be visualized in the respective compilation unit visualization.

� Xue [Xue, 2011] addresses the problem of re-engineering of the legacy software variants into
SPL. To migrate a family of legacy software products into SPL for effective reuse, one has to
understand commonality and variability among existing product variants. Xue proposes an ap-
proach that consolidates feature knowledge from top-down domain analysis with bottom-up
analysis of code similarities in subject software products. They proposed a method which in-
tegrates model differencing, clone detection and LSI (information retrieval technique), which
can provide a systematic means to re-engineer the legacy software products into SPL based on
automatic variability analysis.

Xue presents a model differencing based on methods to detect changes that occurred to
product features in a family of product variants. The primary input to his approach is a set of
product FMs. A product FM captures all the features and their dependencies in a product vari-
ant. Through this method he knows that a specific feature is unique for a specific product. In
his work, the developers should document the features and their dependencies for each variant,
which provides the input for the variability analysis at the requirement level. Then he uses clone
differentiating. Clone differencing technique reports the differences between two clones code.
The variability recovered from product FMs needs to be correlated with the variability identified
from the clones. The difference in terms of feature at the requirement level should be connected
to the difference in terms of clone at the implementation level. The underlying intuition of their
approach is that the presence or absence of a feature in a product variant should be reflected in
the presence or absence of certain design elements and code fragments.

Xue uses model differencing algorithm to identify evolutionary changes that occurred to fea-
tures of different product variants at requirement and implementation levels, using a case study
and empirical data. Xue approach needs as inputs FMs (i.e. features) and source code of soft-
ware product variants. His approach is limited to variability (i.e. without commonality) of soft-

44 Chap 3. State of the Art

ware variants at requirement and implementation levels.

� Xue et al. [Xue et al., 2012] extend the work of Xue [Xue, 2011]. They present an approach
to support effective feature location in a collection of software product variants. The novelty of
their approach is that they exploit commonalities and differences of product variants by soft-
ware differencing and FCA techniques so that LSI (IR technique) can achieve satisfactory results
for feature location in product variants. They have implemented their approach and conducted
evaluation with a collection of nine Linux kernel product variants. Their evaluation shows that
their approach always significantly outperforms a direct application of IR technique in the sub-
ject product variants.

For a product variant, their approach takes as input a set of features (resp. feature descrip-
tion) that the product variant supports and a static program model built from the implementa-
tion of the product variant. They assume that each feature of a product variant is identified by
a name and is described using some natural language description. The static program model
of software implementation is a graph. The node set contains code units of interest for feature
location such as methods and data structures. Each code unit is associated with a set of proper-
ties such as identifiers and comments. The edge set contains relationships between code units,
such as a function call and data-structure usage.

They identify the distinct features (resp. code units) in software product family, then they
group features (resp. code units) into disjoint, minimal partitions by FCA (i.e. reduce search
space), then they apply LSI to find the traceability link between feature description and its im-
plementation (i.e. code-to-feature traceability link) in an efficient way. They exploit common-
ality and variability (i.e. at features and code units level) across software variants to reduce the
search space and then apply the LSI technique. We should mention here that their approach
represents the best one of the approaches that we studied (i.e. code-to-feature traceability link)
based on the methods, techniques used and the results. Their approach is limited to variability
of software variants (i.e. optional features). They assume that commonalities and differences
between software variants can be determined statically. Their approach does not make any as-
sumptions regarding how product variants are generated and managed (resp. features naming).
It requires as input only a set of features and program models of software variants.

� Linsbauer et al. [Linsbauer et al., 2013] said that companies typically only know which fea-
tures are implemented in which software variants but they do lack precise knowledge about the
portions of code these features are implemented. They present a novel technique for deriving
the traceability between features and code in software variants by matching code overlaps and
feature overlaps. The technique they propose expects as input a number of software variants
with their corresponding feature sets and code. They implemented their approach on the code
granularity level of class methods and attributes.

The precision of the technique depends on the ability to distinguish individual features.
They do not require a software variant for every possible feature combination. Rather, to dis-
tinguish any two features, they typically only require one product with and one without the fea-
ture. By matching these sets, they obtain code fragments that belong to individual features or
groups thereof. In cases that a set of features always occur together their approach is unable to
exactly distinguish what code fragment belongs to which feature individually. In their approach
they assume that software variants which have common features also have common code, and

3.3. Related work 45

that this common code implements exactly these common features (i.e. products that have fea-
tures in common will also have code in common and vice versa). The automated traceability
extraction is thus limited to code pieces with a unique trace.

They define an association as a tuple where the first element is the set of modules (features)
and the second element is the set of code supported by product variant (association = (module-
set, code-set). As an example, let us assume we have two product variants (product A and prod-
uct B as input). Product A supports "line" and "wipe" features while product B support only
"line" feature. The association A =({line, wipe}, {c1, c2, c3, c4, c5, c7, c8}) and association B
= ({line}, {c1, c2, c3, c4, c5, c7}). Associations are then intersected by respectively intersecting
their module sets and their code sets. Product B consists of only one module, which is the base
module line. The code these two products have in common is therefore associated with the
base module line (line ↔ c1, c2, c3, c4, c5, c7). The remaining code in product A is left for the
base module wipe (wipe ↔ c8). They evaluate their approach on three case studies of different
sizes and complexity. More than 99% of the code pieces were correctly assigned in a matter of
seconds.

� Eyal-Salman et al. [Salman et al., 2013] propose an approach to identify code-to-feature
traceability links to a collection of software product variants. The approach expects as input a
number of software variants with their corresponding source code and feature sets (resp. feature
description). They implemented their approach on the code granularity level of class only. They
apply their approach on two case studies.

In their work traceability link recovery process consists of four main steps. The first step aims
to reduce LSI spaces. They split classes (resp. features) into common and variable partitions. For
the variable partition of classes they rely on FCA to split it into minimal disjoint sets. In the sec-
ond step code-topics are derived from each minimal disjoint set of classes that are computed in
the previous step. In this step, they follow two steps to derive the code-topics: computing simi-
larity among classes and grouping similar classes into code-topics using FCA. The code-topic is
a cluster of similar classes that are grouped together to cover the same topic. In the third step,
the traceability links between features and their possible corresponding code-topics are estab-
lished using LSI. Finally, by determining code-topics related to each feature, they determine all
classes that implement each feature by decomposing each code-topic to its classes.

In their work they use two kinds of source code information to compute the similarity be-
tween classes: textual and structural information. Textual similarity among given classes refers
to lexical matching between terms derived from identifiers related to these classes. They depend
on Vector Space Method (VSM) to compute the textual similarity. For structural similarity, they
consider two classes are structurally similar if they have at least one of the following relations:
inheritance, method call, shared method invocation and shared attribute access relations. Their
work is based on methods and techniques that are very close to Xue et al. [Xue et al., 2012] except
the use of lexical and structural similarity to extract the code-topics from each minimal disjoint
set. In addition their work doesn’t deal with commonality. There are many missing links in the
obtained results. For example, logging feature in ArgoUML is missing. The reason behind these
missing features is that the implementation of these features is at method body level not at the
class level.

46 Chap 3. State of the Art

3.3.1.2 Feature Location Approaches in Single Software

We present here a collection of relevant approaches to the feature location in a single software
system. We present each approach separately, and we do a synthesis in section 3.3.1.3. Finally,
we present two surveys relevant to feature location in a single software system.

v Marcus et al. [Marcus et al., 2004] introduce one of the first approaches for using IR tech-
niques for feature location. The approach is based on using domain knowledge embedded in
the source code through identifier names (e.g. method and attribute) and internal comments.
The analyzed program is represented as a set of text documents describing software elements
(e.g. methods or data type declarations). To create this set of documents (i.e. corpus), the sys-
tem extracts identifiers from the source code and comments, and separates the identifiers using
known code styles (e.g. the use of underline _ to separate words). Each software element is de-
scribed by a separate document containing the extracted identifiers and translated to LSI space
vectors using identifiers as terms.

The technique requires no user interaction besides the definition and the refinement of the
input query. The proposed approach is based on the textual analysis of the source code. Given a
natural language query containing one or more words, identifiers from the source code, a phrase
or even short paragraphs formulated by the user to identify a feature of interest, the system
converts it into a document in LSI space, and uses the similarity measure between the query
and documents of the corpus in order to identify the documents most relevant to the query.

In order to determine how many documents the user should inspect, the approach parti-
tions the search space based on the similarity measure: each partition at step i +1 is made up of
documents that are closer than a given threshold α (based on their experience, α = 0.075 gives
good results) to the most relevant document found by the user in the previous step i . The user
inspects the suggested partition and decides which documents are part of the concept. The
algorithm terminates once the user finds no additional relevant documents in the currently in-
spected partition and outputs a set of documents that were found relevant by the user, ranked
by the similarity measure to the input query.

v Poshyvanyk et al. [Poshyvanyk and Marcus, 2007] extend the work of Markus et al. [Marcus
et al., 2004] with FCA to select most relevant, descriptive terms from the ranked list of docu-
ments describing source code elements. That is, after the documents are ranked based on their
similarity to the input query using LSI, as in [Marcus et al., 2004], the system selects the first n
documents and ranks all terms that appear uniquely in these documents. The ranking is based
on the similarity between each term and the document of the corpus, such that the terms that
are similar to those in the selected n documents but not to the rest are ranked higher. Terms
that are similar to documents not in the selected n results are penalized because they might be
identifiers for data structures or utility classes which would pollute the top ranked list of terms.
After the unique terms are ranked, the system selects the top k terms (attributes) from the first n
documents (objects) and applies FCA to build the set of concepts. The user can inspect the gen-
erated concepts – the description and links to actual documents in the source code – and select
those that are relevant. Similarly to [Marcus et al., 2004], the technique requires a low amount
of user interaction.

3.3. Related work 47

v Eisenberg et al. [Eisenberg and De Volder, 2005] present an effort to deal with the difficulty
of scenario definition. The approach accepts that the user is unfamiliar with the system and
thus should use pre-existing test suites, such as those usually available for systems developed
with a Test Driven Development (TDD) strategy. The approach accepts as input a test suite that
has some correlation between features and test cases. In their work all features are exercised
by at least one test case. Tests that exhibit some part of feature functionality are mapped to that
feature and denoted to as its exhibiting test set. Tests which are not part of any exhibiting test set
are grouped into sets based on similarity between them and are referred to as the non-exhibiting
test set.

For each feature, the system gathers execution traces obtained by running all tests of the fea-
ture’s exhibiting test set and generates a calls set which lists (caller/callee) pairs for each method
call specified in the collected traces. It then ranks each method heuristically. For each feature,
both the ranked list of methods and the generated call set are returned to the user. The goal of
the former is to rank methods by their relevance to a feature, whereas the goal of the latter is
to assist the user in understanding why a method is relevant to a feature. This approach based
on execution scenarios. The underlying technology is trace analysis. The program represents
as executable form. The input of this approach is set of test cases. This approach requires user
interaction.

v Zhao et al. [Zhao et al., 2006] accept a set of feature descriptions as input and focuses on
locating the specific and the relevant functions of each feature using program dependence anal-
ysis (PDA) and VSM (IR technique). The specific functions of a feature are those definitely used
to implement it but are not used by other features. The relevant functions of a feature are those
involved in the implementation of the feature. This approach requires user interaction. This ap-
proach considers as hybrid approaches because it combines two types of analysis (textual and
dynamic analysis (execution traces)).

The analyzed program is represented as a Branch-Reserving Call Graph (BRCG) – a develop-
ment of the call graph with branching and sequential information, which is used to construct
the pseudo execution traces for each feature. Each node in this graph is a function, a return
statement, or branch. Loops are viewed as two branch statements: one going through the loop
body and the other one exiting directly. The nodes are related either conditionally, for alter-
native outcomes of a branch, or sequentially, for statements executed one after another. Their
approach receives a paragraph of text as a description of each feature. The text can be obtained
from the requirements documentation or from domain experts. It transforms each feature de-
scription into a set of index terms (considering only nouns and verbs). These will be used as
documents. The system then mines the names of each method and its parameters, separating
identifiers using known coding styles and transforms them into index terms. These will be used
as queries (i.e. feature).

To reveal the connections between features and functions, documents (i.e. feature descrip-
tions) are ranked for each query (function) using the VSM. The similarity between a document
and a query is computed as a cosine of the angle between their corresponding vectors. For each
document (i.e. feature description), the system creates a sorted list of queries (i.e. functions),
ranked by their similarity degrees and identifies a pair of functions with the largest difference
between scores. All functions before this pair, called a division point, are considered initial spe-
cific functions to the feature. Then, the approach analyzes the program’s BRCG and filters out

48 Chap 3. State of the Art

all branches that do not contain any of the initial specific functions of the feature, because those
are likely not relevant; all remaining functions are marked as relevant. Functions relevant to
exactly one feature are marked as specific to that feature.

Surveys of feature location techniques: ¶ Rubin and Chechik [Rubin and Chechik, 2013b] pro-
vide a detailed description of twenty-four feature location techniques in single software and
discussed their properties. All of the surveyed approaches share the same goal – establishing
traceability between a specific feature of interest that is specified by the user and the artifacts
that implement that feature, their underlying design principles, their input, and the quality of
the results which they produce differ substantially. They also illustrated the techniques on a
common example in order to improve the understandability of their underlying principles and
implementation decisions. The goal of their survey is to show that none of the existing feature
location techniques in the survey are designed to consider families of related products and only
treat different products of a product line as individual, unrelated entities. Thus they discuss
possible directions for leveraging SPLE architectures in order to improve the feature location
process. · Dit et al. [Dit et al., 2013] present an inclusive survey of feature location techniques
in single software. In this survey eighty nine articles from 25 venues have been reviewed and
classified within the taxonomy in order to organize and structure existing work in the field of
feature location. The survey also discusses open issues and defines future directions in the field
of feature location. This survey classifies existing approaches using some criteria (i.e. code anal-
ysis, input, technique, output, programming language and the evaluation way). We use the same
criteria to compare feature location studies and other criteria.

3.3.1.3 Synthesis

Here, we summarize the related work for feature location according to the criteria presented at
the beginning of this section. Table 3.2 presents a comparison between feature location studies.
In the following, we mention high level remarks on the related work from Table 3.2.

o Feature location in a collection of product variants typically relies on reduce the search
space by exploiting commonality and variability across software variants at the source
code and feature levels.

o The majority of existing approaches are designed to locate the program elements of a par-
ticular feature in a single software system.

o Some existing approach accepts as input two sources of information such as source code
of software variants and feature/feature description.

o Some existing approaches investigate variability at package or class levels. These ap-
proaches are applied at different level of granularity (e.g. class, attribute, etc.).

o FCA and LSI are the most used techniques in feature location. Static analysis of source
code is the most used type of code analysis.

o The development paradigm of all studies is object-oriented. Most studies are programmed
in a way semi-automatic and need user interaction.

o The majority of approaches are evaluated through the use of famous evaluation metrics
such as precision, recall or F-measure.

3.3. Related work 49

Ta
b

le
3.

2
:S

u
m

m
ar

y
o

ff
ea

tu
re

lo
ca

ti
o

n
st

u
d

ie
s

(c
o

m
p

ar
is

o
n

ta
b

le
).

ID
R

ef
er

en
ce

Objectives

Software

Programmedmethod

C
o

d
e

an
al

ys
is

In
p

u
ts

Te
ch

n
iq

u
es

O
u

tp
u

ts
La

n
gu

ag
es

E
va

lu
at

io
n

Featurelocation

Traceabilitylink

Singlesoftware

Softwarefamily

Automatic

Semi-automatic

Static

Textual

Dynamic

Hybrid

UMLclassdiagram

Package

Class

Attribute

Method

Methodbody

Featurename

Featuredescription

Query

Scenario

FCA

LSI

VSM

Clonedetection

Codedependencies

Adhocalgorithm

Programdependenceanalysis

Programdifferencing

Variantanalysis

Traceanalysis

Junction

Commoncode

Variablecode

Mandatoryfeature

Optionalfeature

Traceabilitylink

Visualization

Rankedmethods

Java

C

C++

Casestudy

Empiricaldata

Reducesearchspace

Toolsupport

1
[Z

ia
d

ie
ta

l.
,2

01
2]

7
7

7
7

7
7

7
7

7
7

7
7

7
7

2
[R

u
b

in
an

d
C

h
ec

h
ik

,2
01

2]
7

7
7

7
7

7
7

7
7

3
[D

u
sz

yn
sk

ie
ta

l.
,2

01
1]

7
7

7
7

7
7

7
7

7
7

7

4
[X

u
e

et
al

.,
20

12
]

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

5
[L

in
sb

au
er

et
al

.,
20

13
]

7
7

7
7

7
7

7
7

7
7

7
7

6
[S

al
m

an
et

al
.,

20
13

]
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7

7
[M

ar
cu

s
et

al
.,

20
04

]
7

7
7

7
7

7
7

7
7

7
7

7
7

8
[P

o
sh

yv
an

yk
an

d
M

ar
cu

s,
20

07
]

7
7

7
7

7
7

7
7

7
7

7
7

9
[E

is
en

b
er

g
an

d
D

e
Vo

ld
er

,2
00

5]
7

7
7

7
7

7
7

7
7

7

10
[Z

h
ao

et
al

.,
20

06
]

7
7

7
7

7
7

7
7

7
7

7
7

50 Chap 3. State of the Art

3.3.2 Source Code Documentation Approaches

In this section, we present source code documentation approaches in single software (cf. Sec-
tion 3.3.2.1), then we present code-to-document traceability link approaches in single software
(cf. Section 3.3.2.2) and feature documentation approaches in software variants (cf. Section
3.3.2.3). Finally in Section 3.3.2.4 we present a synthesis and comparison table between these
approaches. We present the selected papers in Table 3.3.

Table 3.3 : Summary of source code comprehension studies (the selected papers).

ID Reference Source code comprehension
Single Software Software Family

1 [Kebir et al., 2012] 7

2 [Kuhn, 2009] 7

3 [Kuhn et al., 2007] 7

4 [Lucia et al., 2012] 7

5 [Haiduc et al., 2010] 7

6 [Falleri et al., 2010] 7

7 [Grechanik et al., 2007] 7

8 [Marcus and Maletic, 2003] 7

9 [Diaz et al., 2013] 7

10 [Sridhara et al., 2010] 7

11 [Davril et al., 2013] 7

12 [Yang et al., 2009] 7

13 [Paškevičius et al., 2012] 7

14 [Ziadi et al., 2012] 7

We evaluate the studied works according to the following criteria: objectives of the study
(code comprehension, etc.), target software (single software versus software family), pro-
grammed method (automatic versus semi-automatic), type of code analysis (e.g. static, dy-
namic), inputs (source code, use-case diagrams, etc.), techniques (LSI, VSM, etc.), outputs (top-
ics, labels, terms, etc.), target languages (e.g. Java), type of evaluation (case study or empirical
data) and tool support.

3.3.2.1 Code Documentation Approaches

We present here a collection of relevant approaches to the source code documentation in single
software. We present each approach separately. We present the approaches that extract labels,
topics, names, software structure, code summarization or traceability link from software system
code in order to facilitate the comprehension of the code. Then we propose a synthesis of these
approaches in Section 3.3.2.4.

� Kebir et al. [Kebir et al., 2012] propose an approach to identify components from object-
oriented source code of single software. Their approach proposed allocating names to the com-
ponents based on the class names. Their work identifies component names in three steps: ex-
tracting and tokenizing class names from the identified cluster, weighting words and construct-
ing the component name by using the strongest weighted tokens.

In the first step, class names are split into words according to the camel-case syntax. For
example: StringBuffer is split into String and Buffer. In the second step, a weight is assigned to
each extracted token. A large weight is given to tokens that are the first word of a class name. A
medium weight is given to tokens that are the first word of an interface name. Finally a small
weight is given to the other tokens. In the third step, a component name is constructed using
the strongest weighted tokens. The strongest weighted token is the first word of the component
name; the second strongest weighted word is the second word of the component name and so

3.3. Related work 51

on. The number of words used in a component name is chosen by the user. When many tokens
have the same weight, all the possible combinations are presented to the user and he can choose
the appropriate one.

Their heuristic is based on the following observation: in many object-oriented languages,
class names are a sequence of nouns concatenated using a camel-case notation (e.g. Network-
Settings). The first word of a class name indicates the main purpose of the class; the other words
indicate a complementary purpose of the class and so on. To summarize the work, their ap-
proach accepts source code of single software. Then they identify its components and at last,
they document the identified components and interfaces using class names.

� Kuhn [Kuhn, 2009] presents a lexical approach that uses the log-likelihood ratio of word
frequencies to automatically retrieve labels from source code. The approach can be applied to
compare components with each other (i.e. extract labels to describe their differences as well as
commonalities), to compare a component against a normative corpus (i.e. providing labels for
components), and to compare different revisions of the same component (i.e. documenting the
history of a component).

Their approach is applicable at any level of granularity, from the level of projects down to
the level of methods. They extract the names of packages, classes (including interfaces), fields,
methods and type parameters. Then they split the extracted names by camel-case to accommo-
date to the Java naming convention. They use word frequencies in code to automatically label
software components. By using log-likelihood ratio of word frequencies they extract labels from
source code and use them to label software components.

The idea behind log-likelihood ratio is to compare two statistical hypotheses, of which one is
a subspace of the other. Given two text corpora, they compare the hypothesis that both corpora
have the same distribution of term frequencies with the hypothesis given by the actual term
frequencies. They use log-likelihood ratio to compare between two text corpora to distinguish
between terms specific to the first corpus and terms specific to the second corpus (resp. com-
mon terms).

� Kuhn et al. [Kuhn et al., 2007] propose the use of information retrieval to exploit linguistic in-
formation found in source code, such as identifier names and comments. In order to enrich soft-
ware analysis with the developer knowledge that is hidden in the code naming they proposed
this approach. They introduce semantic clustering, a technique based on LSI and clustering to
group source artifacts (i.e. classes) that use similar vocabulary. They call these groups semantic
clusters and they interpret them as linguistic topics that reveal the intention of the code. They
compare the topics to each other, identify links between them, provide automatically retrieved
labels (they employ LSI again to automatically label the clusters with their most relevant terms),
and use a visualization to illustrate how they are distributed over the system. They use distribu-
tion maps to illustrate how the semantic clusters are distributed over the system. Their work is
language independent as it works at the level of identifier names.

Semantic clustering is a method proposed to group similar classes of a system, according
to their vocabularies. In their work, every class is represented as a document, and terms are
obtained by extracting and filtering identifiers and comments. Furthermore, terms are later
weighted with TF-IDF function (The most common weighting scheme), in order to punish

52 Chap 3. State of the Art

words that appear in many documents of the vocabulary. The resulting term-document matrix
is then processed by LSI (an IR technique). In the term-document matrix, each class is retrieved
as a vector, and the similarity of a pair of classes is calculated by the cosine of the smallest an-
gle formed by their representing vectors. Then, the technique relies on a hierarchical clustering
to group a fixed number of clusters which has similarity greater than a given threshold. Lastly,
queries are used to retrieve a set of words representing the meaning of each group (called se-
mantic cluster) and the distribution map is generated.

To summarize the work, authors present the concept of semantic clustering, a technique
based on LSI to group source code documents that share a similar vocabulary. By applying LSI
to the source code, the documents are clustered based on their similarity into semantic clusters,
resulting in clusters of documents that implement similar functionalities. The authors also used
LSI to label the identified clusters. Finally, a visual notation is provided aiming at giving an
overview of all the clusters and their semantic relationships. If the developers did not name
the identifiers with care (e.g. a, b and c), their approach fails, since the developer knowledge is
missing. The extracted topics are used to describe functionality of a given segment of code.

� De Lucia et al. [Lucia et al., 2012] propose an approach for source code labelling, based on IR
techniques, to identify relevant words in the source code of single software. They applied various
IR methods (such as VSM, LSI and Latent Dirichlet Allocation (LDA)) to extract terms from class
names by means of some representative words, with the aim of facilitating their comprehension
or simply to improve visualization. This work investigates to what extent an IR-based source
code labeling would identify relevant words in the source code, compared to the words a human
would manually select during a program comprehension task.

The study was organized in three steps. In the first step, they asked developers to describe
the selected source code classes with a set of 10 keywords. Then, they applied different tech-
niques (IR techniques) to automatically extract keywords from the selected classes. Once they
have the set of keywords identified by the developers and the set of keywords identified by the
experimented technique, they compare them in order to compute the overlap and try to an-
swer this question (goal of the study): To what extent terms selected by developers to describe a
source code artifact overlap with those that can be identified by an automated technique? Re-
sults show that, overall, automatic labeling techniques are able to well-characterize a source
code class, as they exhibit a relatively good overlap (ranging between 50% and 90%) with the
manually-generated labels.

The achieved results propose that the different elements of a class (e.g. class name, method
signatures, local variables, and comments) play different roles during the automatic labeling of
source code. Basically, the most important words are included in the class name, in the method
signature, and in the attribute names (i.e. the high-level structure of the class). Comments play
an important role, but only when they have a good verbosity.

� Haiduc et al. [Haiduc et al., 2010] proposed a technique for automatically summarizing
source code, leveraging the lexical and structural information in the code. The goal of their
approach is the automatic generation of summaries for source code entities. Summaries are
obtained from the contents of a document by selecting the most important information in that
document. The approach is based on using lexical and structural information from the source
code.

3.3. Related work 53

Lexical information (i.e. identifiers and comments) is extracted from the source code entity
to be summarized (i.e. package, class, method, function, etc.). Common English and program-
ming language keywords are removed, identifiers are split in their constituent words, and stem-
ming is used to replace English words with their root. The source code is transformed into a text
corpus, where each document corresponds to a source code entity. They use text retrieval (TR)
technique (LSI) to determine the most important n terms for each document.

Their approach is not just an instance of text summarization, just as source code is not just
text. One of the requirements for the source code summaries is to reflect the domain seman-
tics as well as the programming language semantics. They attach structural information (e.g.
method m1 calls method m2, class c declares method m, class c1 extends class c2, class c im-
plements interface I, etc.) to the words selected by the TR method, specifying what role each
term plays in the source code, such as class name, method name, parameter name, parameter
type, local variable, etc. This type of information is used not only to enrich the summary but
also to help build it. The top n words selected with the TR method together with the structural
information form the summary.

For the automatic summarization, they used only lexical information in the proposed ap-
proach. They used LSI as the TR technique, as it is one of the most commonly used techniques
in automatic natural language summarization. The first step in determining the automatic sum-
maries was to use LSI for indexing the corpus obtained by considering each method in the
source code as a separate document. Then, the cosine distance between the text of the method
and each of the terms in the corpus was computed in the LSI-reduced space. The corpus terms
were then ordered in decreasing order based on their similarity with the method, so that the
term with the highest cosine similarity to the method would be the first in the list. After this,
they constructed the summary by considering the top five terms in the ordered list.

� Falleri et al. [Falleri et al., 2010] proposed a wordNet-like approach to extract the structure of
single software using the relationships among identifier names. The approach considers natural
language processing techniques which consist of tokenization process (straightforward decom-
position technique by word markers, e.g. case changes, underscore, etc.), part of speech tagging,
and rearranges order of terms by the dominance order of term rules based on part of speech.

Their work is based on natural language processing techniques that automatically extract
and organize concepts from software identifiers in a WordNet-like structure: lexical views.
Those lexical views give useful insight on an overall software architecture and can be used to
improve results of many software engineering tasks. Their approach can be applied at any level
of granularity (e.g. class identifiers, attribute identifiers, etc.). The only thing required by their
approach is a set of identifiers.

Their approach automatically classifies a set of identifiers in a WordNet-like structure (i.e.
fully automated approach). They call this structure a lexical view. Their approach is performed
as the following: cut up identifiers in order to find the primitive words they are composed of,
then, classify the previously extracted primitive words into lexical categories (e.g. noun, verb,
adjective), then, apply rules specific to the English language to determine which words are dom-
inant and impose the meaning of the identifiers, extract implicit important words, then, orga-
nize the initial identifiers together with the freshly extracted words in a WordNet-like lexical
view.

54 Chap 3. State of the Art

� Sridhara et al. [Sridhara et al., 2010] presented a novel technique to automatically generate
comments for Java methods. They used the signature and the body of a method (i.e. method
call) to generate a descriptive natural language summary of the method. The developer is left in
charge to verify the accuracy of generated summaries. The objective of this approach is to ease
developers’ program comprehension. They used natural language processing techniques to au-
tomatically generate leading method comments. Studies have shown that good comments can
help programmers quickly understand what a method does, assisting program comprehension
and software maintenance.

They summarize the main actions of an arbitrary Java method by exploiting both structural
and linguistic clues in the method. In their work, they focus on comments that describe a
method’s intent (i.e. descriptive comments) and other types. Descriptive comments summa-
rize the major algorithmic actions of the method.

The process starts with method M as input. The approach extracts the method signature
and method body such as method calls. Before any names can be analyzed for text generation,
identifiers must be split into component words. They use camel-case splitting, which splits
words based on capital letters, underscores, and numbers. Then they construct software word
usage model to capture the action, theme, and secondary arguments for a given method along
with its program structure. Then, they select the most important statements for the summary.
After that they generate phrases for the selected statements and combine phrases to generate
leading comments that summarize the main actions of Java method (i.e. summary comment
for method M).

3.3.2.2 Code-To-Document Traceability Link Approaches

Here, we present code-to-document traceability link approaches. The documents represent
use-cases or requirements of a single software system. The goal of these approaches is to facil-
itate the software comprehension. These approaches are different from code-to-feature trace-
ability link approaches that aim to re-engineering software variants into SPL for the systematic
reuse. Then we propose a synthesis of these approaches in Section 3.3.2.4.

l Grechanik et al. [Grechanik et al., 2007] proposed a novel approach for automating part of
the process of recovering traceability links (TLs) between types and variables in Java programs
and elements of use-case diagrams (UCDs). The authors evaluated their prototype implemen-
tation on open-source and commercial software, and their results suggested that their approach
can recover many traceability links with a high degree of automation and precision. UCDs are
widely used to describe requirements and desired functionality of software products. These
traces help programmers to understand code that they maintain and evolve.

They propose LeanArt approach that combines program analysis, run-time monitoring, and
machine learning to automatically propagate a small set of initial TLs, between program vari-
ables and types (program entities such as class name, attribute name, method name, parameter
name, etc.) and elements of UCDs. The input to LeanArt is software source code and UCDs. The
core idea of LeanArt is that after programmers initially link a few program entities to elements
of the UCDs, the system will glean enough information from these links to recover TLs for much
of the rest of the program automatically. They implemented their technique as an Eclipse plug-
in. The characteristic of LeanArt is to select a source, and then it displays targets linked to this

3.3. Related work 55

source. The user can navigate from use cases to the related parts of the source code and vice-
versa.

TLs bridge a gap between high-level concepts represented by elements of UCDs and low-
level implementation details such as program entities. UCDs will be used later in our approach
to documenting the mined feature implementation by giving names and description based on
the use-case name and its description.

l Marcus et al. [Marcus and Maletic, 2003] use LSI to recover traceability links between source
code and documentation. The input data consists of the source code (internal documentation)
and external documentation. The external documentation is in the form of requirement docu-
ments which describe elements of the problem domain such as manual, design documentation,
requirement documents or test suites. The requirement documents are supposed to have been
written before implementation and do not include any parts of the source code.

They recover traceability links between high-level documents (requirements) and low-level
documents (source code). IR techniques assume that all software artifacts are/can be put in
some textual format. Then, they compute the textual similarity between each two software ar-
tifacts (the source code of a class and a requirement). A high textual similarity means that the
two artifacts probably share several concepts and that, therefore, they are likely linked to one
another.

In order to recover traceability links between source code and documentation the corpus
must be ready. They form the text corpus out of both documentation (requirements) and source
code (identifier names and comments). The identifier names in the source code are split into
parts based simply on well-known coding standards such as camel-case. In that way they com-
pute directly the similarity between external documents and source files. Each similarity which
is higher than 0.70 is considered as a recovered link between source and documentation.

l Diaz et al. [Diaz et al., 2013] propose an approach to capture relationships between source
code artifacts for improving the recovery of traceability links between documentation and
source code. They extract the author of each source code component and for each author they
identify the "context" she/he worked on. Thus, for a given query from the external documenta-
tion (i.e. use case) they compute the similarity between it and the context of the authors. When
retrieving classes that relate to a specific query using a standard IR-based approach (e.g. LSI or
VSM) they reward all the classes developed by the authors having their context most similar to
the query, by boosting their similarity to the query.

They proposed TYRION approach (i.e. semi-automated approach) to recovery of traceability
links between use cases and Java classes of single software. The results indicate that code own-
ership information can be used to improve the accuracy of an IR-based traceability link recovery
technique. IR-based traceability recovery process starts by indexing the artifacts in the artifact
corpus through the extraction of terms from their content. The indexing process of the arti-
facts and the construction of the artifact corpus are preceded by a text normalization phase that
aimed at: pruning out white spaces or non-textual tokens and splitting source code identifiers
composed of two or more words into their constituent words.

The output of the indexing process is represented by a m ×n matrix (i.e. term-document
matrix), where m is the number of all terms that occur within the artifacts, and n is the number

56 Chap 3. State of the Art

of artifacts in the repository. Once the artifacts are indexed, different IR methods can be used
to compare a set of source artifacts (i.e. use cases) against another set of artifacts (i.e. source
code files) and rank the similarity of all possible pairs of artifacts. For them use cases represent
"queries" and source code files "documents". Once the list of candidate links has been gener-
ated, it is provided to the software engineer for examination. The software engineer reviews the
candidate links, determines those that are correct links and discards the false positives.

3.3.2.3 Feature Documentation Approaches

We present here the relevant approaches to feature documentation. Feature documentation is
not limited to source code only. We present two semi-automatic approaches documenting the
identified feature implementations. In addition, we present an automatic approach document-
ing the identified features from product descriptions. Then we propose a synthesis of these
approaches in Section 3.3.2.4.

v Davril et al. [Davril et al., 2013] present an approach to constructing FMs from product
descriptions. The task of extracting FMs from informal data sources includes mining feature
descriptions from sets of informal product descriptions, naming the features in a way that is
understandable to human users, and then discovering relations between features in order to
organize them hierarchically into an inclusive model.

For purposes of building an FM, the clusters that represent features will be presented to hu-
man users. Those features must have meaningful names. The authors develop cluster-naming
process that involved selecting the most frequently occurring phrase from among all of the fea-
ture descriptors in the cluster. To identify the most frequently occurring phrase they use the
Stanford Part-of-Speech (POS) tagger to tag each term in the descriptors with its POS. The de-
scriptors are then pruned to retain only nouns, adjectives, and verbs as the other terms were
found not to add useful information for describing a feature. Frequent item-sets are then discov-
ered for each of the clusters. In their context, frequent item-sets are sets of terms that frequently
co-occur together in the descriptors assigned to the same cluster.

To select the name for a cluster, all of its frequent item-sets of maximum size, FISmax are
selected. Next, all feature descriptors in the cluster are examined. In each feature descriptor,
the shortest sequence of terms which contains all the words in FISmax is selected as a candidate
name. For example, let FISmax = {prevents, intrusion, hacker}. For a given feature descriptor
such as: "prevents possible intrusions or attacks by hackers trying to enter your computer",
the selected candidate name is "prevents possible intrusions or attacks by hackers". Finally, the
shortest candidate name is selected, as this reduces the verbosity of the feature name. This work
is discussed in Section 3.3.3.1.

v Ziadi et al. [Ziadi et al., 2012] proposed semi-atomic approach to identify feature from
object-oriented source code. Their approach takes as input the source code of a set of prod-
uct variants. In their work they propose manually creating the feature names. In their approach
they rely on the feature names that included in the original FM to name the identified feature
implementations. For example, they manually named the identified feature implementation of
sequence diagram as a sequence diagram feature. This work is discussed in Section 3.3.1.1.

3.3. Related work 57

v Yang et al. [Yang et al., 2009] analyzed open source applications for multiple existing domain
applications with similar functionalities. They propose an approach to recover domain feature
models using data access semantics, FCA, concept pruning/merging, structure reconstruction
and variability analysis. After concept pruning/merging, the analysts examine each of the gen-
erated candidate features (i.e. concept clusters) to evaluate its business meanings. Meaningless
candidate features are removed, whilst meaningful candidate features are chosen as domain
features. Then the analysts can name each domain feature with the help of the corresponding
concept intent and extent. After this manual examination and naming, all the domain features
are determined with significant names denoting their business functions. In their approach,
they are manually naming the features based on the domain experts. This work is discussed in
Section 3.3.3.2.

3.3.2.4 Synthesis

Here, we summarize the related work for source code documentation according to the criteria
presented at the beginning of this section. Table 3.4 presents a comparison between source
code documentation studies. In the following, we mention high level remarks on the related
work from Table 3.4.

o The majority of existing approaches are designed to extract labels, names, topics or code
summarization in a single software system.

o The majority of existing approaches manually assign feature names to the feature imple-
mentations.

o Some approaches identify code-to-document traceability link in single software to facili-
tate code comprehension.

o LSI is the most used technique in source code comprehension. Static analysis of source
code is the most used type in the software comprehension.

o There is no study tried to documenting the identified feature implementations from the
source code of software variants based on available artifacts (e.g. use-case diagrams).

o There is no study tried to documenting the identified feature implementations by using
source code itself (i.e. identifier names).

o The majority of existing approaches are designed to extract labels, names, topics based on
the class names of single software. The most used input is class.

o The identifier names such as package, class, attribute or method considered as the most
important elements to understand existing software system.

o In order to document the mined feature implementations from the source code of software
variants; we rely on the use-case diagrams of software variants or source code element
names for each implementation. Linking the use-cases to feature implementations is ac-
tually no different than recovering traceability links between them in one version of the
software. The novelty of our way is that we exploit commonality and variability across soft-
ware variants, at feature implementations and use-cases levels, to apply the LSI method in
an efficient way.

58 Chap 3. State of the Art

Tab
le

3.4
:Su

m
m

ary
o

fso
u

rce
co

d
e

d
o

cu
m

en
tatio

n
stu

d
ies

(co
m

p
ariso

n
tab

le).

ID
R

eferen
ce

O
b

jectives

Software

Programmed method

Code analysis

In
p

u
ts

Tech
n

iq
u

es
O

u
tp

u
ts

Language

Case study

Tool support

Label software components

Label software features

Extract code topics

Extract code terms

Extract code summarization

Extract structure of software

Generate comments

Traceability link

Single software

Software family

Automatic

Semi-automatic

Static

Dynamic

UML class diagram

Package

Class

Attribute

Method

Method body

Components

Use-case diagram

Use-cases

Documents

Product descriptions

Software entities/identifiers

Automatic heuristic

Log-likelihood ratio

Part-of-speech

Data access semantics

FCA

LSI

VSM

Code dependencies

Ad hoc algorithm

Natural language processing

Machine learning

Run-time monitoring

Component name

Labels

Topics

Terms

Summarization

Feature name

Feature name/ manually

WordNet-like lexical view

Comments

Traceability link

Java

1
[K

eb
ir

etal.,2012]
7

7
7

7
7

7
7

7
7

2
[K

u
h

n
,2009]

7
7

7
7

7
7

7
7

7
7

3
[K

u
h

n
etal.,2007]

7
7

7
7

7
7

7
7

7
7

4
[Lu

cia
etal.,2012]

7
7

7
7

7
7

7
7

7
7

7

5
[H

aid
u

c
etal.,2010]

7
7

7
7

7
7

7
7

7
7

7
7

7

6
[Fallerietal.,2010]

7
7

7
7

7
7

7
7

7

7
[G

rech
an

ik
etal.,2007]

7
7

7
7

7
7

7
7

7
7

7

8
[M

arcu
s

an
d

M
aletic,2003]

7
7

7
7

7
7

7
7

7
7

7

9
[D

iaz
etal.,2013]

7
7

7
7

7
7

7
7

7
7

7
7

10
[Srid

h
ara

etal.,2010]
7

7
7

7
7

7
7

7
7

7

11
[D

avriletal.,2013]
7

7
7

7
7

7
7

7

12
[Z

iad
ietal.,2012]

7
7

7
7

7
7

7
7

7
7

7
7

13
[Yan

g
etal.,2009]

7
7

7
7

7
7

7
7

7
7

7
7

3.3. Related work 59

3.3.3 Reverse Engineering FMs Approaches

In this section, we present the FM extraction approaches from different software artifacts such
as requirements, descriptions, configurations and source code. In literature there are many ap-
proaches related to FM extraction from different artifacts; we select the closest approaches to
our work. We classify the FM extraction approaches into two categories: approaches dealing
with high level models and those dealing with source code. In Section 3.3.3.1, we present the re-
verse engineering FMs approaches from high level models. Section 3.3.3.2 presents the reverse
engineering FMs approaches from source code. Section 3.3.3.3 concludes reverse engineering
FMs approaches. It presents a synthesis and comparison table for these approaches. We present
the selected papers in Table 3.5.

Table 3.5 : Summary of reverse engineering FMs studies (the selected papers).

ID Reference Reverse Engineering FMs
High level model Source code

1 [Davril et al., 2013] 7

2 [Ryssel et al., 2011] 7

3 [She et al., 2011] 7

4 [Acher et al., 2012] 7

5 [Acher et al., 2013b] 7

6 [Chen et al., 2005] 7

7 [Haslinger et al., 2011] 7

8 [Loesch and Ploedereder, 2007] 7

9 [Braganca and Machado, 2007] 7

10 [Yang et al., 2009] 7

11 [Paškevičius et al., 2012] 7

We evaluate the studied works according to the following criteria: objectives of the study
(re-engineering, restructuring variability of SPL, domain analysis, understanding, etc.), target
software (single software versus software family), programmed method (automatic versus semi-
automatic), inputs (product configurations, classes, methods, use-case diagram, incidence ma-
trix, product descriptions, variability descriptions, requirements, etc.), techniques (text similar-
ity, FCA, etc.), outputs (FMs, variability classification, CTCs, and-group, xor-group, or-group,
etc.), target languages (e.g. Java), types of evaluation (case study or empirical data) and tool
support.

3.3.3.1 Reverse engineering FMs from high level models

We present here a collection of relevant approaches to the reverse engineering of FMs from high
level models. We present each approach separately. Then we propose a synthesis of these ap-
proaches in Section 3.3.3.3.

� Davril et al. [Davril et al., 2013] present a novel, automated approach for constructing FMs
from publicly available product descriptions found in online product repositories and market-
ing websites. Each individual product description provides only a partial view of features in
the domain; a large set of descriptions can provide fairly comprehensive coverage. Their ap-
proach utilizes hundreds of partial product descriptions to construct an FM. They focus on the
scenario in which an organization has no existing product descriptions and must rely upon pub-
licly available data from websites. However, such product descriptions are generally incomplete,
and features are described informally using natural language.

The task of extracting FMs from informal data sources involves mining feature descriptions
from sets of informal product descriptions, naming the features in a way that is understandable

60 Chap 3. State of the Art

to human users, and then discovering relationships between features in order to organize them
hierarchically into a comprehensive model. In their approach, product specifications are mined
from online software repositories. Then, these product specifications are processed in order to
identify a set of features and to generate a product-by-feature matrix (P ×F) in which the rows
of the matrix correspond to products and the columns correspond to features. Then, meaning-
ful names are selected for the mined features. Next, a set of association rules are mined for the
features. These association rules are used to generate an implication graph (IG) which captures
binary configuration constraints between features. The tree hierarchy and then the feature di-
agram are generated given the IG and the content of the features. Finally, cross-tree constraints
and OR-groups of features are identified.

To evaluate the quality of the generated FMs, they first explored the possibility of creat-
ing a "golden answer set" and then comparing the mined FM against this standard. The re-
sults show that the FM generated by their approach does not reach the same level of quality
achieved in manually constructed FMs. The evaluating of the quality of the generated FM is
time-consuming and involves manually creating one or more FMs for the domain, and then
asking human users to evaluate the quality of the product lines in a blind study.

� Ryssel et al. [Ryssel et al., 2011] present an approach based on FCA that analyzes incidence
matrices containing matching relations as input and creates FMs as output. The resulting FMs
describe exactly the given input variants. In their approach the extracted FM consists of group
of feature constraints without cross-tree constraints. In their context, there are neither pre-
existing FMs nor propositional formulas. They exploit FCA to synthesize FMs including or- and
xor groups. Their synthesis technique is based on FCA and translates feature group recovery to
minimal set cover problems.

For the tree recovery stage, first, they recover a Directed Acyclic Graph (DAG) that represents
all possible tree hierarchies given the input. The DAG is recovered as an attribute concept graph
by checking subsets of features between configurations. Feature groups are found by solving
minimal set cover problems. The possible set cover candidates consist of only immediate chil-
dren of a given parent. They also address the recovery of complex implications. They first build
an extended attribute concept graph that includes negated features as nodes. The complex im-
plications are identified by solving a minimal set cover problem using the extended attribute
concept graph to limit the problem size.

In their work they construct concept lattice which is used to derive the feature hierarchy.
They create feature models, which specify exactly the variants given as input in the form of an
incidence matrix. Using optimized methods based on FCA, the feature models are generated
in very short time, because they scale significantly better than the standard methods of FCA to
calculate the lattices and implication bases. Their work doesn’t support the mandatory features
and cross-tree constraints (e.g. require/exclude). In addition, there are many missing features
in the extracted FMs.

� She et al. [She et al., 2011] present procedures for reverse engineering FMs based on a cru-
cial heuristic for identifying parents which are the major challenge of this task. They also auto-
matically recover constructs such as feature groups, mandatory features, and implies/excludes
edges. They evaluate the technique on two large-scale SPLs with existing reference FMs. Their

3.3. Related work 61

approach combines two distinct sources of information: textual feature descriptions and feature
dependencies as propositional formula (i.e. inputs).

They developed an efficient synthesis procedure to compute variability information (e.g. fea-
ture groups) and proposed heuristics for identifying the most likely parent feature candidates of
each feature based on text similarity and domain knowledge. Their heuristics are specific to
the targeted systems (Linux, FreeBSD, eCos both from the domain of operating system). Their
procedure does not detect Or-groups. The algorithm takes a set of features, dependencies, and
feature descriptions to present potential parents for feature to help a modeler build the feature
hierarchy. Given a feature, the algorithm creates a list containing the implied features ranked by
their textual similarity, and a second list containing all features ranked by their textual similarity
for situations where input dependencies may be missing. This algorithm was the first to use
both logical dependencies and textual similarity heuristics for FM synthesis.

� Acher et al. [Acher et al., 2012] present a procedure (i.e. semi-automatic procedure) to syn-
thesize FM based on the product descriptions. Their approach takes as input product descrip-
tion for a collection of product variants to build the FM. Products are described by characteris-
tics (e.g. language, license, etc.) with different patterns on values (e.g. many-valued, one-valued,
etc.). Product descriptions are interpreted to build as much FMs as there are products. Finally,
the FMs of the products are merged, producing a new FM that compactly represents valid com-
binations of features supported by the set of products.

Their technique exploits structurally similar product descriptions and uses a conversion
specification to describe the transformation of a single semi-structured product description to
a FM. The individual FMs are then merged to form a final FM describing all products in the
dataset. The conversion specification is tailored to parse and interpret the specific structure of
the input data. The individual FMs share the same hierarchy making the final merge relatively
simple. They rely on their FAMILIAR domain specific language for performing the merge oper-
ations. Their heuristics exploit the structure of the data to automatically select a hierarchy.

In their work semi-structured product descriptions are used as input. The product descrip-
tions are similar to feature configurations; however, product descriptions can contain variability.
For example, a product could support one or more storage methods, or exactly one operating
system. Each product description is transformed into a product FM that describes the specific
description and its variability. The resulting set of product FMs are then merged to create a
FM describing variability in all products. They used product descriptions ranging from 9 to 190
features as input.

� Acher et al. [Acher et al., 2013b] propose a reverse engineering process for producing a vari-
ability model of a plugin-based architecture. They present a comprehensive, tool-supported
process for reverse engineering and evolving architectural FMs. They develop automated tech-
niques to extract and combine different variability descriptions, including a hierarchical soft-
ware architecture model, a plugin dependency model and the software architect knowledge (i.e.
several inputs). The basic idea is that variability and technical constraints of the plugin depen-
dencies are projected onto an architectural model. After the extraction, alignment and reason-
ing techniques are applied to integrate the architect knowledge and support the extracted FM.
This approach has been applied to a representative, large scale plugin-based system (FraSCAti),
considering different versions of its architecture.

62 Chap 3. State of the Art

They presented a tool-supported approach to extract and manage the evolution of software
variability from an architectural perspective. The process involves the automatically supported
extraction, aggregation, alignment and slicing of architectural FMs. They use several sources of
information as inputs. As a result, they contribute to projecting the implementation constraints
(expressed by plugin dependencies) onto an architectural model. The process enables the soft-
ware architect to validate the extracted FMs. The authors observed that the retained hierarchy
and feature groups can be inappropriate.

To summarize the work, their goal is reverse engineering architectural FMs (domain: com-
ponent and plugin based systems, stakeholder: software architect). Multiple variability sources
(including architect knowledge) are combined to construct semi-automatically an FM (i.e. con-
cern). The constructed FM consists of 92 features and 158 constraints (i.e. output/complexity).
In their work they rely on the reconciling FMs technique; where two (or more than two) FMs
cannot be directly compared or merged: They are reconciled by removing unnecessary details
they used slice and merge operators.

� Chen et al. [Chen et al., 2005] propose a requirements clustering-based approach (i.e. semi-
automatic approach) to constructing FMs from the functional requirements of sample applica-
tions. In their approach, sample applications are first analyzed, and a set of corresponding ap-
plication FMs are built. Then these application FMs are merged into a domain FM and features
are manually labeled based on the difference analysis of these application FMs. The proposed
approach consists of two steps: construction of Application Feature Trees (AFTs) and construc-
tion of Domain Feature Tree (DFT).

In the first step, several sample applications are analyzed. For each of them there are three
activities. The first activity is to elicit functional requirements for the sample application. They
assume each of the functional requirements is documented as long as it clearly specifies a cer-
tain behavior of the system. These requirements are called individual requirements in their
work. The second activity is to model individual requirements and the relationships between
them in an undirected graph, which is called Requirements Relationship Graph (RRG). The third
activity is to identify and organize features by applying the clustering algorithm in RRG. The un-
derlying idea is that a feature is a cluster of closest related requirements, and features with dif-
ferent granularities can be generated by changing the clustering threshold value. After finishing
these three activities, they get the application feature tree for each application.

In the second step, they merge the application feature trees of all the sample applications
into a single domain feature tree (FM), and label the features. The extracted domain FM consists
of optional and mandatory features without any constraints or until group of features. The goal
of the clustering is to synthesize an individual FM for each requirements document where each
document describes a single variant. In terms of the scenario’s size, they used requirements
from two sample applications where one application had 21 requirements. In addition they
apply clustering on manually constructed RRGs to create FMs. The synthesis technique requires
that weighted graphs describing relations between requirements be built by manually analyzing
requirements documents. The weighted graphs are then clustered to identify similar features
and construct the feature hierarchy. In their work, clustering is based on edge weights instead of
textual similarity. They rely on the user for marking features as optional and mandatory features.

� Haslinger et al. [Haslinger et al., 2011] present a fully automatic algorithm that reverse en-

3.3. Related work 63

gineers a basic FM (i.e. FM without cross-tree constraints) from the feature sets which describe
the features each system provides. The extracted features are directly connected to the root fea-
ture. Their approach accepts as input tabular data which includes the product configurations
and produces basic FM.

They propose an automated algorithm for extracting a distinct feature tree given the input
configurations. In their algorithm, they arbitrarily select a feature from a feature list to be the
root of the FM (i.e. first feature in the table). Then, all mandatory features are connected to the
root features. The optional features classify into or- and xor groups or connect directly to the
root features based on the configurations. In their work optional features that always appear
together in all products are detected as atomic sets of features.

They do not address general FMs that can contain any type of cross-tree constraints. In their
work only one FM can be reversed engineered (i.e. unique FM). Nevertheless, the problem is
that the resulting FM may differ from the expectation of the user. In their evaluation, the au-
thors state that the synthesized model may not match the input model; however, the models are
equivalent in terms of their configurations. In case the features order in the input configurations
was changed all results will change. The algorithm proposed do not control the way the feature
hierarchy is synthesized in the resulting FM and may generate FM whose configurations violate
the input dependencies.

� Loesch et al. [Loesch and Ploedereder, 2007] present a method for restructuring and sim-
plifying the provided variability in an SPL based on FCA (i.e. without feature and FMs extrac-
tion). They discussed a variability extraction and visualization method based on concept analy-
sis. Their work does not use or produce FMs.

They present a new method to restructure and simplify the provided variability in a SPL.
Their method is based on FCA. First, a table is constructed that reflects the usage of variable
features in product configurations. From the table, a concept lattice is derived that factors out
which variable features are commonly used in product configurations and which variable fea-
tures only appear in specific product configurations. Using the sparse representation of the lat-
tice, they classify the usage of variable features in product configurations into: ¶ always used,
· never used, ¸ only used mutually exclusively and ¹ only used in pairs.

Variable features appearing at the top concept in the lattice are used in every product config-
uration. These features are likely to be mandatory features (i.e. always used). Variable features
appearing at the bottom concept are not used in any of the product configurations (i.e. never
used). For two variable features F1 and F2 that appear at different concepts and whose infi-
mum is the bottom concept (i.e. F1 is introduced in concept C1, F2 is introduced in concept C2
and C 1uC 2 =⊥), they are only used mutually exclusively in the product configurations. These
features are likely to be alternative features (i.e. only used mutually exclusively). Based on the
concept lattice if two variable features F1 and F2 that appear at the same concept, the two fea-
tures cannot be used separately (i.e. only used in pairs). Require constraint (F1 requires F2) can
be extracted from the lattice via background implications (i.e. upward paths in the lattice). For
exclude constraint they rely on mutually exclusively relation to extract this type of constraints.

� Braganca et al. [Braganca and Machado, 2007] propose an approach to automate the trans-
formation from UML use-case diagram to FMs. Their approach explores include and extend

64 Chap 3. State of the Art

relationships between use-cases to discover relationships between features. In their work, each
functional use-case is mapped to a feature. They establish a model-driven approach to deriving
a concrete use-case diagram that represents one product of a product line based on the feature
configuration.

Basically, their approach consists of three transformations: transform a family use-case
model into FM; transform FM into a configuration metamodel (Ecore model); and finally, trans-
form a configuration model and a family use-case model into an application use-case model.
The approach accepts as input use-case diagrams and produces FMs. They consider the func-
tional use-cases. They present a prototype based on the Eclipse Modeling Framework (EMF) and
SmartQVT. The EMF project is a modeling framework and code generation facility for building
tools and other applications based on a structured data model. SmartQVT is a tool set for model-
to-model transformations that implements the QVT relations language in a Java language.

To summarize the work, they present a model-driven approach to map use-cases to features.
Each use-case is mapped to a feature. Top use-case becomes root feature. The complete struc-
ture of the FM can only be created by examining the relations between use-cases. In their ap-
proach we cannot say a use case is mandatory or optional without a context. This context results
from the relationships the use-case has with other use-cases. For instance, if the functionality
of a use-case is always referenced by other use-cases, then we can say that such a use-case is
mandatory.

3.3.3.2 Reverse engineering FMs from source code

We present here a collection of relevant approaches to the reverse engineering of FMs from
source code. We present each approach separately. Then we propose a synthesis of these ap-
proaches in Section 3.3.3.3.

v Yang et al. [Yang et al., 2009] analyzed open source applications for multiple existing do-
main applications with similar functionalities. They propose an approach to recover domain
feature models using data access semantics, FCA, concept pruning/merging, structure recon-
struction and variability analysis. The basic assumption in their approach is that data models
(entity-relationship) of these applications are similar and uncover a basis for mapping the com-
mon concepts among different applications. The starting point of the mining is a reference
domain data model: domain experts construct a domain data model and establish mappings
from application data schemas to the domain data model. The result of this step is data schema
mappings.

The data schema of the applications is then mapped to the reference domain model by de-
tecting entities or fields with similar names in the applications. The approach is based on de-
tecting consistent data access semantics (i.e. similar usage of data entities by the methods in
the applications). The data access semantics are obtained by detecting SQL statements using
aspects which intercept invocations to the database library and store SQL run-time records. In
order to verify that different methods have a similar data access semantics, the SQL records
must contain the tables, fields and constraints involved in the queries. These records describe
the data access semantics of each method in each application.

Based on the data access semantics of all the methods, they conduct FCA (formal context
consists of all the methods as objects and their data access semantics as attributes). The result
of this step is the original concept lattice. The records are then analyzed using FCA. The result-

3.3. Related work 65

ing concepts represent the usage of data-entities mapped to the reference domain model. De-
pending on the level of the concept, it is merged with neighbor concepts or pruned so that each
concept represents one feature. The result is a domain feature diagram comprising mandatory
features, optional features, whether they are alternative or multiple, its variants, and whether
they are inclusive or exclusive. The output of their approach is limited to basic FM without
cross-tree constraints (requires and excludes). However, variability dependencies (e.g. feature A
requires or excludes feature B) can be obtained from the concept lattice.

v Paškevičius et al. [Paškevičius et al., 2012] present a framework for the automated deriva-
tion of FMs from the existing software artefacts (e.g. classes, components, libraries, etc.), which
includes a formal description of FM, a program-feature relation meta-model, and a method for
FM generation based on feature dependency extraction and clustering. FMs are generated in
Feature Description Language (FDL) and as Prolog rules. They focus on reverse engineering of
source code to FMs. However, there is a wide gap between FMs and program source code.

The novelty of this paper is a proposed method for the automatic derivation of FMs from
Java source code of single software. Their approach accepts as input a set of classes of single
software and extracts basic FM. The extracted FM does not include require/exclude constraints.
In their work each class in software represents a feature. Feature (class) dependencies are ex-
tracted by parsing Java class files. They use the dependency finder tool1 to parse, analyze and
extract dependencies from Java class files. Their methodology of FM extraction is as follows:
compile Java source code using a standard Java compiler, after that, they extract feature depen-
dencies from Java class files, then, they construct a feature distance matrix (i.e. dependencies
between features), after this step, they cluster features based on their dependency in a feature
tree, based on this step, they convert a feature tree into FM, lastly, they generate a description of
FM in FDL/Prolog.

3.3.3.3 Synthesis

Here, we summarize the related work for reverse engineering FMs according to the criteria pre-
sented at the beginning of this section. Table 3.6 presents a comparison between reverse engi-
neering FMs studies. In the following, we mention high level remarks on the related work from
Table 3.6.

o The majority of existing approaches are designed to reverse engineering FM from high
level models (e.g. product description and requirements) and other approaches deal di-
rectly with low level model (source code) with a lot of limitations.

o Few works extract basic FM from source code. These approaches extract FM from single
software or from software family. All approaches are working with a class or method gran-
ularity. The resulting FM consists of basic elements without cross-tree constraints.

o Some approaches offer a solution acceptable but not able to identify important parts of
feature model such as cross-tree constraints, and-group, or-group, xor-group, parent fea-
tures.

1http://depfind.sourceforge.net/

http://depfind.sourceforge.net/

66 Chap 3. State of the Art

o The main challenge of works that reverse engineering FMs from product configurations is
that numerous candidate FMs can be extracted from the same input configurations, yet
only a few of them are meaningful and maintainable.

o Techniques for synthesizing an FM from a set of dependencies (e.g. encoded as a propo-
sitional formula) or product configurations/descriptions have been proposed in literature
such as [She et al., 2011] [Haslinger et al., 2011] [Acher et al., 2012]. An important limita-
tion of prior works is the identification of the feature hierarchy (resp. parent features (i.e.
group of features)) when synthesizing the FM.

o In our work, we rely on FCA to extract FMs from the source code of software variants. Two
approaches [Yang et al., 2009] [Ryssel et al., 2011] rely on FCA to extract basic FM without
cross-tree constraints. Another approach [Loesch and Ploedereder, 2007] uses FCA as a
tool to understand the variability of existing SPL based on product configurations. All these
approaches share the usage of a single form of input to extract variability information.

o From the inputs we can note that FMs can be used in different phases of the SPL develop-
ment, from high-level requirements to code implementation. FMs can be applied to any
kind of artifacts and at any level of abstraction.

o The majority of existing approaches are designed to identify the dependencies between
features regardless of FM hierarchy.

3.3. Related work 67

Ta
b

le
3.

6
:S

u
m

m
ar

y
o

fr
ev

er
se

en
gi

n
ee

ri
n

g
F

M
s

st
u

d
ie

s
(c

o
m

p
ar

is
o

n
ta

b
le

).

ID
R

ef
er

en
ce

O
b

je
ct

iv
es

Programmedmethod

In
p

u
ts

Te
ch

n
iq

u
es

O
u

tp
u

ts

Software

Language

ToolSupport

Evaluation

RestructuringvariabilityofSPL

Transformuse-casediagramstoFMs

re-engineering

Domainanalysis

Understandingandgenerativeapproaches

Automatic

Semi-automatic

Productconfigurations

Classes

Methods

Use-casediagram

Incidencematrix

Productdescriptions

Featuredependencies

Featuredescriptions

Variabilitydescriptions

Requirements

Transformationprocesses

Adhocalgorithm

Textsimilarity

FCA

Userinputandheuristics

Weightedgraphclustering

Variabilityclassification

UniqueFM

ManyFMs

CTCs

And-group

Xor-group

Or-group

Singlesoftware

Softwarefamily

Java

Casestudy

Empiricaldata

1
[D

av
ri

le
ta

l.
,2

01
3]

7
7

7
7

7
7

7
7

7
7

2
[R

ys
se

le
ta

l.
,2

01
1]

7
7

7
7

7
7

7
7

7
7

7

3
[S

h
e

et
al

.,
20

11
]

7
7

7
7

7
7

7
7

7
7

7
7

4
[A

ch
er

et
al

.,
20

12
]

7
7

7
7

7
7

7
7

7
7

7
7

5
[A

ch
er

et
al

.,
20

13
b

]
7

7
7

7
7

7
7

7
7

7
7

7

6
[C

h
en

et
al

.,
20

05
]

7
7

7
7

7
7

7

7
[H

as
lin

ge
r

et
al

.,
20

11
]

7
7

7
7

7
7

7
7

7
7

8
[L

o
es

ch
an

d
P

lo
ed

er
ed

er
,2

00
7]

7
7

7
7

7
7

7
7

7
7

7

9
[B

ra
ga

n
ca

an
d

M
ac

h
ad

o,
20

07
]

7
7

7
7

7
7

7
7

7

10
[Y

an
g

et
al

.,
20

09
]

7
7

7
7

7
7

7
7

7
7

7
7

11
[P

aš
ke

vi
či

u
s

et
al

.,
20

12
]

7
7

7
7

7
7

7
7

7
7

7

68 Chap 3. State of the Art

3.4 Summary

In this chapter, we survey the different approaches related to the feature location, source code
documentation and reverse engineering FMs field. We present our observations regarding the
studied approaches which will be useful to introduce our contributions. We aim at providing
an approach based on several techniques (i.e. FCA, RCA and LSI), in order to contribute in pro-
viding a solution for reengineering software variants into a SPL. In this chapter, we presented
several concepts and works relevant to our approach. This chapter provides a concise overview
of the different approaches and shows the need to propose REVPLINE approach. We are inter-
ested by three main problems: ¬ Feature location, ­ Feature documentation and ® Reverse
engineering FM from object-oriented source code of a collection of software product variants.

Concerning the first problem, we have listed a number of works that are based on differ-
ent techniques to identify source code elements that implements specific functionality. Here,
we highlight the main limitations of these works: ¶ The majority of existing approaches are
designed to locate the program elements of a particular feature in a single software system; ·

Some existing work accepts as input two sources of information such as source code of software
variants and feature/feature description; ¸ Some existing approaches investigate variability at
package or class levels. These approaches fail in case that software variability is represented
mainly at the method body level for example; ¹ Some works extract common block and sets of
variable blocks from software variants source code. These works are limited to this only, and
they do not distinguish between features within the same block such as mandatory features in
the common block.

REVPLINE separates the source code element set of software variants in two subsets, the
common features set and the optional features set. Then, REVPLINE separates the optional
feature set into small subsets such that each contains source code elements shared by groups
of two or more variants or unique for single variant. Then, for each subset, REVPLINE splits the
source code elements into a set of blocks based on the lexical and structural similarity, where
each block represents feature implementation.

Concerning the second problem, we have listed a number of works that are based on differ-
ent techniques to document the source code. Here, we highlight the main limitations of these
works: ¶ The majority of existing approaches are designed to extract labels, names, topics or
code summarization in a single software system; · The majority of existing approaches man-
ually assign feature names to the feature implementations. In the literature there is no work
which gives a name or description for the mined feature implementation.

REVPLINE identifies a set of feature implementations as source code elements. To exploit
the mined feature implementations and build the FM, feature implementations must be doc-
umented as a first step. REVPLINE documenting the mined feature implementations by giv-
ing names and descriptions, based on the feature implementations and use-case diagrams of
software variants. The novelty of our approach is that we exploit commonality and variability
across software variants, at feature implementations and use-cases levels, to apply information
retrieval methods in an efficient way. REVPLINE assigns name and description for each fea-
ture implementation based on the use-case name/description. We rely on RCA, FCA and LSI
techniques to document the mined feature implementations. In case of absence of use-case
diagrams, we rely on source code element names to assign the name of each feature implemen-
tation.

Concerning the third problem, we have listed a number of works that are based on different

3.4. Summary 69

techniques to reverse engineering FMs. Here, we highlight the main limitations of these works:
¶ The majority of existing approaches are designed to reverse engineering FM from high level
models (e.g. product description and requirements) and other approaches deal directly with
low level model (i.e. source code) with a lot of limitations; · The main challenge of works that
reverse engineering FMs from product configurations is that numerous candidate FMs can be
extracted from the same input configurations, yet only a few of them are meaningful and main-
tainable; ¸ Some approaches offer a solution acceptable but not able to identify important parts
of feature model such as cross-tree constraints, and-group, or-group, xor-group, parent features.

REVPLINE identifies a set of feature implementations as a set of source code elements of
software variants and associate each feature with its name. There is need to synthesize a correct
and consistent FMs. We rely on the mined and documented features to extract FMs based on
FCA.

This chapter presents the most closely related work to our contributions. We provided a con-
cise overview of the different approaches and show the need to propose REVPLINE approach.
We presented at the end of each category of related work a synthesis and comparison table be-
tween the presented approaches. Figure 3.1 shows the basic elements of REVPLINE approach
(built using FreeMind software2).

Figure 3.1 : The basic elements of REVPLINE approach.

2http://sourceforge.net/projects/freemind/files/

http://sourceforge.net/projects/freemind/files/

Part II

RIVEPLINE Approach: Contributions

71

C
H

A
P

T
E

R

4
REVPLINE: FEATURE LOCATION IN A COLLECTION OF

SOFTWARE PRODUCT VARIANTS

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.

Don’t Repeat Yourself PRINCIPLE

Preamble

This chapter presents the first contribution of the REVPLINE approach. We introduce the feature
mining process from object-oriented source code of a collection of software product variants. Sec-
tion 4.1 gives a presentation of the problem. Section 4.2 develops the principles of the proposal.
Section 4.3 presents the feature mining process. Next Section 4.4 discusses threats to the validity of
the feature mining process. Finally in Section 4.5, we conclude this chapter.

74 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

4.1 Presentation of the Problem

Companies often develop a set of software variants that share some features and differ in
other ones to meet specific requirements. REVPLINE approach aims to reverse engineer-

ing FM from source code of software variants. This is a main step to re-engineering software
product variants into a SPL for systematic reuse. To build a FM, it is necessary to mine optional
and mandatory features from the source code of the software variants. Thus, we propose, in this
chapter, the first contribution of the REVPLINE approach which aims to mine features from the
object-oriented source code of a set of software variants. The approach is based on FCA, LSI and
code dependency.

This chapter proposes an approach to identify feature implementations from a collection of
software product variants in order to define the FM of these variants. Our approach is based on
reducing the search space of all source code elements of all variants by exploiting commonality
and variability at source code level. Furthermore, we rely on the lexical and structural similarity
between the source code elements for each reduced search space to further reduce it into atomic
sets of source code elements which represent the feature implementations.

A SPL is usually characterized by two sets of features: the features that are shared by all prod-
ucts in the family, which represent the SPL’s commonalities (i.e. mandatory features), and the
features that are shared by some, but not all, products in the family, which represent the SPL’s
variability (i.e. optional features). SPLs are usually described with a de-facto standard formalism
called FM. In common software development processes, software product variants often evolve
from an initial product developed, for and successfully used by the first customer. These prod-
uct variants usually share some common features but they are also different from one another,
due to subsequent customization to meet the specific requirements of different customers [Xue
et al., 2012].

When variants become numerous, switching to a rigorous SPLE process is a solution to tame
the increasing complexity of all the engineering tasks. To switch to SPLE starting from a col-
lection of existing variants, the first step is to mine the FM that describes the SPL. This implies
identifying the software family’s common and variable features. Manual reverse engineering of
the features/FM of software variants is time-consuming, error-prone, and requires substantial
efforts [Ziadi et al., 2012].

As we have shown in the state of the art section, the majority of existing approaches are de-
signed to identify code-to-feature traceability link in a single software system such as [Marcus
et al., 2004] [Poshyvanyk and Marcus, 2007]. Other approaches are designed to identify code-
to-feature traceability link in a collection of software product variants such as [Xue et al., 2012]
[Linsbauer et al., 2013]. These approaches accept as input in addition to the source code it-
self feature names and their descriptions. These approaches linking each feature with the cor-
responding source code elements are based on lexical or structural similarity. Some existing
approaches are designed to identify features in a collection of software variants based on the
source code only, such as [Ziadi et al., 2012] [Rubin and Chechik, 2012]. These approaches iden-
tify only the commonality block and variability blocks across software variants.

In our approach, we identify commonality block and variability blocks across software vari-
ants at all levels of source code elements not only at class level (i.e. all levels of variability).
Furthermore, we reduce each block into a set of features based on the lexical and structural sim-
ilarity. Our approach only accepts as input the source code of product variants; we don’t know
features in advance.

4.2. Principles of the Proposal 75

Figure 4.1 : Feature location in product variants (inspired by [Xue et al., 2012]).

This chapter proposes an approach for feature location in a collection of software product
variants. The approach is based on the identification of the implementation of software variant
features among object-oriented source code elements (cf. Figure 4.1; where Ii are source code
elements and F j are features). These source code elements constitute the initial search space.
We exploit commonality and variability across software variants at source code level to reduce
this search space. We further use textual and code dependency to define a similarity measure
that enables to identify subgroups of elements that characterize the implementation of each
possible feature. Figure 4.5 gives an overview of our approach.

4.2 Principles of the Proposal

This section presents the main principles used in our approach for mining features from source
code. It also shortly describes the example that illustrates the remaining of this chapter.

4.2.1 Goal and Core Assumptions

The general objective of our work is to mine the FM of a collection of software product variants
based on the static analysis of their source code. Mining common and variable features is a first
necessary step towards this objective.

We consider that "a feature is a prominent or distinctive and user visible aspect, quality, or
characteristic of a software system or systems" [Kang, 1990]. Our work focuses on the mining
of functional features. Functional features express the behaviour or the way users may interact
with a product. We consider that a feature represents an aspect valuable to the customer. It
is represented by a single term. We adhere to the classification given by [Kang, 1990] which
distinguishes three categories of features: functional, operational, and presentation features. In
our work, we focus on the functional features.

As there are several ways to implement features [Al-Msie’deen et al., 2013a], we consider
software systems in which functional features are implemented at the programming language
level (i.e. source code). We also restrict to OO software. Thus, features are implemented us-
ing object-oriented building elements (OBEs) such as packages, classes, attributes, methods or

76 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

method body elements (e.g. local variable, method invocation, attribute access). We consider
that a feature corresponds to one and only one set of OBEs. This means that a feature always has
the same implementation in all products where it is present. This assumption based on the way
that software product variants are developed. In our work, we assume that software variants are
developed by using clone-and-own approach (i.e. copy-paste-modify). The clone-and-own ap-
proach refers to the practice of creating a new software product by "cloning" a copy of the source
code of another software product and then modifying it by add or remove features [Rubin and
Chechik, 2013a] [Dubinsky et al., 2013]. We also consider that feature implementations may
overlap: a given OBE can be shared between several features’ implementation (i.e. junction).

Definition 4.1. Junction: "A junction is a collection of object-oriented building elements (such as
class, method or attribute) that is common to two or more feature implementations".

4.2.2 Object-oriented Source Code Variation

In our work, we focus on the following four levels of variations: ¶ package variation, · class
variation, ¸ attribute variation and ¹ method variation (cf. Figure 4.2).

Package variation encompasses variation at two levels: package set variation (set of pack-
ages that appear in some software variants but not all variants) and package content variation
(this means all software variants have the same packages but with different contents (e.g. differ-
ent classes)). Class variation shows variation on two levels: class signature variation and class
content variation. Class signature variation means that two or more classes have the same name
but declare different relations (e.g. implements, extends) or different access levels (e.g. public).
Class content variation means that a class appears in many software variants but with different
content (e.g. attributes and methods). Attribute variation can be found in attribute declarations,
such as access level (protected, private and public) and data type (float, int, double, string, char,
boolean, default values, etc.). Method variation can appears in the method signature (access
level, returned data type and parameters list (name, data type and order)) and in the body of the
method (local variable, method invocation and attribute access).

Figure 4.2 : Object-oriented source code variation.

4.2. Principles of the Proposal 77

For method body variation, in our approach we only consider local variable, method invo-
cation and attribute access. In our work, we don’t consider the algorithms of the method. This is
not meant that the algorithms not useful for variability extraction. If we had considered a prod-
uct line in which the variability was mainly represented in the body of methods (i.e. different
choices of algorithms), our approach would present much lower detection rates. In the future it
will be interesting to investigate the detection of features by considering the code of the body of
methods (i.e. algorithms).

4.2.3 Features versus Object-oriented Building Elements: the Mapping Model

Mining a feature from the source code of variants amounts to identify group of OBEs that con-
stitutes its implementation. This group of OBEs must either be present in all variants (case of a
common feature) or in some but not all variants (case of an optional feature). Thus, the initial
search space for the feature mining process is composed of all the OBEs in the existing product
variants. For a source code containing n OBEs, the initial search space is the powerset of n de-
prived of the empty set. As the number of OBEs is high, mining features entails to reduce this
search space. Several strategies can be combined to do so:

¶ Separate the OBE set in two subsets, the common features set – also called common block
(CB) – and the optional features set, on which the same search process (i.e. reduce this
search space) will have to be performed. Indeed, as optional (resp. common) features ap-
pear in some but not all (resp. all) variants, they are implemented by OBEs that appear in
some but not in all (resp. all) variants.

· Separate the optional feature set into small subsets that each contains OBEs shared by
groups of two or more variants or OBEs that are hold uniquely by a given variant. Each
of these subsets is called a block of variation (BV). BVs can then be considered as smaller
search spaces that each corresponds to the implementation of one or more features.

¸ Identify common atomic blocks (CAB) amongst the common block based on the expected
lexical similarity (or structural similarity) between the OBEs that implement a given fea-
ture. A CB is thus composed of several CABs.

¹ Identify atomic blocks of variation (ABV) inside of each BV based on the expected lexical
similarity (or structural similarity) between the OBEs that implement a given feature. A BV
is thus composed of several ABVs.

All the concepts we defined for mining features are illustrated in the OBE to feature mapping
model (cf. Figure 4.3).

REVPLINE source code model. The source code model (cf. the left bottom part of Figure 4.3)
represents the main source code elements and their inter-relations. In our work we call such
source code elements as Object-oriented building elements (OBEs). In most cases, you get
enough information if you consider the core types entities that build an object-oriented sys-
tem. These are package, class, attribute, method, and the relationships between them, namely
inheritance, access and invocation. An invocation represents a method calling another method
and an access represents a method accessing an attribute. These abstractions are needed for re-
engineering tasks such as dependency analysis. While the source code model is fairly complete,
it can be easily extended in order to include other language elements. The source code model

78 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

Figure 4.3 : OBE to feature mapping model.

does not only represent structural source code entities such as packages, classes, methods. It
also represents explicitly information that is extracted from the methods’ abstract syntax trees
a class inherits from another class (i.e. inheritance), a method accesses attributes (i.e. access)
and a method invokes other methods (i.e. invocation).

REVPLINE feature model. The goal of OBE to feature mapping model is to represent correspon-
dences between OBE and feature model. The extracted FM must include the mined and doc-
umented functional features (optional and mandatory features) and the constraints between
those features. The right bottom part of Figure 4.3 shows the REVPLINE feature model. Such
model has been defined taking into account that every element will have a different graphical
representation. In that Figure, a FM is represented by means of the feature model class, and a
feature model can be seen as a set of features and the set of relationships among them. Fea-
tures through the FM are classified into mandatory and optional features. There are two types
of constraints between these features: ¶ group of features (set of features linked to the same
parent such as xor-group, and-group and or-group) and · cross-tree constraints (such as re-
quires and excludes constraints). A FM must also have a root, which is denoted by means of

4.2. Principles of the Proposal 79

the root feature class. Mandatory and optional features in this model represent the mined and
documented features from software variants. Each atomic block corresponds to a feature. The
root feature represents the name of the complete system (software family). Feature constraints
(dependencies) between those features define the software configurations.

REVPLINE core model. The core model of REVPLINE approach introduces the main concepts
and their inter-relations. REVPLINE core model defines the core where the other models define
respectively the input and output of REVPLINE process. We introduce the main concepts of
REVPLINE core model and their relations as the following: software product variants consist
of 2 or more software; each software product variant consists of OBEs such as package, class,
attribute, method; the OBEs of all software variants are separated into three subsets: common
block (CB) (i.e. mandatory features set), blocks of variation (BVs) (i.e. optional features sets) and
a set of junctions (i.e. features overlap); software product variants consist of only one common
block and one or more blocs of variation (zero or more of junctions); the common block consists
of one or more atomic block (i.e. mandatory feature); each block of variation consists of one or
more atomic block (i.e. optional feature); each atomic block corresponds to one or more OBEs.

4.2.4 The Lexical Versus Structural Similarity

This section quickly introduces the lexical and structural similarity between OBEs. As a first
technique, we rely on lexical similarity between OBEs to split the blocks of OBEs. For two OBEs
the lexical similarity is based on LSI method. Whether two OBEs are lexically similar depends
on the textual similarity between these OBEs. Thus lexical similarity between two OBEs is com-
puted as a cosine of the angle between their corresponding vectors. Each pair of OBEs has sim-
ilarity greater than a given threshold considered similar.

We also use a second technique, which is code dependency (i.e. structural similarity) be-
tween OBEs to increase the precision and recall of LSI method. When the similarity link be-
tween two OBEs were correct, then the dependency information could help locate additional
correct links. Our process is based on the identification of OBEs and their relationships such as
inheritance, composition, invocation relationship and so on. We use a coupling metric which
measures the degree to which a class is linked to one another. Coupling is a measure of the
association, whether by inheritance or by another relations, between classes in a software prod-
uct [Budhkar and Gopal, 2012]. We are concerned with coupling between classes and we will
consider these main dependencies [Hamdouni et al., 2010]:

¶ Inheritance coupling: When a general class (super-class) is connected to its specialized
classes (sub-classes).

· Method invocation coupling: When methods of one class use methods of another class.

¸ Composition coupling: When an instance of one class is referred to in another class.

¹ Attribute access coupling: When methods of one class use attributes of another class.

º Combined coupling: It is the union of the other couplings (i.e. two or more couplings)
between two classes.

In this chapter we rely on structural similarity between OBEs to refine the splitting of blocks.
For two OBEs the structural similarity is based on coupling. Whether two OBEs are structurally

80 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

similar depends on the degree of coupling between these OBEs. Thus structural similarity be-
tween two OBEs is computed based on the coupling measures.

4.2.5 An Illustrative Example: Drawing Shapes Software Variants

As an illustrative example, we consider five drawing shapes software variants. These software
product variants are developed by our team. We should mention that these software variants
are developed by copy-paste-modify technique based on the initial release. The purpose of this
case study is to illustrate our approach. This software allows a user to draw seven different kinds
of shapes. Drawing shapes software variants represent a small case study (e.g. version 5 consists
of 8 packages, 25 classes and 600 lines of code)1.

Table 4.1 : The features of drawing shapes software product variants.

D
ra

w
_l

in
e

In
se

rt
_i

m
ag

e

D
ra

w
_a

rc

In
se

rt
_t

ex
t

D
ra

w
_o

va
l

D
ra

w
_r

ec
ta

n
gl

e

D
ra

w
_T

h
re

eD
R

ec
ta

n
gl

e

C
o

p
y

Pa
st

e

Drawing Shapes Software 1 7 7

Drawing Shapes Software 2 7 7 7 7

Drawing Shapes Software 3 7 7 7

Drawing Shapes Software 4 7 7 7

Drawing Shapes Software 5 7 7 7 7 7 7 7

Drawing Shapes Software 6 7 7 7 7 7 7 7 7 7

Product comparison matrix
(7 feature is in the product)

Drawing shapes software 1 supports core drawing shapes features: draw_line and in-
sert_image. Drawing shapes software 2 supports draw_arc and insert_text features, together
with the core ones. Drawing shapes software 3 has the core drawing shapes features and a new
draw_oval feature. Drawing shapes software 4 has the core drawing shapes features and a new
draw_rectangle feature. Drawing shapes software 5 supports all optional features, together with
the core ones. Drawing shapes software 6 supports copy and paste features (in addition to previ-
ous optional features), together with the core ones (cf. Table 4.1).

The FM in Figure 4.4 shows the FM of the drawing shapes software variants as manually
designed by our team. This FM represents a basic FM without cross-tree constraints. Abstract
features are not concrete features in the source code. They correspond to a group of features or
to the root feature in the FM. In this example, the eventually mined features will be presented to
better explain some parts of our work. However, we only use the source code of software variants
as input of the mining process and thus we do not know features in advance.

1https://code.google.com/p/svariants/

https://code.google.com/p/svariants/

4.3. The Feature Mining Process into Details 81

Figure 4.4 : Drawing shapes software variants feature model.

4.3 The Feature Mining Process into Details

Feature location2 techniques aim at locating software artifacts that implement specific program
functionality, a.k.a. a feature. In this section, we present the features mining process from the
OO source code of a collection of software variants. Our approach is based on the identification
of the implementation of product variant features. OBEs constitute the initial search space. We
reduce this search space by first separating common and variable OBEs and, secondly, dividing
the set of variable OBEs in subgroups. To reduce the search space, we rely on the commonality
and variability across software variants source code. We further use lexical and structural simi-
larity to define a similarity measure that enables to identify subgroups of OBEs that characterize
the implementation of each possible feature.

The mapping model between OBEs and features defines associations between these features
and the corresponding OBEs. To determine instances of this model, we describe our feature
mining process. This process takes the variants’ source code as its input. ¶ The first step is
extracting OBEs by static analysis of the source code. · The second step of this process aims
at identifying BVs and the CB based on FCA (i.e. reduce search space) (cf. Section 4.3.1). ¸

The third step explores the AOC-poset of BVs to define an order to search for atomic blocks of
variation (cf. Section 4.3.2.1). ¹ In the fourth step, we rely on lexical (LSI method) and structural
(code dependency) similarity to determine the similarity between OBEs (cf. Section 4.3.2.2).
This similarity measure is used to identify atomic blocks based on OBE clusters in the last step
º (cf. Section 4.3.2.3). Figure 4.5 shows our feature mining process.

2Terms for the same concept are "feature mining", "feature location" and "feature identification".

82 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

Figure 4.5 : The feature mining process.

4.3.1 Identifying the Common Block and Blocks of Variation

The first step of our feature mining process is the identification of the common OBE block and
of OBE blocks of variation. The role of these blocks is to be sub-search spaces for mining sets
of OBEs that implement features. The technique used to identify the CB and BVs relies on FCA.
First, a formal context, where objects are product variants and attributes are OBEs (cf. Table 4.2),
is defined. The corresponding AOC-poset is then calculated.

In the AOC-poset, the intent of each concept represents OBEs common to two or more prod-
ucts. As concepts of AOC-posets are ordered, the intent of the most general (i.e. top) concept
gathers OBEs that are common to all products. They constitute the CB. The intents of all remain-
ing concepts are BVs. They gather sets of OBEs common to a subset of products and correspond
to the implementation of one or more features. The extent of each of these concepts is the set of
products having these OBEs in common (cf. Figure 4.6).

4.3. The Feature Mining Process into Details 83

Table 4.2 : A formal context describing drawing shapes software variants by their features.
C

la
ss

(P
ai

n
tJ

Pa
n

el
_D

ra
w

in
g.

Sh
ap

es
.C

o
re

)

C
la

ss
(D

ra
w

in
gS

h
ap

es
_D

ra
w

in
g.

Sh
ap

es
.C

o
re

)

C
la

ss
(M

yS
h

ap
e_

D
ra

w
in

g.
Sh

ap
es

.C
o

re
)

C
la

ss
(L

in
eS

et
ti

n
gs

_D
ra

w
in

g.
Sh

ap
es

.L
in

e)

C
la

ss
(L

in
eP

o
si

ti
o

n
_D

ra
w

in
g.

Sh
ap

es
.L

in
e)

C
la

ss
(M

yL
in

e_
D

ra
w

in
g.

Sh
ap

es
.L

in
e)

C
la

ss
(I

m
ag

eP
at

h
_D

ra
w

in
g.

Sh
ap

es
.I

m
ag

e)

C
la

ss
(M

yI
m

ag
e_

D
ra

w
in

g.
Sh

ap
es

.I
m

ag
e)

C
la

ss
(I

m
ag

eP
o

st
io

n
_D

ra
w

in
g.

Sh
ap

es
.I

m
ag

e)

C
la

ss
(A

rc
Se

tt
in

gs
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
A

n
gl

e_
D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(M

yT
ex

tS
h

ap
e_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(T

ex
t_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(T

ex
tI

n
fo

_D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(M

yT
ex

t_
D

ra
w

in
g.

Sh
ap

es
.T

ex
t)

C
la

ss
(O

va
lS

et
ti

n
gs

_D
ra

w
in

g.
Sh

ap
es

.O
va

l)

C
la

ss
(O

va
l_

D
ra

w
in

g.
Sh

ap
es

.O
va

l)

C
la

ss
(M

yO
va

l_
D

ra
w

in
g.

Sh
ap

es
.O

va
l)

C
la

ss
(R

ec
ta

n
gl

eS
et

ti
n

gs
_D

ra
w

in
g.

Sh
ap

es
.R

ec
ta

n
gl

e)

C
la

ss
(M

yR
ec

ta
n

gl
e_

D
ra

w
in

g.
Sh

ap
es

.R
ec

ta
n

gl
e)

C
la

ss
(R

ec
ta

n
gl

e_
D

ra
w

in
g.

Sh
ap

es
.R

ec
ta

n
gl

e)

C
la

ss
(T

h
re

eD
R

ec
ta

n
gl

eS
et

ti
n

gs
_D

ra
w

in
g.

Sh
ap

es
.T

h
re

eD
R

ec
ta

n
gl

e)

C
la

ss
(T

h
re

eD
R

ec
ta

n
gl

e_
D

ra
w

in
g.

Sh
ap

es
.T

h
re

eD
R

ec
ta

n
gl

e)

C
la

ss
(M

yT
h

re
eD

R
ec

ta
n

gl
e_

D
ra

w
in

g.
Sh

ap
es

.T
h

re
eD

R
ec

ta
n

gl
e)

Pa
ck

ag
e

(E
d

it
o

r.
C

o
p

y)

C
la

ss
(C

o
p

yT
ex

t_
E

d
it

o
r.

C
o

p
y)

M
et

h
o

d
(C

o
p

yS
et

ti
n

gs
_C

o
p

yT
ex

t)

Pa
ck

ag
e

(E
d

it
o

r.
Pa

st
e)

C
la

ss
(P

as
te

Te
xt

_E
d

it
o

r.
Pa

st
e)

M
et

h
o

d
(P

as
te

Se
tt

in
gs

_P
as

te
Te

xt
)

Software_1 7 7 7 7 7 7 7 7 7

Software_2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Software_3 7 7 7 7 7 7 7 7 7 7 7 7

Software_4 7 7 7 7 7 7 7 7 7 7 7 7

Software_5 7

Software_6 7

Figure 4.6 : The AOC-poset for the formal context of Table 4.2.

4.3.2 Identifying Atomic Blocks

The CB and BVs might each implement several features. Identifying the OBEs that characterize
a feature’s implementation thus consists in separating OBEs from the CB or from each of the BVs
in smaller sets called atomic blocks (i.e. feature implementations). Atomic blocks are identified

84 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

based on the calculation of the similarity between OBEs from the CB or a BV. These similarities
result from applying LSI method or from using code dependency. Atomic blocks are clusters of
the most similar OBEs built with FCA as detailed in the following.

4.3.2.1 Exploring the BV’s AOC-poset to Identify Atomic Blocks of Variation

As concepts of the AOC-poset are ordered, the search for atomic blocks of variation (ABVs) can
be optimized if exploring the AOC-poset from the smallest (bottom) to the highest (top) block
(from more specific concepts to more general concept). Results (ABVs) obtained for a concept
are used in the exploration of next (i.e. upper) concepts: if a group of OBEs is identified as an
ABV, this group is considered as such when exploring the following BV; where we eliminate the
ABV which has been recognized. For common atomic blocks (CAB), there is no such need to
explore the AOC-poset as there is a unique concept corresponding to the CB.

4.3.2.2 Measuring OBEs’ Similarity

In this section, we present two strategies to splitting the CB and BVs into atomic blocks of OBEs.
We rely on lexical similarity when variability is represented at different levels of object-oriented
source code. In the context that the variability across software product variants is represented
on the package and class levels we rely on lexical and structural similarity to identify feature
implementations. To select the best strategy from the previous strategies, we can delegate to
the expert for the target software variants. In case there is a lack of knowledge about existing
software variants source code we prefer to test both strategies. In our work, we don’t use code
dependency between OBEs alone. We tested code dependency alone on several cases and the
obtained results are not promising. We think that the obtained semantics by applying code
dependency alone is low. In our approach, we use code dependency to get more links (i.e. sim-
ilarity between OBEs) to improve the precision and recall of LSI method. In this section, we
present firstly measuring of OBEs’ similarity based on LSI. Then, we present measuring of OBEs’
similarity based on LSI and the code dependency.

1.3.2.2.1 Measuring OBEs’ Similarity Based on LSI

Here, we present measuring of OBEs’ similarity based on LSI (i.e. lexical similarity). OBEs of
BVs or of the CB respectively characterize the implementation of optional and mandatory fea-
tures. We base the identification of subsets of OBEs, which each constitutes a feature, on the
measurement of lexical similarity between these OBEs. We rely on the fact that OBEs involved
in implementing a functional feature are lexically closer to one another than to the rest of OBEs.
To compute similarity between two OBEs in the CB and BVs, we proceed in three steps: building
the LSI corpus, building the term-document matrix and the term-query matrix for each BV and
for the CB, building the cosine similarity matrix and, at last, transforming the cosine similarity
matrix into formal context.

¶ Building the LSI corpus. In order to apply LSI, we build a corpus that represents a collection
of documents and queries. In our case, each OBE in the block represents both a document and
a query. To be processed, the document and query must be normalized (e.g. all capitals turned
into lower case letters, articles, punctuation marks or numbers removed). The normalized doc-

4.3. The Feature Mining Process into Details 85

ument generated by analyzing the source code of an OBE is split into terms and, at last, word
stemming is performed.

· Building the term-document and the term-query matrices for each block. The same pro-
cess is applied to all blocks (the CB and all BVs). The term-document matrix is of size m ×n
where m is the number of terms used in a normalized document corresponding to an OBE and
n the number of OBEs in a block. In the same way, a term-query matrix is of size m × j where
m is the number of terms and j the number of OBEs. Each column in the term-query matrix
represents a vector of OBEs. Terms for both matrices are the same because they are extracted
from the same block.

Table 4.3 : The term-document and the term-query matrices of (Concept_5) in Figure 4.6.

C
la

ss
(C

o
p

yT
ex

t_
E

d
it

o
r.

C
o

p
y)

C
la

ss
(P

as
te

Te
xt

_E
d

it
o

r.
Pa

st
e)

M
et

h
o

d
(C

o
p

yS
et

ti
n

gs
_C

o
p

yT
ex

t)

M
et

h
o

d
(P

as
te

Se
tt

in
gs

_P
as

te
Te

xt
)

Pa
ck

ag
e

(C
o

p
y)

Pa
ck

ag
e

(P
as

te
)

copy 2 0 2 0 1 0
paste 0 2 0 2 0 1
settings 0 0 1 1 0 0
text 1 1 1 1 0 0

The term-document matrix

C
la

ss
(C

o
p

yT
ex

t_
E

d
it

o
r.

C
o

p
y)

C
la

ss
(P

as
te

Te
xt

_E
d

it
o

r.
Pa

st
e)

M
et

h
o

d
(C

o
p

yS
et

ti
n

gs
_C

o
p

yT
ex

t)

M
et

h
o

d
(P

as
te

Se
tt

in
gs

_P
as

te
Te

xt
)

Pa
ck

ag
e

(C
o

p
y)

Pa
ck

ag
e

(P
as

te
)

copy 2 0 2 0 1 0
paste 0 2 0 2 0 1
settings 0 0 1 1 0 0
text 1 1 1 1 0 0

The term-query matrix

The most important parameter of LSI is the number of chosen term-topics. A term-topic is
a collection of terms that co-occur frequently in the documents of the corpus. We need enough
term-topics to capture real term relations. In our work we cannot use a fixed number of topics
for LSI because we have blocks of variation (i.e. partitions) with different sizes. The number of
term-topics (# term-topics) is equal to "K ∗N ", where K is a variable, its value depends on the
size of each BV and N is the number of columns of the term-document matrix that is generated
by LSI [Al-Msie’deen et al., 2013b]. For instance, in the BV of (Concept_5) in Figure 4.6, the K
value for this BV is equal to 0.34 and the number of columns of the term-document matrix is
equal to 6 (i.e. the number of topics in this block is equal to 2; i.e. 0.34 × 6 = 2).

¸ Building the similarity matrix. Similarity between OBEs in each BV or in the CB is described
by a cosine similarity matrix whose columns and rows both represent vectors of OBEs: doc-
uments as columns and queries as rows. Similarity is computed as a cosine similarity. The
similarity matrix corresponding to the BV of Concept_5 from Figure 4.6 is presented in Table 4.4.

In our work, we represent the similarity values between the OBEs. The results are repre-
sented as a directed graph. OBEs are represented as vertices and the similarity links as edges.
The degree of similarity appears along the edges of the graph (cf. Figure 4.7).

¹ Transforming the cosine similarity matrix into formal context. To transform the (numeri-
cal) similarity matrices of previous step into (binary) formal contexts, we use a threshold. 0.70 is

86 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

Table 4.4 : The similarity matrix of (Concept_5) in Figure 4.6.

C
la

ss
(C

o
p

yT
ex

t_
E

d
it

o
r.

C
o

p
y)

C
la

ss
(P

as
te

Te
xt

_E
d

it
o

r.
Pa

st
e)

M
et

h
o

d
(C

o
p

yS
et

ti
n

gs
_C

o
p

yT
ex

t)

M
et

h
o

d
(P

as
te

Se
tt

in
gs

_P
as

te
Te

xt
)

Pa
ck

ag
e

(E
d

it
o

r.
C

o
p

y)

Pa
ck

ag
e

(E
d

it
o

r.
Pa

st
e)

Class (CopyText_Editor.Copy) 1.0 0.035384 1.0 0.031342 0.999467 0.001207
Class (PasteText_Editor.Paste) 0.035384 1.0 0.035384 0.999991 0.002748 0.999415
Method (CopySettings_CopyText) 1.0 0.035384 1.0 0.031342 0.999467 0.001207
Method (PasteSettings_PasteText) 0.031342 0.999991 0.031342 0.999999 -0.001295 0.999545
Package (Editor.Copy) 0.999467 0.002748 0.999467 -0.001295 1.0 -0.031431
Package (Editor.Paste) 0.001207 0.999415 0.001207 0.999545 -0.031431 1.0

Figure 4.7 : The lexical similarity between OBEs of (Concept_5) in Figure 4.6 as a directed graph.

the chosen threshold value (a widely used threshold for cosine similarity [Marcus and Maletic,
2003]) meaning that only pairs of OBEs having a calculated similarity greater than or equal
to 0.70 are considered similar. Table 4.5 shows the formal context obtained by transforming
the similarity matrix corresponding to the BV of Concept_5 from Figure 4.6. As an example,
in the formal context of this table, the OBE "Method (PasteSetting_PasteText)" is linked to the
OBE "Class (PasteText_Editor.Paste)" because their similarity equals 0.99, which is greater than
the threshold. However, the OBE "Method (CopySettings_CopyText)" and the OBE "Class (Paste-
Text_Editor.Paste)" are not linked because their similarity equals 0.035, which is less than the
threshold.

4.3. The Feature Mining Process into Details 87

Table 4.5 : Formal context of (Concept_5) in Figure 4.6.

C
la

ss
(C

o
p

yT
ex

t_
E

d
it

o
r.

C
o

p
y)

C
la

ss
(P

as
te

Te
xt

_E
d

it
o

r.
Pa

st
e)

M
et

h
o

d
(C

o
p

yS
et

ti
n

gs
_C

o
p

yT
ex

t)

M
et

h
o

d
(P

as
te

Se
tt

in
gs

_P
as

te
Te

xt
)

Pa
ck

ag
e

(E
d

it
o

r.
C

o
p

y)

Pa
ck

ag
e

(E
d

it
o

r.
Pa

st
e)

Class (CopyText_Editor.Copy) 7 7 7

Class (PasteText_Editor.Paste) 7 7 7

Method (CopySettings_CopyText) 7 7 7

Method (PasteSettings_PasteText) 7 7 7

Package (Editor.Copy) 7 7 7

Package (Editor.Paste) 7 7 7

1.3.2.2.2 Measuring OBEs’ Similarity Based on LSI and Code Dependency

Here, we present measuring of OBEs’ similarity based on LSI and code dependency (i.e. struc-
tural similarity). This approach aims to enhance the use of FCA and LSI, with the use of struc-
tural dependencies between OBEs. We consider only variants whose variability is expressed by
the existence or not of some packages and classes. Based on our previous experience on the
case studies, we found that a feature was at most implemented at the package or class level (e.g.
ArgoUML-SPL).

To compute lexical and structural similarity between two OBEs in the CB and BVs, we pro-
ceed in three steps: measuring OBEs’ similarity based on structural dependency, measuring
OBEs’ similarity based on LSI and, at last, combining lexical and structural similarity of OBEs.

¶ Measuring OBEs’ similarity based on structural dependency. Structural similarity is used
to capture and represent the dependencies between classes of a block. We use a Dependency
Structure Matrix (DSM), which is a square matrix in which the classes being analyzed corre-
spond to the rows and columns. An entry in the matrix indicates that the class on the cor-
responding column depends on the class on the corresponding row. Dependencies on the
diagonal, from upper left to lower right, are not of interest because they would only indi-
cate that an item depends on itself. In DSM, a character ’7’ means that a dependency ex-
ists (cf. Table 4.6). We used a class DSM to represent the dependency among classes in
the common block and inside each block of variation. We use the structural relations that
are introduced in Section 4.2.4. For example, in the dependency structure matrix (cf. Table
4.6), the OBE "Class (ArcSettings_Drawing.Shapes.Arc)" is linked to the OBE "Class (ArcAn-
gle_Drawing.Shapes.Arc)" because there is a structural link between these two classes (i.e. in-
heritance coupling). However, the OBE "Class (Text_Drawing.Shapes.Text)" and the OBE "Class
(ArcAngle_Drawing.Shapes.Arc)" are not linked because there is no structural link between
these two classes.

· Measuring OBEs’ Similarity Based on LSI. In order to apply the LSI, we follow the same steps
that are mentioned previously. To create a document for each class, we must consider all use-
ful information (i.e. identifier names) that describes the class (i.e. package name, class name,

88 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

Table 4.6 : The dependency structure matrix of (Concept_1) in Figure 4.6.

C
la

ss
(A

rc
Se

tt
in

gs
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
A

n
gl

e_
D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(M

yT
ex

tS
h

ap
e_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(T

ex
t_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(T

ex
tI

n
fo

_D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(M

yT
ex

t_
D

ra
w

in
g.

Sh
ap

es
.T

ex
t)

Class (ArcSettings_Drawing.Shapes.Arc) 7 7

Class (Arc_Drawing.Shapes.Arc) 7 7

Class (ArcAngle_Drawing.Shapes.Arc) 7 7

Class (MyTextShape_Drawing.Shapes.Text) 7

Class (Text_Drawing.Shapes.Text) 7 7 7

Class (TextInfo_Drawing.Shapes.Text) 7

Class (MyText_Drawing.Shapes.Text) 7

attributes names, methods names and method body elements names, e.g. parameter name, lo-
cal variable name, method invocation name, attribute access name). For example, the contents
of ArcSettings class are ArcSettings, ArcX, ArcY, drawArc, ArcPostion, getArcX, setArcX, getArcY,
setArcY, getArcPostion, setArcPostion, arcPostion and ArcAngle. All identifier names are stored
in a single file for each class. To compute similarity between two OBEs in the CB and BVs and
produce Lexical Similarity Matrix (LSM), we rely on the same steps mentioned previously in the
LSI method (i.e. ¶ building the cosine similarity matrix and · transform cosine similarity matrix
into the lexical similarity matrix).

For instance, in the cosine similarity matrix (cf. Table 4.7), the OBE "Class (ArcSet-
tings_Drawing.Shapes.Arc)" is similar to the OBE "Class (ArcAngle_Drawing.Shapes.Arc)" be-
cause their similarity value is 0.97, which is greater than the threshold. However, the OBE
"Class (Text_Drawing.Shapes.Text)" and the OBE "Class (ArcSettings_Drawing.Shapes.Arc)" are
not linked because their similarity is 0.12, thus less than the threshold. In this example, the K
value for this BV (i.e. Concept_1) is equal to 0.30 (i.e. the number of topics in this block is equal
to 2; i.e. 0.30 × 7 = 2).

Lexical similarity matrix is a square matrix (cf. Table 4.8) where each entry ci , j represents
a lexical similarity between class i and class j higher than a chosen threshold (here 0.70). The
diagonal entries (ci ,i) always have value ’7’ to indicate that a class is similar to itself. We used
class LSM to represent the lexical similarity between classes in the CB and for each of the BVs.
Table 4.8 shows the formal context (i.e. LSM) obtained by transforming the similarity matrix
corresponding to the BV of Concept_1 from Figure 4.6.

¸ Measuring OBEs’ Similarity Based on Lexical and Structural Similarity. To combine both
lexical and structural similarity between OBEs in the common block or blocks of variation we
introduce what we call a combined matrix. A combined matrix (CM) is a square matrix which
integrates the previous two matrices. In other words, this matrix represents both DSM and LSM
between a set of classes. The CM is an adjacency matrix where a cell represents a link between
two classes based on the structural or lexical similarity (cf. Table 4.9). All possible links between
OBEs are considered in this matrix. The combined matrix of Table 4.9 also constitutes the formal

4.3. The Feature Mining Process into Details 89

Table 4.7 : The similarity matrix of (Concept_1) in Figure 4.6.

C
la

ss
(A

rc
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
A

n
gl

e_
D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
Se

tt
in

gs
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(M

yT
ex

tS
h

ap
e_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(M

yT
ex

t_
D

ra
w

in
g.

Sh
ap

es
.T

ex
t)

C
la

ss
(T

ex
t_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(T

ex
tI

n
fo

_D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

Class (Arc_Drawing.Shapes.Arc) 0.999999 0.996185 0.992939 0.069353 0.049844 0.009677 0.062624
Class (ArcAngle_Drawing.Shapes.Arc) 0.996185 0.999999 0.978799 -0.017967 -0.037500 -0.077621 -0.024709
Class (ArcSettings_Drawing.Shapes.Arc) 0.992939 0.978799 1.0 0.187202 0.167972 0.128227 0.180573
Class (MyTextShape_Drawing.Shapes.Text) 0.069353 -0.017967 0.187202 1.0 0.999809 0.018216 0.999977
Class (MyText_Drawing.Shapes.Text) 0.049847 -0.037500 0.167972 0.999809 1.0 0.012192 0.999918
Class (Text_Drawing.Shapes.Text) 0.009677 -0.077621 0.128227 0.018216 0.012192 0.999999 0.034596
Class (TextInfo_Drawing.Shapes.Text) 0.062624 -0.024709 0.180573 0.999977 0.999918 0.034596 1.0

Table 4.8 : The lexical similarity matrix of (Concept_1) in Figure 4.6.

C
la

ss
(A

rc
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
A

n
gl

e_
D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
Se

tt
in

gs
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(M

yT
ex

tS
h

ap
e_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(M

yT
ex

t_
D

ra
w

in
g.

Sh
ap

es
.T

ex
t)

C
la

ss
(T

ex
t_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(T

ex
tI

n
fo

_D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

Class (Arc_Drawing.Shapes.Arc) 7 7 7

Class (ArcAngle_Drawing.Shapes.Arc) 7 7 7

Class (ArcSettings_Drawing.Shapes.Arc) 7 7 7

Class (MyTextShape_Drawing.Shapes.Text) 7 7 7

Class (MyText_Drawing.Shapes.Text) 7 7 7

Class (Text_Drawing.Shapes.Text) 7

Class (TextInfo_Drawing.Shapes.Text) 7 7 7

context which is used as input for applying FCA in the next step.

We represent the lexical and structural similarity values between the OBEs. The results are
represented as a directed graph. OBEs are represented as vertices and the similarity links as
edges. The degree of lexical similarity appears along the edges of the graph (cf. Figure 4.8). This
graph presents another view of the similarity between source code elements (i.e. OBEs). It is
produced by the REVPLINE approach.

90 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

Table 4.9 : The combined matrix of (Concept_1) in Figure 4.6.

C
la

ss
(A

rc
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
A

n
gl

e_
D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(A

rc
Se

tt
in

gs
_D

ra
w

in
g.

Sh
ap

es
.A

rc
)

C
la

ss
(M

yT
ex

tS
h

ap
e_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(M

yT
ex

t_
D

ra
w

in
g.

Sh
ap

es
.T

ex
t)

C
la

ss
(T

ex
t_

D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

C
la

ss
(T

ex
tI

n
fo

_D
ra

w
in

g.
Sh

ap
es

.T
ex

t)

Class (Arc_Drawing.Shapes.Arc) 7 7 7

Class (ArcAngle_Drawing.Shapes.Arc) 7 7 7

Class (ArcSettings_Drawing.Shapes.Arc) 7 7 7

Class (MyTextShape_Drawing.Shapes.Text) 7 7 7 7

Class (MyText_Drawing.Shapes.Text) 7 7 7 7

Class (Text_Drawing.Shapes.Text) 7 7 7 7

Class (TextInfo_Drawing.Shapes.Text) 7 7 7 7

Figure 4.8 : The lexical and structural similarity between OBEs of (Concept_1) in Figure 4.6 as a directed
graph.

4.3.2.3 Identifying Atomic Blocks Using FCA

To clustering the similar source code elements of CB and BVs into atomic blocks of OBEs (i.e.
feature implementations), we rely on FCA. Based on the formal context (resp. combined ma-
trix) that is obtained in Table 4.5 (resp. Table 4.9); after measuring OBEs’ similarity based on LSI
(resp. LSI and code dependency); we use FCA to identify, from each block of OBEs, which ele-
ments are similar. The resulting AOC-poset is composed of concepts the extent and intent of
which group similar OBEs (i.e. equal intent and extent).

For the drawing shapes example, the AOC-poset of Figure 4.9 shows two atomic blocks of
variation3 (that correspond to two distinct features) mined from a single block of variation (Con-
cept_5 from Figure 4.6) based on the formal context of Table 4.5.

3Here, intents and extents are the same. This is because the similarity matrix (and, consequently, the formal context) is
symmetric.

4.3. The Feature Mining Process into Details 91

Figure 4.9 : Atomic Blocks Mined from (Concept_5) in Figure 4.6.

The AOC-poset of Figure 4.10 shows two atomic blocks of variation (that correspond to two
distinct features) mined from a single block of variation (Concept_1 from Figure 4.6) based on
the combined matrix of Table 4.9. The same feature mining process is used for the CB and for
each of the BV. The interest of FCA for this task is to help extracting concepts which represent
mutually similar OBEs [Azmeh, 2011].

Figure 4.10 : Atomic Blocks Mined from (Concept_1) in Figure 4.6.

In this chapter, we mined initial FM based on the mined feature implementations4 (cf. Table
4.10). For readability’s sake, we manually associated feature names to atomic blocks, based on
the study of the content of each block and on our knowledge on software. Of course, this does
not impact the quality of our results. Based on the software configurations (i.e. product feature
sets) we identify a basic FM which consists of optional and mandatory features with only one
level of hierarchy and without cross-tree constraints (CTCs) and groups of features constraints.
Figure 4.11 shows the mined FM for drawing shapes software variants.

Figure 4.11 : The mined feature model of drawing shapes software variants.

4The source code available at https://code.google.com/p/refm/

https://code.google.com/p/refm/

92 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

Table 4.10 : Feature sets of drawing shapes software variants (i.e. software configurations).

D
ra

w
in

g_
sh

ap
es

D
ra

w
_l

in
e

In
se

rt
_i

m
ag

e

D
ra

w
_a

rc

In
se

rt
_t

ex
t

D
ra

w
_o

va
l

D
ra

w
_r

ec
ta

n
gl

e

D
ra

w
_T

h
re

eD
R

ec
ta

n
gl

e

C
o

p
y

Pa
st

e

Software_1 6 7 7

Software_2 6 7 7 3 3

Software_3 6 7 7 3

Software_4 6 7 7 3

Software_5 6 7 7 3 3 3 3 3

Software_6 6 7 7 3 3 3 3 3 3 3

Product-by-feature matrix
(6 the root feature; 7 mandatory feature; 3 optional feature)

4.4 Threats to validity

In this chapter, we proposed an approach to identify mandatory and optional feature imple-
mentations from object-oriented source code of a set of software product variants (i.e. first con-
tribution). We exploited commonality and variability across software variants at source code
level to reduce the search space. In our work, we use both LSI method and code dependency to
identify possible feature implementations. There are threats to validity that limit our approach
in some points. In this section, we explain all threats to validity that are relevant to our study as
follows:

p Splitting the OBEs of CB and BVs using lexical similarity is not effective in all cases. Because
software developers might not use the same vocabularies to name OBEs (e.g. package,
class, attribute, method, etc.) across software product variants. This means that lexical
similarity may be not reliable (or should be improved with other techniques) in all cases to
identify feature implementations.

p In our work, we cannot use a fixed number of topics for LSI method because we have
blocks with different sizes. We have appointed the number of chosen term-topics (i.e. pa-
rameter of LSI) for each block. In our work, the expert selects the number of terms topics
for each block (CB and BVs). If the expert knows the number of features for each block, he
selects the same number of features as the number of terms-topics; otherwise, the expert
must test some values of the number of terms-topics for each block. Selecting the appro-
priate number of dimensions (K) for the LSI representation is an open research question.

p The CB gathers all OBEs corresponding to the implementation of mandatory features in
addition to source code elements that correspond to the model elements that represent
the platform used to execute the product variant. In our approach, we can’t distinguish
model elements (the platform elements) from mandatory features. We split the CB into a

4.4. Threats to validity 93

set of clusters (i.e. atomic blocks) based on the lexical and/or structural similarity between
its OBEs.

p For the combined approach (i.e. LSI method and code dependency), we only investigate
product variants in which the variability is represented in the packages or classes without
considering software variants where the variability is represented at method or method
body levels.

p In current work, we consider BV that contains OBEs shared between two or more feature
implementations as a feature. In fact, the junction does not consider as a feature it just
a collection of OBEs common to two or more feature implementations. As perspective
of this work, we plan to distinguish between feature implementations and junctions (i.e.
feature overlaps).

p In this chapter, we manually assign feature names to feature implementations (i.e. atomic
blocks), based on the study of the content of each block and our knowledge about software
variants.

p Our approach assumes that commonality and variability across source code of software
variants can be determined statically, such as product variants of ArgoUML-SPL used in
our evaluation (cf. Chapter 7). However, there exist systems that only behave differently
depending on runtime parameters. For such systems, we need to extend our approach
with dynamic analysis techniques.

p In this chapter, we extract basic FM based on the mined feature implementations. The
mined FM consists of mandatory and optional features. This FM can be only considered
as a starting point. This dissertation aims to extract FM with all basic elements such as de-
pendency between features (i.e. requires and excludes constraints) and group of features
constraints (i.e. xor-group, and-group and or-group).

p There is a limitation using FCA as clustering technique. FCA deals with binary formal con-
text (1, 0). This affects the quality of the result, since a similarity value 0.99 (resp. 0.69) is
treated as a similarity value 0.70 (resp. 0).

94 Chap 4. REVPLINE: Feature Location in a Collection of Software Product Variants

4.5 Conclusion

This chapter presents the heart of this dissertation (a feature location approach called
REVPLINE). We began by the philosophy of the approach where we have defined the core con-
cepts and hypotheses of the proposed approach. Our approach accepts as input only source
code of software variants. We do not make any assumptions regarding how product variants
are generated and managed. REVPLINE approach is based on several techniques (FCA, LSI and
code dependency). We have implemented our approach and evaluated its produced results on
several case studies (small, medium and large systems). The results of this evaluation showed
that most of the features were identified (cf. Chapter 7). REVPLINE approach considers both
lexical and structural similarity to identify features.

Thus, we believe that REVPLINE offers a reasonable solution for "re-engineering software
variants into SPLs". In this chapter, we present REVPLINE as an approach for feature location
in a software family as we have tried to show throughout the chapter. However, remember the
points that make the REVPLINE approach specific:

¶ REVPLINE accepts as input for the mining process only the source code of software prod-
uct variants (i.e. without feature names, feature descriptions or feature model).

· REVPLINE mines features from different sizes of software product variants (no problem
regarding scalability).

¸ REVPLINE approach exploits commonality and variability across software variants source
code to reduce the search space and apply lexical and structural methods in an efficient
way. REVPLINE compares multiple software variants at once5.

¹ REVPLINE splits each block of OBEs (CB and BVs) based on the lexical or/and structural
similarity between these OBEs into a set of atomic blocks (i.e. feature implementations).
We rely on the LSI to measure the lexical similarity between OBEs and class coupling to
measure structural similarity between OBEs.

º REVPLINE investigates software product variants in which variability is represented at
different levels of OBEs (i.e. package, classes, attributes, methods etc.). REVPLINE de-
termines the level of variation until on the smallest details such as access level of class,
method or attribute.

» In some cases, REVPLINE can extracts all optional features from software variants source
code without needing to use lexical and structural similarity; when we consider all vari-
ants such as ArgoUML-SPL (cf. Chapter 7). However, splitting some features from BVs is
certainly much less time consuming and error-prone than browsing a large source code so
that the impact of the problem is probably limited.

¼ REVPLINE mined set of feature implementations from existing software variants. Fea-
ture mining process aims to extracting information about features, commonality and vari-
ability, feature relations and feature implementation in software variants (or until SPLs).
REVPLINE output is very helpful for comprehension, maintenance and reuse of software.

5Further studies are required to investigate the impacts of the number of software product variants on the effectiveness of
our approach.

4.5. Conclusion 95

Here, we compare the REVPLINE feature location approach to the related work. Table 4.11
gives an overview of the REVPLINE approach where we present the objectives, target systems,
programmed method, type of code analysis, inputs, techniques, outputs and strategies.

Table 4.11 : Summary of REVPLINE: feature location in a collection of software product variants.

O
b

je
ct

iv
es

So
ft

w
ar

e

P
ro

gr
am

m
ed

m
et

h
o

d

C
o

d
e

an
al

ys
is

In
p

u
ts

Te
ch

n
iq

u
es

O
u

tp
u

ts

La
n

gu
ag

es

C
as

e
st

u
d

y

St
ra

te
gi

es

Fe
at

u
re

lo
ca

ti
o

n

R
e-

en
gi

n
ee

ri
n

g

R
eu

se

M
ai

n
te

n
an

ce

C
o

m
p

re
h

en
si

o
n

C
o

d
e-

to
-f

ea
tu

re
tr

ac
ea

b
ili

ty
li

n
k

Si
n

gl
e

so
ft

w
ar

e

So
ft

w
ar

e
fa

m
ily

A
u

to
m

at
ic

Se
m

i-
au

to
m

at
ic

St
at

ic

D
yn

am
ic

Pa
ck

ag
e

C
la

ss

A
tt

ri
b

u
te

M
et

h
o

d

M
et

h
o

d
b

o
d

y

F
C

A

LS
I

C
o

d
e

d
ep

en
d

en
cy

Ju
n

ct
io

n

C
o

m
m

o
n

co
d

e

V
ar

ia
b

le
co

d
e

M
an

d
at

o
ry

fe
at

u
re

O
p

ti
o

n
al

fe
at

u
re

B
as

ic
F

M

Ja
va

Sm
al

l

M
ed

iu
m

La
rg

e

R
ed

u
ce

se
ar

ch
sp

ac
e

7 7

C
H

A
P

T
E

R

5
REVPLINE: DOCUMENTING THE MINED FEATURE

IMPLEMENTATION

Get the habit of analysis – analysis will, in time, enable
synthesis to become your habit of mind.

Frank Lloyd WRIGHT

Preamble

To exploit existing software variants and build a SPL, a FM of this SPL must be built as a first step.
To do so, it is necessary to mine optional and mandatory features. Then, it is important to assign
meaningful names for the mined feature implementations for the purpose of building a FM. In
this chapter, we present a new approach to documenting the mined feature implementations from
the object-oriented source code of a collection of software product variants. Section 5.1 gives an
introduction of this chapter. It also presents our goal and motivation. Section 5.2 explains how
use-cases can be useful for features documentation and presents the illustrative example. Section
5.3 presents the feature documentation principles. Section 5.4 gives an overview of the feature
documentation process. Section 5.5 details the feature documentation process step by step. Section
5.6 presents the feature documentation process based on OBE names. Next Section 5.7 discusses
threats to the validity of the feature documentation process. Finally in Section 5.8, we conclude
this chapter.

98 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

5.1 Introduction

As stated previously, the main goal of this dissertation is to re-engineering software product
variants into SPL. In the previous chapter of this dissertation, we have presented an ap-

proach for feature location from object-oriented source code of a collection of software product
variants. In this approach we mined set of feature implementations as source code elements
(OBEs). However, features in FM need to be documented. It is important to assign meaningful
names and descriptions for the mined feature implementations for the purpose of building a
FM. The documentation of feature implementations means giving a meaningful name and de-
scription, which describe the aim of this feature and its role in the FM. This chapter proposes an
approach for building such documentation.

To reach our goal and documenting the mined feature implementations, we rely on existing
software variants documents such as use-case diagrams. To document the mined feature imple-
mentations we use two kinds of software variants artefacts: the set of mined feature implemen-
tations (i.e. sets of OBEs) and use-case diagrams. In this chapter, we propose a new approach
of documenting the mined features by giving names and descriptions, based on the feature im-
plementations and use-case diagrams of software variants. The novelty of our approach is that
we exploit commonality and variability across software variants, at feature implementation and
use-cases levels, to apply again the LSI method in an efficient way.

The majority of existing documentation approaches are designed to extract labels, names,
topics from the source code of single software [Kebir et al., 2012] [Kuhn et al., 2007] [Lucia et
al., 2012]. Some approaches are designed to identify code-to-document (use-case) traceabil-
ity link in a single software system [Diaz et al., 2013] [Sridhara et al., 2010] [Davril et al., 2013].
LSI method had positive results in addressing comprehension and maintenance tasks, such as
feature location [Xue et al., 2012], recovery of traceability links between source code and differ-
ent software artifacts [Grechanik et al., 2007] [Dit et al., 2013], naming of software components
[Kuhn, 2009] and labelling of software source code [Lucia et al., 2012].

In the context of feature documentation, all studied works are manually assigned feature
names (without any description) to the feature implementations [Yang et al., 2009] [Ziadi et al.,
2012]. By contrast, our approach is designed to automatically assign name and description for
each feature implementation in a set of software variants based on several techniques (FCA, RCA
and LSI). Feature documentation is made based on the use-cases names and their description.
The goal of this documentation is to reflect feature roles at the domain level. Additionally, for
purposes of constructing an FM and reusing existing features in other software, each feature
implementation that is presented to the human user must have a meaningful name. In addition,
feature documentation is needed in order to understand existing software variants and facilitate
their maintenance.

Considering commonality and variability across software variants allows us to cluster the
use-cases and feature implementations into disjoint and minimal clusters based on RCA. Each
cluster is disjoint from the others and consists of a minimal subset of feature implementations
and the corresponding use-cases. Then, we use LSI and FCA to define a similarity measure that
enables us to identify which use-cases characterize the name and description of each feature
implementation.

5.2. Specify Use-case Diagrams of Software Variants with Variability 99

5.2 Specify Use-case Diagrams of Software Variants with Variability

In this chapter, we document the mined feature implementations based on the use-case dia-
grams of software variants. We rely on the use-case names and descriptions to propose names
and descriptions for the mined feature implementations. This section explains how use-cases
can be useful for feature documentation. It also describes the example that illustrates the re-
maining sections of the chapter.

5.2.1 Exploiting Use-cases to Support Feature Documentation

A use-case diagram is a graphical representation of external functionalities of a system and
which actors are involved in these functionalities. A use-case is a methodology used in system
analysis to identify, explain, and organize system requirements [Dolques et al., 2012]. Figure 5.1
shows the use-case diagram of the first version of mobile media software variants.

Figure 5.1 : Use-case diagram of version 1 from mobile media software [Conejero et al., 2012].

Use-cases have been widely adopted since their introduction [Jacobson, 1992]. According to
the UML 2.0 specification [Braganca and Machado, 2007], a use-case is the "specification of a
set of actions performed by a system, which yields an observable result that is, typically, of value
for one or more actors or other stakeholders of the system". The use-case specification gives us
further detail of requirements based on legacy or software variants documentation.

Use-case diagrams of software variants can be used to represent variability. For example,
Figure 5.1 shows the core functionalities (use-cases) for the first release of mobile media soft-
ware. Figure 5.2 shows the functionalities of release 8 [Conejero et al., 2012]. The first version
of mobile media consists of 10 use-cases while the last version of mobile media consists of 23
use-cases.

Some non-functional requirements can be refined as non-functional use-cases. There are
kinds of non-functional requirements that represent system wide qualities and are described

100 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

Figure 5.2 : Use-case diagram of version 8 from mobile media software[Conejero et al., 2012].

simply as declarative statements during requirements [Jacobson and Ng, 2004]. Exception han-
dling is a non-functional requirement and it is possible to specify it as a non-functional use-case
[Rubira et al., 2005] (cf. Figure 5.2).

There is an interdependent relationship between features and use-cases. Feature models fo-
cus on specifying the features variability by means of a graphical user-friendly and hierarchical
structure. On the other hand, use-cases specify the interaction between user and system, and
also the system behavior. Thus, feature models support defining the variability of each use-case
and feature dependencies can be depicted in terms of the dependencies between the use-cases
[Gomaa, 2004]. Use-cases are widely used to describe requirements and desired functionality of
software product variants. During requirements analysis, use-case diagrams help to identify the
actors and to define by means of use-cases the behavior of a system [Jacobson and Ng, 2004].

Use-cases can have relations between them. Mainly, a use-case can include (or be included
by) other use-cases and can extend (or be extended by) other use-cases. Even this is not the case
in our mobile media example, a use-case can also specialize another one. Such specialization is
also possible between two actors. In our work, we rely on the same assumption used in the work
of [Braganca and Machado, 2007] stating that each use-case represents a feature. The use-case
diagrams are used to document the mined feature implementations. We rely on the use-case
names and descriptions to document the mined feature implementations. We do not consider
relationships between use-cases. In our work, we exploit commonality and variability across
software variants at the use-cases level to document the mined feature implementations. We
do not consider the relations between use-cases (i.e. include, extend, specialize) where it’s not
useful in the feature documentation process. The relations between use-case are very important
for feature model identification (i.e. feature dependencies) such as the proposed approach in
[Braganca and Machado, 2007].

5.2. Specify Use-case Diagrams of Software Variants with Variability 101

5.2.2 An Illustrative Example: Mobile Tourist Guide Software Variants

As an illustrative example, we consider four software variants of Mobile Tourist Guide (MTG).
Here, we should mention that MTG is a toy example to illustrate our approach. These applica-
tions allow a user to inquire about some tourist information through the mobile device. MTG_1
supports core MTG functionalities: view map, place marker on a map, view direction, launch
Google map and show street view. MTG_2 has the core MTG functionalities and a new function-
ality called download map from Google. MTG_3 has the core MTG functionalities and a new
functionality called show satellite view. MTG_4 supports search for nearest attraction, show next
attraction and retrieve data functionalities, together with the core ones. Table 5.1 describes MTG
software variants by their use-cases. Figure 5.3 shows the use-case diagrams of MTG software
variants.

Table 5.1 : The use-cases of MTG software variants.

V
ie

w
m

ap

P
la

ce
m

ar
ke

r
o

n
a

m
ap

V
ie

w
d

ir
ec

ti
o

n

La
u

n
ch

G
o

o
gl

e
m

ap

Sh
ow

st
re

et
vi

ew

D
ow

n
lo

ad
m

ap
fr

o
m

G
o

o
gl

e

Sh
ow

sa
te

lli
te

vi
ew

Se
ar

ch
fo

r
n

ea
re

st
at

tr
ac

ti
o

n

Sh
ow

n
ex

ta
tt

ra
ct

io
n

R
et

ri
ev

e
d

at
a

Mobile Tourist Guide 1 8 8 8 8 8

Mobile Tourist Guide 2 8 8 8 8 8 8

Mobile Tourist Guide 3 8 8 8 8 8 8

Mobile Tourist Guide 4 8 8 8 8 8 8 8 8

Product-by-use case matrix
(8 use-case is in the product)

Figure 5.3 : The use-case diagrams of the four MTG software variants.

From this example, we can note that use-case diagrams of software variants show common-
ality and variability at use-cases level (i.e. functionalities). From here, the idea of feature doc-
umentation based on use-case diagrams of software variants arises. Table 5.2 shows the mined
feature implementations from MTG software variants. In this example, the mined feature im-
plementations are named using use-cases to better explain some parts of our work in this chap-
ter, but as said before we don’t know feature names in advance. However, we only use the mined

102 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

feature implementations (OBEs) and use-case diagrams of software variants as input of the doc-
umentation process.

Table 5.2 : The mined feature implementations from MTG software variants.

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_1

:V
ie

w
m

ap

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_2

:P
la

ce
m

ar
ke

r
o

n
a

m
ap

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_3

:V
ie

w
d

ir
ec

ti
o

n

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_4

:L
au

n
ch

G
o

o
gl

e
m

ap

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_5

:S
h

ow
st

re
et

vi
ew

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_6

:D
ow

n
lo

ad
m

ap
fr

o
m

G
o

o
gl

e

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_7

:S
h

ow
sa

te
lli

te
vi

ew

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_8

:S
ea

rc
h

fo
r

n
ea

re
st

at
tr

ac
ti

o
n

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_9

:S
h

ow
n

ex
ta

tt
ra

ct
io

n

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_1

0:
R

et
ri

ev
e

d
at

a

Mobile Tourist Guide 1 8 8 8 8 8

Mobile Tourist Guide 2 8 8 8 8 8 8

Mobile Tourist Guide 3 8 8 8 8 8 8

Mobile Tourist Guide 4 8 8 8 8 8 8 8 8

Product-by-feature implementation matrix
(8 feature implementation is in the product)

5.3 Principles of Feature Documentation

Documenting the mined feature implementations from the source code of software variants
amounts to identify groups of use-cases that constitute feature documentation. This group of
use-cases must either be present in all variants (case of a mandatory feature implementation)
or in some but not all variants (case of an optional feature implementations). Thus, the initial
search space for the feature documentation process is composed of all the use-cases and feature
implementations in the existing product variants.

Software product variants consist of 2 or more software. These variants consist of N feature
implementations and M use-cases. As the number of use-cases (resp. feature implementations)
is high, documenting features entails to reduce this search space. Several strategies can be com-
bined to do so:

¶ Separate the use-cases (resp. feature implementations) set in two subsets, the common
use-cases (resp. feature implementations) set – also called common use-case (resp. fea-
ture implementations) block – and the optional use-cases (resp. feature implementations)
set, on which the same search process will have to be performed. Indeed, as optional
(resp. common) feature implementations appear in some but not all (resp. all) variants,
they are documented by use-cases that appear in some but not in all (resp. all) variants.

· Separate the optional feature set into small subsets that each contains use-cases (resp. fea-
ture implementations) shared by groups of two or more variants or use-cases (resp. feature

5.3. Principles of Feature Documentation 103

implementations) that are hold uniquely by a given variant. Each of these subsets is called
a block of variation.

¸ Identify the smallest search space of use-cases and feature implementations (i.e. hybrid
block) by linking the common use-cases block with the common feature implementations
block. The same process is performed for all blocks of variation (linking use-cases with
corresponding feature implementations blocks). The hybrid block can then be considered
as smaller search spaces that each corresponds to the documentation of one or more fea-
ture implementations. Each hybrid block represents minimal and disjoint search spaces.

¹ Identify features documentation amongst each hybrid block based on the expected lexical
similarity between the use-cases and feature implementations.

º Features can be documented also using the names (i.e. identifier names) of the OBE cor-
responding to atomic blocks when use-cases are missing.

» For each software family, the mined and documented features are stored as a matrix. We
call this matrix the product-by-feature matrix. This matrix represents software configura-
tions. Product-by-feature matrix (that is used in the next chapter) plays an important role
to reverse engineering FM and its constraints.

All the concepts we defined for documenting features are illustrated in the extended version
of OBE to feature mapping model (cf. Figure 5.4). We highlight the differences using the dashed
line for the new concepts. The new concepts are added to the REVPLINE core model (i.e. pro-
cess data). Each software variant has one use-case diagram, each use-case diagram consists
of one or more use-cases and each use-case is characterized by its name and description. By
separating the use-cases of software variants we get two subsets: the common use-case block
and blocks of use-case variation. Each hybrid block consists of one use-case block and one or
more atomic block (i.e. feature implementation). The hybrid block documents one or more of
feature implementation. The documentation process relies on the use-case name and its de-
scription. Software family consists of one or more hybrid block. Features can be documented
also using the names of the OBE (i.e. identifier names) corresponding to the atomic blocks when
use-cases are missing. For each software family, the mined and documented features are stored
as a product-by-feature matrix. Based on the product-by-feature matrix, we extract the feature
model by using FCA as described in the next chapter.

104 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

Figure 5.4 : The extended version of OBE to feature mapping model.

5.4 Feature Documentation Overview

Our goal is to document the mined feature implementations from a collection of software vari-
ants. Based on existing use-case diagrams of software variants, we document the mined fea-
ture implementations by combining both use-cases and feature implementations. So we are
exploiting the available use-cases and source code relevant to software variants to document
their features.

For a product variant, our approach takes as input a set of use-cases that the product variant
supports and a set of mined feature implementations. Each use-case is identified by its name
and description. A use-case description is given in a natural language. This information about

5.4. Feature Documentation Overview 105

the use-case represents a domain knowledge that is usually available from software variants
documentation (i.e. requirement model). In our work, the use-case description consists of a
short paragraph. For example, retrieve data use-case of Figure 5.3 is described in the follow-
ing paragraph, "the tourist can retrieve information and a small image of the attraction through
his/her mobile phone. In addition, the tourist can store the current view of the map in the mobile
phone".

Our approach gives as output for each feature implementation, a name and description
based on the use-case name and description. Each use-case is mapped into a functional fea-
ture based on our assumption. If there are two or more use-cases that have a relation with the
single feature implementation, we consider all relevant use-cases as documentation for this fea-
ture implementation.

We take advantage of the commonality and variability across software variants for group
feature implementations and the corresponding use-cases in the software family into disjoint,
minimal clusters. As an example of the disjoint minimal cluster, the use-cases and feature im-
plementations that are common to all software variants are grouped together as one cluster (i.e.
minimal and disjoint search space). We called each disjoint minimal cluster a hybrid block. We
exploit RCA technique to generate the reduced search spaces (i.e. hybrid blocks).

After reducing search space into a set of hybrid blocks, we rely on the textual similarity to
identify, from each hybrid block, which use-cases depict the name and description of each fea-
ture implementation. We are exploiting LSI as lexical similarity method to link use-cases with
the corresponding feature implementations based on the textual similarity. After identifying the
textual similarity between use-cases and feature implementations, we group those elements as
a set of clusters based on the textual similarity using FCA technique.

Figure 5.5 shows our feature documentation process. The feature documentation process
takes the variants’ use-cases and the mined feature implementations as its inputs. The first step
(step ¶) of this process aims at identifying hybrid blocks based on RCA (cf. Section 5.5.1). The
second step (step ·) explores the concept lattice family to filter its hybrid blocks (cf. Section
5.5.2). In the third step (step ¸), we rely on LSI to determine the similarity between use-cases
and feature implementations (cf. Section 5.5.3). This similarity measure is used to identify sets
of clusters based on FCA (step ¹). Each cluster identifies the name and description for feature
implementation (cf. Section 5.5.4).

106 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

Figure 5.5 : The feature documentation process.

5.5 Feature Documentation Step by Step

In this section, we describe the feature documentation process step by step. According to our
approach, we identify the feature name and its description in three steps: ¶ identifying hybrid
blocks of use-cases and feature implementations via RCA, · measuring the lexical similarity
between use-cases and feature implementations via LSI and ¸ identifying the feature name and
its description via FCA as detailed in the following.

5.5.1 Reduce LSI Search Space: Identifying Hybrid Blocks Based on RCA

In this section we identify hybrid blocks of use-cases and feature implementations by using RCA
technique. We use the existing use-case diagrams of software variants to document the mined
feature implementations from these variants. In order to apply the LSI in an efficient way, we
need to reduce the search space for use-cases and feature implementations. Starting from ex-
isting feature implementations and use-cases we cluster these elements into disjoint minimal
clusters (i.e. hybrid blocks) to apply the LSI. Reducing the search space is based on the com-
monality and variability of software variants. To do so, we exploit commonality and variability
across software variants at use-case and feature implementation levels.

5.5. Feature Documentation Step by Step 107

RCA is used to cluster: the common use-cases and feature implementations among all soft-
ware variants; the use-cases and feature implementations that are shared among a set of soft-
ware variants, but not all variants; the use-cases and feature implementations that are unique
for a single variant.

Figure 5.6 : The common, shared and unique use-cases (resp. feature implementations) across software
product variants.

The Relational Context Family (RCF) corresponding to our approach contains two formal
contexts and one relational context, illustrated in Table 5.3. The first formal context represents
the use-case diagrams. The second formal context represents feature implementations. In the
formal context of use-case diagrams, the objects are use-cases and attributes are software vari-
ants. In the formal context of feature implementations, the objects are feature implementations
and attributes are software variants. The relational context (i.e. appear-with) indicates which
use-case appears with which feature implementation across software variants.

For RCF in Table 5.3, two lattices of the Concept Lattice Family (CLF) are represented in
Figure 5.7. As an example of the hybrid block in Figure 5.7, we can see a set of use-cases (cf.
Concept_1 of the Use_case_Diagrams lattice) which always appears with a set of feature imple-
mentations (cf. Concept_6 of the Feature_Implementations lattice) based on software config-
urations at use-case and feature implementation levels this is indicated by relational attribute
appears-with: Concept_6 in intent of Concept_1. As shown in Figure 5.7, RCA allows us to reduce
the search space by exploiting commonality and variability across software variants.

RCF for feature documentation is generated automatically from use-case diagrams and the
mined feature implementations of software variants1. In our work we consider RCA and FCA as
clustering methods. RCA links each cluster of use-cases with the corresponding cluster of fea-
ture implementations by exploiting commonality and variability across software variants. The
concept lattice family facilitates the comprehension of the clusters and their relations and pro-
vides a better visualization.

1https://code.google.com/p/rcafca/

https://code.google.com/p/rcafca/

108 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

Table 5.3 : The RCF for features documentation.

Use_case_Diagrams M
T

G
_1

M
T

G
_2

M
T

G
_3

M
T

G
_4

View Map 7 7 7 7

Launch Google Map 7 7 7 7

View Direction 7 7 7 7

Show Street View 7 7 7 7

Place Marker on Map 7 7 7 7

Download Map 7

Show Satellite View 7

Show Next Attraction 7

Search For nearest attraction 7

Retrieve Data 7

Feature_Implementations M
T

G
_1

M
T

G
_2

M
T

G
_3

M
T

G
_4

Feature Implementation_1 7 7 7 7

Feature Implementation_2 7 7 7 7

Feature Implementation_3 7 7 7 7

Feature Implementation_4 7 7 7 7

Feature Implementation_5 7 7 7 7

Feature Implementation_6 7

Feature Implementation_7 7

Feature Implementation_8 7

Feature Implementation_9 7

Feature Implementation_10 7

Relational context: appears-with Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_1

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_2

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_3

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_4

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_5

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_6

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_7

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_8

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_9

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_1

0
View Map 7 7 7 7 7

Launch Google Map 7 7 7 7 7

View Direction 7 7 7 7 7

Show Street View 7 7 7 7 7

Place Marker on Map 7 7 7 7 7

Download Map 7

Show Satellite View 7

Show Next Attraction 7 7 7

Search For Nearest Attraction 7 7 7

Retrieve Data 7 7 7

Figure 5.7 : The concept lattice family of relational context family in Table 5.3.

5.5.2 Exploring the Hybrid Blocks CLF to Identify Features Documentation

As concepts of the CLF are ordered, the search for hybrid blocks can be optimized if exploring
the CLF from the bottom to the top block (from the more specific concept to the more general

5.5. Feature Documentation Step by Step 109

concept). We are exploring CLF and filtering them to get a set of hybrid blocks from bottom to
top2. Figure 5.8 shows an example of the hybrid block resulting from filtering the CLF of Figure
5.7.

Figure 5.8 : Exploring and filtering the hybrid blocks CLF to identify features documentation.

As concepts of the concept lattice family are order, the search for hybrid block can be op-
timized if exploring the concept lattice family from bottom to top. For each concept in the
Use_case_Diagrams lattice, we rely on the relational attribute appears-with: Concept_# (e.g.
appears-with: Concept_9 in intent of concept_4 in Figure 5.7) to get the corresponding concept
from the Feature_Implementations lattice. Then we construct the hybrid block based on the
contents of both concepts (use-cases and feature implementations). For each recognized hybrid
block we eliminate this concept from the filtering process. Then, we exploration of next (upper)
concepts based on the relational attribute and so on for all concepts of the Use_case_Diagrams
lattice. For instance, in the concept lattice family of MTG in Figure 5.7, the exploring and filter-
ing process is performed as the follows: (Concept_1 − Concept_6); (Concept_2 − Concept_7);
(Concept_3 − Concept_8); (Concept_4 − Concept_9); (Concept_0 − Concept_5).

5.5.3 Measuring Hybrid block contents’ Similarity Based on LSI

In this section, we measure the lexical similarity between use-cases and feature implementa-
tions based on LSI. Based on the previous step, each hybrid block consists of a set of use-cases
and a set of feature implementations. We need to identify from each hybrid block, which use-
cases characterize the name and description for each feature implementation. To do so, we
use the textual similarity between use-cases and feature implementations. This similarity mea-
sure is calculated using LSI. We rely on the fact that a use-case corresponding to the feature
implementation is lexically closer to this feature implementation than to the rest of feature im-
plementations.

2https://code.google.com/p/fecola/

https://code.google.com/p/fecola/

110 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

To compute similarity between use-cases and feature implementation in the hybrid blocks,
we proceed in three steps: ¶ building the LSI corpus, · building the term-document matrix and
the term-query matrix for each hybrid block and, lastly, ¸ building the cosine similarity matrix
as detailed in the following.

5.5.3.1 Building the LSI Corpus

In order to apply LSI, we build a corpus that represents a collection of documents and queries. In
our case, each use-case name and description in the hybrid block represents a query and each
feature implementation represents a document. Our approach creates a query for each use-
case. This query contains the use-case name and its description. Our approach also creates a
document for each feature implementation. This document contains the OBE names (cf. Figure
5.9).

Figure 5.9 : Constructing a raw corpus from hybrid block.

Each feature implementation contains a set of OBEs such as packages, classes, attributes,
methods or method body elements. Each feature implementation is represented by one docu-
ment. Each document contains all OBE names that form this feature implementation. In our
work, we store all the segments of OBE names, due to the importance of a complete OBE name.
For example, for the OBE name ManualTestWrapper, all words are important {manual, test and
wrapper}.

To be processed, the document and query must be normalized (e.g. all capitals turned into
lower case letters, articles, punctuation marks or numbers removed). The normalized docu-
ment is generated by analyzing the OBE names of feature implementation. All OBE names are
split into terms and at last, word stemming is performed. The same procedure is followed to
manipulate the use-case and its description to get the query document.

5.5. Feature Documentation Step by Step 111

The most important parameter of LSI is the number of term-topics (i.e. k-Topics) chosen.
A term-topic is a collection of terms that co-occur often in the documents of the corpus, for
example {user, account, password, authentication}. Due to the nature of language use, the terms
that form a topic are often semantically related. In our work, the number of k-Topics are equal
to the number of feature implementations for each corpus.

5.5.3.2 Building the term-document and the term-query matrices for each hybrid block

All hybrid blocks are considered and the same processes applied to them. The term-document
matrix is of size m×n, where m is the number of terms extracted from feature implementations
and n is the number of feature implementations (i.e. documents) in a corpus. The matrix values
indicate the number of occurrences of a term in a document, according to a specific weighting
scheme (cf. Table 5.4). The term-query matrix is of size m ×n, where m is the number of terms
that are extracted from use-cases and n is the number of use-cases (i.e. queries) in a corpus. An
entry of term-query matrix refers to the weight of i th term in the j th query. Table 5.4 shows the
term-document and the term-query matrices of the hybrid block of Concept_1 from Figure 5.7.

Table 5.4 : The term-document and the term-query matrices of Concept_1 in Figure 5.7.

Fe
at

u
re

Im
p

le
m

en
t.

_1

Fe
at

u
re

Im
p

le
m

en
t.

_2

Fe
at

u
re

Im
p

le
m

en
t.

_3

Fe
at

u
re

Im
p

le
m

en
t.

_4

Fe
at

u
re

Im
p

le
m

en
t.

_5

device 1 0 0 0 1
direction 0 0 0 6 0
google 1 0 0 0 0
launch 4 0 0 0 0
map 1 2 0 0 4
marker 0 6 0 0 0
mobile 1 0 0 0 1
place 0 3 0 0 0
show 0 0 2 0 0
street 0 0 5 0 0
tourist 1 1 1 1 1
view 0 0 1 2 5

à The term-document matrix

La
u

n
ch

G
o

o
gl

e
M

ap

P
la

ce
M

ar
ke

r
o

n
M

ap

Sh
ow

St
re

et
V

ie
w

V
ie

w
D

ir
ec

ti
o

n

V
ie

w
M

ap
device 1 0 0 0 1
direction 0 0 0 8 0
google 3 0 0 0 0
launch 3 0 0 0 0
map 2 2 1 1 5
marker 0 3 0 0 0
mobile 1 0 0 0 1
place 0 3 0 0 0
show 0 0 3 0 0
street 0 0 5 0 0
tourist 1 1 1 1 1
view 0 0 1 3 5

à The term-query matrix

In the term-document matrix, the direction term appears 6 times in the document Feature
Implementation_4. In the term-query matrix, the direction term appears 8 times in the query
view direction.

5.5.3.3 Building the cosine similarity matrix

Similarity between use-cases and feature implementations in each hybrid block is described
by a cosine similarity matrix whose columns represent vectors of feature implementations and
rows represent vectors of use-cases: documents as columns and queries as rows. The textual
similarity between documents and queries is measured by the cosine of the angle between their
corresponding vectors [Liu et al., 2007].

The k-Topics for LSI in our approach are equal to the number of feature implementations in
each hybrid block. In this example, K value is equal to 5. Table 5.5 shows the cosine similarity

112 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

matrix of Concept_1 (i.e. hybrid block) from Figure 5.7.

Table 5.5 : The cosine similarity matrix of Concept_1 in Figure 5.7.

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_1

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_2

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_3

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_4

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_5

Launch Google Map 0.861933577 0.0137010 0 0 0.152407
Place Marker on Map 0.01114798 0.9480070 0 0 0.085939
Show Street View 0.004088722 0.0051128 0.98581691 0.00571 0.070920
View Direction 0.00296571 0.0037085 0.0069484 0.999139665 0.108597
View Map 0.114676597 0.0627020 0.039159941 0.070025418 0.993111

In our work, we represent the similarity values between the use-cases and feature imple-
mentations. The results are represented as a directed graph. use-cases (resp. feature implemen-
tations) are represented as vertices and the similarity links as edges. The degree of similarity
appears along the edges of the graph (cf. Figure 5.10). We should mention here that this graph
just for visualization of the results.

Figure 5.10 : The lexical similarity between use-cases and feature implementations as a directed graph.

5.5.4 Identifying Feature Name and Description Based on FCA

Based on the cosine similarity matrix we use FCA to identify, from each hybrid block of use-
cases and feature implementations, which are similar elements. To transform the (numerical)
cosine similarity matrices of the previous step into (binary) formal contexts, we use 0.70 as a
threshold. 0.70 is currently used for cosine similarity (after testing many thresholds). This means
that only pairs of use-cases and feature implementations having a calculated similarity greater
than or equal to 0.70 are considered similar. Table 5.6 shows the formal context obtained by
transforming the cosine similarity matrix corresponding to the hybrid block of Concept_1 from
Figure 5.7.

5.5. Feature Documentation Step by Step 113

Table 5.6 : Formal context of Concept_1 in Figure 5.7.

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_1

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_2

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_3

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_4

Fe
at

u
re

Im
p

le
m

en
ta

ti
o

n
_5

Launch Google Map 8

Place Marker on Map 8

Show Street View 8

View Direction 8

View Map 8

In this formal context, the use-case "Launch Google Map" is linked to the feature implemen-
tation "Feature Implementation_1" because their similarity equals 0.86, which is greater than
the threshold. However, the use-case "View Direction" and the feature implementation "Fea-
ture Implementation_5" are not linked because their similarity equals 0.10, which is less than
the threshold. The resulting AOC-poset (cf. Figure 5.11) is composed of concepts whose extent
represents the use-case name and intent represents the feature implementation.

Figure 5.11 : The documented features from Concept_1 in Figure 5.7.

For the MTG example, the AOC-poset of Figure 5.11 shows five non comparable concepts
(that correspond to five distinct features) mined from a single hybrid block (Concept_1 from
Figure 5.7). The same feature documentation process is used for each hybrid block.

Table 5.7 shows the product-by-feature matrix that contains the mined and documented fea-
tures from MTG software variants. This matrix is used as input to identify the FM in the next
chapter.

114 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

Table 5.7 : The product-by-feature matrix for MTG software variants.

V
ie

w
m

ap

P
la

ce
m

ar
ke

r
o

n
a

m
ap

V
ie

w
d

ir
ec

ti
o

n

La
u

n
ch

G
o

o
gl

e
m

ap

Sh
ow

st
re

et
vi

ew

D
ow

n
lo

ad
m

ap
fr

o
m

G
o

o
gl

e

Sh
ow

sa
te

lli
te

vi
ew

Se
ar

ch
fo

r
n

ea
re

st
at

tr
ac

ti
o

n

Sh
ow

n
ex

ta
tt

ra
ct

io
n

R
et

ri
ev

e
d

at
a

Mobile Tourist Guide 1 7 7 7 7 7

Mobile Tourist Guide 2 7 7 7 7 7 7

Mobile Tourist Guide 3 7 7 7 7 7 7

Mobile Tourist Guide 4 7 7 7 7 7 7 7 7

5.6 Naming Feature Implementation Based on OBE Names

In our approach we consider that a use-case diagram or other documentation (i.e. design doc-
uments) are not always available. In this case (i.e. when the design documents are missing) we
rely only on the source code of software product variants to document the features. There are
needs to extract feature name, especially from source code which is the most important source
of information. In our work, we assume that the functional feature is implemented by a set of
OBEs. Based on this fact, we use OBE names in each atomic block (i.e. feature implementations)
to extract the feature name.

We rely on the same process proposed in [Kebir et al., 2012]. Authors propose an approach
to identify components from object-oriented source code of single software. Their work iden-
tifies component names based on class names. In our work, we assign name for each feature
implementation based on its OBE names.

We identify the feature name in three steps: ¬ extracting and tokenizing OBE names of the
identified feature implementation, ­ weighting tokens and ® constructing the feature name.
We should mention that our approach can apply at any code granularity level (package, class,
attribute, method, local variable, method invocation or attribute access) or on all levels.

¶ Extracting and tokenizing OBE names from the identified feature implementation. In
this step, we rely on each feature implementation to extract the OBE names. Then, each
OBE name is split into tokens according to the camel-case syntax. For example: getMin-
imumSupport is split into get, Minimum and Support. Camel-case technique is a simple
and widely used method for identifier splitting algorithms [Dit et al., 2011] and the rules of
splitting are broadly based on Camel-case convention.

· Weighting tokens. In this step, a weight is assigned to each extracted token. A large weight
(1.0) is given to tokens that are the first word of an OBE name. A medium weight (0.7) is
given to tokens that are the second word of an OBE name. Finally a small weight (0.5) is
given to the other tokens.

¸ Constructing the feature name. In this step, a feature name is constructed using the
strongest weighted tokens. The strongest weighted token is the first word of the feature
name; the second strongest weighted word is the second word of the feature name and so
on.

5.7. Threats to validity 115

The number of words used in the feature name is chosen by the expert. For example, the
expert can select the top two words to construct the feature name. When many tokens have the
same weight, all the possible combinations are presented to the expert and he can choose the
appropriate one. Table 5.8 shows an example for constructing the feature name using show street
view feature implementation of MTG software variants. In this example, the expert assigns a
feature name based on the top three tokens. The proposed name for this feature implementation
is StreetShowView.

Table 5.8 : OBE names, tokens, weight and strongest weighted tokens for show street view feature imple-
mentation.

Token/Weight
OBE Name T1/ w=1.0 T2/ w=0.7 T3/ w=0.5 T4/ w=0.5
ShowStreetView show Street View
StreetPosition Street Position
ChangeStreetSettings Change Street Settings
getStreetAddress get Street Address
setStreetAddress set Street Address
ShowNearestStreet show Nearest Street
ShowNextStreet show Next Street
retrieveStreetData retrieve Street Data
ShowStreet show Street
updateStreetInfo update Street Info
ViewStreetMap View Street Map
ViewStreetPositionInfo View Street Position Info

Token Total Weight Top 3 Top 4
Show 4 8 7

Street 8 8 7

View 2.5 8 7

Position 1.2 7

Change 1
Settings 1
get 1
Address 1
set 1
Nearest 0.7
Next 0.7
retrieve 1
Data 0.5
update 1
Info 1
Map 0.5

5.7 Threats to validity

This chapter presents the second contribution of REVPLINE approach: documenting the mined
feature implementations. The documentation process is based on the use-case diagrams and
feature implementations (i.e. OBEs). There are several threats to the validity of our approach.

¶ Developers might not use the same vocabularies to name OBEs and use-cases across soft-
ware variants. This means that lexical similarity may be not reliable (or should be im-
proved with other techniques) in all cases to identify the relationship between use-case
and feature implementation.

· There is a limitation of using FCA as clustering technique. When we transform the (nu-
merical) cosine similarity matrices into (binary) formal contexts, we use a threshold. So
if the similarity value between query and document is greater than or equal the 0.70 the
two documents are considered similar. By contrast, if the similarity value is less than the
threshold (i.e. 0.69) the two documents are considered not similar. FCA deals with binary
formal context (1, 0). This affects the quality of the result, since a similarity value 0.99
(resp. 0.69) is treated as a similarity value 0.70 (resp. 0).

¸ In our approach we consider that each use-case represents a functional feature. In some
cases, two or more use-cases are grouped with single feature implementation; in this case
we consider all relevant use-cases as documentation of this feature. This case should be
improved with other techniques to extract unique name and description.

116 Chap 5. REVPLINE: Documenting the Mined Feature Implementation

¹ Naming the feature based on the OBE names of feature implementation is not always reli-
able. In our approach, we rely on the top word frequencies (i.e. strongest weighted tokens)
to propose the name for each implementation. The proposed name may be not relevant to
the feature role. This means that OBE names are not reliable in all cases to identify feature
name.

5.8 Conclusion

In this chapter, we proposed an approach for documenting the mined feature implementations
of a set of software variants. We exploit commonality and variability across software variants
at feature implementation and use-case levels to apply LSI method in an efficient way in order
to document their features. Also we identify the feature name based on the OBE names. We
consider the top OBE name frequencies as the feature name. Thus, we believe that REVPLINE
offers a reasonable solution for naming/documenting the mined feature implementations from
software variants. We recall the points that make our approach specific:

¶ REVPLINE accepts as inputs for the feature documenting process a set of feature imple-
mentations and use-case diagrams of software variants.

· REVPLINE approach offers two ways of naming the mined feature implementations: the
first one is based on use-case diagrams of software variants and the second one relies on
the OBE names.

¸ REVPLINE approach documenting the mined feature implementation and this process is
very helpful. The feature documentation process aims at extracting name and/or descrip-
tion of features implementation. The purpose of this process is to understand, maintain
and evolve the feature. In addition, for purposes of constructing an FM and reusing exist-
ing features in other software, each feature implementation that is presented to the human
user must have a meaningful name.

Here, we compare the REVPLINE documentation approach to the related work. Table 5.9
shows an overview of the REVPLINE approach where we present the objectives, target systems,
programmed method, type of code analysis, inputs, techniques, outputs and strategies.

5.8. Conclusion 117

Table 5.9 : Summary of REVPLINE: documenting the mined feature implementation.

O
b

je
ct

iv
es

So
ft

w
ar

e

P
ro

gr
am

m
ed

M
et

h
o

d

C
o

d
e

A
n

al
ys

is

In
p

u
t

St
ra

te
gi

es

Te
ch

n
iq

u
es

O
u

tp
u

t

La
n

gu
ag

e

C
as

e
st

u
d

y

Fe
at

u
re

d
o

cu
m

en
ta

ti
o

n

So
ft

w
ar

e
m

ai
n

te
n

an
ce

re
-e

n
gi

n
ee

ri
n

g

C
o

d
e-

to
-d

o
cu

m
en

tt
ra

ce
ab

il
it

y
li

n
k

Si
n

gl
e

so
ft

w
ar

e

So
ft

w
ar

e
fa

m
il

y

A
u

to
m

at
ic

Se
m

i-
au

to
m

at
ic

St
at

ic

D
yn

am
ic

Fe
at

u
re

im
p

le
m

en
ta

ti
o

n
s

(i
.e

.O
B

E
s)

U
se

-c
as

e
d

ia
gr

am

R
ed

u
ce

se
ar

ch
sp

ac
e

F
C

A

R
C

A

LS
I

A
u

to
m

at
ic

h
eu

ri
st

ic

Fe
at

u
re

n
am

e

Fe
at

u
re

d
es

cr
ip

ti
o

n

Ja
va

Sm
al

l

M
ed

iu
m

La
rg

e

To
o

ls
u

p
p

o
rt

8 8

C
H

A
P

T
E

R

6
REVERSE ENGINEERING FEATURE MODELS FROM

SOFTWARE CONFIGURATIONS

Fundamental progress has to do with the reinterpretation of
basic ideas.

Alfred North WHITEHEAD

Preamble

In this chapter, we present the third contribution of the REVPLINE; which is reverse engineering
feature models from software configurations. Section 6.1 gives an introduction of this chapter.
It also presents our goal and motivation. In addition this section gives an example of FM and its
software configurations. Then, Section 6.2 gives an overview of the reverse engineering FM process.
Next, Section 6.3 presents the reverse engineering FM process step by step. Section 6.4 presents the
way that we use to evaluate the obtained FMs by our approach. It also discusses threats to the
validity of the reverse engineering FMs process. Finally in Section 6.5, we conclude this chapter.

120 Chap 6. Reverse Engineering Feature Models from Software Configurations

6.1 Introduction

As stated previously, the main goal of this dissertation is to re-engineering software product
variants into SPL. In fact, we contribute in some important phases of this process such as

feature location, feature documentation and identify the dependencies between the mined and
documented features. In the previous two chapters of this dissertation, we have presented an
approach to identify features from object-oriented source code of a collection of software prod-
uct variants and document them. Dependencies between features need to be expressed via FM.
Based on product-by-feature matrix, which contains the mined and documented features from
software variants, we propose an approach to reverse engineering FMs from software configu-
rations by using FCA. This chapter focuses on this goal.

Even for a small set of configurations, manual construction of a FM is time-consuming and
error-prone [Davril et al., 2013] [Acher et al., 2013a]. Thus, in this chapter, we propose an ap-
proach to reverse engineering FMs from the mined and documented features of software vari-
ants. We rely on FCA and software configurations to identify FMs. The mined FM defines all the
valid feature configurations.

Figure 6.1 : From configurations to a feature model.

For obtaining such a FM, mandatory and optional features for software product variants
have to be identified and documented. The mined and documented features are sorted as
product-by-feature matrix. This matrix represents the software configurations (cf. Figure 6.1).
Then, we rely on FCA to mine a unique and consistent feature model.

Figure 6.2 shows the feature model of the cell phone SPL. We rely on these product configu-
rations and on the existing FM to illustrate the remaining of this chapter.

We consider the 16 valid product configurations (cf. Table 6.1) defined by the FM in Figure
6.2. Using the FAMA tool suite1 [Benavides et al., 2010], we computed all these valid product
configurations for cell phone FM and use them as an input to our approach (cf. Section 6.4). We
rely on these configurations and on the existing FM to illustrate our approach.

1FAMA Tool Suite : http://www.isa.us.es/fama/

http://www.isa.us.es/fama/

6.2. FM Reverse Engineering Process 121

Figure 6.2 : Cell phone SPL feature model [Haslinger, 2012].

Table 6.1 : Valid product configurations of cell phone SPL [Haslinger, 2012].

Product configurations C
el

l_
P

h
o

n
e

W
ir

el
es

s

In
fr

ar
ed

B
lu

et
o

o
th

A
cc

u
_C

el
l

St
ro

n
g

M
ed

iu
m

W
ea

k

D
is

p
la

y

G
am

es

M
u

lt
i_

P
la

ye
r

Si
n

gl
e_

P
la

ye
r

A
rt

ifi
ci

al
_O

p
p

o
n

en
t

Product-1 7 7 7 7 7 7 7 7

Product-2 7 7 7 7 7 7 7 7

Product-3 7 7 7 7 7 7 7 7 7

Product-4 7 7 7 7 7 7 7 7

Product-5 7 7 7 7 7 7 7

Product-6 7 7 7 7 7 7 7

Product-7 7 7 7 7 7 7 7 7 7

Product-8 7 7 7 7 7 7 7 7 7

Product-9 7 7 7 7 7 7 7 7 7 7

Product-10 7 7 7 7 7 7 7

Product-11 7 7 7 7 7 7 7 7 7

Product-12 7 7 7 7 7 7 7 7 7

Product-13 7 7 7 7 7 7 7 7 7 7

Product-14 7 7 7 7 7 7 7 7 7 7

Product-15 7 7 7 7 7 7 7 7 7 7

Product-16 7 7 7 7 7 7 7 7 7 7 7

Product-by-feature matrix
(7 feature is in the product; otherwise feature is not in the product)

6.2 FM Reverse Engineering Process

FMs are one of the most popular formalisms for modeling and reasoning about commonality
and variability of an SPL. FMs are used extensively in SPL to help generate and validate individ-
ual product configurations and to provide support for domain analysis [Davril et al., 2013]. In

122 Chap 6. Reverse Engineering Feature Models from Software Configurations

our work, we mine feature models from the concrete features that are mined and documented
by our previous work. The aim of the mined FM is to represent all dependencies between the
concrete features.

In the first step of our approach, software variant features are mined from software variants
source code. In the second step, these software features are documented in order to generate
a product-by-feature matrix P ×F in which the rows of the matrix correspond to products and
the columns correspond to features. The (i , j)th entry of this matrix can take a value of 0 or 1, to
represent whether the i th product is known to include the j th feature or not.

Figure 6.3 : FM reverse engineering process.

Software product variants consist of 2 or more software. These variants consist of N features.
As the number of features is high, reverse engineering FMs entails to reduce this search space.
Several strategies can be combined to do so: Separate the features set into two subsets, the com-
mon feature set (i.e. mandatory features) and the optional feature set (i.e. optional features), on
which the same search process will have to be performed. The optional (resp. common) features
appear in some but not all (resp. all) variants. Next, separate the optional feature set into small
subsets that each contains features shared by groups of two or more variants or features that are
hold uniquely by a given variant. Then, identify all kinds of relations between the optional fea-

6.3. Step-by-Step FM Reverse Engineering 123

tures based on AOC-poset structure. Then, identify FM as a tree-like hierarchy of features and
constraints between them.

Figure 6.3 shows our FM reverse engineering process. In this figure, our goal is represented in
the bottom part (i.e. part B). The top part (i.e. part A) of this figure has been processed already
in our previous chapters. Part B of this figure shows the steps of the FM reverse engineering
process. Based on the product-by-feature matrix, we reverse engineer a FM by using FCA, as fol-
lows: ¶ extracting the AOC-poset from formal context (product-by-feature matrix), · extracting
the root feature of the FM, ¸ extracting mandatory features, ¹ extracting atomic sets of features
(optional AND-groups of features), º extracting Inclusive-or relations, » extracting Exclusive-or
relations, ¼ extracting Require constraints, and ½ extracting Exclude constraints.

6.3 Step-by-Step FM Reverse Engineering

In our work, the root feature appears in all software variants. The mandatory features appear in
all configurations. From this, we can notice that all mandatory features and the root of the fea-
ture model are appearing in all valid product configurations that are defined by the FM. The re-
maining features represent the optional features; these features do not appear in all valid prod-
uct configurations. On the other hand, the optional feature may be required by another feature
or excludes another one. The constraints between these optional features are very important
for the mined feature model. This section presents step-by-step the FM reverse engineering
process. According to our approach, we identify FM in eight steps as detailed in the following.

6.3.1 Extracting the AOC-poset

The first step of our FM extraction process is the identification of the AOC-poset. First, a formal
context, where objects are software product variants and attributes are features (cf. Table 6.1), is
defined. The corresponding AOC-poset is then calculated. The intent of each concept represents
features common to two or more products or unique for one product. As concepts of AOC-
posets are ordered, the intent of the most general (i.e. top) concept gathers mandatory features
that are common to all products. The intents of all remaining concepts represents the optional
features. The extent of each of these concepts is the set of products having these features in
common (cf. Figure 6.4).

Algorithm 1 is a simple algorithm for building the Hasse diagram of the AOC-poset. In this
algorithm, we use complementary classical FCA notations: for any object set So ⊆ O, the set of
shared attributes is S′

o = {a ∈ A|∀o ∈ So , (o, a) ∈ R}, and for any attribute set Sa ⊆ A, the set of
owners is S′

a = {o ∈ O|∀a ∈ Sa , (o, a) ∈ R}. In the following algorithms, for a Concept C, we will
denote by intent (C), extent (C), simplified intent (C), and simplified extent (C) its associated
sets.

The AOC-poset is a structured representation of the products that contains many informa-
tion about the relationships between features, between products and between features and
products. Nevertheless, extracting a FM from this structure is not direct and has many accept-
able solutions. To give a simple example, from the AOC-poset, when a feature f1 is introduced in
a sub-concept of the concept which introduces a feature f2, we can infer either that f1 is a sub-
feature of f2, or that f1 requires f2, or that this is . Besides, as the initial set of product configura-
tion may not be exhaustive, we mainly look for a FM which recognizes all initial configurations
and serves as a basis for an expert engineer to design a final FM.

124 Chap 6. Reverse Engineering Feature Models from Software Configurations

Figure 6.4 : The AOC-poset for the formal context of Table 6.1.

Algorithm 1: ComputeAOCposet (K)

Data: K : a formal context; K = (O, A,R) where O and A are sets (product and feature respectively)
and R is a binary relation.

Result: (AOC K , ≤s): the AOC-poset associated with K
// compute the object concepts and the attribute concepts
AOC K ←;
foreach o ∈O do

AOC K ← AOC K ∪ ({o}′′, {o}′) // that is, objects that share the same attributes as o, with the
attributes of o

foreach a ∈ A do
AOC K ← AOC K ∪ ({a}′, {a}′′) // that is, objects that share the attribute a, with the attributes
they share

// establish the specialization order
Compute the transitive reduction of ≤s by comparing the concept extents in AOC K with inclusion

6.3. Step-by-Step FM Reverse Engineering 125

6.3.2 Extracting root feature

The root feature of FM in SPL usually refers to the software family name. Feature Cell_Phone
is the root feature of cell phone FM; hence it is selected in every program configuration. Fea-
tures appearing at the top concept in the AOC-poset are used in every product configuration (cf.
Figure 6.5). In our work, we select the feature in the top concept which represents the product
family (i.e. Cell_Phone) to be the root of the FM.

6.3.3 Extracting mandatory features

Mandatory features appearing at the top concept in the AOC-poset are used in every product
configuration. These features are likely to be mandatory features, i.e. they need to be included in
every product. In our work, we select all the features in the top concept (i.e. Accu_Cell, Display,
Games) to be the mandatory features of the FM except the root feature (i.e. Cell_Phone). Figure
6.5 shows the identify mandatory features. Algorithm 2 is a simple algorithm for building Base
feature.

Figure 6.5 : The mandatory features (i.e. base group of features) identified from the cell phone product
configurations.

Algorithm 2: ComputeRootAndMandatoryFeature

// Top concept >
∃ F ∈ A, which represents the name of the software family with F in feature set of >
Data: AOC K , ≤s : the AOC-poset associated with K
Result: part of the FM containing root and mandatory features
// Compute the root Feature
CFS ← intent (>)
Create node root, label (root) ← F, type (root) ← abstract
CFS′ ← CFS \ {F}
if CFS′ 6= ; then

Create node base with label (base) ← "Base"
type (base) ← abstract
Create edge e = (root, base)
type (e) ← mandatory
for each Fe in CFS′ do

Create node feature, with label (feature) ← Fe

type (feature) ← concrete
create edge e = (base, feature)
type (e) ← mandatory

126 Chap 6. Reverse Engineering Feature Models from Software Configurations

6.3.4 Extracting atomic set of features (AND-group)

An atomic set of features groups features that always appear together in product configurations.
When two optional features appear in the same simplified intent, this means that these fea-
tures are always used together in all product configurations of the concept extent. These are
likely to be features that cannot be used separately. Such a concept corresponds to an AND-
group of features. If two features F1 and F2 are introduced in the same concept, this means that
they co-occur and always appear together which gives rise to the equivalence F1 ↔ F2. For our
illustrative example, the AOC-poset of Figure 6.4 shows a simplified intent with two features Sin-
gle_Player and Artificial_Opponent. These features are likely to form an atomic set of features
(cf. Concept_23 from Figure 6.4). In Figure 6.6, the two forms are equivalent; the two features in
all cases appear together. Algorithm 3 is a simple algorithm for building AND-group of features.

Figure 6.6 : An atomic group of features (AND-group) identified from the cell phone product configura-
tions.

Algorithm 3: ComputeAtomicSetOfFeatures (and groups)

Data: AOC K , ≤s : the AOC-poset associated with K
Result: part of the FM with and groups of features
// Compute atomic set of features
// Feature List (FL) is the list of all features (FL = A in K=(O, A, R)).
FL′ ← FL \ CFS // FL \ intent (>)
AsF ←;
int count ← 1
for each concept C 6= > such that | simplified intent (C) | ≥ 2 do

AsF ← AsF ∪ simplified intent (C)
Create node and with label (and) ← "AND"+ count
type (and) ← abstract
create edge e = (root, and)
type (e) ← optional
for each F in simplified intent (C) do

create node feature, with label (feature) ← F
type (feature) ← concrete
create edge e =(and, feature)
type (e) ← mandatory

6.3.5 Extracting exclusive-or relation

Features that form exclusive-or relation can be recognized in the concept lattice using the meet
(denoted by u) lattice operation [Loesch and Ploedereder, 2007], or computing the greatest

6.3. Step-by-Step FM Reverse Engineering 127

lower bounds in the AOC-poset. If a feature A is introduced in concept C1, a feature B is in-
troduced in concept C2 and C1 uC2 =⊥ (and extent(⊥) = ;), that is, if the bottom of the lattice
is the greatest lower bound of C1 and C2, the two features never occur together in a product.
These features are likely to be alternative features, i.e. they always have to be used mutually
exclusively. In our example, in the AOC-poset of Figure 6.4, features Strong, Medium, and Weak
form an exclusive-or relation (cf. Figure 6.7). The corresponding concepts (i.e. Concept_21,
Concept_20, and Concept_2) don’t have a common lower bound in the AOC-poset. Algorithm
4 is a simple algorithm for building an X or group of features. The principle is to compare the
super-concepts sets of all the minimum elements of the AOC-poset and to keep concepts that
are not super-concepts of two (or more) minimum concepts.

Algorithm 4: ComputeExclusive-orRelation (X or)

Data: AOC K , ≤s : the AOC-poset associated with K
Result: part of the FM with XOR group of features
// Compute exclusive-or relation
FL′′ ← FL′ \ AsFs
C xor ←;
SSCS ←; // set of super-concept sets
Minimum-set ←;
for each minimum of AOC K denoted by m do

Let SSC the set of super-concepts of m (except >)
SSCS ← SSCS ∪ {SSC}
Minimum-set ← Minimum-set ∪ {m}
C xor ← C xor ∪ SSC

while SSCS 6= ; do
SSC-1 ← any element in (SSCS)
SSCS ← SSCS \ SSC-1
for each SSC-2 in SSCS do

C xor ← C xor \ (SSC-1 ∩ SSC-2)

XFS ←;
if |C xor | > 1 then

Create node xor with label (xor) ← "XOR"
type (xor) ← abstract
create edge e = (root, xor)
// if all products are covered by C xor
if ∪C∈C xor extent (C) =O then

type (e) ← mandatory

else
type (e) ← optional

for each concept C ∈ C xor do
for each F in simplified intent (C) do

create node feature, with label (feature) ← F
type (feature) ← concrete
create edge e = (xor, feature)
type (e) ← alternative
XFS ← XFS ∪ F

128 Chap 6. Reverse Engineering Feature Models from Software Configurations

Figure 6.7 : Xor group of features identified from the cell phone product configurations.

6.3.6 Extracting inclusive-or relation

Optional features are used in some product configuration, i.e. they don’t need to be included in
every product. If we prune the AOC-poset by removing the top concept, concepts that represent
an atomic set of features, and concepts that represent features that form exclusive-or relation,
the remaining concepts represent features that forms inclusive-or relation. In the AOC-poset of
Figure 6.4, features Wireless, Infrared, Bluetooth, and Multi_Player form an inclusive-or relation
(cf. Figure 6.8). Algorithm 5 is a simple algorithm for building the Or group of features.

Figure 6.8 : Or group of features identified from the cell phone product configurations.

Algorithm 5: ComputeInclusive-orRelation (Or)

Data: AOC K , ≤s : the AOC-poset associated with K
Result: part of the FM with OR group of features
// Compute inclusive-or relation
FL′′′ ← FL′′ \ XFS
if FL′′′ 6= ; then

Create node or with label (or) ← "OR"
type (or) ← abstract
create edge e = (root, or)
type (e) ← optional
for each F in FL′′′ do

create node feature, with label (feature) ← F
type (feature) ← concrete
create edge e = (or, feature)
type (e) ← Or

6.3. Step-by-Step FM Reverse Engineering 129

6.3.7 Extracting requires constraint

Require constraint, e.g. saying "variable feature A always requires variable feature B", can be
extracted from the lattice via forward implications (upward paths in the lattice). We say that
A implies B (written A → B). The required relations can be identified in the AOC-poset via
implication rules: when a feature F1 is introduced in a subconcept of the concept that intro-
duces another feature F2, there is an implication: F1 → F2. In the AOC-poset of Figure 6.4, there
are six Require constraints: Infrared → Wireless; Bluetooth → Wireless; Bluetooth → Strong;
Multi_Player → Wireless; Weak → Artificial_Opponent; Weak → Single_Player. Remark that im-
plications ending to mandatory features are useless because they are represented in the FM by
the Base node. Algorithm 6 is a simple algorithm for identifying Require constraints. It works on
the transitive reduction of the AC-poset, which is the AOC-poset restricted to Attribute concepts
(with non empty simplified intents). Some of these requires constraints, when there are among
the children of the OR node, like Infrared → Wireless; Bluetooth → Wireless, could be inserted
as sub-features (Infrared and Bluetooth being sub-features of Wireless) as an improvement of
this approach.

Algorithm 6: ComputeRequireConstraint (Requi r es)

Data: AC K , ≤s : the AC-poset associated with K
Result: Require - the set of require constraints
Require ←;
for each edge (C1, C2) = e in transitive reduction of AC-poset do

for all f1, f2 with f1 ∈ simplified intent (C1) and f2 ∈ simplified intent (C2) do
Require ← Require ∪ {f1 −→ f2}

6.3.8 Extracting Exclude constraint

To mine excludes constraints from AOC-poset, we use the meet of the introducers of the two
involved features. For example, the meet of Concept_2 which introduces Weak and Concept_22
which introduces Multi_Player is the bottom (in the whole lattice). In the AOC-poset they don’t
have common lower bound. We can thus deduce that ¬(W eak ∧Mul ti _Pl ayer). In the AOC-
poset of Figure 6.4, there are three excludes constraints: ¬ (Multi_Player ∧ Weak); ¬ (Bluetooth
∧ Medium); ¬ (Bluetooth ∧ Weak). Algorithm 7 is a simple algorithm for identifying Exclude
constraints. For extracting them, we compare features that are below the OR group with each
set of features in the intent of a minimum, in order to determine which are incompatible: this is
the case for a pair (f1, f2) where f1 is in the OR group and not in the minimum intent, and f2 is
in the minimum intent but not in the OR group.

130 Chap 6. Reverse Engineering Feature Models from Software Configurations

Algorithm 7: ComputeExcludeConstraint (E xcl udes)

Data: AOC K , ≤s : the AOC-poset associated with K
Result: Exclude - the set of exclude constraints.
// Minimum-set from Algorithm 4
// FL′′′ from Algorithm 5
Exclude ←;
for each P ∈ Minimum-set do

Pi ntent ← i ntent (P) \ i ntent (>)
Opt-feat-set ← FL′′′ \ (FL′′′ ∩ Pi ntent)
Super-feat-set ← Pi ntent \ (FL′′′ ∩ Pi ntent)
if Opt-feat-set 6= ; and Super-feat-set 6= ; then

for each f1 ∈ Opt-feat-set, f2 ∈ Super-feat-set do
Exclude ← Exclude ∪ {¬(f1 ∧ f2)}

6.3.9 The Resulting Feature Model

Figure 6.9 shows the resulting FM based on the product configurations of Table 6.1. This FM
consists of a root feature, base group of features (mandatory features), atomic sets of features
(and-groups; in the general case we can have more than one), xor and or group of features, and
require and exclude constraints. The resulting FM describes all of the product configurations
that are defined by the initial FM (cf. Section 6.4). REVPLINE generates thus a unique, consis-
tent, maintainable and meaningful FM.

Figure 6.9 : The resulting FM based on the product configurations of Table 6.1.

6.4. FM Evaluation 131

6.4 FM Evaluation

We performed an evaluation of our approach using the cell phone SPL FM. The reasons behind
this choice are: the selected FM is correct (valid product configurations) and contains all basic
elements of the FM in addition to the cross-tree constraints (CTCs). The cell phone SPL FM has
been used and evaluated in [Haslinger, 2012]. The number of used product configurations in
this example is equal to 16 and the number of all features is equal to 13.

As semantics of an FM is given by its configuration set, we compare the sets of configura-
tions defined by the two FMs (i.e. the initial FM/mined FM) and we discuss the recall, precision
and F-Measure metrics for the mined product configurations (considering that the initial FM,
manually designed FM, is correct). This section explains our approach to evaluate the obtained
FMs by using our approach.

In order to evaluate the mined FM we rely on the SPLOT homepage and the FAMA Tool Suite.
The goal of using the FM editor of the SPLOT homepage and produce the FM in SXFM format
is to compare the two FMs (the initial FM/mined FM). SXFM2 is for simple XML FM format
used in SPLOT homepage. The SXFM format can be used online through SPLOT’s feature model
editor. To get all information from SXFM file, Java parser is available for reading the SXFM file
at SPLOT homepage. The SXFM format for the mined cell phone FM (in addition to the original
FM) is available on our homepage3. Our implementation4 converts the SXFM format into FAMA
Tool Suite format. Then, we can easily generate a file containing all valid product configurations
(operation products in FAMA as defined in [Benavides et al., 2010]).

In our work, we are adding four groups of features to the mined FM in order to organize it
and to increase the hierarchy levels of the mined FM. In order to compare the initial FM with the
reversed-engineered FM by our approach, we must remove these added groups. The REVPLINE
approach produces such this FM without the group of features (cf. Figure 6.10).

For correctness, we performed a straightforward test. Using the FAMA tool suite, we com-
puted the list of valid product configurations for cell phone SPL feature model and use it as
input to our algorithm (as product configurations in Table 6.1). To identify all valid product con-
figurations from the mined FM, we use the FAMA tool suite to compute the list of valid product
configurations. We convert SPLOT FM (SXFM format) to FAMA file format. Then, based on the
FAMA operations, we generate a file containing all valid product configurations and the number
of products.

We compared the list of product configurations of our reversed-engineered feature model
with the list of product configurations originally used as input. Our algorithm produces a set of
configurations that includes the set of configurations of the initial FM. We performed an eval-
uation of the execution time (in ms) of our algorithm using the cell phone FM. The algorithm
execution time is equal to 486 ms. Table 6.1 shows all valid product configurations for the initial
FM. Table 6.2 shows all valid product configurations for the mined FM by our approach (the first
16 product configurations are the same as in Table 6.1).

The initial FM produces 16 valid product configurations. The mined FM produces 31 valid
product configurations. We notice that the mined FM contains the 16 product configurations of
Table 6.1. The mined FM introduces 15 extra product configurations.

2http://gsd.uwaterloo.ca:8088/SPLOT/sxfm.html
3http://www.lirmm.fr/CaseStudy
4Code : https://code.google.com/p/sxfmtofama/

http://gsd.uwaterloo.ca:8088/SPLOT/sxfm.html
http://www.lirmm.fr/CaseStudy
https://code.google.com/p/sxfmtofama/

132 Chap 6. Reverse Engineering Feature Models from Software Configurations

Figure 6.10 : The mined FM without groups of features (i.e. without the abstract features).

The mined FM has some extra configurations that correspond to feature selection con-
straints that have not been detected by our algorithm. 8 of these extra configurations (product-
17 to product-24) have "Games", but don’t have any of its children, which is impossible in the
initial feature model (cf. Figure 6.2) because alternative edges impose to select at least one child
of "Games". 9 configurations (with 2 are common the previous 8), correspond to a same situa-
tion with "wireless" and its children.

Table 6.3 shows the precision, recall and F-measure metrics that are used to evaluate our re-
sults. All measures have values in [0, 1]. If recall equals 1, all relevant product configurations are
retrieved. However, some retrieved product configurations might not be relevant. If precision
equals 1, all retrieved product configurations are relevant. Nevertheless, relevant product con-
figurations might not be retrieved. If F-Measure equals 1, all relevant product configurations are
retrieved. However, some retrieved product configurations might not be relevant. F-Measure
defines a trade-off between precision and recall, so that it gives a high value only in cases where
both recall and precision are high. The results of this evaluation showed that on the small ex-
ample, we have good trade-off between precision and recall.

6.5. Conclusion 133

Table 6.2 : All valid product configurations that are defined by the mined FM.

Product configurations C
el

l_
P

h
o

n
e

W
ir

el
es

s

In
fr

ar
ed

B
lu

et
o

o
th

A
cc

u
_C

el
l

St
ro

n
g

M
ed

iu
m

W
ea

k

D
is

p
la

y

G
am

es

M
u

lt
i_

P
la

ye
r

Si
n

gl
e_

P
la

ye
r

A
rt

ifi
ci

al
_O

p
p

o
n

en
t

Product-1 7 7 7 7 7 7 7 7

Product-2 7 7 7 7 7 7 7 7

Product-3 7 7 7 7 7 7 7 7 7

Product-4 7 7 7 7 7 7 7 7

Product-5 7 7 7 7 7 7 7

Product-6 7 7 7 7 7 7 7

Product-7 7 7 7 7 7 7 7 7 7

Product-8 7 7 7 7 7 7 7 7 7

Product-9 7 7 7 7 7 7 7 7 7 7

Product-10 7 7 7 7 7 7 7

Product-11 7 7 7 7 7 7 7 7 7

Product-12 7 7 7 7 7 7 7 7 7

Product-13 7 7 7 7 7 7 7 7 7 7

Product-14 7 7 7 7 7 7 7 7 7 7

Product-15 7 7 7 7 7 7 7 7 7 7

Product-16 7 7 7 7 7 7 7 7 7 7 7

Product-17 7 7 7 7 7

Product-18 7 7 7 7 7 7

Product-19 7 7 7 7 7 7 7

Product-20 7 7 7 7 7 7 7

Product-21 7 7 7 7 7 7 7 7

Product-22 7 7 7 7 7

Product-23 7 7 7 7 7 7

Product-24 7 7 7 7 7 7 7

Product-25 7 7 7 7 7 7 7

Product-26 7 7 7 7 7 7 7

Product-27 7 7 7 7 7 7 7 7

Product-28 7 7 7 7 7 7 7 7

Product-29 7 7 7 7 7 7 7 7

Product-30 7 7 7 7 7 7 7 7 7

Product-31 7 7 7 7 7 7 7 7 7

Table 6.3 : The result of the product configurations that are identified by the mined cell phone FM.

Evaluation Metrics
Precision Recall F-Measure

Value 0.51 1 0.68

6.5 Conclusion

In this chapter, we proposed an automatic approach to organize the mined documented fea-
tures into a feature model. Features are organized in a tree which highlights mandatory features,
optional features and feature groups (and, or, xor groups). The feature model is completed with
requirement and mutual exclusion constraints. We rely on FCA and software configurations to
mine a unique and consistent feature model. The FMs are generated in very short time, be-
cause our FCA tool scales significantly better than the standard FCA approaches to calculate the
lattices.

Thus, we believe that REVPLINE offers a reasonable solution for reverse engineering FMs
from software configurations. In this chapter, we present REVPLINE as a new approach to re-
verse engineering FMs from product-by-feature matrix as we have tried to show throughout the

134 Chap 6. Reverse Engineering Feature Models from Software Configurations

chapter. However, remember the points that make the REVPLINE approach specific:

à REVPLINE accepts as input - to reverse engineering FMs - product-by-feature matrix (i.e.
product configurations). This matrix contains the mined and documented features from
source code of software product variants. The product-by-feature matrix can contain any
type of software variant artifacts (i.e. product descriptions) not limited only to software
variant features. The product-by-feature matrix makes our approach more general.

à REVPLINE produces unique and consistent FMs in very short time. The resulting FM con-
sists of group of feature constraints in addition to the cross-tree constraints (based on the
given software configurations).

Here, we compare the REVPLINE reverse engineering FMs approach to the related work.
Table 6.4 shows an overview of the REVPLINE approach where we present the objectives, pro-
grammed method, inputs, techniques, outputs, strategies and tool support.

Table 6.4 : Summary of REVPLINE: reverse engineering FMs from software configurations.

O
b

je
ct

iv
es

P
ro

gr
am

m
ed

m
et

h
o

d

In
p

u
ts

Te
ch

n
iq

u
es

O
u

tp
u

ts

St
ra

te
gi

es

C
as

e
st

u
d

y

To
o

ls
u

p
p

o
rt

R
es

tr
u

ct
u

ri
n

g
va

ri
ab

ili
ty

o
fS

P
L

R
e-

en
gi

n
ee

ri
n

g

D
o

m
ai

n
an

al
ys

is

U
n

d
er

st
an

d
in

g
an

d
ge

n
er

at
iv

e
ap

p
ro

ac
h

A
u

to
m

at
ic

Se
m

i-
au

to
m

at
ic

So
ft

w
ar

e
co

n
fi

gu
ra

ti
o

n
s

P
ro

d
u

ct
d

es
cr

ip
ti

o
n

s

A
d

h
o

c
al

go
ri

th
m

F
C

A

U
n

iq
u

e
F

M

X
o

r-
gr

o
u

p

A
n

d
-g

ro
u

p

O
r-

gr
o

u
p

R
eq

u
ir

es
co

n
st

ra
in

t

E
xc

lu
d

es
co

n
st

ra
in

t

R
ed

u
ce

se
ar

ch
sp

ac
e

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Part III

Experimentation

135

C
H

A
P

T
E

R

7
EXPERIMENTATION

If A is success in life, then A = x + y + z. Work is x; y is play; and z
is keeping your mouth shut.

Albert EINSTEIN

Preamble

This chapter shows the experiments that we run to validate our proposal. Section 7.1 gives an in-
troduction of this chapter. Section 7.2 presents the ArgoUML-SPL case study and validation part.
Section 7.3 presents Health complaint-SPL case study and validation part. Section 7.4 presents
Mobile Media product variants case study and validation part. Section 7.5 gives the obtained FMs
by applying our approach on sets of valid feature combinations. Finally Section 7.6 concludes this
chapter.

138 Chap 7. Experimentation

7.1 Introduction

In this chapter, we present the experiments that we conducted to validate the REVPLINE ap-
proach. The results of the application of our approach over a set of software where each is

implemented as a set of variants allowed us to assess its merits and limitations. We present each
experiment as two parts: the case study part, where we explain and describe the selected case
study; and the validation part, where we show and discuss the obtained results. We apply our
approach on three real case studies: ¶ ArgoUML-SPL, · Health complaint-SPL and ¸ Mobile
Media. ArgoUML-SPL and Health complaint-SPL represent real SPLs. Mobile Media represents
real software product variants. The three case studies are Java software systems. We executed all
experiments on a Windows 7 system, running at 2.30 GHz, and with RAM of 8 GB.

The advantage of having three case studies is that they implement variability at different
levels (package, class, attribute, method or method body). Variability in Mobile Media vari-
ants is present at method and method body levels. Variability in ArgoUML-SPL variants (and
Health complaint-SPL variants) is present at package and class levels. In addition, ArgoUML-
SPL, Health complaint-SPL and Mobile Media software product variants are well documented
and their features, use-case diagrams and feature models are available for comparison to our
results and validation of our approach. We used 10 software systems for ArgoUML-SPL, 10 for
Health complaint-SPL and 4 software variants for Mobile Media software product variants. The
selected software (i.e. number of variants) is covering all known features of these variants.

The three case studies show different sizes: ArgoUML-SPL (large systems), Health complaint-
SPL (medium systems) and Mobile Media (small systems). The different complexity levels show
the scalability of our approach to dealing with such systems. The selected case studies are used
to assess many approaches in the field of our study.

In order to evaluate our approach and base on our knowledge about case studies (software
feature implementations, feature names, use-case diagrams and FM), we have used three mea-
sures: precision, recall and F-Measure to assess the obtained results. The effectiveness of IR
methods is measured by these metrics. We rely on these metrics to show the efficiency of our
approach. For each case study, we validate the result of the feature mining, feature documenta-
tion and reverse engineering FM.

In this chapter, we present each experiment in a separate section. Each section consists of
two parts: the case study part and the validation part. We should mention here that the vali-
dation part contains three parts: feature location, feature documentation and FM reverse engi-
neering.

7.2 ArgoUML-SPL Case Study

7.2.1 ArgoUML-SPL Description

ArgoUML1 is a Java-based, open source software, widely used for designing systems in UML.
ArgoUML is the leading open source UML modeling tool and includes support for all standard
UML 1.4 diagrams. It runs on any Java platform. ArgoUML-SPL is described in [Couto et al.,
2011].

We selected 10 products of ArgoUML-SPL. Naturally, the selected products cover all features

1ArgoUML-SPL source code : http://argouml-spl.tigris.org/source/browse/argouml-spl/

http://argouml-spl.tigris.org/source/browse/argouml-spl/

7.2. ArgoUML-SPL Case Study 139

of ArgoUML-SPL. ArgoUML2 variants are presented in Table 7.1 characterized by metrics LoC
(Lines of Code), NoP (Number of Packages), NoC (Number of Classes) and number of OBEs.

Table 7.1 : ArgoUML software product variants.

Product # ArgoUML Product Description LoC NoP NoC Number of OBEs
P1 All optional features disabled 82,924 55 1,243 74,444
P2 All optional features enabled 120,348 81 1,666 100,420
P3 Only logging feature disabled 118,189 81 1,666 98,988
P4 Only cognitive feature disabled 104,029 73 1,451 89,273
P5 Only sequence diagram disabled 114,969 77 1,608 96,492
P6 Only use-case diagram disabled 117,636 78 1,625 98,468
P7 Only deployment diagram disabled 117,201 79 1,633 98,323
P8 Only collaboration diagram disabled 118,769 79 1,647 99,358
P9 Only state diagram disabled 116,431 81 1,631 97,760
P10 Only activity diagram disabled 118,066 79 1,648 98,777

The FM for the ArgoUML-SPL as defined by its designers is presented in [Couto et al., 2011].
It contains nine features. Figure 7.1 presents the feature model of the ArgoUML-SPL. For cre-
ating ArgoUML-SPL, nine features representing functional and non-functional requirements
have been selected. The first feature (logging) has been selected as a representative of a non-
functional requirement. The other eight features represent functional concerns: class diagram,
activity diagram, state diagram, collaboration diagram, sequence diagram, use-case diagram,
deployment diagram and cognitive support.

Figure 7.1 : ArgoUML-SPL feature model [Couto et al., 2011].

Figure 7.2 shows the use-case diagram of the second release of ArgoUML. The description of
each use-case is available at ArgoUML website3.

2ArgoUML-SPL : http://argouml-spl.tigris.org/
3http://argouml-spl.tigris.org/

http://argouml-spl.tigris.org/
http://argouml-spl.tigris.org/

140 Chap 7. Experimentation

Figure 7.2 : The use-case diagram of the second release of ArgoUML software variants.

7.2.2 ArgoUML Validation

7.2.2.1 Feature Location

¶ Feature location based on lexical similarity: Here, we show and discuss the obtained results for
feature location in a collection of ArgoUML software variants. The experiment shows us that all
ArgoUML-SPL features are implemented at package and class levels except the logging feature
which is implemented at the method body level (i.e. method invocation and attribute access).

The obtained result for feature location in ArgoUML software variants is presented in Table
7.2. For readability’s sake in Table 7.2, we manually associated feature names to atomic blocks
(i.e. the mined feature implementations), based on the study of the content of each block and
on our knowledge on software. Of course, this does not impact the quality of our results.

Results show that precision appears to be high for all optional features. This means that
all mined OBEs grouped as features are relevant. This result is due to search space reduc-
tion. In most cases, each block of variation (BV) corresponds to one and only one feature. For
mandatory features, precision is also quite high thanks to our clustering technique that identi-
fies atomic blocks (i.e. feature implementations) based on FCA and LSI. However, precision is
smaller than the one obtained for optional features. This deterioration can be explained by the
fact that we do not perform search space reduction for the common block (CB).

Considering the recall metric, its average value is 67% for ArgoUML. This means that most

7.2. ArgoUML-SPL Case Study 141

OBEs that compose features are mined. We have manually identified OBEs which should have
been mined and were not. We found that these non-mined OBEs used different vocabularies
from mined OBEs’. This is a known limitation of LSI which is based on lexical similarity. Consid-
ering the F-Measure metric, our approach has values that range from 63% to 88%. This means
that most OBEs that compose features are mined and shows the efficiency of our approach.

The most important parameter to LSI is the number of term-topics (i.e. k-Topics). A term-
topic is a collection of terms that co-occur frequently in the documents of the corpus. We need
enough term-topics to capture real term relations. In our work, we cannot use a fixed number
of topics for LSI because we have blocks of variation (i.e. clusters) with different sizes.

Table 7.2 : Feature location in a collection of ArgoUML software variants based on lexical similarity.

Feature Name Feature Type k-Topics Evaluation Metrics
Mandatory Optional Precision Recall F-Measure

1 Class diagram 8 0.03 72% 56% 63%
2 Diagrams 8 0.06 100% 80% 88%
3 Deployment diagram 8 0.05 100% 74% 85%
4 Collaboration diagram 8 0.06 100% 67% 80%
5 Use-case diagram 8 0.03 100% 64% 78%
6 State diagram 8 0.03 100% 69% 81%
7 Sequence diagram 8 0.02 100% 67% 80%
8 Activity diagram 8 0.06 100% 63% 77%
9 Cognitive support 8 0.01 100% 70% 82%
10 Logging 8 0.02 100% 60% 75%

Table 7.3 : Size metric and the variability levels of ArgoUML features.

Feature Name LoC Variability levels
Package Class Attribute Method Method Body

1 Cognitive support 16,319 7 7

2 Activity diagram 2,282 7 7

3 State diagram 3,917 7 7

4 Collaboration diagram 1,579 7 7

5 Sequence diagram 5,379 7 7

6 Use-case diagram 2,712 7 7

7 Deployment diagram 3,147 7 7

8 Logging 2,159 7

Table 7.3 shows the size metric and the variability levels of ArgoUML features. Listing 7.1
shows part of the sequence diagram feature implementation.

As mentioned in the feature location chapter (cf. Chapter 4), our approach identifies a junc-
tion as a feature. Table 7.4 represents the mined junctions from ArgoUML software variants.
We know that these BVs represent junctions based on our knowledge about this software family.
The column (# OBEs) in Table 7.4 represents the number of OBEs that represent each junction.

· Feature location based on lexical similarity and structural dependency: Features of ArgoUML-
SPL are implemented at the package or class level except the logging feature (at method body
level); as a consequence, ArgoUML-SPL is appropriate for application of both the lexical and

142 Chap 7. Experimentation

Package (argouml.uml.diagram.sequence.ui)
Class (ModeChangeHeight_argouml.uml.diagram.sequence.ui)
Attribute (serialVersionUID_SequenceDiagramGraphModel)
Method (initialize()_PropPanelActionSequence)
Local Variable (lay_UMLSequenceDiagram())
Class (ActionSetOperation_sequence2.diagram)
Method Invocation (info ["SequenceDiagram Module enabled."]_enable())
Method (relocate(base)_UMLSequenceDiagram)
Method Invocation (debug ["Created sequence diagram"]_UMLSequenceDiagram())

.

.

.

LISTING 7.1 : Part of the sequence diagram feature implementation.

Table 7.4 : The identified junctions between feature implementations of ArgoUML-SPL.

Junction # OBEs
1 Junction between cognitive and deployment features 745
2 Junction between cognitive and sequence features 55
3 Junction between sequence and collaboration features 111
4 Junction between state and logging features 6
5 Junction between deployment and logging features 18
6 Junction between collaboration and logging features 13
7 Junction between use-case and logging features 22
8 Junction between sequence and logging features 51
9 Junction between activity and logging features 3
10 Junction between cognitive and logging features 169
11 Junction between activity and state features 57

structural similarity measures. Table 7.5 summarizes the obtained results. For readability’s sake,
we manually associated feature names to feature implementations.

Table 7.5 : Feature location in a collection of ArgoUML software variants based on lexical and structural
similarity.

Feature Name Feature Type Evaluation Metrics

M
an

d
at

o
ry

O
p

ti
o

n
al

N
o

C

#
o

fc
o

u
p

li
n

gs

k-
To

p
ic

s

Precision Recall F-Measure
1 Class diagram 7 55 170 0.03 72% 100% 82%
2 Diagrams 7 18 16 0.06 100% 100% 100%
3 Sequence diagram 7 57 140 0.02 100% 100% 100%
4 Deployment diagram 7 20 8 0.05 100% 100% 100%
5 Collaboration diagram 7 19 2 0.06 100% 100% 100%
6 Cognitive support 7 207 6556 0.01 100% 100% 100%
7 Use-case diagram 7 39 14 0.03 100% 100% 100%
8 State diagram 7 35 48 0.03 100% 100% 100%
9 Activity diagram 7 18 8 0.06 100% 100% 100%

Results show that precision seems to be high for all optional features. This means that all

7.2. ArgoUML-SPL Case Study 143

mined OBEs gathered as features are relevant. This result is due to search space reduction. In
most cases, each BV corresponds to a single feature. For mandatory features, precision is also
quite high thanks to our clustering technique that identifies atomic blocks based on lexical and
structural similarity. However, precision is smaller than the one obtained for optional features.
This deterioration can again be explained by the fact that we do not perform search space re-
duction for the CB.

Considering the recall metric, its average value is 100% for ArgoUML-SPL. This means that
all OBEs that compose features are mined. Considering the F-Measure metric, our approach
has the value of 100%. This means that all OBEs that compose features are mined and provides
initial evidence with regard to the efficiency of our approach.

All common and optional features are mined for ArgoUML-SPL except the logging feature;
the reason behind this limitation is that the logging feature is implemented in a method body
and our approach only considers the software variants which variability is represented mainly
in the package or class level. The results of this evaluation showed that most of the features were
identified and proves the scalability of our feature mining approach.

We compare the two approaches (lexical similarity versus lexical similarity and structural
dependency) and the result is presented in Table 7.6.

Table 7.6 : Comparing the two ways: lexical versus structural and lexical similarity.

ArgoUML-SPL Precision Recall F-Measure Number of Junctions
Lexical similarity 97% 67% 79% 11
Lexical and structural similarity 97% 100% 98% 1

From Table 7.6, we can note that the approach using lexical and structural similarity gives
better results than the lexical approach alone. For the precision value, it is the same for both
approaches. The recall and F-Measure metric values are better than lexical approach alone.

The reason behind this result is the use of the structural dependency information contained
in source code to increase the precision and recall of an LSI method. In other words, the depen-
dency information helps to get additional correct links between OBEs.

Through Table 7.6 we can observe that the number of junctions resulting from the use of the
lexical approach are bigger than in the combined approach. In the combined approach, there is
one junction between cognitive support and deployment diagram. This junction consists of 13
classes.

7.2.2.2 Feature Documentation

The feature documentation approach accepts as inputs: ¶ the mined feature implementations
and · the use-case diagrams (in addition to the textual descriptions, cf. Listing 7.3) of the soft-
ware variants. As we presented in chapter 5, we exploit commonality and variability across
software variants at feature implementations and use-cases levels in order to apply LSI in an
efficient way.

For this case study, we rely on the same product descriptions of this family as presented in Ta-
ble 7.1, we get a set of hybrid blocks which all contain one and only one feature implementation
and use-case. The values of precision, recall and F-measure metrics are exactly 100%. Reducing
the search space for use-cases and feature implementations across software variants is certainly
the reason of this performance and results. The description of each product specifies the dis-

144 Chap 7. Experimentation

abled or the enabled features. Basically speaking, products P1 and P2 represent respectively the
core product (all optional features disabled) and the full product (all optional features enabled).
The other products represent cases in which only one of the features has been disabled.

In this section, we rely on new product configurations (i.e. descriptions), as presented in
Table 7.7, to get hybrid blocks with more than one feature implementation and use-case. In
order to document the mined feature implementations from the ArgoUML case study, we rely
on the use-case diagrams of these software variants.

Table 7.7 : The descriptions of the ArgoUML software product variants.

C
la

ss

D
ia

gr
am

s

C
o

gn
it

iv
e

su
p

p
o

rt

Lo
gg

in
g

St
at

e

U
se

-c
as

e

D
ep

lo
ym

en
t

C
o

lla
b

o
ra

ti
o

n

Se
q

u
en

ce

A
ct

iv
it

y

Product-1 3

Product-2 3 3

Product-3 3 3 3 3

Product-4 3 3 3

Product-5 3 3 3 3

Product-6 3 3 3

Product-7 3 3 3 3

Table 7.8 summarizes the obtained results (i.e. feature names) of these variants. The
REVPLINE system documents the mined feature implementation by assigning name and de-
scription (in the form of sentences) based on use-case name and textual description of use-case.
For example, in the FM of ArgoUML-SPL there are two features called: use-case and collabora-
tion. The proposed names for these features by our approach are: use-case diagram and collab-
oration diagram. The examples below show the names and descriptions of these features.

Example 7.1. Use-case diagram: "a use-case is a set of scenarios that describes an interaction
between a user and a system. A use-case diagram displays the relationship among actors and
use-cases. The two main components of a use-case diagram are use-cases and actors".

Example 7.2. Collaboration diagram: "collaboration diagram is used to show how objects inter-
act to perform the behavior of a particular use-case, or a part of a use-case. Along with sequence
diagram, collaboration diagram is used by designers to define and clarify the roles of the objects
that perform a particular flow of events of a use-case. Collaboration diagram is the primary source
of information used to determining class responsibilities and interfaces".

From Table 7.8, we observe that the recall values are 100% of all the features that are doc-
umented. The recall values are an indicator for the efficiency of our approach. The values of
precision are between [50% − 100%], which is high. F-Measure values rely on precision and re-
call values. The values of F-Measure are high too, between [66% − 100%] for the documented
features.

Reducing the search space for use-cases and feature implementations across software vari-
ants is certainly the reason of this performance. In most cases, the contents of hybrid blocks are
in the range of [1−2] use-cases and feature implementations. Another reason for this good result
is that a common vocabulary is used in the use-case descriptions and feature implementations,
thus lexical similarity was a suitable tool.

7.2. ArgoUML-SPL Case Study 145

Table 7.8 : Features documented from ArgoUML software variants based on use-case diagrams.

Evaluation Metrics
Feature Name Hybrid block # k-Topics Recall Precision F-Measure
1 Class diagram HB−1 1 100% 100% 100%
2 Diagrams HB−2 1 100% 100% 100%
3 Logging HB−3 2 100% 50% 66%
4 Cognitive support HB−3 2 100% 100% 100%
5 Deployment diagram HB−4 1 100% 100% 100%
6 Collaboration diagram HB−5 2 100% 50% 66%
7 Sequence diagram HB−5 2 100% 50% 66%
8 State diagram HB−6 1 100% 100% 100%
9 Activity diagram HB−7 2 100% 100% 100%
10 Use-case diagram HB−7 2 100% 100% 100%

The column (k-Topics) in Table 7.8 represents the number of term-topics. In our work, the
number of k-Topics is equal to the number of feature implementations for each corpus (hybrid
block). All feature names produced by our approach, in the column (Feature Name) of Table 7.8,
represent the names of the use-cases.

7.2.2.3 FM Reverse Engineering

Table 7.9 shows the product-by-feature matrix for ArgoUML software variants. The technique
used to identify the FM relies on FCA. First, a formal context, where objects are product vari-
ants and attributes are features (cf. Table 7.9), is defined. The corresponding AOC-poset is then
calculated (cf. Figure 7.3).

Table 7.9 : The Product-by-feature matrix for ArgoUML software product variants.

A
rg

o
U

M
L-

SP
L

C
la

ss
d

ia
gr

am

D
ia

gr
am

s

U
se

-c
as

e
d

ia
gr

am

C
o

lla
b

o
ra

ti
o

n
d

ia
gr

am

C
o

gn
it

iv
e

su
p

p
o

rt

A
ct

iv
it

y
d

ia
gr

am

D
ep

lo
ym

en
td

ia
gr

am

Se
q

u
en

ce
d

ia
gr

am

St
at

e
d

ia
gr

am

Lo
gg

in
g

Product−1 6 7

Product−2 6 7 3 3 3 3 3 3 3 3 3

Product−3 6 7 3 3 3 3 3 3 3 3

Product−4 6 7 3 3 3 3 3 3 3 3

Product−5 6 7 3 3 3 3 3 3 3 3

Product−6 6 7 3 3 3 3 3 3 3 3

Product−7 6 7 3 3 3 3 3 3 3 3

Product−8 6 7 3 3 3 3 3 3 3 3

Product−9 6 7 3 3 3 3 3 3 3 3

Product−10 6 7 3 3 3 3 3 3 3 3

Product-by-feature matrix
(6 the root feature; 7 mandatory feature; 3 optional feature)

146 Chap 7. Experimentation

Figure 7.3 : The AOC-poset for the formal context of Table 7.9.

Based on the AOC-poset in Figure 7.3, we identify the FM which represents the mined and
documented features from ArgoUML. Figure 7.4 shows the mined FM for ArgoUML-SPL. The
resulting FM describes exactly the given product configurations. The needed time to identify
the FM is equal to 492 ms. The time needed to extract the FM includes all processes (starting
from converting the product configurations to formal context and generating the AOC-poset, up
to analyzing the AOC-poset and generating the FM).

We should mention that the identified FM consists only of concrete features (without abstract
features). The abstract feature corresponds to a group of features or to the root feature in the FM.
The abstract feature cannot be identified by our approach in general. The feature names in the
mined FM are very close to the feature names in the original FM. The extracted and original FM
both consist of three levels of hierarchy.

The extracted FM is containing a mandatory feature, nine optional features and eight con-
straints of type requires. We can note that the identified FM by our approach introduces a
unique and consistent FM. Moreover, the mined FM is introducing new constraints which do
not exist in the original FM (the manually designed FM by the authors of ArgoUML). The results
of this evaluation provide evidence with regard to the efficiency of our approach and show the
scalability of our FM reverse engineering approach.

Results show that precision appears to be not very high for ArgoUML-SPL (i.e. 60%). This
means that many of the identified product configurations of the mined FM are extra configu-
rations (not in initial set that is defined by the original FM). Considering the recall metric, it is
value is 100% for ArgoUML-SPL. This means that product configurations defined by the initial
FM are included in the product configurations derived from the mined FM. Considering the
F-Measure metric, our approach has value 75%.

7.3. Health complaint-SPL Case Study 147

Figure 7.4 : The extracted FM from Table 7.9.

7.3 Health complaint-SPL Case Study

7.3.1 Health complaint-SPL Description

The public Health complaint4 is a SPL based on three legacy applications that belong to the do-
main of public health complaints. Health complaint is a Java-based open source web application
that manages health related records and complaints. The system was initially developed in 2001
and has undergone 9 releases to add new features and fix previous bugs. These legacy applica-
tions allow citizens to report complaints via Internet. The types of complaints encompass food,
animal and special complaints.

Health complaint-SPL5 variants are presented in Table 7.10. We select 10 products of health
complaint as published in [Tizzei et al., 2012]. Naturally, the selected products cover all features
of health complaint software variants. These software variants include 10 features. Health com-
plaint software variants are presented in Table 7.10 characterized by metrics LoC, NoP, NoC and
number of OBEs.

Each new release of the system adds new features or fixes previous bugs. For instance, release
1 contains the core system (the mandatory features) whilst release 2 represents the core system
with the functionalities of complaint update, register new employee, update employee and query
information. The different features of the system and the releases where they were included are
described in Table 7.14. Figure 7.5 shows the "update employee" feature of the public health
complaint application.

4http://www.ic.unicamp.br/~tizzei/phc/jss2013/index.html
5Source code : https://github.com/leotizzei/PublicHealthComplaintAO_01

http://www.ic.unicamp.br/~tizzei/phc/jss2013/index.html
https://github.com/leotizzei/PublicHealthComplaintAO_01

148 Chap 7. Experimentation

Table 7.10 : Health complaint software product variants.

Product # Health complaint Product Description LOC NOP NOC Number of OBEs
P1 Base - no extensions applied 5,288 22 88 6,603
P2 Command pattern applied 5,646 23 92 6,867
P3 State pattern applied 6,112 24 104 7,407
P4 Observer pattern applied 6,222 26 106 7,536
P5 Adapter pattern applied v1 6,379 26 108 7,631
P6 Abstract factory pattern applied v1 6,417 27 112 7,659
P7 Adapter pattern applied v2 6,441 27 116 7,648
P8 Abstract factory pattern applied v2 6,468 28 120 7,669
P9 Evolution - New functionality added 7,709 28 132 9,079
P10 Exception handling applied 7,591 29 135 9,084

Figure 7.5 : Public health complaint application interface: update employee screen.

Release 1 supports core health complaint features: special complaint, food complaint, ani-
mal complaint, exception handling and persistence. Release 2 supports complaint update, reg-
ister new employee, update employee and query information optional features, together with
the core ones. Release 3 has the core health complaint features and a new optional feature
called receive alerts via feeds. Release 4 has the core health complaint features and a new op-
tional feature called complaint status. Release 9 has the core health complaint features and a
new optional feature called update medical speciality.

Release 5 (resp. release 10) supports core health complaint features, together with the op-
tional features of previous releases. This release does not support new features and fixes previ-
ous bugs. It contains only 3 (resp. 5) additional classes compared to the Release 4 (resp. release 9).
Release 6 does not support new features and fixes previous bugs. It contains only 4 additional
classes compared to the release 5 to fix some bugs. Release 7 (resp. release 8) doesn’t support
new features and fixes previous bugs. It contains only 4 additional classes compared to release

7.3. Health complaint-SPL Case Study 149

6 (resp. release 7) (cf. Figure 7.6).

Figure 7.6 : Part of the AOC-poset of Health complaint-SPL.

The FM for the Health complaint-SPL as manually designed by the authors of Health
complaint-SPL is presented in [Tizzei et al., 2012]. Health complaint-SPL FM contains 10 fea-
tures. Figure 7.7 shows the FM of the Health complaint-SPL. This FM consists of: 4 groups of fea-
tures from abstract type (complaint management, complaint specification, support services and
infrastructure services), 5 mandatory features (animal complaint, food complaint, special com-
plaint, exception handling and persistence), 5 optional features (complaint update, RSS feeds,
query information, register new employee and update employee), without cross-tree constraints
(we can call it basic FM) and the root feature "public health complaint system SPL".

Figure 7.8 shows the use-case diagram for the public health complaint SPL6. There is a sym-
biotic relationship between features and use-cases. Feature models focus on specifying the fea-
tures variability by means of a graphical user-friendly and hierarchical structure. Furthermore,
use-cases specify the interaction between user and system, and also the system behavior [Go-
maa, 2004]. Exception handling and persistence are non-functional requirements and represent
non-functional use-cases7.

6http://www.ic.unicamp.br/~tizzei/phc/jss2013/node17.html
7http://www.ic.unicamp.br/~tizzei/phc/jss2013/node18.html

http://www.ic.unicamp.br/~tizzei/phc/jss2013/node17.html
http://www.ic.unicamp.br/~tizzei/phc/jss2013/node18.html

150 Chap 7. Experimentation

Figure 7.7 : Feature model for the public Health complaint-SPL.

Figure 7.8 : Public Health complaint-SPL use case diagram.

7.3.2 Health Complaint Validation

7.3.2.1 Feature Location

To evaluate the feasibility of our approach to locating the source code elements that implement
a specific feature, we conducted an experiment on Health complaint-SPL. Table 7.11 summa-
rizes the obtained results for feature location in a collection of health complaint software vari-
ants. For readability’s sake, we manually associated feature names to the mined feature im-
plementations. For health complaint software variants, we rely on the lexical and structural
similarity to mine their features. The reason behind this choice is that variability across these
variants appears at class level.

Results show that the precision metric appears high, its average value is 75% for health com-
plaint product variants. This means that most of the mined OBEs grouped as features are rel-
evant. This result is due to search space reduction. In most cases, each block of variation (BV)
corresponds to one and only one feature. For mandatory features, precision is also quite high

7.3. Health complaint-SPL Case Study 151

Table 7.11 : Features mined from health complaint software variants.

Feature Name Feature Type Evaluation Metrics

Mandatory Optional k-
To

p
ic

s

Precision Recall F-Measure
1 Special complaint 7 0.10 83% 100% 90%
2 Food complaint 7 0.10 83% 100% 90%
3 Animal complaint 7 0.10 83% 100% 90%
4 Update health unit 7 0.10 60% 100% 75%
5 Exception handling 7 0.10 62% 100% 76%
6 Persistence 7 0.10 57% 100% 72%
7 Complaint update 7 0.20 81% 100% 90%
8 Register new employee 7 0.20 60% 100% 75%
9 Update employee 7 0.20 50% 100% 66%
10 Query information 7 0.20 56% 100% 72%
11 Receive alerts via feeds 7 0.06 100% 100% 100%
12 Complaint status 7 0.04 100% 100% 100%
13 Update medical speciality 7 0.01 100% 100% 100%

thanks to our clustering technique that identifies feature implementations based on lexical and
structural similarity.

Considering the recall metric, its average value is 100% for health complaint product vari-
ants. This means that all OBEs that compose features are mined. Considering the F-Measure
metric, our approach has values that range from 66% to 100%. F-Measure average is equal to
84%. This means that most OBEs that compose features are mined. F-Measure defines a trade-
off between precision and recall, so that it gives a high value only in cases where both recall and
precision are high.

As we said before, the most important parameter to LSI is the number of term-topics (i.e.
k-Topics). In our work we cannot use a fixed number of topics for LSI because we have clusters
with different sizes. Results also show that we obtain three features not included in the FM of
Health complaint-SPL. These features are update health unit, complaint status and update med-
ical speciality. For these mined feature implementations, two of them (complaint status and
update medical speciality) are documented based on the OBE names (cf. Table 7.12). The up-
date health unit feature is documented based on the use-case diagram (there is use-case called
update health unit). Each feature implementation is mined as a collection of OBEs. Listing 7.2
shows the complaint status feature implementation. Each feature implementation consists of a
set of OBEs (i.e. set of classes).

152 Chap 7. Experimentation

Class (FoodComplaintStateClosed_healthwatcher.model.complaint.state)
Class (ComplaintStateClosed_healthwatcher.model.complaint.state)
Class (FoodComplaintState_healthwatcher.model.complaint.state)
Class (FoodComplaintStateOpen_healthwatcher.model.complaint.state)
Class (SpecialComplaintStateOpen_healthwatcher.model.complaint.state)
Class (ComplaintState_healthwatcher.model.complaint.state)
Class (SpecialComplaintStateClosed_healthwatcher.model.complaint.state)
Class (AnimalComplaintState_healthwatcher.model.complaint.state)
Class (AnimalComplaintStateClosed_healthwatcher.model.complaint.state)
Class (ComplaintStateOpen_healthwatcher.model.complaint.state)
Class (SpecialComplaintState_healthwatcher.model.complaint.state)
Class (AnimalComplaintStateOpen_healthwatcher.model.complaint.state)

LISTING 7.2 : The complaint status feature implementation.

7.3.2.2 Feature Documentation

In order to document the mined feature implementations from health complaint case study, we
rely on the use-case diagrams of these software variants. Table 7.12 summarizes the obtained
results (i.e. feature names) for this case study.

Table 7.12 : Features documented from Health complaint software product variants.

Evaluation Metrics
Feature Name Hybrid block # k-Topics Recall Precision F-Measure
1 Specify animal complaint HB−1 6 100% 50% 66%
2 Specify food complaint HB−1 6 100% 50% 66%
3 Specify special complaint HB−1 6 100% 50% 66%
4 Update health unit HB−1 6 100% 100% 100%
5 Handle exception HB−1 6 100% 100% 100%
6 Persist data HB−1 6 100% 100% 100%
7 Update employee HB−2 4 100% 50% 66%
8 Register new employee HB−2 4 100% 50% 66%
9 Update complaint HB−2 4 100% 100% 100%

10 Query information HB−2 4 100% 100% 100%
11 Receive alerts via feeds HB−3 3 100% 100% 100%
12 Complaint status HB−3 3 – – –
13 Update medical speciality HB−3 3 – – –

In the FM of Health complaint-SPL [Tizzei et al., 2012] there is a feature called food com-
plaint. The name proposed by our approach for this feature is specify food complaint and its
description is "this use case allows a citizen to register a food complaint. The food complaint has
the following information: food complaint data, description and observations".

From Table 7.12, we observe that the recall values are 100% of all the features that are doc-
umented. The recall values are an indicator for the efficiency of our approach. The values of
precision are between [50% − 100%], which is high and its average is equal to 77%. F-Measure
values rely on precision and recall values. The values of F-Measure are high too, between [66%
− 100%] for the documented features and its average is equal to 85%.

Reducing the search space for use-cases and feature implementations across software vari-
ants is certainly the reason of this performance. In most cases, the contents of hybrid blocks are
in the range of [3−6] use-cases and feature implementations. Another reason for this good result

7.3. Health complaint-SPL Case Study 153

is that a common vocabulary is used in the use-case descriptions and feature implementations,
thus lexical similarity was a suitable tool.

In Table 7.12, there are two feature implementations without documentations. These fea-
ture implementations are documented based on the OBE names. These feature implementa-
tions are: complaint status and update medical speciality. The reason behind this limitation
is that these feature implementations don’t have any lexical similarity with the corresponding
use-cases in the given hybrid block. In this context, we document the mined feature implemen-
tations based on the OBE names. The proposed names for these features by using the strongest
weighted tokens are "complaint status" and "update medical speciality".

The column (k-Topics) in Table 7.12 represents the number of term-topics. In our work, the
number of k-Topics is equal to the number of feature implementations for each hybrid block. All
feature names produced by our approach, in the column (Feature Name) of Table 7.12, represent
the names of the use-cases.

The RCF corresponding to our approach contains two formal contexts and one relational
context. The first formal context represents use-case diagrams. The second formal context rep-
resents feature implementations. The relational context of Health complaint-SPL is illustrated
in Table 7.13. For Health complaint-SPL case study, two lattices of the CLF are represented in
Figure 7.9.

Table 7.13 : The relational context for feature documentation of Health complaint software variants.

Relational context: appears-with Sp
ec

ia
lc

o
m

p
la

in
ti

m
p

l.

Fo
o

d
co

m
p

la
in

ti
m

p
l.

A
n

im
al

co
m

p
la

in
ti

m
p

l.

U
p

d
at

e
h

ea
lt

h
u

n
it

im
p

l.

E
xc

ep
ti

o
n

h
an

d
li

n
g

im
p

l.

P
er

si
st

en
ce

im
p

l.

C
o

m
p

la
in

tu
p

d
at

e
im

p
l.

R
eg

is
te

r
n

ew
em

p
lo

ye
e

im
p

l.

U
p

d
at

e
em

p
lo

ye
e

im
p

l.

Q
u

er
y

in
fo

rm
at

io
n

im
p

l.

R
ec

ei
ve

al
er

ts
vi

a
fe

ed
s

im
p

l.

C
o

m
p

la
in

ts
ta

tu
s

im
p

l.

U
p

d
at

e
m

ed
ic

al
sp

ec
ia

li
ty

im
p

l.

Specify animal complaint 5 5 5 5 5 5

Specify food complaint 5 5 5 5 5 5

Specify special complaint 5 5 5 5 5 5

Specify complaint 5 5 5 5 5 5

Handle exception 5 5 5 5 5 5

Persist data 5 5 5 5 5 5

Update health unit 5 5 5 5 5 5

Update employee 5 5 5 5

Register new employee 5 5 5 5

Update complaint 5 5 5 5

Query information 5 5 5 5

Receive alerts via feeds 5

154 Chap 7. Experimentation

Figure 7.9 : The CLF of the RCF for features documentation of health complaint software variants.

7.3.2.3 FM Reverse Engineering

As we mentioned previously, the mined and documented features are stored in the product-by-
feature matrix. Table 7.14 shows the product-by-feature matrix for health complaint software
variants. The technique used to identify the FM relies on FCA. First, a formal context, where
objects are product variants and attributes are features (cf. Table 7.14), is defined. The corre-
sponding AOC-poset is then calculated (cf. Figure 7.10).

The technique used to identify the common and optional features in addition to the depen-
dency between features relies on FCA. First, a formal context is defined. The corresponding
AOC-poset is then calculated. The intent of each concept represents features common to two or
more products. As concepts of AOC-posets are ordered, the intent of the most general (i.e. top)
concept gathers features that are common to all product variants. They constitute the common
features. The intents of all remaining concepts are optional features. They gather sets of op-
tional features common to a subset of products or unique to a single product. The extent of
each of these concepts is the set of products having these features in common (Figure 7.10).

7.3. Health complaint-SPL Case Study 155

Table 7.14 : The Product-by-feature matrix for Health complaint software variants.

P
u

b
li

c
H

ea
lt

h
C

o
m

p
la

in
ts

ys
te

m
SP

L

Sp
ec

if
y

sp
ec

ia
lc

o
m

p
la

in
t

Sp
ec

if
y

fo
o

d
co

m
p

la
in

t

Sp
ec

if
y

an
im

al
co

m
p

la
in

t

U
p

d
at

e
h

ea
lt

h
u

n
it

H
an

d
le

ex
ce

p
ti

o
n

P
er

si
st

d
at

a

U
p

d
at

e
co

m
p

la
in

t

R
eg

is
te

r
n

ew
em

p
lo

ye
e

U
p

d
at

e
em

p
lo

ye
e

Q
u

er
y

in
fo

rm
at

io
n

R
ec

ei
ve

al
er

ts
vi

a
fe

ed
s

C
o

m
p

la
in

ts
ta

tu
s

U
p

d
at

e
m

ed
ic

al
sp

ec
ia

li
ty

Software-1 6 7 7 7 7 7 7

Software-2 6 7 7 7 7 7 7 3 3 3 3

Software-3 6 7 7 7 7 7 7 3 3 3 3 3

Software-4 6 7 7 7 7 7 7 3 3 3 3 3 3

Software-5 6 7 7 7 7 7 7 3 3 3 3 3 3

Software-6 6 7 7 7 7 7 7 3 3 3 3 3 3

Software-7 6 7 7 7 7 7 7 3 3 3 3 3 3

Software-8 6 7 7 7 7 7 7 3 3 3 3 3 3

Software-9 6 7 7 7 7 7 7 3 3 3 3 3 3 3

Software-10 6 7 7 7 7 7 7 3 3 3 3 3 3 3

Product-by-feature matrix
(6 the root feature; 7 mandatory feature; 3 optional feature)

Based on the AOC-poset in Figure 7.10, we identify the FM that represents the mined and
documented features from health complaint. Figure 7.11 shows the mined FM for health com-
plaint software variants. The resulting FM describes exactly the given product configurations.
The needed time to identify the FM is equal to 464 ms.

The mined feature model includes three groups of features from an abstract type (added by
our approach). The mandatory features consist of 6 concrete features. In the mined FM, we
get a new mandatory feature which is the "update health unit" feature. This feature was not
included in the original FM. Moreover, the extracted FM consists of 7 optional features. Two of
these optional features were not included in the original FM. These features are "update medical
speciality" and "complaint status" features.

The mined FM presents six cross-tree constraints of requires type. These constraints are
obtained by parsing the AOC-poset. These constraints were not included in the original FM. We
should mention that the resulting FM exactly describes the given product configurations.

Results show that precision appears to be not very high for Health complaint-SPL (i.e. 57%).
This means that many of the identified product configurations of the mined FM are extra config-
urations (not in initial set that is defined by the original FM). Considering the recall metric, it is
value is 100% for Health complaint-SPL. This means that product configurations defined by the
initial FM are included in the product configurations derived from the mined FM. Considering
the F-Measure metric, our approach has value 72%.

156 Chap 7. Experimentation

Figure 7.10 : The AOC-poset for the formal context of Table 7.14.

Figure 7.11 : The extracted FM from Table 7.14.

7.4. Mobile Media Case Study 157

7.4 Mobile Media Case Study

7.4.1 Mobile Media Description

Mobile Media8 is a Java-based open source application that manipulates photo, music, and
video on mobile devices, such as mobile phones [Tizzei et al., 2011]. The system uses various
technologies based on the Java ME platform. Table 7.15 summarizes the evolution scenarios in
Mobile Media9. The first column describes the release in which the changes were applied. The
third column describes the type of change and the type of feature (e.g. mandatory, optional)
included or changed in that release. The scenarios comprise different types of changes involv-
ing mandatory and optional features, as well as non-functional concerns. For instance, release
1 implements the original system with just the functionality of viewing photos and organizing
them by albums. Release 2 and 3 add error handling and the implementation of some optional
features (sort photos by frequency or edit labels) respectively.

Table 7.15 : Summary of evolution scenarios in Mobile Media.

Release Type of Change
R1 Mobile Photo core − mandatory features
R2 Inclusion of non-functional concern which is also an optional feature
R3 Inclusion of two optional features
R4 Inclusion of optional feature

We select 4 products of Mobile Media as published in [Tizzei et al., 2011]. Naturally, the
selected products cover all features of Mobile Media software variants. These variants consist of
8 features. Mobile Media variants are presented in Table 7.16 characterized by metrics LoC, NoP,
NoC and number of OBEs.

Table 7.16 : Mobile Media software product variants.

Product # Mobile Media Product Description LoC NoP NoC Number of OBEs
P1 Mobile photo - Base 936 7 15 822
P2 Exception handling included 1,213 8 24 925
P3 Sorting photos/edit photo label included 1,422 8 26 1,040
P4 New feature added to manage favourites 1,484 8 25 1,066

Figure 7.12 presents the FM of Mobile Media software variants. It shows the features of Mo-
bile Media software variants, such as add photo, delete photo and sorting. To illustrate an evolu-
tion scenario, the favourites optional feature is shown in white circle above the box, because it
was added in release 4. This FM is manually designed by the authors of Mobile Media software
variants.

Figure 7.13 shows part of use-case diagram of release 3 from Mobile Media. In this figure, we
show the new use-cases and the core use-cases that have relation with them. The new added
artefacts (use-cases) are shown in blue color. We have just shown in the use-case diagram the
changes added with respect to the original description of the system (in release 1). Listing 7.3
shows the description of the view sorted photos use-case in Figure 7.13.

8Mobile Media source code : http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
9http://www.ic.unicamp.br/~tizzei/mobilemedia/

http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
http://www.ic.unicamp.br/~tizzei/mobilemedia/

158 Chap 7. Experimentation

Figure 7.12 : Mobile Media feature model [Tizzei et al., 2011].

Figure 7.13 : Use case diagram for release 3 of Mobile Media [Conejero et al., 2012].

Use-case: View Sorted Photos
Actor: Mobile Phone (system) and User.
Description:The device sorts the photos based on the number of times photo has been viewed.
Precondition:
1. Application must be launched.
2. A few photos must be available.
3. User must have selected the option to "select an album".
Post-condition: Photos are displayed sorted by frequency.
Trigger: User has selected the option to "sort by view" from the album menu.
Basic flow:
1. The user selects the option to "Sort by view".
2. The device populates the list of photos sorted by the highest viewing frequency.
Alternative flows:
2. The device is unable to access to the frequency of the photos.
Extends: View Album use-case.

LISTING 7.3 : The description of the view sorted photos use-case in Figure 7.13.

7.4. Mobile Media Case Study 159

7.4.2 Mobile Media Validation

7.4.2.1 Feature Location

Table 7.17 summarizes the obtained results for Mobile Media case study. For readability’s sake,
we manually associated feature names to atomic blocks (i.e. feature implementations). For
Mobile Media software variants, we rely only on the lexical similarity to identify their features.
The reason behind this choice is that variability expresses at different levels (e.g. package, class,
attribute, method and method body) not only at class level.

Table 7.17 : Features mined from Mobile Media software product variants.

Feature Name Feature Type k-Topics Evaluation Metrics
Mandatory Optional Precision Recall F-Measure

1 Create album 7 6 81% 58% 67%
2 Delete album 7 6 80% 62% 69%
3 Create photo 7 6 81% 52% 63%
4 Delete photo 7 6 78% 63% 69%
5 View album 7 6 87% 68% 76%
6 Retrieve data 7 6 71% 57% 63%
7 Exception handling 7 1 100% 70% 82%
8 Edit photo label 7 2 100% 77% 87%
9 Sorting 7 2 100% 78% 87%
10 Favourites 7 1 100% 80% 88%

Results show that we get all features of FM in Figure 7.12 in addition to view album and
retrieve data features. Results show that precision appears to be high for all optional features.
This means that all mined OBEs grouped as features are relevant. This result is due to search
space reduction. In all cases, each BV corresponds to one and only one feature implementation.

For mandatory features, precision is also quite high thanks to our clustering technique that
identifies atomic block based on FCA and LSI. However, precision is smaller than the one ob-
tained for optional features. This deterioration can be explained by the fact that we do not
perform search space reduction for the common block (CB). The common block contains im-
plementations for all mandatory features. We apply directly the LSI on the common block. In
all cases, our approach shows excellent results to detect software variability. The mandatory
features appear in all software variants; so we believe that identification of common OBEs like
common block is more useful than split the common block.

Considering the recall metric, its average value is 66% for Mobile Media. This means that
most OBEs that compose features are mined. We have manually identified OBEs which should
have been mined and were not. We found that these non-mined OBEs used different vocabu-
laries from mined OBEs’. This is a known limitation of LSI which is based on lexical similarity.
Considering the F-Measure metric, our approach has values that range from 63% to 88%. This
means that most OBEs that compose features are mined and shows the efficiency of our ap-
proach.

In our work we cannot use a fixed number of k-Topics for LSI because we have blocks of
variation (i.e. partitions) with different sizes (cf. Table 7.17). For the common block, we use a
fixed number for the k-Topics of LSI method. Listing 7.4 shows part of the favourites feature
implementation. Each feature implementation consists of a set of OBEs (i.e. set of attributes,
methods, method invocations and attribute accesses).

160 Chap 7. Experimentation

Attribute Access (length_showImageList(recordName_sort_favorite))
Attribute Access (viewFavoritesCommand_initMenu())
Attribute Access (favorite_setFavorite(favorite))
Attribute (viewFavoritesCommand_PhotoListScreen)
Method Invocation (addCommand[viewFavoritesCommand]_initMenu())
Attribute (viewFavoritesCommand_FavouritesList)
Method (setFavorite(favorite)_FavouritesList)
Method (setFavorite(favorite)_ImageData)
Method Invocation (equals["ViewFavorites"]_handleCommand(c_d))
Method Invocation (equals["SetFavorite"]_handleCommand(c_d))
Method Invocation (setFavorite[favorite]_toggleFavorite())

.

.

LISTING 7.4 : Part of the favourites feature implementation.

7.4.2.2 Feature Documentation

In order to document the mined feature implementations from Mobile Media software variants,
we rely on the use-case diagrams of these variants. Table 7.18 summarizes the obtained results
(i.e. feature names). For instance, the example below shows the name and description of edit
label feature from Mobile Media software variants.

Example 7.3. Edit Label : "The user can edit the existing label of photo and album".

Table 7.18 : Features documented from Mobile Media software product variants.

Evaluation Metrics
Feature Name Hybrid block # k-Topics Recall Precision F-Measure
1 Delete album HB−1 6 100% 50% 66%
2 Delete photo HB−1 6 100% 50% 66%
3 Add album HB−1 6 100% 50% 66%
4 Add photo HB−1 6 100% 50% 66%
5 View album HB−1 6 100% 100% 100%
6 Retrieve data HB−1 6 100% 100% 100%
7 Exception handling HB−2 1 100% 100% 100%
8 View sorted photos HB−3 2 100% 50% 66%
9 Edit label HB−3 2 100% 50% 66%
10 Set/View favourites HB−4 1 100% 100% 100%

For Mobile Media case study, we observe that the recall values are 100% of all the features that
are documented. The recall values are an indicator for the efficiency of our approach. The values
of precision are between [50% − 100%], which is high. F-Measure values rely on precision and
recall values. The values of F-Measure are high too, between [66% − 100%] for the documented
features.

Reducing the search space for use-cases and feature implementations across software vari-
ants is certainly the reason of this performance (cf. Figure 7.14). In most cases, the contents of
hybrid blocks are in the range of [1−6] use-cases and feature implementations. Another reason
for this good result is that a common vocabulary is used in the use-case descriptions and feature
implementations, thus lexical similarity was a suitable tool.

The column (k-Topics) in Table 7.18 represents the number of term-topics. All feature names
produced by our approach, in the column (Feature Name) of Table 7.18, represent the names

7.4. Mobile Media Case Study 161

of the use cases. For example, in the FM of Mobile Media [Tizzei et al., 2011] there is a feature
called sorting. The name proposed by our approach for this feature is view sorted photos and its
description is "the device sorts the photos based on the number of times photo has been viewed".

Table 7.19 : The relational context for feature documentation.

Relational context: appears-with C
re

at
e

al
b

u
m

im
p

l.

D
el

et
e

al
b

u
m

im
p

l.

C
re

at
e

p
h

o
to

im
p

l.

D
el

et
e

p
h

o
to

im
p

l.

V
ie

w
al

b
u

m
im

p
l.

R
et

ri
ev

e
d

at
a

im
p

l.

E
xc

ep
ti

o
n

h
an

d
li

n
g

im
p

l.

E
d

it
p

h
o

to
la

b
el

im
p

l.

So
rt

in
g

im
p

l.

Fa
vo

u
ri

te
s

im
p

l.

View Album 5 5 5 5 5 5

Add Photo 5 5 5 5 5 5

Delete Photo 5 5 5 5 5 5

View Photo 5 5 5 5 5 5

Add Album 5 5 5 5 5 5

Delete Album 5 5 5 5 5 5

Provide Label 5 5 5 5 5 5

Store Data 5 5 5 5 5 5

Remove Data 5 5 5 5 5 5

Retrieve Data 5 5 5 5 5 5

Exception handling 5

View Sorted Photos 5 5

Edit Label 5 5

View Favourites 5

Set Favourites 5

The RCF corresponding to our approach contains two formal contexts and one relational
context. The first formal context represents the use-case diagrams. The second formal context
represents feature implementations. The relational context of Mobile Media illustrated in Table
7.19. For Mobile Media case study, two lattices of the CLF are represented in Figure 7.14.

Figure 7.14 : The concept lattice family of the relational context family for features documentation.

162 Chap 7. Experimentation

7.4.2.3 FM Reverse Engineering

The mined and documented features for Mobile Media are stored in the product-by-feature ma-
trix. Table 7.20 shows the product-by-feature matrix for Mobile Media software variants. We rely
on FCA to identify the FM of these software variants. First, a formal context, where objects are
product variants and attributes are features (cf. Table 7.20), is defined. The corresponding AOC-
poset is then calculated (cf. Figure 7.15).

Table 7.20 : The Product-by-feature matrix for Mobile Media software product variants.

M
o

b
il

e
M

ed
ia

D
el

et
e

al
b

u
m

D
el

et
e

p
h

o
to

A
d

d
al

b
u

m

A
d

d
p

h
o

to

V
ie

w
al

b
u

m

R
et

ri
ev

e
d

at
a

E
xc

ep
ti

o
n

h
an

d
li

n
g

V
ie

w
so

rt
ed

p
h

o
to

s

E
d

it
la

b
el

Se
t/

V
ie

w
fa

vo
u

ri
te

s

Release−1 6 7 7 7 7 7 7

Release−2 6 7 7 7 7 7 7 3

Release−3 6 7 7 7 7 7 7 3 3

Release−4 6 7 7 7 7 7 7 3

Product-by-feature matrix
(6 the root feature; 7 mandatory feature; 3 optional feature)

Figure 7.15 : The AOC-poset for the formal context of Table 7.20.

Based on the AOC-poset in Figure 7.15, we identify the FM which is representing the mined
and documented features from Mobile Media case study. Figure 7.16 shows the mined FM for
Mobile Media. The resulting FM describes exactly the given product configurations. The needed
time to identify the FM is equal to 441 ms. We should mention that the extracted FM in Figure
7.16 was built using the REVPLINE approach with our notations (see legend of the Figure 7.16).

The mined FM is correct based on the given formal context. The original FM of Mobile Media
consists of: two abstract features, eight concrete features (i.e. four optional features and four
mandatory features), three levels of hierarchy and no cross-tree constraints. The REVPLINE

7.4. Mobile Media Case Study 163

Figure 7.16 : The extracted FM from Table 7.20.

approach identifies ten feature implementations from Mobile Media source code. The extracted
FM consists of ten concrete features (i.e. four optional features and six mandatory features) and
four cross-tree constraints.

The feature names in the mined FM are very close to the feature names in the original FM.
For instance, in the original FM there is a feature called "sorting", while the name becomes
"view sorted photos" in the mined FM. Our approach extracts concrete features from a collec-
tion of software product variants. The mined FM identifies the dependency between the mined
features.

Listing 7.5 shows the mined FM as SXFM format10. SXFM is for simple XML feature model
format used in SPLOT homepage11. The REVPLINE generates FM in several formats such as
FeatureIDE, Dot file and SXFM format. The SXFM format can be used online through SPLOT’s
feature model editor. To get all information from SXFM file, Java parser is available for reading
the SXFM file at SPLOT homepage.

We can note that the extracted FM by our approach presents a unique and consistent FM.
Moreover, the mined FM is introducing new constraints that do not exist in the original FM
(the manually designed FM by the authors of Mobile Media case study). Figure 7.17 shows the
extracted FM from Mobile Media via FeatureIDE plugin [Thüm et al., 2014].

Results show that precision appears to be not very high for ArgoUML-SPL (i.e. 68%). This
means that many of the identified product configurations of the mined FM are extra configu-
rations (not in initial set that is defined by the original FM). Considering the recall metric, it is
value is 100% for ArgoUML-SPL. This means that product configurations defined by the initial

10Available at : http://gsd.uwaterloo.ca:8088/SPLOT/models/temp_models/model_20140321_460214112.xml
11http://www.splot-research.org/

http://gsd.uwaterloo.ca:8088/SPLOT/models/temp_models/model_20140321_460214112.xml
http://www.splot-research.org/

164 Chap 7. Experimentation

<feature_model name="Mobile Media">
<feature_tree>
:r Mobile Media(_r)

:m Base(_r_1)
:m Delete album(_r_1_3)
:m Delete photo(_r_1_4)
:m Add album(_r_1_5)
:m Add photo(_r_1_6)
:m View album(_r_1_7)
:m Retrieve data(_r_1_8)
:o AND 1(_r_10)

:m View sorted photos(_r_10_11)
:m Edit label(_r_10_12)

:g (_r_16) [1,1]
: Exception handling(_r_16_17)
: Set-View favourites(_r_16_21)

</feature_tree>
<constraints>
constraint_1:~_r_10_11 or ~_r_16_17
constraint_4:~_r_10_12 or ~_r_16_21
constraint_2:~_r_10_12 or ~_r_16_17
constraint_3:~_r_10_11 or ~_r_16_21
</constraints>
</feature_model>

LISTING 7.5 : The mined FM as SXFM format.

Figure 7.17 : The mined FM from Mobile Media via FeatureIDE plugin.

FM are included in the product configurations derived from the mined FM. Considering the
F-Measure metric, our approach has value 80%.

7.5. Reverse Engineering FMs from Samples of Program Configurations 165

7.5 Reverse Engineering FMs from Samples of Program Configurations

The goal of this section is to show other results obtained by our approach12 from a set of program
configurations (samples). We ran experiments on 9 case studies. The number of products and
features vary from a case study to another. In addition, these case studies are well known in SPL
domain and well documented; their feature models are available for comparison to our results
so as to validate our proposal.

We ran experiments on 9 product configurations: video on demand-SPL [Haslinger et al.,
2011] [Acher et al., 2013a], wiki engines [Acher et al., 2012], mobile phone [Davril et al., 2013],
DC motor [Ryssel et al., 2011], berkeley-DB [Xue, 2013], graph Product Line [Lopez-Herrejon and
Batory, 2001], Wikipedia [Bécan et al., 2013], cell phone-SPL [Haslinger, 2012] and sample set of
clock configurations [She, 2008]. In the last two cases, our goal was only to show the scalability
of our approach (without evaluation metrics). We generated large matrices and we used them
as input of our approach.

Table 7.21 summarizes the results obtained. We present our results according to some cri-
teria such as number of products and features, base, -and, xor and or constraints. In addition
to the cross-tree constraints (requires and excludes). Finally, we present the execution time for
each case study.

Table 7.21 : The results of the product configurations that are identified by the mined FMs.

Group of Features CTCs Evaluation Metrics

case study N
u

m
b

er
o

fP
ro

d
u

ct
s

N
u

m
b

er
o

fF
ea

tu
re

s

B
as

e

A
to

m
ic

Se
to

fF
ea

tu
re

s

In
cl

u
si

ve
-o

r

E
xc

lu
si

ve
-o

r

R
eq

u
ir

es

E
xc

lu
d

es

A
lg

o
ri

th
m

ex
ec

u
ti

o
n

ti
m

es
\

(i
n

m
s)

P
re

ci
si

o
n

R
ec

al
l

F
-M

ea
su

re

1 Video on demand 16 12 7 7 7 7 572 66% 100% 80%
2 Wiki engines 8 21 7 7 7 7 7 7 555 54% 100% 70%
3 Graph product line 8 18 7 7 7 7 7 551 62% 100% 76%
4 Berkeley DB 10 43 7 7 7 7 7 7 661 50% 100% 66%
5 Mobile phone 5 5 7 7 7 406 70% 100% 82%
6 DC motor 10 15 7 7 444 83% 100% 90%
7 Wikipedia 10 14 7 7 7 7 552 72% 100% 84%
8 Cell phone-SPL 16 13 7 7 7 7 7 7 486 51% 100% 68%
9 Clock 4 6 7 7 7 486 60% 100% 75%

10 1000×27 matrix 1000 27 7 7 7 7 7 7 46811 - - -
11 1500×137 matrix 1500 137 7 7 7 7 7 7 60350 - - -

For correctness, we performed a straightforward test based on the semantics of FM which
is defined as the set of their accepted configurations. We computed the list of products of our

12Source code: https://code.google.com/p/refmfpc/

https://code.google.com/p/refmfpc/

166 Chap 7. Experimentation

reversed-engineered feature models, again using the FAMA tool suite13, and compared them
with the list of products originally used as input.

Results show that precision appears to be not very high for all case studies. This means that
many of the identified product configurations of the mined FM are extra configurations (not in
initial set that is defined by the original FM). For the precision metric, our approach has values
that range from 50% to 83%. Considering the recall metric, it is value is 100% for all case studies.
This means that product configurations defined by the initial FM are included in the product
configurations derived from the mined FM. Considering the F-Measure metric, our approach
has values that range from 66% to 90%. This means that our approach is efficient in many cases.

Theory and experiments show that if the generated AOC-poset has only one bottom concept
(containing one product) there is no exclusive-or relation or exclude constraints from the given
product configurations. Time needed to extract the FM (cf. Table 7.21) in ms includes all pro-
cesses (starting from converting the product configurations to formal context and generate the
AOC-poset, in addition to analyse the AOC-poset and generate the FM). These execution time
was always reasonable on real SPL.

7.6 Conclusion

In this chapter, we presented a number of experiments to validate our approach. The experi-
ments have proven the effectivity of our approach for:

¶ Identifying the implementation of a feature as a set of source code elements (i.e. OBEs),
which enable a quick understanding of the software variant features and facilitate the
maintenance tasks.

· Documenting the mined feature implementations by assigning a name and a description
for each feature implementation. The feature documentation process enables a quick un-
derstanding of the feature functionality (feature comprehension) and explains the role of
this feature in software product variants.

¸ Reverse engineering of the feature model based on the mined and documented features.
Identifying the constraints (dependencies) between features of the feature model is an im-
portant task. The identified feature model is assisting the expert by better understanding
of the software members, software features and constraints between features.

¹ The REVPLINE approach allows us to achieve the most important tasks in order to re-
engineering software product variants into a SPL for systematic reuse: ¬ identifying the
feature implementations, ­ documenting the identified feature implementations and ®

synthesizing the feature model (feature dependencies).

º In our approach we consider only Java software systems. This is representing a threat to
prototype validity that limits our implementation ability to deal only with software variants
that are developed based on Java language. There are other threats to validity that are
mentioned in the previous chapters (cf. Chapter 4, Chapter 5 and Chapter 6).

In general, we showed that our approach has assisted the construction of SPLs from exist-
ing software variants, by facilitating the mining and documenting the features from the source

13http://www.isa.us.es/fama/

http://www.isa.us.es/fama/

7.6. Conclusion 167

code of these variants. Finally, the mined and documented features are expressed as the feature
model which showed the constraints between features.

For all case studies, the feature mining results validated the relevance and the performance
of our proposal as most of the features were correctly identified. The feature documentation
results of this evaluation showed that most of the features have been documented correctly. The
FM reverse engineering results showed that most of the features and their associated constraints
are correctly identified. The evaluation metrics values (precision, recall and F-measure) showed
that the obtained results are not equivalent in the three case studies.

Part IV

Conclusion and Perspectives

169

C
H

A
P

T
E

R

8
CONCLUSION AND FUTURE DIRECTIONS

The value of a man resides in what he gives and not in what he
is capable of receiving.

Albert EINSTEIN

Preamble

In this chapter, we summarize our main contributions and discuss future directions of research.
We summarize the results and conclusions of the dissertation. We also discuss opportunities for
extending our work. In Section 8.1, we present the main contributions of REVPLINE approach.
Section 8.2 presents the future directions of our approach.

172 Chap 8. Conclusion and Future Directions

8.1 Summary of Contributions

The main objective of this dissertation is to re-engineering software variants into a SPL. This
problem is crucial and one of the most studied issues in the field of SPLE. We present here

a summary of our contributions as follows.

¶ State of the Art. In Chapter 3, we reviewed the techniques that have been proposed for
building a SPL from existing software variants. First, we introduced and discussed the
main approaches of feature location. Then, we discussed and gave an overview of the
main approaches related to source code comprehension. Finally, we discussed the exist-
ing approaches for reverse engineering FMs. In each category we present a comparison of
the selected approaches based on a set of criteria that we consider relevant to our contri-
butions. At the end of each contribution chapter, we add a summary of our approach with
the same criteria.

· Mining features from the source code of a set of software variants. We proposed in Chap-
ter 4 the first contribution of the REVPLINE, which is a new approach for feature location
in a collection of software product variants. REVPLINE extracts features by using lexical or
structural similarity. In this approach, we aim at providing an approach based on several
techniques such as FCA, LSI and source code dependency in order to contribute in pro-
viding a solution for feature location in a collection of software product variants. In our
approach we exploit commonality and variability across software variants at source code
level to apply the LSI method in an efficient way. In our feature location approach each
feature implementation corresponds to a set of OBEs.

¸ Documenting the mined feature implementations. We proposed in Chapter 5 the second
contribution of the REVPLINE: a new approach for feature documentation. Our approach
aims to document the mined feature implementations by giving names and descriptions,
based on the feature implementations and use-case diagrams of software variants. The
novelty of our approach is that it exploits commonality and variability across software vari-
ants, at feature implementations and use-cases levels, to run Information Retrieval meth-
ods in an efficient way. The features documentation process is based on the source code
and on the use-case diagrams of software variants. Feature implementations can be docu-
mented also using the names of the OBEs corresponding to atomic blocks when use-cases
are missing. We aim at providing an approach based on several techniques (i.e. FCA, LSI
and RCA).

¹ Reverse engineering FM from the mined and documented features. We proposed in
Chapter 6 the third contribution of the REVPLINE approach. We presented a new ap-
proach to organize the mined documented features into a feature model. Features are
organized in a tree which highlights mandatory features, optional features and feature
groups (and, or, xor groups). The feature model is completed with requirement and mutual
exclusion constraints. We rely on Formal Concept Analysis and software configurations to
mine a unique and consistent feature model. The resulting FM covers exactly the given
software configurations.

º We presented a number of experiments to validate our approach in Chapter 7. The ex-
periments have proven the effectivity of REVPLINE for: mining a set of features from the
source code of software variants as a set of atomic blocks where each block consists of a

8.1. Summary of Contributions 173

set of OBEs, associating a documentation (name and description) for each feature imple-
mentation to enable a quick understanding of feature functionality and assisting an expert
in building real FMs, based on the mined and documented features.

» To fully validate our proposal, we implemented a prototype of REVPLINE approach.
REVPLINE implementation is deployed as a standalone application. In Appendix A, we
presented our implementation. Firstly, we gave the architecture of REVPLINE in general
as a component diagram. Then, we presented each component and its role. Finally, we
presented the statistical information regarding REVPLINE source code such as number of
packages and classes.

In order to find our position between the selected work presented in state of the art Chapter
3, we reconsider the criteria presented in this chapter, and we integrate our work in it (Thesis
REVPLINE), as we can see in Table 8.1. The formal context consists of articles as objects and
the criteria as attributes. In this table, we show part of this formal context that relates to our
approach.

Table 8.1 : The selected criteria used to categorize the selected work with REVPLINE approach.

Ta
rg

et
So

ft
w

ar
e

Ja
va

So
u

rc
e

C
o

d
e

Fe
at

u
re

Lo
ca

ti
o

n

C
o

d
e-

To
-F

ea
tu

re
Tr

ac
ea

b
il

it
y

Li
n

k

So
u

rc
e

C
o

d
e

C
o

m
p

re
h

en
si

o
n

Fe
at

u
re

D
o

cu
m

en
ta

ti
o

n

R
ev

er
se

E
n

gi
n

ee
ri

n
g

F
M

s

Fu
tu

re
D

ir
ec

ti
o

n
s

Si
n

gl
e

So
ft

w
ar

e

So
ft

w
ar

e
Fa

m
ily

A
u

to
m

at
ic

al
ly

M
an

u
al

ly

H
ig

h
Le

ve
lM

o
d

el
s

Lo
w

Le
ve

lM
o

d
el

s

D
yn

am
ic

A
n

al
ys

is

Fe
at

u
re

E
vo

lu
ti

o
n

Im
p

ac
tA

n
al

ys
is

Thesis REVPLINE 8 8 8 8 8 8

......

We generate the corresponding lattice, shown in Figure 8.1, which clarifies our position ac-
cording to the other works. We can notice that for our fixed objectives, there is not any work that
meets them all together (no concepts below Thesis REVPLINE). We notice also that we still miss
supporting feature evaluation, dynamic analysis and impact analysis.

174 Chap 8. Conclusion and Future Directions

Figure 8.1 : Our position in the lattice of related work.

8.2 Future Directions

Here, we present a list of directions of research - regarding re-engineering of software variants
into SPL - which we believe to be interesting to explore.

8.2.1 Extending the Scope

• To re-engineer an existing family of software variants into a SPL, several important prereq-
uisites must be satisfied. First, commonality and variability among the product variants
should be explicitly identified and must be systematically managed (our current work).
Second, we should be able to derive a new software product from reusable components,
so-called SPL core assets (future direction).From this identification of commonality and
variability among the products, as they provide a basis for scoping an SPL, we can design
first-cut SPL core assets. A wide range of variability techniques can be applied to design
such SPL core assets from our knowledge of each feature and its implementation. The
role of variability techniques such as Java conditional [Xue, 2013] is to make core assets
reusable in multiple product variants. Variability should make such adaptive reuse easy.
Such a process should allow the experts to drive new products based on the built core as-
sets and mined FMs.

• In our work, we don’t consider feature evolution. A feature always has the same implemen-
tation in all software product variants where it is present. As a perspective of our work, we

8.2. Future Directions 175

plan to study the feature evolution in a family of software product variants. Actually, in
our work we study the software variants which differ only in term of added or removed
features. But when we consider the last 4 versions of mobile media we note that all mobile
photo software variant features evolve with time. For the first 4 versions of mobile media
we deal only with photo after that we deal with media such as photo, music, video in the
recent versions. For example, feature "edit photo label" in release 3 evolves to be "edit me-
dia label" in release 8 of mobile media. The advantage of our current work is that we detect
any level of variability except if the name of OBE changes from version to another version.
There are needs to study this topic in more details.

• REVPLINE assumes that commonality and variability between software product variants
can be determined statically, such as software product variants of the mobile media used
in our evaluation. However, there exist systems that only behave differently depending on
runtime parameters. For such software variants, we need to extend our approach with dy-
namic analysis techniques in order to obtain feature implementations of different software
product variants at runtime.

8.2.2 Improving the Approach with Natural Language Processing Tools

• The current work extracts a FM which consists of two levels of hierarchy. As a perspective
of this work, we plan to enhance the extracted FM by increasing the levels of hierarchy
in addition to splitting the group of features into a set of groups based on the lexical or
structural similarity. We also plan to automatically propose names for the parent features
to reflect the roles of its features.

• In the current work, we mainly rely on the OBE names and use-cases to documenting
the mined feature implementations. As a perspective of this work, we plan to use part
of speech tagging to document the mined features directly from feature implementations.
Our goal is to develop a cluster-naming process that involves selecting the most frequently
occurring phrases from among all of the OBE names in the cluster (feature implementa-
tion). To identify the most frequently occurring phrases we will use the Stanford Part-of-
Speech (POS) tagger1 to tag each term in the OBE names with its POS. The OBE names are
then pruned to retain only nouns, adjectives, verbs and other terms. Frequent item-sets
are then discovered for each of the clusters. In our context, frequent item-sets are sets of
terms that frequently co-occur together in the OBE names assigned to the same cluster.
To select the name for a cluster, all of its frequent item-sets of maximum size, F I Smax are
selected. Next, all OBE names in the cluster are examined. In each OBE name, the shortest
sequence of terms which contains all the words in F I Smax is selected as a candidate name.
Finally, the shortest candidate name is selected, as this reduces the verbosity of the feature
name.

8.2.3 Improving techniques

• In the current work, we mainly rely on FCA and RCA as clustering techniques. As a perspec-
tive of this work, we plan to use search based algorithms as clustering technique instead
of FCA and RCA. Furthermore, there is a limitation of using basic FCA as clustering tech-
nique. Basic FCA deals with binary formal context (1,0) and this affects on the quality of

1http://nlp.stanford.edu/software/tagger.shtml

http://nlp.stanford.edu/software/tagger.shtml

176 Appendix . Conclusion and Future Directions

the result. For example, the similarity value 0.99 is equal to 0.70 and 0.69 is equal to 0.
There are FCA approaches (cf. [Kaytoue et al., 2010]) that allows us to use numerical simi-
larity values and avoid the problem Abe-books web-have basic with FCA. We plan to apply
a meta-heuristic algorithm on both common block and blocks of variation to identify sub-
groups of elements that characterize the implementation of each possible feature based
on the lexical and structural similarity between the OBEs of each block.

• For the current feature location approach, we have not identified junctions between fea-
tures as junctions. We consider junction between features as feature in current work. As
perspective of this work, we plan to distinguish features from the junctions. From the ex-
perience on ArgoUML we design such a principle: a junction corresponds to a set of OBEs
that are used to implement more than one feature. In the source code, OBEs that imple-
ment a feature can use OBEs from a junction, but not the reverse.

A
P

P
E

N
D

I
X

A
IMPLEMENTATION

Make it work.
Make it work right.

Make it work right and fast.

Edsger DIJKSTRA, DonaldKNUTH, C.A.R. HOARE

Preamble

In this appendix, we describe our implementation of REVPLINE, which we developed to validate
our proposal. Section A.1 gives an introduction of this appendix and shows the architecture of
REVPLINE in general as a component diagram. Then, we explain all components of REVPLINE
in Section A.2: we present input, output and role of each component. Section A.3 presents the ex-
ternal libraries that we used in REVPLINE. Section A.4 presents the eclipse plugins that we used in
REVPLINE. In Section A.5, we present the statistical information regarding REVPLINE source code
such as the number of packages and classes. Finally, in Section A.6, we conclude this appendix.

178 Appendix A. Implementation

A.1 Introduction

In this appendix, we present the REVPLINE implementation1. We show a simplified structural
view of the architecture of REVPLINE as a component diagram. Furthermore, we describe

each component input/output in addition to its task. Then we present statistical information
regarding REVPLINE source code such as number of packages, classes and so on.

Figure A.1 provides an overview of the REVPLINE architecture. In the next section, we de-
scribe each component and explain the role of this component in REVPLINE approach. We also
present the used plugins and libraries and explain the role of each plugin/library in our work.

Figure A.1 : A simplified structural view of the architecture of REVPLINE.

A.2 REVPLINE Components

In this section, we present all components that are used in REVPLINE tool. We provide more
details about these components. In addition, we provide some examples according to the
component importance. We used some tools to give a general picture and visualization about
REVPLINE implementation.

o The ToXMLBuilder Component. The ToXMLBuilder component generates an XML file for each
product. This XML file contains all OBEs for the given software. Moreover the XML file contains
structural information between OBEs (e.g. loginInfo method is inside the Wireless class). The

1REVPLINE source code : https://code.google.com/p/revpline-approach/

https://code.google.com/p/revpline-approach/

A.2. REVPLINE Components 179

Eclipse JDT (Java Development Tools) and the Eclipse AST (Abstract Syntax Tree) can be used
to access, modify and read the elements of a Java program. ASTs are broadly used in numerous
fields of software engineering. AST is used as a representation of source code [Rakic and Budi-
mac, 2013]. Figure A.2 shows the Java source code of network application. We rely on the AST
parser to parse this Java program as an XML file. Figure A.3 shows the extracted XML file.

Figure A.2 : Simple Java program "network application".

Figure A.3 : The OBEs of network application as XML file.

180 Appendix A. Implementation

In REVPLINE we rely on the AST parser to extract all source code elements (i.e. OBEs) from
each variant. The XML file in Figure A.3 represents all OBEs of network application (e.g. package
"network.settings", class "Wireless", class "NetworkSettings").

o The FormalContextGenerator Component. This component accepts as input a set of XML files.
Based on the input XML files, this component generates the formal context (cf. Listing A.1). In
this formal context, objects are product variants (e.g. network-1, network-2) and attributes are
OBEs (e.g. class "Wireless", class "NetworkSettings"). This table is serialized as a CSV (comma
separated values) file. The CSV is an open computer format representing tabular data values
separated by commas.

The formal context table also can serialized as an RCFT file. The RCFT file format has been
designed to store relational context families (in addition to the formal context). It is somehow
similar to the CSV format, but uses | as a separator (cf. Listing A.4). In RCFT you can define either
formal or relational contexts, while CSV file defines only the formal context.

, package (network), class (Wireless, network), class (Bluetooth, network), ...
Network-1 , x , x , , ...
Network-2 , x , x , x , ...
Network-3 , x , x , , ...
Network-4 , x , x , x , ...

LISTING A.1 : Formal context describing software variants by their OBEs.

o The LatticeBuilder-1 Component. Starting from the formal context table, this component
builds the concept lattice or the AOC-poset for each formal context. For doing so, the
LatticeBuilder-1 component uses an external library, called eRCA2 to produce DOT3 file con-
taining the concept lattices of these software variants. DOT is a plain text graph description
language (cf. Listing A.6). The eRCA is an implementation of the FCA and RCA algorithms. This
component accepts as input the formal context and produces the concept lattice as a DOT file.
Listings A.4 and A.3 show an example of formal context in different formats.

o The LatticeViewer Component. This component aims to visualize the concept lattice or the
concept lattice family. This component accepts as input the DOT file and produces as output
the AOC-poset, concept lattice or the concept lattice family in many formats such as JPG, PNG,
EPS, GIF, SVG, PDF. Figure A.7 shows an example of the visualization of a concept lattice family.
Figure A.4 shows the visualization of the AOC-poset for the formal context of Listing A.3. Figure
A.5 shows the visualization of the concept lattice for the formal context of Listing A.3.

The LatticeViewer component represents the concept lattices as a graph using the DOT file.
We will mainly use scalable vector graphics (SVG). SVG is an XML-based file format for de-
scribing vector graphics. For doing so, visualization component uses an external library, called
Graphviz4 to produce SVG file. Graphviz is open source graph visualization software. The SVG
file can be modified in graphical editors.

2https://code.google.com/p/erca/
3http://www.graphviz.org/content/dot-language
4http://www.graphviz.org/

https://code.google.com/p/erca/
http://www.graphviz.org/content/dot-language
http://www.graphviz.org/

A.2. REVPLINE Components 181

Figure A.4 : The AOC-poset for the formal context of Listing A.3.

Figure A.5 : The concept lattice for the formal context of Listing A.3.

o The BlockOfOBEsGenerator Component. This component identifies the common block of
OBEs and a set of blocks of variation. This component accepts as input the DOT file which rep-
resents the AOC-poset. Then it produces as output the common block and block of variations
by parsing the DOT file.

182 Appendix A. Implementation

o The LexicalSimilarityGenerator Component. This component uses to measure the lexical sim-
ilarity between OBEs of each block (common block or blocks of variation). This component ac-
cepts as input a block of OBEs and produces as outputs the lexical similarity matrix (numerical
values) in addition to the formal context that describes this similarity.

o The CombinedSimilarityGenerator Component. This component uses to measure both lexical
and structural similarity between OBEs of the given block. This component accepts as input a
set of blocks and produces the combined matrix of each block which represents the structural
and lexical similarity as a formal context.

o The LatticeBuilder-2 Component. This component produces the atomic blocks (i.e. feature
implementations) based on the given formal context representing similarity. This component
accepts as input a formal context and produces as output a set of clusters: each one represents
an atomic block. To identify the atomic blocks based on the given formal context, this compo-
nent uses again eRCA to produce the DOT file.

o The AtomicBlockGenerator Component. This component identifies the atomic blocks based
on the entrance DOT file. In other words, this component uses to parse DOT file and identify
each atomic block as a set of OBEs.

o The XMLBuilder Component. This component allows the expert to draw the use-case dia-
grams of software variants and save them as an XML file. In doing so, this component uses an
external eclipse plugin, called UML2 plugin to produce XML file. Figure A.6 shows an example
of use-case diagram as an XML file corresponding to the use-case diagram of Figure A.8.

Figure A.6 : Use-case diagram as XML file.

A.2. REVPLINE Components 183

o The RelationalContextGenerator Component. The goal of this component is to generate the
relational context family for the feature documentation process. This component accepts as
input atomic blocks of OBEs (feature implementations) and the XML files of use-case diagram
and produces as output the relational context family based on software configurations. This
component produces the relational context family as a single RCFT File. Listing A.5 shows an
example of relational context family.

o The ConceptLatticeFamilyBuilder Component. This component accepts as input the relational
context family and produces as output the concept lattice family as a DOT file. This component
plays an important to reduce the search space of the feature documentation process by exploit-
ing commonality and variability across software variants. To build the concept lattice family
based on the relational context family, this component uses the external library eRCA.

o The HybridBlockGenerator Component. This component accepts as input the DOT file which
contains the concept lattice family which has been generated based on the relational context
family. This component collects use-cases and feature implementations into a set of clusters
(hybrid blocks) based on the concept lattice family. This component explores the concept lattice
family and filters it to produce a set of hybrid blocks from bottom to top.

o The TextualSimilarityGenerator Component. This component uses to measure the textual (lex-
ical) similarity between use-cases and feature implementations of each hybrid block. This com-
ponent accepts as input the hybrid block which consists of a collection of use-cases and feature
implementations. This component produces as output the lexical similarity matrix (numerical
values) in addition to the formal context that describes this similarity.

o The LatticeBuilder-3 Component. This component accepts as input the formal context which
describes the textual similarity between use-cases and feature implementations for each hy-
brid block. This component produces the concept lattice for the given formal context. This
component uses the external library eRCA to produce the DOT file which represents the feature
documentation.

o The FeatureDocumentationGenerator Component. This component identifies the feature doc-
umentation by parsing the DOT file (concept lattice). In other words, this component uses to
parse DOT file and extract the feature documentation for each implementation based on the
use-case name and description.

o The FeatureNameBuilder Component. This component identifies the feature name based on
the OBE names. When the use-case diagrams of software variants are missing, we must use an-
other way to document the mined feature implementation. This component uses to document
the mined feature implementation directly from the identifier names of each atomic block.

184 Appendix A. Implementation

o The Product-By-FeatureMatrixBuilder Component. This component uses to build the product-
by-feature matrix which contains the mined and documented features from software variants.
REVPLINE aims to identify the feature model that describes software variant features. For doing
so, this component builds the product-by-feature matrix as a formal context table. This table is
serialized as RCFT file (cf. Listing A.2).

| | Feature A | Feature B | Feature C | Feature D | Feature E | ...
|Software-1 | x | x | | x | | ...
|Software-2 | x | x | x | x | x | ...
|Software-3 | x | x | | x | | ...

LISTING A.2 : Formal context describing software variants by their features.

o The LatticeBuilder-4 Component. This component accepts as input the formal context which
describes software configurations (the product-by-feature matrix). This component produces
the AOC-poset for the given formal context. This component uses the external library eRCA to
produce the AOC-poset as DOT file.

o The FeatureModelBuilder Component. The feature model builder component uses to parse
the DOT file and extract the feature model from the product configurations. The resulting fea-
ture models covers the given formal context (i.e. product-by-feature matrix). This component
builds the FM based on the extracted software configurations. Feature model component uses
an external plugin, called FeatureIDE [Thüm et al., 2014] to represent the extracted FM. By pars-
ing the DOT file we get the FM with its constraints as an XML file and other format such as SXFM
file. SXFM is for Simple XML Feature Model format. SXFM format is used in SPLOT homepage5.
REVPLINE also produces the FM as DOT file6.

A.3 External Libraries

In REVPLINE we use two external libraries: eRCA and Graphviz. We describe each library. More-
over, we explain the role of each library in REVPLINE. We provide some illustrative examples to
explain these libraries.

A.3.1 eRCA

REVPLINE uses eRCA as external library. eRCA is a framework that eases the use of Formal and
Relational Concept Analysis, a neat clustering technique. eRCA provides easy import of formal
contexts from CSV files (resp. relational contexts from RCFT files). eRCA also provides easy ex-
port of the produced lattices to DOT graphs (that can be later on exported to JPG, PNG, EPS and
SVG using the Graphviz library).

For FCA, the formal context must be built as CSV or RCFT files. After that eRCA uses these
files as inputs and generates the lattices as DOT file. For RCA, the relational context family must
be built as RCFT files. After that eRCA uses these files as inputs and generates the concept lattice
family as DOT file.

5http://gsd.uwaterloo.ca:8088/SPLOT/index.html
6http://www.lirmm.fr/~seriai/encadrements/theses/rafat/index.php?n=T.FMD

http://gsd.uwaterloo.ca:8088/SPLOT/index.html
http://www.lirmm.fr/~seriai/encadrements/theses/rafat/index.php?n=T.FMD

A.3. External Libraries 185

, female, juvenile, adult, male,
girl , x , x , , ,
woman , x , , x , ,
boy , , x , , x ,
man , , , x , x ,

LISTING A.3 : Formal context as CSV File.

FormalContext Human
	female	juvenile	adult	male
girl	X	X		
woman	X		X	
boy		X		X
man			X	X

LISTING A.4 : Formal context as RCFT File.

Listing A.3 and Listing A.4 show the same formal context in two formats: CSV and RCFT. In
the first one, we represent the formal context as a CSV file. In the second example, we represent
the same formal context as RCFT file. This formal context has been taken from the web page of
Uta Priss7.

Listing A.5 shows an example of relational context family. It contains two formal contexts
(Animals and Places) and one relational context (Lives).

FormalContext Animals
| |
| eagle |
| bat |
| catfish |

FormalContext Places
| |
| mountain |
| cave |
| river |

RelationalContext lives
source Animals
target Places
scaling com.googlecode.erca.framework.algo.scaling.Wide
	mountain	cave	river
eagle	x		
bat		x	
catfish			x

LISTING A.5 : The relational context family for animals as RCFT File.

In REVPLINE we rely five times in eRCA. Firstly, we rely on eRCA to extract common block
and blocks of variation. Secondly, to cluster OBEs based on the lexical/structural similarity into
atomic blocks. Thirdly, to cluster use-cases and feature implementations into hybrid blocks.
Fourthly, to cluster feature name and implementation of the hybrid block based on the lexical
similarity. Fifthly, to extract the AOC-poset which represents software configurations in order to
extract an FM.

7http://www.upriss.org.uk/fca/fcaintro.html

http://www.upriss.org.uk/fca/fcaintro.html

186 Appendix A. Implementation

A.3.2 Graphviz

Graphviz is open source graph visualization software. Graph visualization is a way of repre-
senting structural information as diagrams of abstract graphs and networks. It has important
applications in networking, software engineering, database and web design, and in machine
learning. The Graphviz layout programs take descriptions of graphs in a simple text language
(e.g. DOT), and make diagrams in useful formats, such as images and SVG for web pages, PDF or
Postscript for inclusion in other documents, or display in an interactive graph browser. Graphviz
has many useful features for concrete diagrams, such as options for colors, fonts, tabular node
layouts, line styles, hyper-links, and custom shapes. The DOT file is the perfect format if we deal
with directed graphs. DOT draws directed graphs as hierarchies8.

digraph G {
rankdir=BT;
subgraph cluster_Motion {
label = Motion;
2126858590 [shape=record,style=filled,fillcolor=orange,label="{Concept_0||fly\nswim\n}"];}
subgraph cluster_Animals {
label = Animals;
1247017815 [shape=record,style=filled,fillcolor=orange,label="{Concept_1|lives :
Concept_3\nmoves : Concept_0\n|eagle\nbat\ncatfish\n}"];
1335505632 [shape=record,style=filled,fillcolor=lightblue,label="{Concept_2|\n|}"];

1335505632 -> 1247017815}
subgraph cluster_Places {
label = Places;
344078580 [shape=record,style=filled,fillcolor=orange,label="{Concept_3|offers :
Concept_5\n|mountain\ncave\nriver\n}"];
1902716336 [shape=record,style=filled,fillcolor=lightblue,label="{Concept_4|\n|}"];

1902716336 -> 344078580}
subgraph cluster_Food {
label = Food;
774471675 [shape=record,style=filled,fillcolor=orange,label="{Concept_5|eatBy :
Concept_1\n|mouse\ninsect\nfish\n}"];
647057258 [shape=record,style=filled,fillcolor=lightblue,label="{Concept_6|\n|}"];

647057258 -> 774471675
} }

LISTING A.6 : The concept lattice family of Listing A.5 as DOT file.

Listing A.6 shows an example of DOT file. This DOT file was produced by eRCA external
library. In REVPLINE, the DOT file contains the most important information. We rely on the
DOT parser to get the common block of OBEs and blocks of variations. In addition, we rely on
the DOT file to get atomic blocks of OBEs (i.e. feature implementations). Also DOT file provides
us with feature name and description. Finally, we rely on the DOT file to extract the FM by
parsing the DOT file. From the DOT file we get the concept lattice and the concept lattice family
as a graph. Figure A.7 shows the graph obtained from the DOT file in the previous example.

8http://www.graphviz.org/pdf/dotguide.pdf

http://www.graphviz.org/pdf/dotguide.pdf

A.4. Eclipse Plugins 187

Figure A.7 : The SVG file of the DOT file of Listing A.6.

A.4 Eclipse Plugins

The Eclipse Modelling Framework9 (EMF) is a facility provided by the Eclipse IDE to implement
modelling languages and generate tools to manipulate instances of those languages from pro-
grams. We use in our tool two Eclipse plugins based on EMF: UML210 and FeatureIDE11. UML2
is an implementation of UML and therefore allows us to draw, load, modify and save use-case
diagrams. FeatureIDE is an Eclipse plugin for Feature-Oriented Software Development. We de-
scribe each plugin in addition to explain the role of these plugins in REVPLINE approach.

A.4.1 UML2 Plugin

The Unified Modeling Language (UML) is a visual language for capturing software designs and
patterns. The first version of UML was defined in 1994 and released by the Object Management
Group (OMG) in 1997 as UML v.1.1. The syntax and a semantics of UML are defined by the
OMG [Ambler, 2004]. UML2 is an EMF-based implementation of the Unified Modeling Lan-
guage (U MLT M) 2.x OMG metamodel for the Eclipse platform. The basic building block for
UML is a diagram. UML divides diagrams into structural diagrams and behavioral diagrams.
In our work, we use UML2 as external plugin. UML2 allows us to draw and save the use-case
diagrams of software variants (cf. Figure A.8).

9http://projects.eclipse.org/projects/modeling.emf
10http://www.eclipse.org/modeling/mdt/?project=uml2#uml2
11http://www.fosd.de/fide

http://projects.eclipse.org/projects/modeling.emf
http://www.eclipse.org/modeling/mdt/?project=uml2#uml2
http://www.fosd.de/fide

188 Appendix A. Implementation

Figure A.8 : UML2 plugin for Eclipse Juno.

A.4.2 FeatureIDE Plugin

FeatureIDE is an open-source framework for feature-oriented software development (FOSD)
based on Eclipse. FOSD is a paradigm for construction, customization, and synthesis of soft-
ware systems. FeatureIDE supports all phases of feature-oriented software development for the
development of SPLs: domain analysis, domain implementation, requirements analysis, and
software generation. Different SPL implementation techniques are integrated such as feature-
oriented programming (FOP), aspect-oriented programming (AOP), delta-oriented program-
ming (DOP), and preprocessors [Thüm et al., 2014]. In REVPLINE, the FeatureIDE plugin uses
to represent the mined FM with its constraints (cf. Figure A.9).

Figure A.9 : The graphical feature model editor of FeatureIDE.

A.5. Statistical information regarding REVPLINE source code 189

A.5 Statistical information regarding REVPLINE source code

In this section, we present the statistical information regarding REVPLINE source code such as
the number of packages, classes, methods and so on. We rely on the Moose12 technology to
get all needed information regarding the source code. Moose is a generic platform for engi-
neers that want to understand data in general and software systems in particular. We rely on the
VerveineJ13 parser to export the MSE14 file. But what exactly is MSE? MSE is the default file for-
mat supported by Moose. It is a generic file format and can describe any model. It is similar to
XML, the main difference being that instead of using verbose tags, it makes use of parentheses
to denote the beginning and ending of an element.

((FAMIX.Package (id: 202)
(name ’anotherPackage’)
(parentPackage (ref: 201)))

(FAMIX.Class (id: 2)
(name ’ClassA’)
(container (ref: 1))
(parentPackage (ref: 201)))

(FAMIX.Method
(name ’methodA1’)
(signature ’methodA1()’)
(parentType (ref: 2))
(LOC 2))

(FAMIX.Attribute
(name ’attributeA1’)
(parentType (ref: 2)))

(FAMIX.Inheritance
(subclass (ref: 3))
(superclass (ref: 2))))

LISTING A.7 : Snippet provides an example of a small model of the MSE file.

Listing A.7 shows an example15 of a small model of the MSE file. Figure A.10 shows the
Moose16 Finder open on a model. From this Figure we can see some statistical information
regarding the source code of REVPLINE approach. The interested reader can find more infor-
mation about our use of Moose, MSE, and VerveineJ in our website17 (simple tutorial).

We also use the CodeCity18 (visualize software system as a city) software to visualize
REVPLINE approach. CodeCity is an integrated environment for software analysis, in which
software systems are visualized as interactive, navigable 3D cities (cf. Figure A.11). The classes
are represented as buildings in the city, while the packages are depicted as the districts in which
the buildings reside. The visible properties of the city artifacts depict a set of chosen software
metrics. CodeCity accepts the MSE file only as input. To use CodeCity software the MSE file
must be in FAMIX 2.1 format, otherwise it won’t work. FAMIX is a family of meta-models19.
The Core of FAMIX is a language independent meta-model that describes the static structure of
object-oriented software systems.

12http://moosetechnology.org/
13http://www.moosetechnology.org/tools/verveinej
14http://www.themoosebook.org/book/internals/petit-parser/mse
15http://www.themoosebook.org/book/externals/import-export/mse
16Moose download : http://moosetechnology.org/download
17http://www.lirmm.fr/~seriai/encadrements/theses/rafat/uploads/T/mse.pdf
18http://www.inf.usi.ch/phd/wettel/codecity.html
19http://www.moosetechnology.org/docs/famix/3.0

http://moosetechnology.org/
http://www.moosetechnology.org/tools/verveinej
http://www.themoosebook.org/book/internals/petit-parser/mse
http://www.themoosebook.org/book/externals/import-export/mse
http://moosetechnology.org/download
http://www.lirmm.fr/~seriai/encadrements/theses/rafat/uploads/T/mse.pdf
http://www.inf.usi.ch/phd/wettel/codecity.html
http://www.moosetechnology.org/docs/famix/3.0

190 Appendix A. Implementation

Figure A.10 : The Moose Finder open on a model.

In Figure A.11, we represent classes of REVPLINE as buildings located in districts represent-
ing the packages where the classes are defined. The visual properties of the city artifacts reflect
metric values. For instance, the ReadDotFile class (in the process package) has 25 methods (the
building height), 44 attributes (building base size) and 1475 lines of code (color of the building,
from dark gray "low" to intense blue "high").

Table A.1 shows statistical information regarding REVPLINE implementation. We rely on in-
Fusion software20 to get this information. More information about REVPLINE implementation
is available at our website21.

Table A.1 : Statistical information regarding REVPLINE source code.

Metric Name Value
1 Total number of lines of code 29,379
2 Number of packages 34
3 Number of classes 143
4 Number of methods 1,115

20http://www.intooitus.com/products/infusion
21http://www.lirmm.fr/~seriai/encadrements/theses/rafat/index.php?n=T.In

http://www.intooitus.com/products/infusion
http://www.lirmm.fr/~seriai/encadrements/theses/rafat/index.php?n=T.In

A.6. Conclusion 191

Figure A.11 : Representation of a REVPLINE source code in CodeCity.

A.6 Conclusion

In this appendix, we presented the prototype implementation in Java. We also presented the
structural view of REVPLINE architecture as a component diagram, then we explained the role
of each component in the proposed approach. We presented the external libraries and plugins
we used in our prototype. We presented an example regarding some components for better
understanding.

LIST OF FIGURES

2.1 Costs for developing n kinds of systems as single systems compared to SPLE
[Clements and Northrop, 2002]. 13

2.2 Overview of an engineering process for software product lines [Apel et al., 2013]. . . . 14
2.3 Cell phone SPL feature model. 17
2.4 The clone-and-own approach. 19
2.5 The concept lattice for the context in Table 2.3 via Galicia. 21
2.6 The concept lattice for the context in Table 2.3 via Con Exp. 22
2.7 The concept lattice for the formal context of Table 2.3 via eRCA. 22
2.8 The AOC-poset for the formal context of Table 2.3 via eRCA. 23
2.9 The entities of the Mexican food example. 23
2.10 Concept 85, 73 and 38 of the Restaurant, MexicanDish and Ingredient concept lattice. 25
2.11 Part of the concept lattice family of the Mexican food example. 26
2.12 Graphical representation of the SVD (resp. reduced SVD) for TDM. 29

3.1 The basic elements of REVPLINE approach. 69

4.1 Feature location in product variants (inspired by [Xue et al., 2012]). 75
4.2 Object-oriented source code variation. 76
4.3 OBE to feature mapping model. 78
4.4 Drawing shapes software variants feature model. 81
4.5 The feature mining process. 82
4.6 The AOC-poset for the formal context of Table 4.2. 83
4.7 The lexical similarity between OBEs of (Concept_5) in Figure 4.6 as a directed graph. 86
4.8 The lexical and structural similarity between OBEs of (Concept_1) in Figure 4.6 as a

directed graph. 90
4.9 Atomic Blocks Mined from (Concept_5) in Figure 4.6. 91
4.10 Atomic Blocks Mined from (Concept_1) in Figure 4.6. 91
4.11 The mined feature model of drawing shapes software variants. 91

5.1 Use-case diagram of version 1 from mobile media software [Conejero et al., 2012]. . . 99
5.2 Use-case diagram of version 8 from mobile media software[Conejero et al., 2012]. . . 100
5.3 The use-case diagrams of the four MTG software variants. 101
5.4 The extended version of OBE to feature mapping model. 104
5.5 The feature documentation process. 106
5.6 The common, shared and unique use-cases (resp. feature implementations) across

software product variants. 107
5.7 The concept lattice family of relational context family in Table 5.3. 108
5.8 Exploring and filtering the hybrid blocks CLF to identify features documentation. . . 109
5.9 Constructing a raw corpus from hybrid block. 110

192

List of Figures 193

5.10 The lexical similarity between use-cases and feature implementations as a directed
graph. 112

5.11 The documented features from Concept_1 in Figure 5.7. 113

6.1 From configurations to a feature model. 118
6.2 Cell phone SPL feature model [Haslinger, 2012]. 119
6.3 FM reverse engineering process. 120
6.4 The AOC-poset for the formal context of Table 6.1. 122
6.5 The mandatory features (i.e. base group of features) identified from the cell phone

product configurations. 123
6.6 An atomic group of features (AND-group) identified from the cell phone product con-

figurations. 124
6.7 Xor group of features identified from the cell phone product configurations. 126
6.8 Or group of features identified from the cell phone product configurations. 126
6.9 The resulting FM based on the product configurations of Table 6.1. 128
6.10 The mined FM without groups of features (i.e. without the abstract features). 130

7.1 ArgoUML-SPL feature model [Couto et al., 2011]. 137
7.2 The use-case diagram of the second release of ArgoUML software variants. 138
7.3 The AOC-poset for the formal context of Table 7.9. 144
7.4 The extracted FM from Table 7.9. 145
7.5 Public health complaint application interface: update employee screen. 146
7.6 Part of the AOC-poset of Health complaint-SPL. 147
7.7 Feature model for the public Health complaint-SPL. 148
7.8 Public Health complaint-SPL use case diagram. 148
7.9 The CLF of the RCF for features documentation of health complaint software variants. 152
7.10 The AOC-poset for the formal context of Table 7.14. 154
7.11 The extracted FM from Table 7.14. 154
7.12 Mobile Media feature model [Tizzei et al., 2011]. 156
7.13 Use case diagram for release 3 of Mobile Media [Conejero et al., 2012]. 156
7.14 The concept lattice family of the relational context family for features documentation. 159
7.15 The AOC-poset for the formal context of Table 7.20. 160
7.16 The extracted FM from Table 7.20. 161
7.17 The mined FM from Mobile Media via FeatureIDE plugin. 162

8.1 Our position in the lattice of related work. 172

A.1 A simplified structural view of the architecture of REVPLINE. 176
A.2 Simple Java program "network application". 177
A.3 The OBEs of network application as XML file. 177
A.4 The AOC-poset for the formal context of Listing A.3. 179
A.5 The concept lattice for the formal context of Listing A.3. 179
A.6 Use-case diagram as XML file. 180
A.7 The SVG file of the DOT file of Listing A.6. 185
A.8 UML2 plugin for Eclipse Juno. 186
A.9 The graphical feature model editor of FeatureIDE. 186
A.10 The Moose Finder open on a model. 188
A.11 Representation of a REVPLINE source code in CodeCity. 189

LIST OF TABLES

2.1 Valid product configurations of cell phone SPL. 18
2.2 Animals and their characteristics. 20
2.3 A formal context for animals and their characteristics. 20
2.4 The formal contexts of the Mexican Food RCF. 24
2.5 The relational context family of the Mexican Food RCF. 24
2.6 LSI example: technical memo example. 29
2.7 The 12-term by 9-document matrix. 30
2.8 SV D – The T (term) matrix. 30
2.9 SV D – The singular values (S) matrix. 31
2.10 SV D – The D (document) matrix. 31
2.11 The T DM = T SD ′(T ·S ·D). 31
2.12 The T DMk matrix. 31
2.13 The term-document matrix and term-query matrix. 33
2.14 The T , S and D matrices. 33
2.15 The Tk , Sk and Dk matrices (T SD ′). 33
2.16 The new query vector coordinates in the reduced 2-dimensional space. 34

3.1 Summary of the feature location approaches (the selected papers). 41
3.2 Summary of feature location studies (comparison table). 49
3.3 Summary of source code comprehension studies (the selected papers). 50
3.4 Summary of source code documentation studies (comparison table). 58
3.5 Summary of reverse engineering FMs studies (the selected papers). 59
3.6 Summary of reverse engineering FMs studies (comparison table). 67

4.1 The features of drawing shapes software product variants. 80
4.2 A formal context describing drawing shapes software variants by their features. 83
4.3 The term-document and the term-query matrices of (Concept_5) in Figure 4.6. . . . 85
4.4 The similarity matrix of (Concept_5) in Figure 4.6. 86
4.5 Formal context of (Concept_5) in Figure 4.6. 87
4.6 The dependency structure matrix of (Concept_1) in Figure 4.6. 88
4.7 The similarity matrix of (Concept_1) in Figure 4.6. 89
4.8 The lexical similarity matrix of (Concept_1) in Figure 4.6. 89
4.9 The combined matrix of (Concept_1) in Figure 4.6. 90
4.10 Feature sets of drawing shapes software variants (i.e. software configurations). 92
4.11 Summary of REVPLINE: feature location in a collection of software product variants. . 95

5.1 The use-cases of MTG software variants. 101
5.2 The mined feature implementations from MTG software variants. 102
5.3 The RCF for features documentation. 108

194

List of Tables 195

5.4 The term-document and the term-query matrices of Concept_1 in Figure 5.7. 111
5.5 The cosine similarity matrix of Concept_1 in Figure 5.7. 112
5.6 Formal context of Concept_1 in Figure 5.7. 113
5.7 The product-by-feature matrix for MTG software variants. 113
5.8 OBE names, tokens, weight and strongest weighted tokens for show street view feature

implementation. 115
5.9 Summary of REVPLINE: documenting the mined feature implementation. 116

6.1 Valid product configurations of cell phone SPL [Haslinger, 2012]. 119
6.2 All valid product configurations that are defined by the mined FM. 131
6.3 The result of the product configurations that are identified by the mined cell phone

FM. 131
6.4 Summary of REVPLINE: reverse engineering FMs from software configurations. . . . 132

7.1 ArgoUML software product variants. 137
7.2 Feature location in a collection of ArgoUML software variants based on lexical simi-

larity. 139
7.3 Size metric and the variability levels of ArgoUML features. 139
7.4 The identified junctions between feature implementations of ArgoUML-SPL. 140
7.5 Feature location in a collection of ArgoUML software variants based on lexical and

structural similarity. 140
7.6 Comparing the two ways: lexical versus structural and lexical similarity. 141
7.7 The descriptions of the ArgoUML software product variants. 142
7.8 Features documented from ArgoUML software variants based on use-case diagrams. 143
7.9 The Product-by-feature matrix for ArgoUML software product variants. 143
7.10 Health complaint software product variants. 146
7.11 Features mined from health complaint software variants. 149
7.12 Features documented from Health complaint software product variants. 150
7.13 The relational context for feature documentation of Health complaint software variants.151
7.14 The Product-by-feature matrix for Health complaint software variants. 153
7.15 Summary of evolution scenarios in Mobile Media. 155
7.16 Mobile Media software product variants. 155
7.17 Features mined from Mobile Media software product variants. 157
7.18 Features documented from Mobile Media software product variants. 158
7.19 The relational context for feature documentation. 159
7.20 The Product-by-feature matrix for Mobile Media software product variants. 160
7.21 The results of the product configurations that are identified by the mined FMs. 163

8.1 The selected criteria used to categorize the selected work with REVPLINE approach. . 171

A.1 Statistical information regarding REVPLINE source code. 188

LIST OF LISTINGS

2.1 Valid product configuration. 17
2.2 Illegal product configuration. 18
2.3 Two examples of synonymy. 27
2.4 An example of polysemy. 27
7.1 Part of the sequence diagram feature implementation. 140
7.2 The complaint status feature implementation. 150
7.3 The description of the view sorted photos use-case in Figure 7.13. 156
7.4 Part of the favourites feature implementation. 158
7.5 The mined FM as SXFM format. 162
A.1 Formal context describing software variants by their OBEs. 178
A.2 Formal context describing software variants by their features. 182
A.3 Formal context as CSV File. 183
A.4 Formal context as RCFT File. 183
A.5 The relational context family for animals as RCFT File. 183
A.6 The concept lattice family of Listing A.5 as DOT file. 184
A.7 Snippet provides an example of a small model of the MSE file. 187

196

BIBLIOGRAPHY

[Acher et al., 2011] Mathieu Acher, Anthony Cleve, Philippe Collet, Philippe Merle, Laurence
Duchien, et Philippe Lahire. Reverse engineering architectural feature models. In Proceed-
ings of the 5th European conference on Software architecture, ECSA’11, pages 220–235, Berlin,
Heidelberg, 2011. Springer-Verlag.

[Acher et al., 2012] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans, Charles
Vanbeneden, Philippe Collet, et Philippe Lahire. On extracting feature models from product
descriptions. In Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems, VaMoS ’12, pages 45–54, New York, NY, USA, 2012. ACM.

[Acher et al., 2013a] Mathieu Acher, Benoit Baudry, Patrick Heymans, Anthony Cleve, et Jean-
Luc Hainaut. Support for reverse engineering and maintaining feature models. In Proceedings
of the Seventh International Workshop on Variability Modelling of Software-intensive Systems,
VaMoS ’13, pages 20:1–20:8, New York, NY, USA, 2013. ACM.

[Acher et al., 2013b] Mathieu Acher, Anthony Cleve, Philippe Collet, Philippe Merle, Laurence
Duchien, et Philippe Lahire. Extraction and evolution of architectural variability models in
plugin-based systems. Software & Systems Modeling (SoSyM), page 27 p., Juillet 2013.

[Al-Msie’deen et al., 2013a] Ra’Fat Al-Msie’deen, Abdelhak Seriai, Marianne Huchard, Christelle
Urtado, Sylvain Vauttier, et Hamzeh Eyal Salman. Feature location in a collection of software
product variants using Formal Concept Analysis. In ICSR, pages 302–307, 2013.

[Al-Msie’deen et al., 2013b] Ra’Fat Al-Msie’deen, Abdelhak Seriai, Marianne Huchard, Christelle
Urtado, Sylvain Vauttier, et Hamzeh Eyal Salman. Mining features from the object-oriented
source code of a collection of software variants using formal concept analysis and latent se-
mantic indexing. In Proceedings of The 25th International Conference on Software Engineering
and Knowledge Engineering, pages 244–249, 2013.

[Ambler, 2004] Scott W. Ambler. The Object Primer: Agile Model-Driven Development with UML
2.0. Cambridge University Press, 2004.

[Apel and Kästner, 2009] Sven Apel et Christian Kästner. An overview of feature-oriented soft-
ware development. Journal of Object Technology, 8(5):49–84, July/August 2009. Refereed Col-
umn.

[Apel et al., 2013] Sven Apel, Don Batory, Christian Kästner, et Gunter Saake. A development
process for feature-oriented product lines. In Feature-Oriented Software Product Lines, pages
17–44. Springer Berlin Heidelberg, 2013.

[Arévalo et al., 2007] Gabriela Arévalo, Anne Berry, Marianne Huchard, Guillaume Perrot, et
Alain Sigayret. Performances of galois sub-hierarchy-building algorithms. In Proceedings of

197

198 Bibliography

the 5th international conference on Formal concept analysis, ICFCA’07, pages 166–180, Berlin,
Heidelberg, 2007. Springer-Verlag.

[Azmeh et al., 2011] Zeina Azmeh, Marianne Huchard, Amedeo Napoli, Mohamed Rouane
Hacene, et Petko Valtchev. Querying relational concept lattices. In CLA, pages 377–392, 2011.

[Azmeh, 2011] Zeina Azmeh. A Web service selection framework for an assisted SOA. PhD thesis,
LIRMM - University of Montpellier 2, Montpellier, France, October 2011.

[Baader and Distel, 2008] Franz Baader et Felix Distel. A finite basis for the set of EL-
implications holding in a finite model. In Medina et Obiedkov [2008], pages 46–61.

[Bachmann and Bass, 2001] Felix Bachmann et Len Bass. Managing variability in software ar-
chitectures. SIGSOFT Softw. Eng. Notes, 26(3):126–132, Mai 2001.

[Barbut and Monjardet, 1970] M. Barbut et B. Monjardet. Ordre et classification: algèbre et
combinatoire. Collection Hachette université: Méthodes mathématiques des sciences de
l’homme. Hachette, 1970.

[Bass et al., 2003] L. Bass, P. Clements, et R. Kazman. Software Architecture in Practice. SEI series
in software engineering. Addison-Wesley, 2003.

[Basten and Klint, 2009] H. J. Basten et P. Klint. Software language engineering. chapitre De-
Facto: Language-Parametric Fact Extraction from Source Code, pages 265–284. Springer-
Verlag, Berlin, Heidelberg, 2009.

[Batory et al., 2003] Don Batory, Jia Liu, et Jacob Neal Sarvela. Refinements and multi-
dimensional separation of concerns. SIGSOFT Softw. Eng. Notes, 28(5):48–57, Septembre
2003.

[Batory, 2005] Don Batory. Feature models, grammars, and propositional formulas. In Pro-
ceedings of the 9th international conference on Software Product Lines, SPLC’05, pages 7–20,
Berlin, Heidelberg, 2005. Springer-Verlag.

[Bécan et al., 2013] Guillaume Bécan, Mathieu Acher, Benoit Baudry, et Sana Ben Nasr. Breath-
ing ontological knowledge into feature model management. Rapport Technique RT-0441, IN-
RIA, Octobre 2013.

[Benavides et al., 2010] David Benavides, Sergio Segura, et Antonio Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review. Inf. Syst., 35(6):615–636, Septem-
bre 2010.

[Berry and Browne, 1999] M.W. Berry et M. Browne. Understanding Search Engines: Mathemat-
ical Modeling and Text Retrieval. ITPro collection. Society for Industrial and Applied Mathe-
matics, 1999.

[Berry et al., 2012] Anne Berry, Marianne Huchard, Amedeo Napoli, et Alain Sigayret. Hermes:
an efficient algorithm for building galois sub-hierarchies. In CLA, pages 21–32, 2012.

[Beuche, 2009] Danilo Beuche. Transforming legacy systems into software product lines. In
Proceedings of the 13th International Software Product Line Conference, SPLC ’09, pages 321–
321, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

Bibliography 199

[Bhatti et al., 2012] Muhammad Usman Bhatti, Nicolas Anquetil, Marianne Huchard, et
Stéphane Ducasse. A catalog of patterns for concept lattice interpretation in software reengi-
neering. In SEKE, pages 118–123. Knowledge Systems Institute Graduate School, 2012.

[Bissyande et al., 2013] Tegawende F. Bissyande, Ferdian Thung, Shaowei Wang, David Lo,
Lingxiao Jiang, et Laurent Reveillere. Empirical evaluation of bug linking. In Proceedings of
the 2013 17th European Conference on Software Maintenance and Reengineering, CSMR ’13,
pages 89–98, Washington, DC, USA, 2013. IEEE Computer Society.

[Bosch, 2000] Jan Bosch. Design and use of software architectures: adopting and evolving a
product-line approach. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

[Braganca and Machado, 2007] Alexandre Braganca et Ricardo J. Machado. Automating map-
pings between use case diagrams and feature models for software product lines. In Proceed-
ings of the 11th International Software Product Line Conference, SPLC ’07, pages 3–12, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[Budhkar and Gopal, 2012] Shivani Budhkar et Arpita Gopal. Component-based architecture
recovery from object oriented systems using existing dependencies among classes. Interna-
tional Journal of Computational Intelligence Techniques, 3(1):56–59, 2012.

[Cellier et al., 2008] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, et Olivier Ridoux. Formal
Concept Analysis enhances fault localization in software. In Medina et Obiedkov [2008],
pages 273–288.

[Chen et al., 2005] Kun Chen, Wei Zhang, Haiyan Zhao, et Hong Mei. An approach to construct-
ing feature models based on requirements clustering. In Proceedings of the 13th IEEE Interna-
tional Conference on Requirements Engineering, RE ’05, pages 31–40, Washington, DC, USA,
2005. IEEE Computer Society.

[Chen et al., 2009] Lianping Chen, Muhammad Ali Babar, et Nour Ali. Variability management
in software product lines: a systematic review. In Proceedings of the 13th International Soft-
ware Product Line Conference, SPLC ’09, pages 81–90, Pittsburgh, PA, USA, 2009. Carnegie
Mellon University.

[Chikofsky and Cross II, 1990] Elliot J. Chikofsky et James H. Cross II. Reverse engineering and
design recovery: A taxonomy. IEEE Softw., 7(1):13–17, Janvier 1990.

[Classen et al., 2008] Andreas Classen, Patrick Heymans, et Pierre-Yves Schobbens. What’s in a
feature: a requirements engineering perspective. In Proceedings of the Theory and practice of
software, 11th international conference on Fundamental approaches to software engineering,
FASE’08/ETAPS’08, pages 16–30, Berlin, Heidelberg, 2008. Springer-Verlag.

[Clements and Northrop, 2002] Paul Clements et Linda Northrop. Software Product Lines: Prac-
tices and Patterns. The SEI series in software engineering. Addison Wesley Professional, 2002.

[Conejero et al., 2012] José M. Conejero, Eduardo Figueiredo, Alessandro Garcia, Juan Hernán-
dez, et Elena Jurado. On the relationship of concern metrics and requirements maintainabil-
ity. Inf. Softw. Technol., 54(2):212–238, Février 2012.

[Couto et al., 2011] Marcus Vinicius Couto, Marco Tulio Valente, et Eduardo Figueiredo. Extract-
ing software product lines: A case study using conditional compilation. In Proceedings of

200 Bibliography

the 2011 15th European Conference on Software Maintenance and Reengineering, CSMR ’11,
pages 191–200, Washington, DC, USA, 2011. IEEE Computer Society.

[Cullum and Willoughby, 2002] J.K. Cullum et R.A. Willoughby. Lanczos Algorithms for Large
Symmetric Eigenvalue Computations: Volume 1, Theory. Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics, 2002.

[Czarnecki and Eisenecker, 2000] Krzysztof Czarnecki et Ulrich W. Eisenecker. Generative pro-
gramming: methods, tools, and applications. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 2000.

[Czarnecki et al., 2006] Krzysztof Czarnecki, Chang Hwan Peter Kim, et Karl Trygve Kalleberg.
Feature models are views on ontologies. In SPLC, pages 41–51, 2006.

[Davril et al., 2013] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu Acher, Jane
Cleland-Huang, et Patrick Heymans. Feature model extraction from large collections of in-
formal product descriptions. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 290–300, New York, NY, USA, 2013. ACM.

[Deerwester et al., 1990] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, et Richard A. Harshman. Indexing by latent semantic analysis. JASIS, 41(6):391–407,
1990.

[Diaz et al., 2013] Diana Diaz, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Silvia Taka-
hashi, et Andrea De Lucia. Using code ownership to improve ir-based traceability link re-
covery. In ICPC, pages 123–132, 2013.

[Dit et al., 2011] Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, et Giuliano Antoniol. Can bet-
ter identifier splitting techniques help feature location? In Proceedings of the 2011 IEEE 19th
International Conference on Program Comprehension, ICPC ’11, pages 11–20, Washington,
DC, USA, 2011. IEEE Computer Society.

[Dit et al., 2013] Bogdan Dit, Meghan Revelle, Malcom Gethers, et Denys Poshyvanyk. Feature
location in source code: a taxonomy and survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

[Dolques et al., 2012] Xavier Dolques, Marianne Huchard, Clémentine Nebut, et Philippe Re-
itz. Fixing generalization defects in UML use case diagrams. Fundam. Inf., 115(4):327–356,
Décembre 2012.

[Dubinsky et al., 2013] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Mar-
tin Becker, et Krzysztof Czarnecki. An exploratory study of cloning in industrial software prod-
uct lines. In CSMR, pages 25–34, 2013.

[Dumais et al., 1988] Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Scott Deer-
wester, et Richard Harshman. Using latent semantic analysis to improve access to textual
information. In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’88, pages 281–285, New York, NY, USA, 1988. ACM.

[Dumais, 1992] Susan T. Dumais. Lsi meets trec: A status report. In TREC, pages 137–152, 1992.

Bibliography 201

[Duszynski et al., 2011] Slawomir Duszynski, Jens Knodel, et Martin Becker. Analyzing the
source code of multiple software variants for reuse potential. In Proceedings of the 2011 18th
Working Conference on Reverse Engineering, WCRE ’11, pages 303–307, Washington, DC, USA,
2011. IEEE Computer Society.

[Eisenberg and De Volder, 2005] Andrew David Eisenberg et Kris De Volder. Dynamic feature
traces: Finding features in unfamiliar code. In Proceedings of the 21st IEEE International Con-
ference on Software Maintenance, ICSM ’05, pages 337–346, Washington, DC, USA, 2005. IEEE
Computer Society.

[Falleri and Dolques, 2010] Jean-Rémy Falleri et Xavier Dolques. erca - eclipse’s relational con-
cept analysis - google project hosting, 2010.

[Falleri et al., 2010] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, et M. Dao. Au-
tomatic extraction of a wordnet-like identifier network from software. In Proceedings of the
2010 IEEE 18th International Conference on Program Comprehension, ICPC ’10, pages 4–13,
Washington, DC, USA, 2010. IEEE Computer Society.

[Fellbaum, 1998] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Language,
speech, and communication. MIT Press, 1998.

[Ferré et al., 2005] Sébastien Ferré, Olivier Ridoux, et Benjamin Sigonneau. Arbitrary relations
in Formal Concept Analysis and logical information systems. In ICCS, éditeurs Frithjof Dau,
Marie-Laure Mugnier, et Gerd Stumme, volume 3596 de Lecture Notes in Computer Science,
pages 166–180. Springer, 2005.

[Frakes and Baeza-Yates, 1992] W.B. Frakes et R. Baeza-Yates. Information retrieval: data struc-
tures and algorithms. Prentice Hall, 1992.

[Ganter and Wille, 1997] Bernhard Ganter et Rudolf Wille. Formal Concept Analysis: Mathe-
matical Foundations. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st édition, 1997.

[Ganter et al., 2005] éditeurs Bernhard Ganter, Gerd Stumme, et Rudolf Wille. Formal Concept
Analysis, Foundations and Applications, volume 3626 de Lecture Notes in Computer Science.
Springer, 2005.

[Godin and Mili, 1993] Robert Godin et Hafedh Mili. Building and maintaining analysis-level
class hierarchies using galois lattices. SIGPLAN Not., 28(10):394–410, Octobre 1993.

[Gomaa, 2004] Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases
to Pattern-Based Software Architectures. Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA, 2004.

[Gotel and Finkelstein, 1994] O. Gotel et A. Finkelstein. An analysis of the requirements trace-
ability problem. In Proceedings of the First International Conference on Requirements Engi-
neering, pages 94–101, 1994.

[Grechanik et al., 2007] Mark Grechanik, Kathryn S. McKinley, et Dewayne E. Perry. Recovering
and using use-case-diagram-to-source-code traceability links. In Proceedings of the the 6th
joint meeting of the European software engineering conference and the ACM SIGSOFT sympo-
sium on The foundations of software engineering, ESEC-FSE ’07, pages 95–104, New York, NY,
USA, 2007. ACM.

202 Bibliography

[Griss et al., 1998] M. L. Griss, J. Favaro, et M. d’ Alessandro. Integrating feature modeling with
the rseb. In Proceedings of the 5th International Conference on Software Reuse, ICSR ’98, pages
76–, Washington, DC, USA, 1998. IEEE Computer Society.

[Grossman and Frieder, 2004] D.A. Grossman et O. Frieder. Information Retrieval: Algorithms
and Heuristics. Kluwer international series in engineering and computer science. Springer,
2004.

[Hacene et al., 2013] Mohamed Rouane Hacene, Marianne Huchard, Amedeo Napoli, et Petko
Valtchev. Relational concept analysis: mining concept lattices from multi-relational data.
Ann. Math. Artif. Intell., 67(1):81–108, 2013.

[Haiduc et al., 2010] Sonia Haiduc, Jairo Aponte, et Andrian Marcus. Supporting program com-
prehension with source code summarization. In Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 2, ICSE ’10, pages 223–226, New York, NY,
USA, 2010. ACM.

[Halmans and Pohl, 2004] Günter Halmans et Klaus Pohl. Communicating the variability of a
software-product family to customers. Inform., Forsch. Entwickl., 18(3-4):113–131, 2004.

[Hamdouni et al., 2010] Alae-Eddine El Hamdouni, Abdelhak Seriai, et Marianne Huchard.
Component-based architecture recovery from object oriented systems via relational concept
analysis. In CLA, pages 259–270, 2010.

[Haslinger et al., 2011] Evelyn Nicole Haslinger, Roberto E. Lopez-Herrejon, et Alexander Egyed.
Reverse engineering feature models from programs’ feature sets. In Proceedings of the 2011
18th Working Conference on Reverse Engineering, WCRE ’11, pages 308–312, Washington, DC,
USA, 2011. IEEE Computer Society.

[Haslinger, 2012] Evelyn Nicole Haslinger. Reverse engineering feature models from program
configurations. Master’s thesis, Johannes Kepler University Linz, Linz, Austria, September
2012.

[Huchard et al., 2007] M. Huchard, M. Rouane Hacene, C. Roume, et P. Valtchev. Relational con-
cept discovery in structured datasets. Annals of Mathematics and Artificial Intelligence, 49(1-
4):39–76, Avril 2007.

[Jacobson and Ng, 2004] Ivar Jacobson et Pan-Wei Ng. Aspect-Oriented Software Development
with Use Cases (Addison-Wesley Object Technology Series). Addison-Wesley Professional, 2004.

[Jacobson et al., 1997] Ivar Jacobson, Martin Griss, et Patrik Jonsson. Software reuse: architec-
ture process and organization for business success. ACM Press books. ACM Press, 1997.

[Jacobson, 1992] Ivar Jacobson. Object-oriented software engineering: a use case driven ap-
proach. ACM Press Series. ACM Press, 1992.

[Kang et al., 1998] Kyo Chul Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, et Moon-
hang Huh. Form: A feature-oriented reuse method with domain-specific reference architec-
tures. Ann. Software Eng., 5:143–168, 1998.

[Kang, 1990] Kyo-Chul Kang. Feature-oriented Domain Analysis (FODA): Feasibility Study; Tech-
nical Report CMU/SEI-90-TR-21 - ESD-90-TR-222. Software Engineering Inst., Carnegie Mel-
lon Univ., 1990.

Bibliography 203

[Kaytoue et al., 2010] Mehdi Kaytoue, Zainab Assaghir, Amedeo Napoli, et Sergei O. Kuznetsov.
Embedding tolerance relations in formal concept analysis: an application in information fu-
sion. In CIKM, éditeurs Jimmy Huang, Nick Koudas, Gareth J. F. Jones, Xindong Wu, Kevyn
Collins-Thompson, et Aijun An, pages 1689–1692. ACM, 2010.

[Kebir et al., 2012] Selim Kebir, Abdelhak-Djamel Seriai, Sylvain Chardigny, et Allaoua Chaoui.
Quality-centric approach for software component identification from object-oriented code.
In Proceedings of the 2012 Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, WICSA-ECSA ’12, pages 181–190, Washington,
DC, USA, 2012. IEEE Computer Society.

[Krueger, 1992] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, Juin
1992.

[Kuhn et al., 2007] Adrian Kuhn, Stéphane Ducasse, et Tudor Gírba. Semantic clustering: Iden-
tifying topics in source code. Inf. Softw. Technol., 49(3):230–243, Mars 2007.

[Kuhn, 2009] Adrian Kuhn. Automatic labeling of software components and their evolution us-
ing log-likelihood ratio of word frequencies in source code. In Proceedings of the 2009 6th IEEE
International Working Conference on Mining Software Repositories, MSR ’09, pages 175–178,
Washington, DC, USA, 2009. IEEE Computer Society.

[Laguna and Crespo, 2013] Miguel A. Laguna et Yania Crespo. A systematic mapping study on
software product line evolution: From legacy system reengineering to product line refactor-
ing. Sci. Comput. Program., 78(8):1010–1034, 2013.

[Linsbauer et al., 2013] Lukas Linsbauer, E. Roberto Lopez-Herrejon, et Alexander Egyed. Re-
covering traceability between features and code in product variants. In Proceedings of the
17th International Software Product Line Conference, SPLC ’13, pages 131–140, New York, NY,
USA, 2013. ACM.

[Liu et al., 2007] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, et Vaclav Rajlich. Feature
location via information retrieval based filtering of a single scenario execution trace. In Pro-
ceedings of the Twenty-second IEEE/ACM International Conference on Automated Software En-
gineering, ASE ’07, pages 234–243, New York, NY, USA, 2007. ACM.

[Loesch and Ploedereder, 2007] Felix Loesch et Erhard Ploedereder. Optimization of variabil-
ity in software product lines. In Proceedings of the 11th International Software Product Line
Conference, SPLC ’07, pages 151–162, Washington, DC, USA, 2007. IEEE Computer Society.

[Lopez-Herrejon and Batory, 2001] Roberto E. Lopez-Herrejon et Don S. Batory. A standard
problem for evaluating product-line methodologies. In GCSE, éditeur Jan Bosch, volume 2186
de Lecture Notes in Computer Science, pages 10–24. Springer, 2001.

[Lucia et al., 2012] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella,
et Sebastiano Panichella. Using IR methods for labeling source code artifacts: Is it worth-
while? In ICPC, pages 193–202, 2012.

[Marcus and Maletic, 2003] Andrian Marcus et Jonathan I. Maletic. Recovering documentation-
to-source-code traceability links using latent semantic indexing. In Proceedings of the 25th
International Conference on Software Engineering, ICSE ’03, pages 125–135, Washington, DC,
USA, 2003. IEEE Computer Society.

204 Bibliography

[Marcus et al., 2004] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, et Jonathan I. Maletic.
An information retrieval approach to concept location in source code. In Proceedings of the
11th Working Conference on Reverse Engineering, WCRE ’04, pages 214–223, Washington, DC,
USA, 2004. IEEE Computer Society.

[McGregor et al., 2002] John D. McGregor, Linda M. Northrop, Salah Jarrad, et Klaus Pohl. Guest
editors’ introduction: Initiating software product lines. IEEE Softw., 19(4):24–27, Juillet 2002.

[Medina and Obiedkov, 2008] éditeurs Raoul Medina et Sergei A. Obiedkov. Formal Concept
Analysis, 6th International Conference, ICFCA 2008, Montreal, Canada, February 25-28, 2008,
Proceedings, volume 4933 de Lecture Notes in Computer Science. Springer, 2008.

[Metzger et al., 2007] Andreas Metzger, Patrick Heymans, Klaus Pohl, Pierre-Yves Schobbens, et
Germain Saval. Disambiguating the documentation of variability in software product lines: A
separation of concerns, formalization and automated analysis. In RE, pages 243–253, 2007.

[Müller et al., 1993] Hausi A. Müller, Scott R. Tilley, et Kenny Wong. Understanding software sys-
tems using reverse engineering technology perspectives from the rigi project. In Proceedings
of the 1993 Conference of the Centre for Advanced Studies on Collaborative Research: Software
Engineering - Volume 1, CASCON ’93, pages 217–226. IBM Press, 1993.

[Paškevičius et al., 2012] Paulius Paškevičius, Robertas Damaševičius, Eimutis karčiauskas, et
Romas Marcinkevičius. Automatic extraction of features and generation of feature models
from Java programs. Information Technology and Control, pages 376 – 384, 2012.

[Pine, 1993] Joseph Pine. Mass Customization: The New Frontier in Business Competition. Har-
vard Business School Press, 1993.

[Pohl et al., 2005] Klaus Pohl, Günter Böckle, et Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2005.

[Poshyvanyk and Marcus, 2007] Denys Poshyvanyk et Andrian Marcus. Combining Formal
Concept Analysis with Information Retrieval for concept location in source code. In Proceed-
ings of the 15th IEEE International Conference on Program Comprehension, ICPC ’07, pages
37–48, Washington, DC, USA, 2007. IEEE Computer Society.

[Poshyvanyk et al., 2006] Denys Poshyvanyk, Andrian Marcus, Václav Rajlich, Yann-Gaël
Guéhéneuc, et Giuliano Antoniol. Combining probabilistic ranking and latent semantic in-
dexing for feature identification. In ICPC, pages 137–148, 2006.

[Prediger and Wille, 1999] Susanne Prediger et Rudolf Wille. The lattice of concept graphs of a
relationally scaled context. In ICCS, éditeurs William M. Tepfenhart et Walling R. Cyre, volume
1640 de Lecture Notes in Computer Science, pages 401–414. Springer, 1999.

[Rajlich and Wilde, 2002] Václav Rajlich et Norman Wilde. The role of concepts in program
comprehension. In Proceedings of the 10th International Workshop on Program Comprehen-
sion, IWPC ’02, pages 271–, Washington, DC, USA, 2002. IEEE Computer Society.

[Rakic and Budimac, 2013] Gordana Rakic et Zoran Budimac. Introducing enriched concrete
syntax trees. CoRR, abs/1310.0802, 2013.

Bibliography 205

[Rubin and Chechik, 2012] Julia Rubin et Marsha Chechik. Locating distinguishing features us-
ing diff sets. In Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2012, pages 242–245, New York, NY, USA, 2012. ACM.

[Rubin and Chechik, 2013a] Julia Rubin et Marsha Chechik. A framework for managing cloned
product variants. In Proceedings of the 2013 International Conference on Software Engineer-
ing, ICSE ’13, pages 1233–1236, Piscataway, NJ, USA, 2013. IEEE Press.

[Rubin and Chechik, 2013b] Julia Rubin et Marsha Chechik. A survey of feature location tech-
niques. In Domain Engineering, éditeurs Iris Reinhartz-Berger, Arnon Sturm, Tony Clark,
Sholom Cohen, et Jorn Bettin, pages 29–58. Springer Berlin Heidelberg, 2013.

[Rubin et al., 2012] Julia Rubin, Andrei Kirshin, Goetz Botterweck, et Marsha Chechik. Manag-
ing forked product variants. In Proceedings of the 16th International Software Product Line
Conference - Volume 1, SPLC ’12, pages 156–160, New York, NY, USA, 2012. ACM.

[Rubira et al., 2005] C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, et F. Castor Filho. Exception
handling in the development of dependable component-based systems. Softw. Pract. Exper.,
35(3):195–236, Mars 2005.

[Ryssel et al., 2011] Uwe Ryssel, Joern Ploennigs, et Klaus Kabitzsch. Extraction of feature mod-
els from formal contexts. In Proceedings of the 15th International Software Product Line Con-
ference, Volume 2, SPLC ’11, pages 4:1–4:8, New York, NY, USA, 2011. ACM.

[Salman et al., 2013] Hamzeh Eyal Salman, Abdelhak-Djamel Seriai, et Christophe Dony.
Feature-to-code traceability in a collection of software variants: Combining Formal Concept
Analysis and Information Retrieval. In IRI, pages 209–216. IEEE, 2013.

[Schmid and Verlage, 2002] Klaus Schmid et Martin Verlage. The economic impact of product
line adoption and evolution. IEEE Softw., 19(4):50–57, Juillet 2002.

[She et al., 2011] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, et Krzysztof
Czarnecki. Reverse engineering feature models. In Proceedings of the 33rd International Con-
ference on Software Engineering, ICSE ’11, pages 461–470, New York, NY, USA, 2011. ACM.

[She, 2008] Steven She. Feature model mining. Master’s thesis, University of Waterloo, Waterloo,
Ontario, Canada, 2008.

[Sridhara et al., 2010] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, et
K. Vijay-Shanker. Towards automatically generating summary comments for Java methods.
In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering,
ASE ’10, pages 43–52, New York, NY, USA, 2010. ACM.

[Svahnberg et al., 2005] Mikael Svahnberg, Jilles van Gurp, et Jan Bosch. A taxonomy of variabil-
ity realization techniques: Research articles. Softw. Pract. Exper., 35(8):705–754, Juillet 2005.

[Thüm et al., 2014] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, et Thomas Leich. FeatureIDE: An extensible framework for feature-oriented software
development. Sci. Comput. Program., 79:70–85, Janvier 2014.

[Tilley et al., 2005] Thomas Tilley, Richard Cole, Peter Becker, et Peter W. Eklund. A survey of
formal concept analysis support for software engineering activities. In Ganter et al. [2005],
pages 250–271.

206 Bibliography

[Tizzei et al., 2011] Leonardo P. Tizzei, Marcelo Dias, Cecília M. F. Rubira, Alessandro Garcia, et
Jaejoon Lee. Components meet aspects: Assessing design stability of a software product line.
Inf. Softw. Technol., 53(2):121–136, Février 2011.

[Tizzei et al., 2012] Leonardo P. Tizzei, Cecília M. F. Rubira, et Jaejoon Lee. A feature-oriented
solution with aspects for component-based software product line architecting. In SEAA’12,
pages 1–10. IEEE, 2012.

[Valtchev et al., 2005] Petko Valtchev, Robert Godin, Rokia Missaoui, Marianne Huchard,
Amedeo Napoli, David Grosser, Cyril Roume, Amine M. Rouane-Hacene, Jin Zuo, Céline
Frambourg, Laszlo Szathmary, Kamal Nehme, et Awa Diop. Galicia lattice builder home page,
2005.

[van der Linden et al., 2007] Frank van der Linden, Klaus Schmid, et Eelco Rommes. Software
Product Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer,
2007.

[van Deursen and Klint, 2002] Arie van Deursen et Paul Klint. Domain-specific language design
requires feature descriptions. Journal of Computing and Information Technology, 10(1):1–17,
2002.

[Weiss and Lai, 1999] David M. Weiss et Chi Tau Robert Lai. Software product-line engineering:
a family-based software development process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[Weston et al., 2009] Nathan Weston, Ruzanna Chitchyan, et Awais Rashid. A framework for
constructing semantically composable feature models from natural language requirements.
In Proceedings of the 13th International Software Product Line Conference, SPLC ’09, pages
211–220, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

[Xue et al., 2012] Yinxing Xue, Zhenchang Xing, et Stan Jarzabek. Feature location in a collection
of product variants. In Proceedings of the 2012 19th Working Conference on Reverse Engineer-
ing, WCRE ’12, pages 145–154, Washington, DC, USA, 2012. IEEE Computer Society.

[Xue, 2011] Yinxing Xue. Reengineering legacy software products into software product line
based on automatic variability analysis. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, pages 1114–1117, New York, NY, USA, 2011. ACM.

[Xue, 2013] Yinxing Xue. Reengineering Legacy Software Products into Software Product Line.
PhD thesis, National university of singapore, jan. 2013.

[Yang et al., 2009] Yiming Yang, Xin Peng, et Wenyun Zhao. Domain feature model recovery
from multiple applications using data access semantics and Formal Concept Analysis. In
Proceedings of the 2009 16th Working Conference on Reverse Engineering, WCRE ’09, pages
215–224, Washington, DC, USA, 2009. IEEE Computer Society.

[Ye et al., 2009] Pengfei Ye, Xin Peng, Yinxing Xue, et Stan Jarzabek. A case study of variation
mechanism in an industrial product line. In Proceedings of the 11th International Conference
on Software Reuse: Formal Foundations of Reuse and Domain Engineering, ICSR ’09, pages
126–136, Berlin, Heidelberg, 2009. Springer-Verlag.

[Yevtushenko et al., 2006] Serhiy Yevtushenko, Julian Tane, Tim B. Kaiser, Sergei Objedkov,
Joachim Hereth Correia, et Heiko Reppe. The concept explorer, 2006.

Bibliography 207

[Yoshimura et al., 2006] Kentaro Yoshimura, Dharmalingam Ganesan, et Dirk Muthig. Assessing
merge potential of existing engine control systems into a product line. In Proceedings of the
2006 International Workshop on Software Engineering for Automotive Systems, SEAS ’06, pages
61–67, New York, NY, USA, 2006. ACM.

[Zave and Jackson, 1997] Pamela Zave et Michael Jackson. Four dark corners of requirements
engineering. ACM Trans. Softw. Eng. Methodol., 6(1):1–30, Janvier 1997.

[Zhao et al., 2006] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, et Fuqing Yang. Sniafl: Towards
a static noninteractive approach to feature location. ACM Trans. Softw. Eng. Methodol.,
15(2):195–226, Avril 2006.

[Ziadi et al., 2012] Tewfik Ziadi, Luz Frias, Marcos Aurelio Almeida da Silva, et Mikal Ziane. Fea-
ture identification from the source code of product variants. In Proceedings of the 2012 16th
European Conference on Software Maintenance and Reengineering, CSMR ’12, pages 417–422,
Washington, DC, USA, 2012. IEEE Computer Society.

Abstract

The idea of Software Product Line (SPL) approach is to manage a family of similar software products in a reuse-based way. Reuse
avoids repetitions, which helps reduce development/maintenance effort, shorten time-to-market and improve overall quality of
software. To migrate from existing software product variants into SPL, one has to understand how they are similar and how they
differ one from another. Companies often develop a set of software variants that share some features and differ in other ones
to meet specific requirements. To exploit existing software variants and build a software product line, a feature model must be
built as a first step. To do so, it is necessary to extract mandatory and optional features in addition to associate each feature with
its name. Then, it is important to organize the mined and documented features into a feature model. In this context, our thesis
proposes three contributions. Thus, we propose, in this dissertation as a first contribution a new approach to mine features from
the object-oriented source code of a set of software variants based on Formal Concept Analysis, code dependency and Latent
Semantic Indexing. The novelty of our approach is that it exploits commonality and variability across software variants, at source
code level, to run Information Retrieval methods in an efficient way. The second contribution consists in documenting the
mined feature implementations based on Formal Concept Analysis, Latent Semantic Indexing and Relational Concept Analysis.
We propose a complementary approach, which aims to document the mined feature implementations by giving names and
descriptions, based on the feature implementations and use-case diagrams of software variants. The novelty of our approach
is that it exploits commonality and variability across software variants, at feature implementations and use-cases levels, to run
Information Retrieval methods in an efficient way. In the third contribution, we propose an automatic approach to organize the
mined documented features into a feature model. Features are organized in a tree which highlights mandatory features, optional
features and feature groups (and, or, xor groups). The feature model is completed with requirement and mutual exclusion
constraints. We rely on Formal Concept Analysis and software configurations to mine a unique and consistent feature model.
To validate our approach, we applied it on three case studies: ArgoUML-SPL, Health complaint-SPL, Mobile media software
product variants. The results of this evaluation validate the relevance and the performance of our proposal as most of the
features and its constraints were correctly identified.

Keywords: Software Product Line Engineering, Software Product Variants, Re-engineering, Feature location, Feature model,
Variability, Formal Concept Analysis, Latent Semantic Indexing, Relational Concept Analysis, Feature documentation, Code
comprehension, Use-case diagram.

Résumé

Les lignes de produits logicielles constituent une approche permettant de construire et de maintenir une famille de pro-
duits logiciels similaires mettant en œuvre des principes de réutilisation. Ces principes favorisent la réduction de l’effort de
développement et de maintenance, raccourcissent le temps de mise sur le marché et améliorent la qualité globale du logi-
ciel. La migration de produits logiciels similaires vers une ligne de produits demande de comprendre leurs similitudes et leurs
différences qui s’expriment sous forme de caractéristiques (features) offertes. Dans cette thèse, nous nous intéressons au prob-
lème de la construction d’une ligne de produits à partir du code source de ses produits et de certains artefacts complémentaires
comme les diagrammes de cas d’utilisation, quand ils existent. Nous proposons des contributions sur l’une des étapes prin-
cipales dans cette construction, qui consiste à extraire et à organiser un modèle de caractéristiques (feature model) dans un
mode automatisé. La première contribution consiste à extraire des caractéristiques dans le code source de variantes de logi-
ciels écrits dans le paradigme objet. Trois techniques sont mises en œuvre pour parvenir à cet objectif : l’Analyse Formelle de
Concepts, l’Indexation Sémantique Latente et l’analyse des dépendances structurelles dans le code. Elles exploitent les par-
ties communes et variables au niveau du code source. La seconde contribution s’attache à documenter une caractéristique
extraite par un nom et une description. Elle exploite le code source mais également les diagrammes de cas d’utilisation, qui
contiennent, en plus de l’organisation logique des fonctionnalités externes, des descriptions textuelles de ces mêmes fonction-
nalités. En plus des techniques précédentes, elle s’appuie sur l’Analyse Relationnelle de Concepts afin de former des groupes
d’entités d’après leurs relations. Dans la troisième contribution, nous proposons une approche visant à organiser les carac-
téristiques, une fois documentées, dans un modèle de caractéristiques. Ce modèle de caractéristiques est un arbre étiqueté
par des opérations et muni d’expressions logiques qui met en valeur les caractéristiques obligatoires, les caractéristiques op-
tionnelles, des groupes de caractéristiques (groupes ET, OU, OU exclusif), et des contraintes complémentaires textuelles sous
forme d’implication ou d’exclusion mutuelle. Ce modèle est obtenu par analyse d’une structure obtenue par Analyse Formelle
de Concepts appliquée à la description des variantes par les caractéristiques. L’approche est validée sur trois cas d’étude prin-
cipaux : ArgoUML-SPL, Health complaint-SPL et Mobile media. Ces cas d’études sont déjà des lignes de produits constituées.
Nous considérons plusieurs produits issus de ces lignes comme s’ils étaient des variantes de logiciels, nous appliquons notre
approche, puis nous évaluons son efficacité par comparaison entre les modèles de caractéristiques extraits automatiquement
et les modèles de caractéristiques initiaux (conçus par les développeurs des lignes de produits analysées).

Mots clefs: Ingénierie des lignes de produits, variante de logiciel, Réingénierie, identification de caractéristique, modèle de
caractéristiques, Variabilité, Analyse Formelle de Concepts, Indexation Sémantique Latente, Analyse Relationnelle de Concepts,
Documentation de caractéristiques, Compréhension du code, Diagramme de cas d’utilisation.

	Title
	Contents
	Acknowledgements
	Abstract
	Résumé
	Personal Bibliography
	List of Abbreviations
	1 Introduction: Context and Motivation
	1.1 Context: Software Product Line
	1.2 Motivation and Problem
	1.3 Contribution
	1.4 Thesis Outline

	I Background and State of the Art
	2 Background
	2.1 Software Product Line and Software Variants
	2.1.1 Software Product Line Engineering
	2.1.2 Software Product Variants

	2.2 Formal and Relational Concept Analysis
	2.2.1 Formal Concept Analysis
	2.2.2 Relational Concept Analysis

	2.3 Latent Semantic Indexing
	2.3.1 The Singular Value Decomposition Model
	2.3.2 Singular Value Decomposition Numerical Example
	2.3.3 Evaluation Metrics
	2.3.4 Latent Semantic Indexing Through Example

	2.4 Conclusion

	3 State of the Art
	3.1 Introduction
	3.2 Key Concepts
	3.2.1 Feature Location
	3.2.2 Source Code Documentation
	3.2.3 Reverse Engineering Feature Model

	3.3 Related work
	3.3.1 Feature Location Approaches
	3.3.2 Source Code Documentation Approaches
	3.3.3 Reverse Engineering FMs Approaches

	3.4 Summary

	II RIVEPLINE Approach: Contributions
	4 REVPLINE: Feature Location in a Collection of Software Product Variants
	4.1 Presentation of the Problem
	4.2 Principles of the Proposal
	4.2.1 Goal and Core Assumptions
	4.2.2 Object-oriented Source Code Variation
	4.2.3 Features versus Object-oriented Building Elements: the Mapping Model
	4.2.4 The Lexical Versus Structural Similarity
	4.2.5 An Illustrative Example: Drawing Shapes Software Variants

	4.3 The Feature Mining Process into Details
	4.3.1 Identifying the Common Block and Blocks of Variation
	4.3.2 Identifying Atomic Blocks

	4.4 Threats to validity
	4.5 Conclusion

	5 REVPLINE: Documenting the Mined Feature Implementation
	5.1 Introduction
	5.2 Specify Use-case Diagrams of Software Variants with Variability
	5.2.1 Exploiting Use-cases to Support Feature Documentation
	5.2.2 An Illustrative Example: Mobile Tourist Guide Software Variants

	5.3 Principles of Feature Documentation
	5.4 Feature Documentation Overview
	5.5 Feature Documentation Step by Step
	5.5.1 Reduce LSI Search Space: Identifying Hybrid Blocks Based on RCA
	5.5.2 Exploring the Hybrid Blocks CLF to Identify Features Documentation
	5.5.3 Measuring Hybrid block contents' Similarity Based on LSI
	5.5.4 Identifying Feature Name and Description Based on FCA

	5.6 Naming Feature Implementation Based on OBE Names
	5.7 Threats to validity
	5.8 Conclusion

	6 Reverse Engineering Feature Models from Software Configurations
	6.1 Introduction
	6.2 FM Reverse Engineering Process
	6.3 Step-by-Step FM Reverse Engineering
	6.3.1 Extracting the AOC-poset
	6.3.2 Extracting root feature
	6.3.3 Extracting mandatory features
	6.3.4 Extracting atomic set of features (AND-group)
	6.3.5 Extracting exclusive-or relation
	6.3.6 Extracting inclusive-or relation
	6.3.7 Extracting requires constraint
	6.3.8 Extracting Exclude constraint
	6.3.9 The Resulting Feature Model

	6.4 FM Evaluation
	6.5 Conclusion

	III Experimentation
	7 Experimentation
	7.1 Introduction
	7.2 ArgoUML-SPL Case Study
	7.2.1 ArgoUML-SPL Description
	7.2.2 ArgoUML Validation

	7.3 Health complaint-SPL Case Study
	7.3.1 Health complaint-SPL Description
	7.3.2 Health Complaint Validation

	7.4 Mobile Media Case Study
	7.4.1 Mobile Media Description
	7.4.2 Mobile Media Validation

	7.5 Reverse Engineering FMs from Samples of Program Configurations
	7.6 Conclusion

	IV Conclusion and Perspectives
	8 Conclusion and Future Directions
	8.1 Summary of Contributions
	8.2 Future Directions
	8.2.1 Extending the Scope
	8.2.2 Improving the Approach with Natural Language Processing Tools
	8.2.3 Improving techniques

	A Implementation
	A.1 Introduction
	A.2 REVPLINE Components
	A.3 External Libraries
	A.3.1 eRCA
	A.3.2 Graphviz

	A.4 Eclipse Plugins
	A.4.1 UML2 Plugin
	A.4.2 FeatureIDE Plugin

	A.5 Statistical information regarding REVPLINE source code
	A.6 Conclusion

	List of Figures
	List of Tables
	List of Listings
	Bibliography

