
Source Code Differencing for
Software Evolution Research

Jean-Rémy Falleri

Habilitation à Diriger des Recherches

Software Engineering@LaBRI, Bordeaux, France

Outline

1. Introduction

2. Source code differencing

3. Applications

4. Lessons learned

5. Future work & conclusion

3

Introduction

4

Software evolution

Initial Development

Evolution

Servicing

Phaseout

Closedown

5

Software development costs

Initial development

Evolution

6

Software evolution research

● Objectives

– Understanding (How)?

● Better understand what software evolution is about

– Support (What and why)?

● Furnish tools to practitioners to face software evolution

● My research

– Contributing to both objectives

– Mining open-source software systems repositories a.k.a. MSR

– Using the empirical method

7

A step back

● Most of my work

– Analyze source code evolution to understand and
support software evolution

● Most MSR work

– Analyze source code evolution to understand and
support software evolution

● 46% of surveyed approaches analyze source code evolution

→ but approaches to analyze source code evolution are limited

8

Currently

Find big modifications

9

Other example

Find added methods

10

Source code differencing

11

Example

Previous version Current version

12

Current approaches

13

Current approaches

Not aligned on the codeDon't detect moves

→ Don't represent the developer intent

14

Textual differencing

● Source code model is a sequence of text lines

● Possible actions are

– Delete a text line

– Insert a text line

● Problem solved: find one shortest sequence of
actions

– Transforming the previous source code model

– Into the current source code model

15

Source code differencing is hard

● It combines three implementation choices

– Source code model

– Set of possible actions

– Problem solved (usually shortest sequence of actions)

● Many combinations lead to NP-hard problems

– Textual differencing including move a subsequence of lines is NP-
hard

– Labeled graph differencing is NP-hard, even with only basic actions

– Unordered tree differencing is NP-hard, even with only basic
actions

16

GumTree

17

Our choices

● Source code model

– a labeled ordered rooted tree

● Possible actions

– Node insertion

– Node deletion

– Node relabel

– Subtree move

● Problem solved

– short sequence that corresponds to a developer intent

18

The process

1. Parse code files to our code agnostic tree
structure

2. Find mappings between nodes
● Like developers manually proceed

3. Deduce code edition actions (as in [6])

4. Output code differences

19

Finding mappings

1. Top-down phase

– Find biggest chunks of unmodified code

2. Bottom-up phase

– Propagate mappings to the containers of these chunks
(functions, classes, …)

– Extend mappings in the left-over code of these
containers

Example

public class Test {

 public String foo(int i) {

 if (i == 0)

 return "Foo!";

 }

}

public class Test {

 private String foo(int i) {

 if (i == 0)

 return "Bar";

 else if (i == -1)

 return "Foo!";

 }

}

Previous version Current version

21

TypeDecl

public Test MethodDecl

private String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Bar” == ReturnStmt

i -

1

“Foo!”

IfStmt

TypeDecl

public Test MethodDecl

String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Foo!”

public

Previous version

Current version

22

TypeDecl

public Test MethodDecl

private String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Bar” == ReturnStmt

i -

1

“Foo!”

IfStmt

TypeDecl

public Test MethodDecl

String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Foo!”

public

23

TypeDecl

public Test MethodDecl

private String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Bar” == ReturnStmt

i -

1

“Foo!”

IfStmt

TypeDecl

public Test MethodDecl

String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Foo!”

public

24

TypeDecl

public Test MethodDecl

private String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Bar” == ReturnStmt

i -

1

“Foo!”

IfStmt

TypeDecl

public Test MethodDecl

String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Foo!”

public

25

TypeDecl

public Test MethodDecl

private String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Bar” == ReturnStmt

i -

1

“Foo!”

IfStmt

TypeDecl

public Test MethodDecl

String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Foo!”

public

26

TypeDecl

public Test MethodDecl

private String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Bar” == ReturnStmt

i -

1

“Foo!”

IfStmt

TypeDecl

public Test MethodDecl

String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Foo!”

public

27

TypeDecl

public Test MethodDecl

private String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Bar” == ReturnStmt

i -

1

“Foo!”

IfStmt

TypeDecl

public Test MethodDecl

String foo VarDecl Block

int i IfStmt

== ReturnStmt

i 0 “Foo!”

public

Output

public class Test {

 public String foo(int i) {

 if (i == 0)

 return "Foo!";

 }

}

public class Test {

 private String foo(int i) {

 if (i == 0)

 return "Bar";

 else if (i == -1)

 return "Foo!";

 }

}

Previous version Current version

29

Human evaluation

● 144 file modifications from 16 Java projects

● Two tools

– GumTree

– A visual text diff tool

● Two questions

– GumTree does a good job? (Yes, Neutral or No)

– GumTree is better than text diff? (Yes, No or Same)

● Three raters

● I report the opinion of the majority

30

Results
9
5

%

2
%1
%

2
%

GumTree does a good job?

Yes
Neutral
No
Disagree

46%

42%

8%

3%

GumTree vs text diff?

Better
Same
Worst
Disagree

31

Support application

32

Find experts

● Software development involves large teams of
developers who have their own set of skills

● Experts are developers with a strong knowledge
in a technology (API, language, ...)

● Experts are often searched for

– Fix issue with a particular library

– Problem with a language construct

→ how to know what are the technical skills of developers?

33

Self and peer evaluation

● Very subjective

● Time consuming

● Hard to keep up to date

34

What is an expert?

● What is a Java language expert?

– Someone who knows inheritance

– Someone who knows how to compile Java code

– Someone who knows how to test in Java

– ...

35

Our approach

● Thomas the apostle: “I believe what I
observe”

● Domain specific language to define how to
observe skills from code modifications

● And count skill observations in all code
modifications

– Less subjective

– Easy to keep up-to-date

36

Example

37

Technical skills DSL

XPath Expression
Created elements are annotated @added

Syntax
(GumTree)

38

Other applications

● Automated study on the evolution of faults in
Linux

● JavaScript differencing in web applications

● Study how developers document source code

● Improve software activity metrics

● ...

39

Lessons learned

40

My other contributions

● Automated extraction of developers' skills

● Relation between developer's organization
and bugs

● Benchmarks to validate clone detectors and
clone detection in CSS

● Assistance to library replacement

● Study and tools to understand and remove
cycles in software systems

41

Is it really a problem?

● We (researchers) are usually not industrial software
developers

● The problem we are working on might be irrelevant

● Solution 1: mining to find problem occurrence

– Advantages: easy to do

– Caveats: lack of observations does not imply irrelevance

● Solution 2: ask real developers

– Advantages: the best way to ensure relevance

– Caveats: hard to find developers, legal issues

42

Collecting data

● In a perfect world

– Processes and tools are
used perfectly

– Data is well structured

● In the software world

– Processes and tools are
misused (or ignored)

– Information is hidden
among weird conventions

● Solution 1 : automatic cleaning approaches

– Advantages : quick and easy to apply

– Caveats : usually bad precision and/or recall

● Solution 2 : manual cleaning

– Advantages : much more efficient

– Caveats : long, tedious and researchers cannot judge everything

43

Validation

● Studies should have a good internal validity

● Studies should have a good external validity

● Having both at the same time is a nightmare

● Solution : replication

– Replicating a study is hard

– Tools have to be available

– Datasets have to be available

– We ensure that our tools and datasets are available

44

Future work & conclusion

45

Change clusters

46

Change clusters

01 Insert MethodDeclaration (84) into TypeDeclaration(85) at 3
02 Insert Modifier:public(55) into MethodDeclaration (84) at 0
03 Insert PrimitiveType:int(56) into MethodDeclaration(84) at 1
04 Insert SimpleName:random(57) into MethodDeclaration(84) at 2
05 Insert Block(83) into MethodDeclaration(84) at 3
06 Insert VariableDeclarationStatement(47) into Block(53) at 7
07 Move VariableDeclarationStatement(49) into Block(83) at 0
08 Move VariableDeclarationStatement(56) into Block(83) at 1
09 Move ExpressionStatement(60) into Block(83) at 2
10 Move ExpressionStatement(64) into Block(83) at 3
11 Insert ReturnStatement(82) into Block(83) at 4
12 Insert PrimitiveType:int(42) into VariableDeclarationStatement(47) at 0
13 Insert VariableDeclarationFragment(46) into VariableDeclarationStatement(47) at 1
14 Insert SimpleName:i(81) into ReturnStatement(82) at 0
15 Insert SimpleName:i(43) into VariableDeclarationFragment(46) at 0
16 Insert MethodInvocation(45) into VariableDeclarationFragment(46) at 1
17 Insert SimpleName:random(44) into MethodInvocation(45) at 0

47

Change clusters

01 Insert MethodDeclaration (84) into TypeDeclaration(85) at 3
02 Insert Modifier:public(55) into MethodDeclaration (84) at 0
03 Insert PrimitiveType:int(56) into MethodDeclaration(84) at 1
04 Insert SimpleName:random(57) into MethodDeclaration(84) at 2
05 Insert Block(83) into MethodDeclaration(84) at 3
06 Insert VariableDeclarationStatement(47) into Block(53) at 7
07 Move VariableDeclarationStatement(49) into Block(83) at 0
08 Move VariableDeclarationStatement(56) into Block(83) at 1
09 Move ExpressionStatement(60) into Block(83) at 2
10 Move ExpressionStatement(64) into Block(83) at 3
11 Insert ReturnStatement(82) into Block(83) at 4
12 Insert PrimitiveType:int(42) into VariableDeclarationStatement(47) at 0
13 Insert VariableDeclarationFragment(46) into VariableDeclarationStatement(47) at 1
14 Insert SimpleName:i(81) into ReturnStatement(82) at 0
15 Insert SimpleName:i(43) into VariableDeclarationFragment(46) at 0
16 Insert MethodInvocation(45) into VariableDeclarationFragment(46) at 1
17 Insert SimpleName:random(44) into MethodInvocation(45) at 0

New method

Move statements

Call to new method

48

Programs as graphs

49

Graph differencing

● Find the right model

– labeled digraph?

● Find the right set of actions

– Insert node ?

– Disconnect edge ?

– …

● Find heuristics to compute solutions

– That make sense to software developers!

50

Applications to software evolution

● Empirical studies on how developers use
syntactic constructs during evolution

– Do Java developers use the new lambdas?

– How code documentation is realized in practice?

● Better tools to assess impact of changes

– On syntax

– On execution

– On tests

– ...

51

Wrapping up

● Source code differencing is essential to
software evolution research

● Existing approaches to differentiate code are
limited

● GumTree, an improved source code
differencing approach

● Successfully applied in several software
evolution research scenarios

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51

