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Software evolution
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Software development costs

Initial development

Evolution
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Software evolution research

● Objectives

– Understanding (How)?

● Better understand what software evolution is about

– Support (What and why)?

● Furnish tools to practitioners to face software evolution

● My research

– Contributing to both objectives

– Mining open-source software systems repositories a.k.a. MSR

– Using the empirical method
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A step back

● Most of my work

– Analyze source code evolution to understand and
support software evolution

● Most MSR work

– Analyze source code evolution to understand and
support software evolution

● 46% of surveyed approaches analyze source code evolution

→ but approaches to analyze source code evolution are limited
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Currently

Find big modifications
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Other example

Find added methods
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Source code differencing
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Example

Previous version Current version
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Current approaches
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Current approaches

Not aligned on the codeDon't detect moves

→ Don't represent the developer intent
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Textual differencing

● Source code model is a sequence of text lines

● Possible actions are

– Delete a text line

– Insert a text line

● Problem solved: find one shortest sequence of
actions

– Transforming the previous source code model

– Into the current source code model
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Source code differencing is hard

● It combines three implementation choices

– Source code model

– Set of possible actions

– Problem solved (usually shortest sequence of actions)

● Many combinations lead to NP-hard problems

– Textual differencing including move a subsequence of lines is NP-
hard

– Labeled graph differencing is NP-hard, even with only basic actions

– Unordered tree differencing is NP-hard, even with only basic
actions
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GumTree
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Our choices

● Source code model

– a labeled ordered rooted tree

● Possible actions

– Node insertion

– Node deletion

– Node relabel

– Subtree move

● Problem solved

– short sequence that corresponds to a developer intent
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The process

1. Parse code files to our code agnostic tree
structure

2. Find mappings between nodes
● Like developers manually proceed

3. Deduce code edition actions (as in [6])

4. Output code differences
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Finding mappings

1. Top-down phase

– Find biggest chunks of unmodified code

2. Bottom-up phase

– Propagate mappings to the containers of these chunks
(functions, classes, …)

– Extend mappings in the left-over code of these
containers



Example

public class Test {

  public String foo(int i) {

    if (i == 0)

      return "Foo!";

  }

}

public class Test {

  private String foo(int i) {

    if (i == 0)

      return "Bar";

    else if (i == -1)

      return "Foo!";

  }

}

Previous version Current version
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TypeDecl

public Test MethodDecl

private String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Bar” == ReturnStmt

i -

1

“Foo!”

IfStmt

TypeDecl
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int i IfStmt

== ReturnStmt

i 0 “Foo!”

public

Previous version

Current version
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Output

public class Test {

  public String foo(int i) {

    if (i == 0)

      return "Foo!";

  }

}

public class Test {

  private String foo(int i) {

    if (i == 0)

      return "Bar";

    else if (i == -1)

      return "Foo!";

  }

}

Previous version Current version



29

Human evaluation

● 144 file modifications from 16 Java projects

● Two tools

– GumTree

– A visual text diff tool

● Two questions

– GumTree does a good job? (Yes, Neutral or No)

– GumTree is better than text diff? (Yes, No or Same)

● Three raters

● I report the opinion of the majority
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Results
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Support application
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Find experts

● Software development involves large teams of
developers who have their own set of skills

● Experts are developers with a strong knowledge
in a technology (API, language, ...)

● Experts are often searched for

– Fix issue with a particular library

– Problem with a language construct

→ how to know what are the technical skills of developers?
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Self and peer evaluation

● Very subjective

● Time consuming

● Hard to keep up to date
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What is an expert?

● What is a Java language expert?

– Someone who knows inheritance

– Someone who knows how to compile Java code

– Someone who knows how to test in Java

– ...
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Our approach

● Thomas the apostle: “I believe what I
observe”

● Domain specific language to define how to
observe skills from code modifications

● And count skill observations in all code
modifications

– Less subjective

– Easy to keep up-to-date
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Example
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Technical skills DSL

XPath Expression 
Created elements are annotated @added

Syntax
(GumTree)



38

Other applications

● Automated study on the evolution of faults in
Linux

● JavaScript differencing in web applications

● Study how developers document source code

● Improve software activity metrics

● ...
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Lessons learned
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My other contributions

● Automated extraction of developers' skills

● Relation between developer's organization
and bugs

● Benchmarks to validate clone detectors and
clone detection in CSS

● Assistance to library replacement

● Study and tools to understand and remove
cycles in software systems
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Is it really a problem?

● We (researchers) are usually not industrial software
developers

● The problem we are working on might be irrelevant

● Solution 1: mining to find problem occurrence

– Advantages: easy to do

– Caveats: lack of observations does not imply irrelevance

● Solution 2: ask real developers

– Advantages: the best way to ensure relevance

– Caveats: hard to find developers, legal issues
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Collecting data

● In a perfect world

– Processes and tools are
used perfectly

– Data is well structured

● In the software world

– Processes and tools are
misused (or ignored)

– Information is hidden
among weird conventions

● Solution 1 : automatic cleaning approaches

– Advantages : quick and easy to apply

– Caveats : usually bad precision and/or recall

● Solution 2 : manual cleaning

– Advantages : much more efficient

– Caveats : long, tedious and researchers cannot judge everything
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Validation

● Studies should have a good internal validity

● Studies should have a good external validity

● Having both at the same time is a nightmare

● Solution : replication

– Replicating a study is hard

– Tools have to be available

– Datasets have to be available

– We ensure that our tools and datasets are available



44

Future work & conclusion
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Change clusters
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Change clusters

01 Insert MethodDeclaration (84) into TypeDeclaration(85) at 3
02 Insert Modifier:public(55) into MethodDeclaration (84) at 0
03 Insert PrimitiveType:int(56) into MethodDeclaration(84) at 1
04 Insert SimpleName:random(57) into MethodDeclaration(84) at 2
05 Insert Block(83) into MethodDeclaration(84) at 3
06 Insert VariableDeclarationStatement(47) into Block(53) at 7
07 Move VariableDeclarationStatement(49) into Block(83) at 0
08 Move VariableDeclarationStatement(56) into Block(83) at 1
09 Move ExpressionStatement(60) into Block(83) at 2
10 Move ExpressionStatement(64) into Block(83) at 3
11 Insert ReturnStatement(82) into Block(83) at 4
12 Insert PrimitiveType:int(42) into VariableDeclarationStatement(47) at 0
13 Insert VariableDeclarationFragment(46) into VariableDeclarationStatement(47) at 1
14 Insert SimpleName:i(81) into ReturnStatement(82) at 0
15 Insert SimpleName:i(43) into VariableDeclarationFragment(46) at 0
16 Insert MethodInvocation(45) into VariableDeclarationFragment(46) at 1
17 Insert SimpleName:random(44) into MethodInvocation(45) at 0
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New method

Move statements

Call to new method
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Programs as graphs
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Graph differencing

● Find the right model

– labeled digraph?

● Find the right set of actions

– Insert node ?

– Disconnect edge ?

– …

● Find heuristics to compute solutions

– That make sense to software developers!
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Applications to software evolution

● Empirical studies on how developers use
syntactic constructs during evolution

– Do Java developers use the new lambdas?

– How code documentation is realized in practice?

● Better tools to assess impact of changes

– On syntax

– On execution

– On tests

– ...
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Wrapping up

● Source code differencing is essential to
software evolution research

● Existing approaches to differentiate code are
limited

● GumTree, an improved source code
differencing approach

● Successfully applied in several software
evolution research scenarios
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