
Feature-to-Code Traceability in a Collection of Software Variants: Combining
Formal Concept Analysis and Information Retrieval

Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai and Christophe Dony
LIRMM Laboratory, Montpellier, France
{Eyalsalman, Seriai, Dony}@lirmm.fr

Abstract

Today, developing new software variant to meet new de-
mands of customers by ad-hoc copying of already existing
variants of a software system is a frequent phenomenon in
the software industry. Typically, maintaining such vari-
ants becomes difficult and expensive over the time. To re-
engineer such software variants into a software product
line (SPL) for systematic reuse, it is important to identify
source code elements that implement a specific feature in
order to understand product variants code. Information Re-
trieval(IR) methods have been used widely to support this
purpose in a single software. This paper proposes a new
approach to improve the performance of IR methods in a
collection of similar software variants. Our proposal pro-
duces following two improvements. First, increasing the
accuracy of IR results by exploiting commonality and vari-
ability across software variants. Secondly, increasing the
number of retrieved links that are relevant by reducing the
abstraction gap between feature and source code levels. We
have validated our approach with a set of variants of two
different systems. The experimental results showed that the
proposed approach outperforms the conventional applica-
tion of IR as well as the most relevant work on the subject.

1. Introduction

Today, developing new software variants to meet new de-
mands of customers by ad-hoc copying of already existing
variants of a software system is a frequent phenomenon in
the software industry. This is because that software com-
panies need to develop new software products with major
improvements during a short time to remain competitive in
their respective market. When the number of such software
variants growths, the need for a systematic reuse strategy
becomes apparent because maintaining such variants be-
comes more difficult and expensive over the time [1]. In
contrast to such ad-hoc reuse mechanism, software product
line engineering (SPLE) provides a systematic strategy for

reuse. It produces a short time-to-market products in a cost-
efficient way by achieving large-scale software reuse. It of-
ten exploits available software artifacts of existing legacy
systems to build SPL’s core assets (e.g.,source code, design
documents, features and so on) [2]. A feature is a prominent
or distinctive user-visible aspect, quality or characteristic of
a software system [3].

To re-engineer legacy software variants into an SPL for
systematic reuse, it is important to identify source code ele-
ments (e.g., classes) that implement a specific feature. This
identification is known as traceability links or feature loca-
tion. Traceability links in legacy systems are particularly
important and helpful to understand software variant code.
Additionally, traceability links in SPLE are needed to de-
rive concrete product from SPL’s core assets by selecting
features and their respective source code elements [4]. In-
formation Retrieval (IR) methods are used widely to auto-
mate traceability links recovery for single software product
[5]. The conventional application of IR methods consists
in lexical matching of all features (i.e. their descriptions)
for a single software to its entire source code information.
These features and the associated source code are called IR
spaces.

In this paper, we improve the performance of IR meth-
ods when they are applied to identify feature-to-code trace-
ability in a collection of object-oriented software variants.
This work produces following two improvements. First, the
proposed approach enhances the accuracy of IR results by
reducing the number of false positive links. This is achieved
by reducing IR spaces (i.e., feature and source code spaces)
trough exploiting commonality and variability across soft-
ware variants. Second, it increases the number of retrieved
links that are relevant by bridging the abstraction gap be-
tween feature and source code levels. This bridging is per-
formed by introducing an intermediate level called “code-
topic” . A code-topic is a cluster of similar classes that
are grouped together to cover the same topic. Such code-
topics can be a functionalities implemented by the source
code. Using code-topic we can get enough information
(e.g., classes’ identifiers) to textually match these classes

together with a feature description where we consider that
a feature is a bundle of functionalities. In this paper, we
investigate the results of identifying code-topics based on
textual information as well as combining textual and struc-
tural information.

We use separately Formal Concept Analysis (FCA) and
lexical similarity computing to reduce IR spaces. It also
combine FCA, structural and textual information to derive
code-topics. Traceability links between features and their
corresponding code-topics are recovered using LSI. Then,
each feature are linked to their classes by decomposing each
code-topic to its classes

The rest of this paper is structured as follows. Section
II and III shows background and the traceability recovery
process. Section IV shows experimental results and evalua-
tion. Section V discusses related works. Finally, section VI
concludes our work.

2 Background

2.1 Assumptions

For the purpose of this work, we focus on functional fea-
tures that express the behavior or the way users may interact
with a product [6]. Typically legacy software variants im-
plement a set of functional features either common, shared
among all variants, or optional, shared among some vari-
ants. We restrict ourselves to object-oriented systems. In
an object-oriented source code, the functional features can
be implemented by a set of packages, classes, methods and
attributes. As the class represents a main building unit in all
object-oriented languages and most often developers think
about the class as a set of responsibilities that simulate a
concept or functionality from of the application domain [7];
we assume that the functional feature is implemented by a
set of classes.

Intuitively, the functional feature is a bundle of function-
alities that are related. Thus, we propose the code-topic, as
a cluster of similar classes that are grouped based on either
lexical similarity or combing lexical and structural similar-
ity to implement a functionality. In this work, we investigate
the results of two methods to derive code-topics. Code-
topics constitute an intermediate level that bridges the ab-
straction gap between feature and source code levels. Fea-
tures provide an abstraction of requirements and their im-
plementations are scattered over multiple classes. Conse-
quently, a feature (i.e., its description) can be matched to a
set of code-topic (i.e., their source code information) rep-
resenting its functionalities. This allows us to easily map
a feature to a set of classes that are similar and grouped as
a code-topic instead of mapping each feature to each class
separately.

2.2 Textual Information and IR

Textual information in source code refers to identifier
names and internal comments. This information records
important domain knowledge about a software system. In-
formation Retrieval (IR) exploits this information to locate
a feature’s implementation. IR works by lexical matching a
set of textual artifacts with a query and ranking these arti-
facts against the query. Different IR methods such VSM and
LSI have been proposed. However, they share four steps to
locate a feature in the source code [8]. First, IR methods
start by building a collection of documents called corpus. A
document is a list of source code information (i.e., identi-
fiers and comments) found in a named block of source code
such as a method, class or package. Second, the corpus un-
dergoes a preprocessing step. A preprocessing involves nor-
malizing the documents content such as stop word removal
and stemming. In the third step, a term-by-document matrix
is created by using the corpus. The matrix’s columns cor-
respond to the corpus documents and rows represent terms
that are extracted from these documents. The matrix values
indicate the number of occurrences of a term in a document
according to a specific weighting scheme. Finally, a user
make a query that describes specific feature to be located.
Each query is manipulated by the same preprocessing tech-
niques as the corpus.

In VSM, documents are represented by vectors of terms
so that each column in the term-by-document matrix is a
document vector of terms that appear in all documents. LSI
differs from VSM by using a Singular Value Decomposi-
tion (SVD) technique which is used to overcome the syn-
onymy and polysemy issues. The SVD divides the term-
by-document matrix to create LSI subspaces. In the LSI
subspaces each document has a corresponding vector. We
use the vector representation to compute similarity. In both
LSI and VSM, the textual similarity between documents
and queries is measured by the cosine of the angle between
their corresponding vectors [9].

The effectiveness of IR methods is commonly measured
by their precision, recall and F-measure. For a given query,
precision is the percentage of retrieved links that are rel-
evant to the total number of retrieved links. Recall is the
percentage of retrieved links that are relevant to the total
number of relevant links. F-measure makes a trade-off be-
tween precision and recall so that it gives a high value only
in the case that both recall and precision values are high.
All measures have values in a range [0, 1]. Higher preci-
sion, recall and F-measure mean better results [8].

2.3 Structural Information

Structural information refers to the dependency relation-
ships in software’s source code such as method calls and

inheritance relationships. These relationships are important
for feature-to-code traceability because a feature’s imple-
mentation spans multiple classes and these classes that par-
ticipate to implement a feature are linked. For example,
In compositional approaches such as feature-oriented pro-
gramming, the code that implements a specific feature is
encapsulated as a cohesive unit [10]. Thus, we use cohe-
sion metrics in order to measure the degree to which classes
are linked to each other. We rely on four cohesion measures
which capture different types of interactions among classes
These measures include:

1. Inheritance relationship: When a class inherits re-
sources of another class.

2. Method call: When methods of one class use methods
of another class.

3. Shared method invocation: when two methods of
two different classes have a shared method invocation.

4. Shared attribute access: when two methods of two
different classes have a shared attribute access.

2.4 Fundamentals of Formal Concept Analysis

Formal Concept Analysis (FCA) is a technique for data
analysis and knowledge representation based on lattice the-
ory. It identifies meaningful groups of objects sharing com-
mon attributes and provides a theoretical model to analyze
hierarchies of these groups. The main goal of FCA is to de-
fine a concept as a unit of two parts [11]: extent and intent.
The extent of a concept is the objects covered by the con-
cept, while the intent is the attributes, which are shared by
all the objects covered by the concept [11].

In order to apply FCA, the formal context or incidence
table of objects and their attributes is needed Formally, the
formal context is defined as a triple K = (O,A,R) where
O and A are sets of objects and attributes respectively and
R is a binary relation between objects and attributes, in-
dicating which attributes are possessed by each object, i.e.,
R ⊆ O × A. For a given formal context K, a formal con-
cept is a pair (E, I) composed of an object set E ⊆ O and
an attribute set I ⊆ A. E = {o ∈ O|∀a ∈ I, (o, a) ∈ R} is
the extent of the concept. I = {a ∈ A|∀o ∈ E, (o, a) ∈ R}
is the intent of the concept. The set of all concepts of a for-
mal context constitutes a concept lattice. There are several
algorithms to compute concept lattices from a given formal
context. In this work, we depend on Galois lattices that ig-
nore empty concepts.

3 The Traceability Recovery Process

This section describes input data and steps for our
feature-to-code traceability process. This process takes two

Figure 1. An overview of our approach.

inputs: object-oriented source code and feature descriptions
of a set of software variants. Each feature is identified by
its name and the description which consists of a short para-
graph. This information about features is generally avail-
able due to the need for product customization.

Figure 2 shows the traceability recovery process which
consists of four main steps. The first step aims to reduce
LSI spaces. Lexical similarity computing divides all fea-
tures and classes of a given set of software variants into
common and variable partitions. At the feature level, com-
mon and variable partitions consist of all common and op-
tional features across software variants respectively. At the
source code level, common and variable partitions consist
of classes that implement common and optional features re-
spectively. Also in the first step, the variable partitions are
fragmented into minimal disjoint sets using FCA. Second,
code-topics are derived from common class partition and
each minimal disjoint set of classes that are computed in
the previous step. In the third step, the traceability links
between features and their possible corresponding code-
topics are established using LSI. Finally, by determining
code-topics related to each feature, we can easily determine
classes that implement each feature by decomposing each
code-topic to its classes.

3.1 An Illustrative Example

As an illustrative example through this paper, we
consider four variants of a bank software. Bank V1.0
supports just core features for any bank software:
CreateAccount,Deposit,Withdraw and Loan.
Bank V1.1 has, in addition to the core features,
OnlineBank, Transfer and MobileBank fea-

Table 1. Formal context for describing bank
systems differences.

O
nl

in
eB

an
k

Tr
an

sf
er

C
on

so
rt

iu
m

B
ill

Pa
ym

en
t

C
on

ve
rs

io
n

M
ob

ile
B

an
k

V 1.2 − V 1.0 X X X X
V 1.0 − V 2.0

V 2.0 − V 1.0 X X X X X X
V 1.1 − V 1.2 X X
V 1.2 ∩ V 2.0 X X X X

. . .

tures. Bank V1.2 supports not only core features but
also new features: OnlineBank, Conversion,
Consortium and BillPayment. Bank V2.0 is an
advanced application. It supports all previous features
together.

3.2 Reducing LSI spaces

3.2.1 Determining common and variable partitions at
feature and source code levels

At the feature level, we rely on lexical similarity of feature
names and their descriptions to determine the common par-
tition by identifying two subsets of common features. First,
we define a subset of those features that have the same name
across software variants. Second, a subset of features that
have the same description but may have different names due
to changes in software environment or to the adoption of
different technology. We compute the longest common sub-
sequence of feature description terms to determine the sec-
ond subset. We consider two features identical if and only if
they have the same subsequence terms of their description.
In our illustrative example, all core features form the com-
mon partition at feature level. The remaining features (i.e.,
optional features) in each variant form together the variable
partition at the feature level.

At the source level, we need to divide the source code
of a given set of software variants into a common and vari-
able partition. To do so, we represent the source code
for each variant as a set of Elementary Construction Units
(ECUs). Each ECU has the following format: ECU =
PackageName ClassName

Each software variant Pi is abstracted as a set of ECUs
as follows: Pi={ECU1, ECU2, . . . , ECUn }. An ECU re-
veals any changes at package and class levels (e.g., adding
or removing packages or classes in a subsequent variant).
These changes co-occur with adding or removing features
in a subsequent variant. Common ECUs shared by all
software variants represent common classes composing the
common partition at source code level. The variable par-
tition at source code level is composed of the remaining

Figure 2. The concept lattice for the formal
context of Table I.

classes in each variant. The Common ECUs are computed
by conducting a lexical matching among ECUs for all vari-
ants where we assume that developers use the same vocab-
ulary to name source code identifiers.

3.2.2 Fragmentation of the variable partitions into
minimal disjoint sets

To reduce further the space related to the variable partitions,
computed in the previous, our approach fragments these
partitions into minimal disjoint sets of optional features and
their respective minimal disjoint sets of classes.

Minimal disjoint sets of optional features are com-
puted based on FCA. We apply FCA on all variant-
differences. For two software variants P1 and P2, we cre-
ate three variant-differences. P1

⋂
P2 (a set that contains

all the optional features that P1 and P2 have in common),
P1 − P2 (a set that contains features existing only in P1 but
not in P2) and P2 − P1 (a set that contains features exist-
ing only in P2 but not in P1). The variant-differences aim
at identifying differences between each pair of variants at
feature level taking into account all combinations between
software variants. As an example, if we consider variants
Bank V 1.2(V 1.2) and Bank V 2.0(V 2.0) of our illustra-
tive example, three variant-differences can be created as fol-
lows: V 1.2 − V 2.0 = {φ} , V 2.0 − V 1.2 = {OnlineBank,
Conversion, Consortium, BillPayment} and V 1.1

⋂
V 1.2 =

{Transfer, MobileBank}. This way to compute variant dif-
ferences is similar to the one proposed by Xue et al. [12].

We use FCA to group optional features via concept lat-
tice into minimal disjoint sets. To do so, we define the
formal context of FCA as follows: all variant-differences
and optional features represent objects (extent) and at-

tributes (intent) respectively. A relation between a variant-
difference and an optional feature indicates to an optional
feature possessed by a variant-difference. Table 1 shows a
formal context related to our illustrative example. Figure 3
shows the concept lattice related to the formal context of Ta-
ble 1. Each node in the lattice represents a concept having
features as intent and these features are shared by variant-
differences which constitute the associated extent. We are
interested in the concepts associated with a set of optional
features (such as the Concept 5 in Figure 3). They allow
us to know how to obtain minimal disjoint sets of optional
features and determine corresponding classes implementing
these features.

The minimal disjoint set of classes related to each min-
imal disjoint set of features is calculated as follows. For a
given set of optional features (i.e., a concept computed by
FCA), we analyze the concept’s extent to determine which
variants should be compared. We encounter two cases to
compute a relevant set of classes. First, if the concept’s
extent is not empty, we randomly select only one variant-
difference from the variant-differences listed in its extent.
For instance, considering Concept 5 in Figure 3 , we can
select the first variant-difference (V 2.0− V 1.1) to identify
a set of classes that are present in Bank V 2.0 but absent
in Bank V 1.1. The resulting set of classes implements the
features located in the Concept 5.

The second case is if the concept extent’s is empty
(i.e. the concept which is not associated directly with a
set of variant-differences), we randomly select only one
variant-difference from each concept located immediately
below and directly related to this concept. For example,
considering the Concept 6 in Figure 3, we select ran-
domly a variant-difference from Concept 1 and another
one from Concept 2. Thus, for the OnlineBank fea-
ture in Concept 6, its corresponding set of classes are in
Bank V 1.1, Bank V 2.0 and Bank V 1.2. In both cases,
differences among relevant variants are computed by lex-
ically comparing their ECUs. For features of Concept 5,
their corresponding classes is a set that contains all the
ECUs of V 1.2 that are not in V 1.1.

3.3 Reducing the abstraction gap between feature
and source code levels

In this step, we follow a two-step process to derive the
code-topics from the common partition’s classes and any
minimal disjoint set of classes: computing similarity among
classes and grouping similar classes into code-topics using
FCA. In this paper, we use two kinds of source code in-
formation to compute the similarity: textual and structural
information.

3.3.1 Computing textual and structural similarities

Textual similarity among given classes refers to textual
matching between terms derived from identifiers related to
these classes. We depend on VSM to compute the textual
similarity. We follow VSM’s steps described in section 2.2.
In VSM, each document represents a class. Each document
is a list of all identifiers of its corresponding class. VSM
computes the textual similarity between two class docu-
ments by using cosine similarity between their correspond-
ing vectors. One of these documents has been treated as a
query. Two documents are considered similar if the cosine
of the angle of their corresponding vectors is greater than or
equal to 0.70. This value represents the most widely used
threshold for the cosine similarity [9]. After computing the
cosine similarity among all class documents, we build a co-
sine similarity matrix whose columns and rows are identical
and represent the class documents. An entry in this matrix
refers to the cosine similarity value.

For structural similarity, we consider two classes are
structurally similar if they have at least one of the following
relations: inheritance, method call, shared method invoca-
tion and shared attribute access relations (all these relations
are defined in section II.B). After computing the structural
similarity among all classes, we build a structural similarity
matrix whose columns and rows are identical and represent
classes. An entry in this matrix refers to the structural sim-
ilarity value. Each value is either 0 (there is no relation) or
1 (there is a relation).

3.3.2 Grouping similar classes into code-topics using
FCA

FCA exploits the similarity among given classes to group
them into code-topics. In this step, we define two formal
contexts one of them for textual similarity and another one
for combining textual and structural similarities. For tex-
tual similarity, the cosine similarity matrix was defined in
the previous step represents a formal context where class
documents represent objects and attributes at the same time.
A relation between a document (as an object) and another
document (as an attribute) refers to the cosine similarity
value. Table 2 partially shows the formal context obtained
by transforming the cosine similarity matrix for classes that
implements the set of optional features located in the Con-
cept 5 of Figure 3. The cross sign refers to the similar-
ity relation while null refers to no relation according to the
threshold value. For combining textual and structural simi-
larities, we define a formal context as above described how-
ever a relation between objects and attributes indicates to
the textual or structural similarities. Table 3 partially shows
a formal context generated by combing textual and struc-
tural similarities for the same classes considered in Table
2.

Table 2. A formal context for textual similarity.

B
ill

B
ill

A
co

un
t

B
ill

O
ld

B
ill

s

B
ill

Pa
yP

ar
tia

lly

C
on

ve
rs

io
n

co
nv

er
te

r

C
on

ve
rs

io
n

C
ur

re
nc

yI
nf

o

C
on

ve
rs

io
n

C
on

ve
rt

L
im

it

..
.

Bill BillAcount X X
Bill OldBills X
Bill PayPartially X X
Conversion converter X X
Conversion CurrencyInfo X X X
Conversion ConvertLimit X X
. . .

Table 3. A formal context for combining tex-
tual and structural similarities.

B
ill

B
ill

A
co

un
t

B
ill

O
ld

B
ill

s

B
ill

Pa
yP

ar
tia

lly

C
on

ve
rs

io
n

co
nv

er
te

r

C
on

ve
rs

io
n

C
ur

re
nc

yI
nf

o

C
on

ve
rs

io
n

C
on

ve
rt

L
im

it

..
.

Bill BillAcount X X X
Bill OldBills X X X
Bill PayPartially X X X
Conversion converter X X X
Conversion CurrencyInfo X X X
Conversion ConvertLimit X X X
. . .

Based on the formal contexts defined above, FCA is used
as a clustering technique to group similar classes together
via building a concept lattice. Each concept in the lattice
contains a group of similar classes as extent. This group
can be a candidate code-topic.

3.4 Mapping between features and code-topics

In this step, we separately apply LSI to establish trace-
ability links between common feature partition and its pos-
sible corresponding code-topics as well as between each
minimal disjoint set of optional features and its possible
corresponding code-topics. LSI is applied by following the
steps described in section 2.2 however we build LSI’s cor-
pus and queries as follows. LSI corpus consists of docu-
ments which each one corresponds to a code topic. Each
document consists of the terms extracted from identifiers of
classes that constitute a code-topic. For LSI’s queries, we
create for each feature a document which contains a fea-
ture name and description. Each feature document repre-
sent a query. LSI takes the corpus documents and queries
as input. Then, LSI measures the similarity between the
queries and documents using the cosine similarity. It re-
turns a list of documents ordered by their cosine similari-
ties values against each query. We consider again the same

threshold value used in VSM for the cosine similarity.

3.5 Mapping between features and their classes

After establishing the traceability links between each
feature and all its corresponding code-topics, we can eas-
ily link each feature with its implementing classes by de-
composing each code-topic to its classes. For instance, if
the feature f1 is linked to two code-topics: topic1= {c1, c2,
c3} and topic2= {c1, c5, c6}. By decomposing these topics
into their classes; we can find that f1 is implemented by five
classes {c1, c2, c3, c5, c6}.

4 Experimental results and evaluation

4.1 Case studies

To validate our approach, we have applied it to seven
variants of ArgoUML-SPL1 , a large-scale system, and the
first five releases of MobileMedia2, a small-scale system.
The ArgoUML-SPL is a Java open-source which supports
all standard UML 1.4 diagrams. The ArgoUML-SPL’s vari-
ants are generated from the same framework so that variants
which share some features also share the same code. The se-
lected variants support all ArgoUML’s features. The ground
truth links between features and their source code elements
were determined by preprocessor directives to delimit the
code associated to each feature. ArgoUML-SPL features
are implemented at class level. The MobileMedia is a JAVA
open source which manipulates multimedia on mobile de-
vices. In our study, we have considered and analyzed vari-
ants 0 to 4 because they implement features at class level
and vary in terms of the number of features available.

4.2 Performance of our approach

The most important parameter to LSI is the number of
chosen term-topics. A term-topic is a collection of terms
that co-occur frequently in the documents of the corpus. We
need enough number of term-topics to capture real term re-
lations. Too many term-topics lead to associate irrelevant
terms and too few term-topics lead to loose relevant terms.
In this work we cannot use a fixed number of term-topics
for LSI, because we have different size of class sets. Thus,
we use a factor K between 0.1 and 0.5 as well as between
0.01 and 0.05 to determine the number of term-topics. The
number of term-topics (#Term-topics) is equal to k×Ddim,
where Ddim is a document dimensionality of the term-by-
document matrix that is generated by LSI. We use different
ranges for K because we have different sizes of variants and
class sets.

1Available at: http://argouml-spl.tigris.org/
2Available at:http://www.ic.unicamp.br/ tizzei/mobilemedia/

Table 4. Average Precision, Recall and F-
measure of FCT against CONV

Case Study ArgoUML-SPL
Precision Recall F-measure

K FCT CONV FCT CONV FCT CONV
0.01 52% 21% 95% 91% 67% 34%
0.02 52% 22% 91% 82% 66% 35%
0.03 50% 29% 87% 59% 64% 39%
0.04 51% 42% 81% 39% 63% 40%
0.05 57% 63% 76% 25% 65% 36%

Case Study MobileMedia
Precision Recall F-measure

K FCT CONV FCT CONV FCT CONV
0.1 71% 21% 100% 80% 83% 33%
0.2 71% 22% 99% 70% 83% 33%
0.3 81% 25% 85% 56% 83% 34%
0.4 81% 27% 81% 41% 81% 33%
0.5 86% 36% 77% 28% 81% 32%

Table 4 shows average precision, recall and F-measure
results for our approach (Feature-to-Code traceability or
FCT) and the conventional application of LSI (CONV) us-
ing different values of K for both case studies. Our ap-
proach results are obtained by combining textual and struc-
tural similarities to derive code-topics. As we can see, re-
call and precision results of FCT are better than those of
CONV. This is attributed to two main reasons. First, FCT
maps small sets of features to small sets of their respec-
tive source code classes in order to reduce the number of
false positive links. Second, FCT bridges the abstraction
gap between feature and source code levels using the code-
topic. This leads to increase the number of retrieved links
that are correct. The F-measure results confirm that FCT
gives higher precision and recall compared with CONV in
both case studies.

Table 5 summarizes results of FCT by combining tex-
tual and structural information to derive code-topics against
the results of the most relevant work on the subject, called
FL-PV [12]. This results represent the precision, recall and
F-measure values for all variants’ features of both case stud-
ies at different values of K. FL-PV considered reducing the
LSI spaces as a factor to improve LSI results in a collection
of software variants. Table 5 shows that FCT outperforms
FL-PV in case of ArgoUML-SPL. This is attributed to the
fact that FCT not only considers reducing LSI spaces like
FL-PV but also reduces the abstraction gap between fea-
ture and source code levels. Also Table 5 shows that FCT
and FL-PV give the same results in case of MobileMedia.
This is because MobileMedia’s features are implemented
by a small number of non-cohesive classes and sometimes
by only one class. Additionally, these classes don’t have
enough information to build code-topics.

We compare in Table 6 results of identifying code-topics

Table 5. Results of Precision, Recall and F-
measure of FCT against FL-PV.

Case Study ArgoUML-SPL
Precision Recall F-measure

K FCT FL-PV FCT FL-PV FCT FL-PV
0.1 71% 34% 51% 29% 59% 31%
0.2 60% 7% 6% 4% 11% 5%
0.3 89% 2% 3% 1% 6% 2%
0.4 60% 1% 2% 0% 4% 1%
0.5 80% 0% 1% 0% 2% 0%

Case Study MobileMedia
Precision Recall F-measure

K FCT FL-PV FCT FL-PV FCT FL-PV
0.1 85% 85% 100% 100% 92% 92%
0.2 85% 85% 100% 100% 92% 92%
0.3 93% 93% 93% 93% 93% 93%
0.4 93% 93% 93% 93% 93% 93%
0.5 96% 96% 89% 89% 93% 93%

Table 6. Results of textual information against
combing textual and structural information
for identifying code-topics

Case Study Precision Recall F-measure
Combined Textual Combined Textual Combined Textual

ArgoUML 72% 61% 13% 12% 22% 20%
MobileMedia 90% 90% 95% 95% 92% 92%

by using only textual information and by combing textual
and structural information. This results represent the av-
erage precision, recall and F-measure for locating features
of both case studies for all K values in a range [0.1, 0.5].
We notice that combining textual and structural informa-
tion gives better results than considering only textual in-
formation in case of ArgoUML-SPL. This means that by
combining textual and structural information, we can ac-
quire more relevant information to establish pertinent links
between code-topics and features. However in case of Mo-
bileMedia both methods for identifying code-topics give the
same results. This is due to that MobileMedia’s features are
implemented by a small number of non-cohesive classes.

5 Related work

The works of Xue et al. [12], Ghanam et al.[13] Rubin
et al.[14] belong to the second category. The most relevant
work on the subject is proposed by Xue et al., called FL-
PV. Their approach analyzes commonality and variability
at feature and source code levels across software variants
to reduce the LSI spaces. Then LSI is used to retrieve for
each feature its corresponding possible source code units.
Our approach differs from FL-PV by considering not only

reducing LSI spaces but also reducing the abstraction gap
between feature and source code to retrieve more relevant
source code elements for each feature. Ghanam et al. have
put forward a method to keep the existing traceability links
between feature model of a family of software products,
produced by SPL engineering, and their source code up-
to-date. Our proposed approach differs from Ghanam et
al. where it starts from scratch and assumes no pre-existing
links. Rubin et al. focused on only identifying code-feature
traceability for distinguished features of two software vari-
ants implemented via code cloning and do not consider
common features between them. In our previous work [15],
we reduced LSI spaces by grouping all features and source
code classes of a collection of software variants into only
two partitions at feature and source code levels. The current
work extends [15] by further reducing the LSI spaces into
many sets of features and their sets of classes. Additionally,
it reduces the abstraction gap between feature and source
code level.

6 Conclusion and Future Work

In this paper, we presented a new approach to recover
traceability links between features and object-oriented
source code of a collection of software variants. The contri-
bution of this paper is to improve the results of IR methods
when they are applied to a collection of similar variants.
additionally, we exploited together textual and structural in-
formation to retrieve more relevant links. The evaluation of
our approach with a set of variants of two different systems
showed that our approach outperforms the conventional ap-
plication of LSI as well as the most recent and relevant work
on the subject. The threat to the validity of our approach is
that developers may not use the same vocabularies to name
source code identifiers across software variants. This would
mean that lexical matching at source code level would be af-
fected. In the feature, we will employ this traceability links
for impact analysis.

References

[1] R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angst-
mann, “Extending the reflexion method for consoli-
dating software variants into product lines.” Software
Quality Journal, vol. 17, no. 4, pp. 331–366, 2009.

[2] H. P. Breivold, S. Larsson, and R. Land, “Migrating
industrial systems towards software product lines: Ex-
periences and observations through case studies.” in
EUROMICRO-SEAA. IEEE, 2008, pp. 232–239.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson, “Feature-oriented domain analysis
(foda) feasibility study,” November 1990.

[4] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software
Product Line Engineering: Foundations, Principles
and Techniques. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2005.

[5] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk,
“Feature location in source code: a taxonomy and sur-
vey,” Journal of Evolution and Process, vol. 25, no. 1,
pp. 53–95, 2013.

[6] M. Riebisch, “Towards a more precise definition of
feature models,” in Modelling Variability for Object-
Oriented Product Lines, Norderstedt, 2003, pp. 64–
76.

[7] A. Marcus and D. Poshyvanyk, “The conceptual cohe-
sion of classes,” 2005, pp. 133–142.

[8] G. Salton and M. J. McGill, Introduction to Modern
Information Retrieval. USA: McGraw-Hill, Inc.,
1986.

[9] A. Marcus and J. I. Maletic, “Recovering
documentation-to-source-code traceability links
using latent semantic indexing.” in ICSE, L. A.
Clarke, L. Dillon, and W. F. Tichy, Eds. IEEE
Computer Society, 2003, pp. 125–137.

[10] S. Apel and D. Beyer, “Feature cohesion in software
product lines: an exploratory study,” ser. ICSE ’11.
USA: ACM, 2011, pp. 421–430.

[11] D. Poshyvanyk and A. Marcus, “Combining formal
concept analysis with information retrieval for concept
location in source code,” ser. ICPC ’07. USA: IEEE
Computer Society, 2007, pp. 37–48.

[12] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location
in a collection of product variants.” in WCRE. IEEE
Computer Society, 2012, pp. 145–154.

[13] Y. Ghanam and F. Maurer, “Linking feature models to
code artifacts using executable acceptance tests,” ser.
SPLC’10. Springer-Verlag, 2010, pp. 211–225.

[14] J. Rubin and M. Chechik, “Locating distinguishing
features using diff sets,” ser. ASE 2012. USA: ACM,
2012, pp. 242–245.

[15] H. Eyal-Salman, A.-D. Seriai, C. Dony, and R. Al-
msie’deen, “Identifying traceability links between
product variants and their features,” ser. REVE’13,
2013, pp. 17–23.

