
A Self-Adaptation of Software Component Structures in
Ubiquitous Environments

Gautier Bastide
Ecole des Mines de Douai
941 rue Charles Bourseul

59508 Douai, France
bastide@ensm-douai.fr

Abdelhak Seriai
Ecole des Mines de Douai
941 rue Charles Bourseul

59508 Douai, France
seriai@ensm-douai.fr

Mourad Oussalah
LINA, Université de Nantes

2 rue de la Houssinière
44322 Nantes, France

oussalah@univ-nantes.fr

ABSTRACT
The creation of applications able to be executed in ubiq-
uitous environments, involves a better consideration of the
execution context in order to ensure service continuity. In
component-based software engineering, applications are built
by assembling existing components. For deploying such ap-
plications in ubiquitous environments, its components must
be able to adapt themselves to the current context. To deal
with this issue, we propose in this paper an approach aiming
at reconfiguring the component structure to allow a flexi-
ble deployment of its services according to its use context.
This adaptation focusing on the service continuity, consists
of determining a structure adapted to the execution context.
Then, the current structure is automatically reconfigured
and the generated components are redeployed.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Software component, self-adaptation, restructuring, deploy-
ment, ubiquitous systems, context-awareness, clustering

1. INTRODUCTION
For several years, ubiquitous computing has emerged as

a challenge field for application design. In fact, due to the
huge development of mobile devices, designers have to create
applications able to adapt themselves to the new conditions
which can modify service continuity. For example, a user
device can have scarce resources, such as low battery power,
slow CPU speed and limited memory. So when an applica-
tion is executed on such a device, these hardware resources

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPS’08, July 6–10, 2008, Sorrento, Italy.
Copyright 2008 ACM 978-1-60558-135-4/08/07 ...$5.00.

can become insufficient for guaranteeing service continuity.
In this case, the application must adapt itself.

In addition, more and more applications are created by as-
sembling reusable parts. In Component-Based Software En-
gineering (CBSE), an application consists of existing compo-
nents [4]. To be executed in ubiquitous environments where
context is perpetually evolving, a component must adapt
itself. Adaptation can concern component behavior or com-
ponent structure. Existing work [2, 3] focuses on adapting
component behavior and few works are related to the struc-
ture. Besides monolithic components are considered as de-
ployment units which cannot be structurally adapted. In
fact, the existing work focuses on the placement of compo-
nents or sub-components within a distributed infrastructure.

However, adapting the component structure can be re-
quired in many cases. To illustrate this, let us consider an
example of a monolithic component which has to be deployed
on an infrastructure composed only by resource-constrained
machines. Moreover, no machine can deploy the component
because their resources are insufficient. So the component
has to be adapted. This adaptation can be achieved by frag-
menting the component structure and by distributing some
of its services through the infrastructure. Now, imagine that
a sudden fall in the available memory involves a breakdown
in its service continuity. So the component must adapt itself
to these conditions since runtime.

While being based on the above considerations, we pro-
pose an approach aiming at reconfiguring component struc-
ture in order to achieve a flexible deployment of its services.

In previous work [1], we developed an approach allowing
an application administrator to adapt the software compo-
nent structure since runtime. However, due to the contin-
ual context evolution, a manual decision-making cannot be
achieved. So we propose to automate this task.

We discuss our approach as follows. Section 2 presents
the self-adaptation of component structures. Section 3 de-
tails the decision-making mechanisms. Conclusion and fu-
ture work are presented in section 4.

2. STRUCTURAL SELF-ADAPTATION

2.1 Definitions and motivations
In ubiquitous environments, the context is always chang-

ing. So a component which has been deployed on a resource-
constrained device, is not able to guarantee its service conti-
nuity without adapting itself to the current hardware archi-
tecture. This adaptation can consist in fragmenting and dis-
tributing its structure according to the available resources.

173

For example, if a component is not able to guarantee the
continuity of all its provided services, some of its services
may be distributed on the available infrastructure.

Figure 1 shows a such component (C1) which is deployed
on a resource-constrained machine called host1. Let us con-
sider that, during the component runtime, existing load bal-
ancing has become unfit because of the deployment infras-
tructure evolution. In this case, C1 must adapt itself in
order to ensure service continuity. A solution can consist
of the component fragmentation into four new components
called C2, C3, C4, C5 providing each a subset of services
provided by the component C1. Then, the new components
are deployed on the available infrastructure: C2 is deployed
on host1, C3 and C4 on host2 and finally C5 on host3. Thus,
the component C1 preserves its service continuity on host1
although its sub-components are distributed.

Figure 1: Adaptation of a component structure

We define the self-adaptation of a component structure as
the property of a component to update its structure itself
according to its current context. Thus, a component having
such a property must be able to acquire data related to its
context in order to generate an adapted structure. In fact,
a self-adaptation process is composed of three steps:

(1) context acquisition: a self-adaptive component has to
acquire data related to its execution context. However, all
contextual data have not an impact on the component adap-
tation. So, we need to determine the context elements which
can affect a component structure.

(2) decision-making: the contextual data are interpreted
in order to release an adaptation process and to generate a
specification of an adapted structure.

(3) adaptation achievement: the last step of an adapta-
tion process consists in updating the component structure
in order to make it conform to the generated specification
and redeploying it if it is necessary.

2.2 Structure-dependent context
First of all, we have to define the context elements which

can affect a component structure. These elements will be
used in order to determine when an adaptation process has
to be release and how a structure specification adapted to
the current context is generated. We distinguish three kinds
of context on which a component structure depends.

Hardware architectural context: first, the component struc-
ture depends on the infrastructure technical features. In
fact, a component service can be deployed on a site only
when the resources required by this service are provided by
this site. In addition, as some of these resources are perpet-
ually evolving, they can become insufficient to ensure the

continuity of the services deployed on a site. So these data
must be used to release an adaptation process.

Environmental context: second, the component structure
depends on the environmental context. In fact, the services
that show the highest probability to be used have to be de-
ployed on the user device or on its neighborhood when the re-
quired technical features are sufficient to ensure service con-
tinuity. The use probability must be determined by compar-
ing the similarities between the user-target profile and the
current user profile, and between the foreseen use-conditions
and the current conditions. Neighboring nodes are deter-
mined according to infrastructure features (e.g. best band-
width). This strategy can be useful in ubiquitous environ-
ments because of the connection volatility and variations of
network performance. So several services can be used in
spite of the disconnections of the user device. Furthermore,
the fixed devices must be privileged in order to limit the
risks of disconnections related to the other deployment sites
of the component. The environmental context contains two
kinds of contextual data: user profile (e.g. private data) and
use conditions (e.g. user activity).

Software context: finally, the component structure de-
pends on the component behavior. In order to optimize
component execution (by minimizing the number of remote
connections) and to minimize the consequences of disconnec-
tions (by guaranteeing the completeness of services deployed
on the same host), the services which are closely dependent
should be deployed on the same site. The software context
contains behavioral data which are acquired through an ap-
plication history used to memorize events occurred in the
past (e.g. service call, adaptation-release context).

2.3 Self-adaptive component model
To achieve the structural self-adaptation, a component

must be both self-adaptive and structural-adaptive. In or-
der to be structural-adaptive, a component must conform to
a canonical model, defined in [1], which allows it to update
its structure for runtime. Such a component is a composite
component whose each provided interface is reified into a
primitive sub-component called interface-component. In or-
der to be self-adaptive, a component must contain the three
following components:

Context-manager: this component is used for the model-
ing of service use-cases and the management of contextual
data (acquisition, interpretation and aggregation). Each
interface-component is assigned to a description which con-
tains two kinds of data: the list of required resources needed
for the component deployment, and, data related to the user-
target profile and the use conditions. Contextual data are
acquired using sensors.

Decision engine: this component provides decision-making
mechanisms allowing the component to specify automati-
cally the adaptation script used by the structural adapta-
tion process for generating the adapted component. This
script is a description of the component structure, formu-
lated through an ADL. It contains a description of the com-
ponents to generate: for each component, its services and
its deployment site are specified.

Adaptation engine: once the script defining the new struc-
ture has been generated, structural adaptation has to be
achieved by the component using the reconfiguration engine
then the deployer engine. The functionalities of these two
engines are described in [1].

174

3. DECISION-MAKING FOR THE GENER-
ATION OF AN ADAPTED STRUCTURE

3.1 Strategy overview
Contextual data are used by the component to generate

a specification corresponding to a new component structure
which matches with the current context: each service pro-
vided by the component to adapt must be associated with a
deployment site. Each set of services associated with a site
are merged into a same sub-component. To generate such
specification of the new component structure, we identify
three kinds of classification tasks which differ according to
their impact on the component structure.

First, the environmental context is used for classifying
services provided by the adapted component according to
their priority of deployment on the user device. In fact,
this priority depends on similar points between the context
target (defined by the application administrator) and the
current context (acquired using sensors or user data). How-
ever, these classification tasks cannot be generated auto-
matically because events and decisions are specific to the
application. In this case, the selection strategy must be
designed by the application administrator using rules like
(< condition >⇒< action >).

The second task is based on selecting sites where services
are able to be deployed, taking into account the resources
available on the different nodes of the distributed infrastruc-
ture. This task is achieved by matching the service require-
ments (defined by the component designer) with the con-
textual data. We aim at generating a configuration which
maximizes the number of high-priority services deployed on
the user device or on its neighborhood. So, each subset of
services associated with a site corresponds to a component
generated during the structural adaptation. It will be re-
deployed on the corresponding site. However, this selection
task cannot be entirely automated because of the specificity
of the resources required by each service. In fact, this se-
lection is achieved using adaptation policies defined by the
component designer.

The last task is based on classifying the component ser-
vices according to the data related to the component struc-
ture and behavior. This classification is used to optimize the
service distribution by evaluating the dependences between
services. In fact, the optimization is based on minimizing re-
mote connections between the new specified components by
merging the most dependent services within sub-components
which are deployed on sites according to their dependences
with other application components. Contrary to the two
previous tasks, where a treatment specific to the applica-
tion is required, this task can be entirely automated. This
operation is detailed below.

3.2 Service-dependency awareness
The objective of software-awareness is to merge the most

dependent services within sub components deployed only on
one device. Dependences between services [1] are of two
kinds: functional dependences and dependences related to
the resource-sharing. They require the introduction of re-
mote communications between components (e.g. remote ser-
vice call, shared-resource synchronization); whose cost can
be substantial. So, sub-components must be specified tak-
ing into account these dependences in order to minimize the
remote communications.

3.2.1 Evaluable context-elements
To set up such selection mechanisms, we need to quanti-

tatively evaluate dependencies among components. To do
so, we have to create a history of communications among
sub-components (software context). Data collected for each
service (Si) of the self-adaptive component are the following:

(a) the probability that the service Si calls Sj with Sj ∈

Sprovided ∪ Srequired, noted Puse(Si, Sj). This probability is
related to the number of Sj call during Si execution (direct
or indirect call) compared to the service Si call number,

(b) the average number of calls from Si to Sj with Sj ∈

Sprovided ∪ Srequired, noted Maver(Si, Sj),
(c) the average number of parameters used when a ser-

vice Sj is called by Si, noted Nbparam(Si, Sj) as well as the
average memory size (in bytes) of these parameters, noted
Tparam(Si, Sj),

(d) the probability to update a resource, in Si, shared
with Sj such as Sj ∈ Sprovided, noted Pupdate(Si, Sj),

(e) the probability to initiate a critical section in Si related
to a resource shared with Sj such as Sj ∈ Sprovided, noted
Pcritical(Si, Sj).

3.2.2 Service-dependency evaluation
The software-context elements are used to evaluate prox-

imities between the various services provided by the adapted
component. In fact, the proximity between two services de-
pends on their coupling (i.e. evaluation of the functional
dependences) and on their cohesion (i.e. evaluation of the
dependences related to resource-sharing).

The coupling (1) between two different services Si and Sj

noted Ccoupling(Si, Sj) is evaluated according to the proba-
ble number of calls of the service Sj since the execution of
Si and inversely (2) balanced by the number and the type
of parameters exchanged between these two services (3). In
fact, this weight is computed according to the average num-
ber of parameters used for the service call and the average
memory size of these parameters. Thus, we evaluate the
coupling between two services Si and Sj as follow:

Ccoupling(Si, Sj) = α(Si, Sj) ∗ β(Si, Sj) + α(Sj , Si) ∗ β(Si, Sj) (1)

Where α(x, y) = Tparam(x, y) ∗ (Nbparam(x, y) + 1)(2)

β(x, y) = Maver(x, y) ∗ Puse(x, y) (3)

The cohesion (4) between two different services Si and Sj ,
noted Ccohesion(Si, Sj) is evaluated according to the num-
ber of critical sections started in each service (5) and the
frequency update of resources shared between Si and Sj and
inversely (6), balanced by the number and the type of re-
sources (7). The weight related to the type of resources
corresponds to their average memory size expressed in byte
and noted Tsr(Si, Sj). Thus, the value of cohesion between
two services Si and Sj are obtained as follows:

Ccohesion(Si, Sj) = γ(Si, Sj) ∗ η(Si, Sj) + χ(Si, Sj) (4)

Where χ(x, y) = Pcritical(x, y) + Pcritical(y, x) (5)

η(x, y) = Pupdate(x, y) + Pupdate(y, x) (6)

γ(x, y) = Nbsr(x, y) ∗ Tsr(x, y) (7)

The proximity between two services Si and Sj contained
in a set S is a binary relationship, noted Pr(Si, Sj) defined
as follow:

Pr(Si, Sj) =

(

1 if Si = Sj

(α∗C′

coupling
(Si,Sj)+β∗C′

cohesion
(Si,Sj))

α+β
else

175

Where

C′

coupling(Si, Sj) =

(

0 if Ccoupling max = 0
Ccoupling(Si,Sj)

Ccoupling max
else

C′

cohesion(Si, Sj) =

(

0 if Ccohesion max = 0
Ccohesion(Si,Sj)

Ccohesion max
else

Ccoupling max = max({Ccoupling(x, y), ∀x, y ∈ S / x 6= y})

Ccohesion max = max({Ccohesion(x, y), ∀x, y ∈ S / x 6= y})

The proximity between two services varies from zero, when
the two services are not dependent, to one. The value one
means that the two services are identical (by convention).
The closer to one the value of the proximity is, the more de-
pendent the two services are. α and β are the impact factors
for respectively coupling and cohesion. According to the use
needs, the application administrator can instantiated these
factors by giving more weight to the coupling (α > β) or to
cohesion (α < β). By default, we supposes that these two
dependences have identical impacts (α = 1 and β = 1).

3.2.3 Clustering-service algorithm
The evaluation of proximities between the services pro-

vided by the adapted component is used to merge services
in subsets containing the most dependent services, among
themselves. Each subset constitutes a component whose the
provided services are the ones contained in this subset.

In addition, the dependencies between provided and re-
quired services can be used to determine the deployment
site of each generated component. The goal is to minimize
remote communications with the other application compo-
nents providing the services required by the component to
adapt. In fact, the generated components must be deployed
on the sites which provide services close to the services pro-
vided by the adapted component.

To obtain an interface partition whose elements are as-
sociated with a deployment site, we use a hierarchical clus-
tering algorithm (Fig. 2). It requires as a parameter, an
array whose cells contain an evaluation of proximities be-
tween provided services and with deployment node of the
infrastructure. So we can note that there are two kinds of
clusters: on the one hand, service-clusters which contain a
set of services provided by the adapted component, and, on
the other hand, site-clusters which contain the set of services
provided by components which are deployed on it and which
are required by the adapted component.

Clinit ← {Set of initial clusters}
While ∃Cli ∈ Clinit such as Cli ∩ Sites 6= ⊘ Do
∀Cli ∈ Clinit, ∀Clj ∈ Clinit∪Sites, T [Cli, Clj]← Pr(Cli, Clj)
Find Clmaxi and Clmaxj such as
∀Cli ∈ Clinit, ∀Clj ∈ Clinit ∪ Sites, Cli 6= Clj and

T (Clmaxi, Clmaxj) ≥ T (Cli, Clj) and |Clmaxi ∩ Site| ≤ 1
Clinit = Clinit ∪ {(Clmaxi, Clmaxj)}
If Clmaxj ∈ Clinit then

Clinit = Clinit − {Clmaxi, Clmaxj}
If Clmaxj ∈ Sites then

Clinit = Clinit − {Clmaxi}
Sites = Sites − {Clmaxj}

Return Clinit

Figure 2: Service-clustering algorithm

The main idea behind this algorithm is to merge the ser-
vices provided by the adapted component, in clusters, ac-
cording to their proximity. And, each cluster must be asso-
ciated with only one deployment site. Initially, the maximal

value of the array is searched. Two cases can appear: if
this value corresponds to the proximity between two service-
clusters, these two clusters are merged. If this value cor-
responds to the proximity between a service-cluster and a
site-cluster then the service-cluster is associated with the
corresponding site. If the cluster is already associated with
a site, this value is ignored and the algorithm searches the
maximal value of this array except this cell. Once a fusion
or an association has been achieved, the proximity array is
evaluated again according to the new clusters. Two solutions
are possible to calculate the proximities between two clus-
ters: either all proximity values (coupling and cohesion) are
evaluated again according to the services contained in each
cluster, or an approximation of the proximity between two
clusters is done. The former cannot be considered because of
its complexity (O(n6)) which cannot be acceptable for run-
time adaptation. That is why, we chose a lower-complexity
strategy (O(n2)) based on the average proximities between
the cluster elements:

Pr(Cl1
, Cl2

) =
1

|Cl1
||Cl2

|

X

Si∈Cl1
,Sj∈Cl2

Pr(Si, Sj)

These operations are reiterated until each cluster is asso-
ciated with a deployment site. Then, the result corresponds
to the different clusters obtained and their associated site.

4. CONCLUSION AND FUTURE WORK
We presented an approach aiming at the component struc-

ture reconfiguration in order to allow a flexible deployment
of its services. Such components must conform to a canon-
ical format which is based on interface reification. Besides,
it must integrate mechanisms enabling it to acquire and an-
alyze its context, to determine an adapted structure guar-
anteeing its service continuity. Then, the specified struc-
ture is generated by encapsulation of interface-components
within new sub-components which can be redeployed inde-
pendently.

As mentioned in our motivations, our approach aims at al-
lowing a flexible deployment of software components in order
to ensure their service continuity. However, our adaptation
process involves an overhead related to the management of
the communication and synchronization between the gener-
ated sub-components and decision mechanisms. Currently,
we evaluate this overhead.

5. REFERENCES
[1] G. Bastide, A.-D. Seriai, and M. Oussalah. Software

component re-engineering for their runtime structural
adaptation. In Proc. of the Int. Conf. on Computer
Software and Applications (COMPSAC), pp. 109-114,
2007.

[2] P. Boinot, R. Marlet, J. Noye, G. Muller, and C.
Consel. A declarative approach for designing and
developing adaptive components. In Proc. of the Int.
Conf. on Automated Software Engineering (ASE), p.
111, 2000.

[3] J. Dowling and V. Cahill. The k-component
architecture meta-model for self-adaptive software. In
Proc. of the Int. Conf. on Metalevel Architectures and
Separation of Crosscutting Concerns, pp. 81-88, 2001.

[4] C. Szyperski. Component software: beyond
object-oriented programming. ACM Press, 1998.

176

