
Materialize Architecture Recovered from OO
Source Code in Component-Based Languages

Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tibermacine,
Hinde Lilia Bouziane, Christophe Dony, and Anas Shatnawi

UMR CNRS 5506, LIRMM, University of Montpellier, France
{alshara,seriai,tibermacin,bouziane,dony,shatnawi}@lirmm.fr

Abstract. In the literature of software engineering, many approaches
have been proposed for the recovery of software architectures. These
approaches propose to group classes into highly-cohesive and loosely-
coupled clusters considered as architectural components. The recovered
architecture plays mainly a documentation role, as high-level design
views that enhance software understandability. In addition, architec-
ture recovery can be considered as an intermediate step for migration
to component-based platforms. This migration allows to fully benefit
from all advantages brought by software component concept. For that,
the recovered clusters should not be considered as simple packaging and
deployment units. They should be treated as real components: true struc-
tural and behavior units instantiable from component descriptors and
connected together to materialize the architecture of the software. In this
paper, we propose an approach for revealing component descriptors, com-
ponent instances and component-based architecture to materialize the re-
covered architecture of an object-oriented software in component-based
languages. We applied our solution onto two well known component-
based languages, OSGi and SOFA.

1 Introduction

Component Based Software Development (CBSD) has been recognized as a com-
petitive principle methodology for developing modular software systems [4]. It
enforces the dependencies between components to be explicit through provided
and required interfaces. Moreover, it provides coarse grained high-level archi-
tecture views for component-based (CB) applications. These views facilitate the
communication between software architects and programmers during develop-
ment, maintenance and evolution phases [11].

Otherwise, object-oriented (OO) have fine-grained entities with complex and
numerous implicit dependencies [7]. Usually, they do not have explicit archi-
tectures or even have “drifted” ones. These adversely affect the software com-
prehension and makes these software systems hard to maintain and reuse [6].
Thus migrating OO software to CB one should contribute to gain the benefits
of CBSD [9].

The process of migrating OO applications to CB ones involves two major
steps: architecture recovery and code transformation [13]. The first step consists



of identifying reusable components from legacy OO systems. A component is
represented by a cluster of classes where its provided and required interfaces are
represented by a set of provided and required methods respectively. The main
challenge of this step is to find the best clusters compared to the component
definitions which reflect the right software architecture. The second step aims
at creating programming level components by transforming and generating a
component code based on the OO one. The main problem of this step is to
obtain a code which conforms to component principles: encapsulation, interface-
based interaction, component instantiation, etc. [25].

Architecture recovery has been largely treated in the literature. Many ap-
proaches have been proposed to recover software architectures from legacy OO
source code [17, 5, 18, 16, 3]. In contrast, only few approaches have been pro-
posed for really transforming OO code into CB one [24, 7, 14]. In addition, these
approaches have only partially address the code transformation step (c.f. Sec 6).

In this paper, we propose an approach for transforming OO code to CB
one guided by the recovered architecture of the corresponding OO software.
This approach allows to reveal component descriptors, component instances and
component-based architecture to materialize the recovered architecture. To val-
idate this approach, we applied it to transform Java code to two well known
component-based languages; OSGi [23] and SOFA [19].

The remainder of this paper is organized as follows. Section II discusses the
problem statement. Section III presents the transformation of OO code to CB
one. Section IV presents how the proposed solution is mapped onto OSGi and
SOFA. Section V presents the discussion about our solution. Section V discusses
related work. Finally, Section VI contains some concluding remarks and gives
directions to future work.

2 Problem Statement

To better illustrate our approach aiming to transform OO code to CB one, first,
we introduce in this section an example of a simple Java application. Second,
we present the expected architecture recovered by analyzing this application.
Finally, we illustrate the problem of OO code transformation guided by this
architecture.

2.1 Running Example

Fig. 1 shows an example of a simple Java application that simulates the behav-
ior of an information screen (e.g. a software system which displays on a bus’s
screen information about stations, time, etc.). ContentProvider class implements
methods which send text messages (instances of Message), and time information
obtained through Clock instances based on the data returned by TimeZone in-
stances. The DisplayManager is responsible for viewing the provided information
through a Screen.



Fig. 1: Information-screen class diagram

2.2 Component-based Architecture Recovery

Architecture recovery approaches consider a component as a cluster of classes [17,
5, 18, 16, 3]. In our previous work [18, 16], we have proposed an approach which
aims to recover component-based architectures from OO source code. Fig.2 shows
the object-component mapping model used in this approach. In this model a
cluster is composed of two types of classes: internal classes and boundary classes.
The internal classes are those that do not have dependencies with other classes
placed into other clusters. In contrast, the boundary classes are those that have
dependencies with classes placed into other clusters.

Fig. 3 shows the result of architecture recovery step applied on our exam-
ple. The recovery step identifies four clusters (components), where each cluster
may contain one or several classes. We consider a component-based architecture
as a set of components connected via interfaces, where interfaces are identified
from boundary classes. For example, the component DisplayedInformation con-
nected to ContentProvider component through two interfaces. The first interface
declares getCurrentTime method which is placed in class Clock and getContent
method from class Clock. The second one declares getContent method from class
Message.

2.3 Code Transformation: Component Source Code Generation
Based on OO Source Code

Clusters of classes identified from architecture recovery represent the primary
implementation code of components. This code should be transformed to match



Fig. 2: Object-to-component mapping model

targeted CB languages. These languages can be classified into two main cate-
gories. The first category distinguish the language used for describing compo-
nents and architectures (architecture description language) from the language
used to implement components (programing language) like SOFA [19]. The sec-
ond category use the same language for describing architecture descriptions and
component implementations like COMPO [12]. In our work we focus on trans-
forming OO code to one written using CB language of the first category. These
transformation allows to reuse classes of recovered clusters as the implementa-
tion of the target components. Table 1 summarizes the main structural elements
of languages of this category. These consist of:

1. structural elements that define component descriptions:

(a) Component interfaces: the component descriptor need to defined pro-
vided and required interfaces. all interactions between components must
be done through these interface.

(b) Implementation reference: the component descriptor need to defined ref-
erences of its component implementation source code.

(c) Component instantiation: the component descriptor need to defined how
its component can be instantiated.

2. Architecture description: it describes the structure of component-based sys-
tems in terms of component instances and component assembly. It ignore
components implementation details and interactions.

Our approach aims at generating structural elements composing component
descriptors and architecture description starting from source code of recovered
clusters. In our previous work [20], we have proposed an approach that trans-
form dependencies between clusters to be interface-based ones. This approach
presented component interfaces structural elements. In this paper we complete
the transformation by addressing the remains structural elements of component
descriptors; implementation references and component instantiation. In addition
to reveal the CB architecture.



Fig. 3: Information-screen architecture recovery

3 Transforming OO Code to CB One

3.1 Generating Component Descriptor and Reference of its
Implementation

Our approach uses the concept of class used in OO to express component de-
scriptors. Hence, a class will represent the component descriptor. For example,
the descriptor of DisplayedInformation component translated by creating a new
class DisplayedInformation. Where the component descriptor has describe their
interfaces, the same concept of interface in OO languages is used to describe
component interfaces. Then each provided interface has an OO interface that
explicit its services (method signatures). The component descriptor must has
the implementation of all provided interface services. For example, Listing 1.1
shows how the provided interfaces for component DisplayedInformation are cre-
ated. But, what if two interfaces have the same method signature? the descriptor
can not implement two services in the same descriptor (this is the case in Java,
but in C++ and C# we can implement the same services that have the same sig-
nature by referencing the interface name before the implemented methods). For
example, component DisplayedInformation provides two interfaces and the two
interfaces have a method with the same signature(getContent()). Consequently,
we should provide each interface by a component port.



Table 1: Object-based Component Model Specifications [8]

Component Models Language of implementation Interfacs type Component Descriptor Component instance

EJB [2] Java Operation-based Yes Single Object
Fractal citefractal Java, C#, .Net Operation-based Yes Single Object
JavaBeans [21] Java Operation-based Yes Single Object

COM [1] OO languages Operation-based Yes Single Object
OpenCOM [10] OO languages Operation-based Yes Single Object

OSGi [23] Java Operation-based No Many Objects
SOFA 2.0 [19] Java Operation-based Yes Single Object
CCM [22] Language independent with OO implementation Operation-based & Port-based Yes Single Object

COMPO [12] COMPO Operation-based & Port-based Yes Single Object
Palladio [15] Java Operation-based Yes Single Object
PECOS [26] OO languages Port-based Yes Single Object

Listing 1.1: Provided interfaces for DisplayedInformation component

public interface ITime {
public String getContent();
public long getCurrentTime(ITimeZone timeZone);

}
public interface IMessage {
public String getContent();

}

The explicit services provided by a component interface are associated with
a port. In our approach, we use the inner-class concept used in OO to represent
component ports. Thus, each port is described by an inner-class associated with
its interface. For example, in Listing 1.2, the PortTime inner-class is created
to implement ITime interface provided by component DisplayedInformation, as
same as PortMessage inner-class. Moreover, the references of each inner-class
(port) are provided by its component (e.g. portTime and portMessage class-
variables) for binding components.

Listing 1.2: Descriptor and ports for DisplayedInformation component

public class DisplayedInformation{
public static ITime portTime;
public static IMessage portMessage;
private class PortTime implements ITime{

@Override
public String getContent() {//TODO: add behaviore implementation }
@Override

public long getCurrentTime(ITimeZone timeZone) {//TODO: add behaviore implementation }
}
private class PortMessage implements IMessage{

@Override
public String getContent() {//TODO: add behaviore implementation }

}
}

3.2 Component Instantiation

Mapping object instances to component instances In OO, an instance
consists of state and behavior, the state is stored in variables and exposes its be-
havior through methods. Object hides its internal state where methods operate
in an object internal state to provide services through object-to-object commu-
nication (encapsulation). However, the recovered component is viewed as a set



of one or more cooperating classes. Thus, we infer component instances from a
set of class instances belonging to the same component, where the component
state is the aggregated state of these instances, and the component behavior is
published through the component interfaces. For example, in Fig. 4, we have
three object call graphs for a component consisting of five classes (A, B, C, D,
E ). We can observe that:
(1) The component instance has three different releases (Fig. 4 (a), (b) and (c)).
(2) The component instance could have many class instances of the same type.
For example, Fig. 4-(c) have two class instances from type E (e1 and e2).
(3) The client needs to have references to the class instances that provide ser-
vices/methods for them. For example, the classes that implement the provided
component services are A and B. Then, the client needs to reference instances
of type A and B to get their required services. After that, instances of type
A and B are responsible to communicate with other instances to complete its
services. And therefore, the classes that have the component provided services
are considered as the only entrance to component instance.

Fig. 4: Different release of the same component instance

Based on our interpretation of the component instance, the set of class in-
stances that constitute a component instance should be behaved as a single unit.
Then, we need to update component descriptor to manage the links between
class instances that form a component instance. We propose to delegate pro-
vided interface methods in the component descriptors to real ones. For example,
Listing1.3 describes the update of the descriptor of DisplayedInformation com-
ponent. The descriptor has references of the classes types that are responsible
to provide component services Clock and Message. After that, the delegations
of provided services is done through component ports by using the real class
instances that have these services. Note that we used the lazy instantiation of
these class instances (delaying the instantiation of class instance until the first
time it is needed) for performance reasons.



Listing 1.3: Component descriptor with its behaviors

public class DisplayedInformation{
protected static ITime portTime;
protected static IMessage portMessage;
//Boundary Classes
Clock clock = null;
Message message = null;
public DisplayedInformation() {
//initializing component ports
portTime = new PortTime();
portMessage = new PortMessage();

}
private class PortTime implements ITime{
@Override
public String getContent() {
if(clock == null){ //lazy instantiation
clock = new Clock();}

return clock.getContent();
}
@Override
public long getCurrentTime(ITimeZone timeZone) {
if(clock == null){ //lazy instantiation
clock = new Clock();}

return clock.getCurrentTime(timeZone);
}

}
private class PortMessage implements IMessage{
@Override
public String getContent() { //lazy instantiation
if(message == null){
message = new Message();}

return message.getContent();
}

}
}

Creating Component Instances The services of a component can not be
used directly, the component descriptor must first be instantiated. Like in OO
programs, we need a constructor to create a component instance and initialize
its state. The constructor of the component should be placed into the compo-
nent descriptor. In addition, the descriptor implements the component services
through component interfaces using associated ports. Thus, we create a default
constructor (constructor without parameters) that initializes component ports.
Listing 1.4 describes the default constructor of component DisplayedInformation
and how it creates its ports (PortTime and PortMessage).

Initializing component state depends on the constructors placed into classes
that have provided methods to other components (e.g. Clock and Message into
DisplayedInformation component). For example, class Clock has two construc-
tors, the first one without parameters (default constructor) and the second one
with a single parameter of type ITimeZone. So two possible ways to create an
instance of type Clock. Therefore, the component descriptor should provide all
possible ways to initialize its instances. Consequently, initialize methods are cre-
ated with different parameters to apply component configurations. For example,
DisplayedInformation component have two classes that can be accessed from
outside components (Clock and Message), and each of them has default con-



structor while Clock class has one more with ITimeZone parameter. Therefore,
initialize methods are created and has ITimeZone parameter (see Listing 1.4).

Listing 1.4: Component constructors and initializers

public class DisplayedInformation{
...
public DisplayedInformation() {
//initializing component ports
portTime = new PortTime();
portMessage = new PortMessage();

}
public initialize(ITimeZone timeZone) {
clock.setTimeZone(timeZone);

}
}

Now, we can simply create an instance of the component using its constructor
using OO instantiation and then initialize the instance using appropriate initial-
izer. For example, an instance of DisplayedInformation component is created
by its constructor using new keyword. Listing 1.5 differentiates the refactor-
ing resulted from our approach (ComponentClient) and the original source code
(ClassClient).

Listing 1.5: Component instantiation

public class ClassClient{
Clock clock = new Clock(timeZone);
clock.getCurrentTime();

}
public class ComponentClient{
DisplayedInformation info = new DisplayedInformation();
info.initialize(timeZone);
info.portTime.getCurrentTime();

}

3.3 Reveal Component-based Architecture

An architecture description describes the structure of component-based systems
in terms of component instances and binding. Therefore, to reveal a CB archi-
tecture, we need to identify its component instances and the binding between
these instances. We can identify the component instances by analyzing the in-
stantiation statements of its implementation. Where we can identify the binding
between these instances based on the invocation of its services.

Identify component instances We first statically analyze the source code to
check whether to create a new component instance or to use an existing one. The
analysis is based on statement scope (i.e. in the same code block) and obliterates
state (i.e. the second instantiation statement obliterates the state of the instance
resulted from first one). The previous component instance can be replaced by a
set of its class instances if these set at the same scope and no one obliterates the
state of another one. For example, in Listing1.6, the if block to class ClassClient



instantiates an object of type Clock and another of type Message. However,
the proposed approach replaces the two instances with a component instance
of type DisplayedInformation (info1 ) because they are in the same scope and
each one does not obliterate the state of another. An example of the scope
condition is obviously shown by defining info1 and info2, where each of them
belongs into different scopes. Defining info2 and info3 provides an example of
obliteration state condition, wheremessage2 will obliterate the state ofmessage1
if it translated to one component instance. Listing1.7 shows the instances that
have been identified from Listing1.6.

Listing 1.6: Refactoring instantiation from OO code into CB one

public class ClassClient{
if(condition)
{
Clock clock = new Clock(timeZone);
Message message = new Message();

}else{
Message message1 = new Message();
...
Message message2 = new Message();

}
}
public class ComponentClient{
if(condition)
{
DisplayedInformation info1 = new DisplayedInformation();

}else{
DisplayedInformation info2 = new DisplayedInformation();
...
DisplayedInformation info3 = new DisplayedInformation();

}
}

Listing 1.7: Identified CB instances for architecture discriptor

//Darwin ADL
inst
info1 : new DisplayedInformation();
info2 : new DisplayedInformation();
info3 : new DisplayedInformation();

Identify component binding Binding between component instances is used to
establish interactions between these instances. An instance of component binds
to another one to provide or required services through their interfaces. Therefor,
we can identify the bindings between components based on service invocations
between them where components must firstly bind to provide or required ser-
vices. For example, in Listing1.8, ContentProvider invokes a service getCurrent-
Time from DisplayedInformation, so the binding between these two component
must be established before. Therefor, we can statically analyze these invocations
between components to identify bindings (see Listing 1.9). Listing 1.10 shows
a snapshot of architect description for our running example. It component in-
stances and binding between DisplayedInformation and ContentProvider.



Listing 1.8: Refactoring instantiation from OO code into CB one

public class ContentProvider{
public void push(DisplayedInformation info1){
String time = info1.portTime.getCurrentTime();
}

}

Listing 1.9: Refactoring instantiation from OO code into CB one

//Darwin ADL
inst
content : new ContentProvider();
information : new DisplayedInformation();
bind
content.I1 -- information.ITime
}

Listing 1.10: Darwin ADL: DisplayedInformation and ContentProvider.

interface ITime{
long : getCurrentTime(TimeZone : time)
String : getContent()

}
interface IMessage{
String : getContent()

}
Component DisplayedInformation{
Require ITime, IMessage

}
Component content{
Provide ITime, IMessage

}
Component information_screan{
inst //instantiate component instances
DisplayedInformation : information
ContentProvider : content
... // other component instances
bind
information.I1 -- content.ITime
information.I2 -- content.IMessage
... // other bindings

}

4 Mapping the Proposed Solution onto Component
Models

In this section we describe how our proposed solution is easily mapped onto
existing component models. We have chosen two well known component models,
OSGi and SOFA, to explain the ease of the mapping.

4.1 Mapping from Java to OSGi

OSGi is a set of specifications that define a component model for a set of Java
classes [23]. It enables component encapsulation by hiding their implementations
from other components by using services. The services are defined by standard



Java classes and interfaces that are registered into a service registry. A compo-
nent (bundle) can register and use services through the service registry.

Listing 1.11: DisplayedInformation component describtor and its interface

public class DisplayedInformation implements IDisplayedInformation{ /* Contents... */ }
public interface IDisplayedInformation {
public InterTime portTime = DisplayedInformation.portTime;
public IMessage portMessage = DisplayedInformation.portMessage;

}

To map our transformed code onto OSGi framework, we firstly create an in-
terface (Java interface) to represent the contract of provided component instance.
For example, Listing 1.11 shows how we created an interface for DisplayedIn-
formation component. Hence we suggest that a component binds through its
port associated with a provided interface, then both ports InterTime and IMes-
sage must be accessed by other components. After that, a metadata for both
provided component DisplayedInformation and required component Content-
Provider must be specified. The metadata specified through XML files using
the declarative services model. For example, Listing 1.12 describes how Dis-
playedInformation component provides its instances as object interfaces with
type IDisplayedInformation. And Listing 1.13 describes how ContentProvider
component uses the provided instances. When both components are activated
at runtime, the binding is established between them. Listing 1.14 describes how
ContentProvider gets an instance of DisplayedInformation and call its method
getContent() through port portMessage.

Listing 1.12: DisplayedInformation.xml file to provide the instances of Displayed-
Information

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="DisplayedInformation">

<implementation class="DisplayedInformation"/>
<service>

<provide interface="IDisplayedInformation"/>
</service>

</scr:component>

Listing 1.13: ContentProvider.xml to bind the instances of DisplayedInformation

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="ContentProvider">

<implementation class="ContentProvider"/>
<reference bind="setDisplayedInformation" cardinality="1..n"

interface="IDisplayedInformation" name="DisplayedInformation" policy="static"
unbind="setDisplayedInformation"/>

</scr:component>

Listing 1.14: binding between DisplayedInformation and ContentProvider

public class ContentProvider implements Inter_ContentProvider{
public synchronized void setDisplayedInformation(IDisplayedInformation information) {
information.portMessage.getContent();
}



}

4.2 Mapping from Java to SOFA 2.0

SOFA is a platform for software components that uses a component model with
hierarchically nested components (composite components). It describes a com-
ponent by its frame (component descriptor) and component architecture. The
frame is a black-box view of the component that defines its provided and re-
quired interfaces. It provides a metadata (XML files) to describe provided and
required services. Components are interconnected via bindings among interfaces
using connectors.

Listing 1.15: DisplayedInformation.xml to provide the instances of DisplayedIn-
formation

<?xml version="1.0"?>
<frame name="DisplayedInformation">
<provides name="DisplayedInformation" itf-type="sofatype://IDisplayedInformation"/>

</frame>

Listing 1.16: ContentProvider.xml to bind the instances of DisplayedInformation

<?xml version="1.0"?>
<frame name="ContentProvider">
<requires name="DisplayedInformation" itf-type="sofatype://IDisplayedInformation"/>

</frame>

Listing 1.17: binding between DisplayedInformation and ContentProvider

public class ContentProvider implements SOFALifecycle, Runnable, SOFAClient {
IDisplayedInformation info = null;
// Called during initialization of the component.
public void setRequired(String name, Object iface) {
if (name.equals("DisplayedInformation")) {
if (iface instanceof IDisplayedInformation) {
//get DisplayedInformation instance
info = (IDisplayedInformation) iface;
info.portMessage.getContent();

}}}
}

5 Discussion

We can deploy recovered cluster of classes directly onto existing component
models without using our approach. Indeed, we can transform each class into a
component and then assemble these components that belong to the same cluster
using component composition property as a composite component. However, to
compare our approach with the composite component approach, we need first
to study the component composition types and component models that support



these types. Table 2 shows the selected object-based component models and com-
position supported composition types. Two types of component compositions;
the first one is horizontal composition, and the second type is vertical composi-
tion. The horizontal composition means that components can be binded through
their interfaces to construct component applications. The second type, vertical
composition, describes the mechanism of constructing a new component from
two or more other components. The new component is then called composite
because they are themselves made of more elementary components called inter-
nal components. Internal components could be accessible or visible from clients
(delegation) or not (aggregation).

We can observe from Table 2 that there are five component models that did
not support vertical composition at all (EJB, JavaBeans, OSGi, CCM and Pal-
ladio). Four of them provide vertical aggregation composition and six models
support vertical delegation composition. However, vertical delegation composi-
tion is not appropriate because clients can access or view the internal components
(violates component encapsulation). Consequently, the vertical aggregation com-
position could be replaced by our approach, but there are just two component
models that support it.

Table 2: Composition type in object-based component models

Component Models EJB Fractal JavaBeans COM OpenCOM OSGi SOFA 2.0 CCM COMPO Palladio PECOS

Vertical Composition No Yes No Yes Yes No Yes No Yes No Yes
Aggregation X X X X
Delegation X X X X X X

6 Related Work

Transforming OO applications to CB ones has two types of related works. The
first relates to CB architecture recovery, and the second relates to code trans-
formation from OO applications to Component-oriented ones. Many works have
been proposed for recovering CB architectures from OO legacy code. A sur-
vey on these works is presented in [17] and [5]. However, only few works have
beenproposed a transformation from OO code to CB one.

The approach proposed by [14] applies in transforming Java applications to
OSGi. The approach uses OO concepts and patterns to wrap cluster of class to
components. However, they did not deal with component instantiation, where
they still used instances in terms of OO. Another approach for transforming Java
applications into the JavaBeans framework is proposed in [7]. They developed
an approach that can generate components from OO programs using a class
relations graph. This method did not deal with a component as a set of classes,
the authors assume that each class is transformed to a component. Therefore, it
can not treat the cluster of classes recovered from architecture recovery methods.

One of the closest works to our approach is proposed by [24]. They used
dynamic analysis to define component interfaces and component instances. The



idea of their work consists of four steps. The first one is an extraction of ob-
ject call graphs. The second step is transforming the object call graph into a
component call graph. The third step identifies component interfaces based on
the connections between component instances. The last step deals with compo-
nent constructors and its parameters. In contrast to our work, they use dynamic
analysis and execution trace, where they supposed the use cases of the recovered
applications exist and fully cover all execution cases. Moreover, they suppose
that two component instances may have intersected states, where a class in-
stance can be shared between two components which violate the principle of
component encapsulation.

7 Conclusion

In this paper, we proposed an approach to transform recovered components from
object-oriented applications to be easily mapped to component-based models.
We refactored clusters of classes (recovered component) to behave as a single
unit of behavior to enable component instantiation. Our approach guarantees
component-based principles by resolving component encapsulation and compo-
nent composition using component instances. The encapsulation of components
is guaranteed by transforming the OO dependencies between recovered compo-
nents which was proposed in our previous work [20]. Moreover, both principles
applied by refactoring a recovered component source code to be instantiable,
where the provided services are consumed by the component instance through
its interfaces (component binding). We have shown that the source code re-
sulted from our approach can be easily projected onto object-based component
models. We illustrated the mapping onto two well known component models,
OSGi and SOFA. The illustration results shows that our approach facilitates
the transformation process from OO applications into CB ones. Moreover, it
effectively reduces the gap between recovered component architectures and its
implementation source code.

References

1. D. Box. Essential com. object technology series, 1997.
2. Oracle E.E. Group. Jsr 220: Enterprise javabeanstm,version 3.0 ejb core contracts

and requirements version 3.0, final release, May 2006.
3. A. Shatnawi et al. Software Reuse for Dynamic Systems in the Cloud and Be-

yond: 14th International Conference on Software Reuse, ICSR 2015. Proceedings.
Springer International Publishing, 2014.

4. A.Bertolino et al. An architecture-centric approach for producing quality systems.
QoSA/SOQUA, 3712:21–37, 2005.

5. D. Birkmeier et al. On component identification approaches classification, state
of the art, and comparison. In G. Lewis et al, editor, Component-Based Software
Engineering. Springer Berlin Heidelberg, 2009.

6. E. Constantinou et al. Extracting reusable components: A semi-automated ap-
proach for complex structures. Information Processing Letters, 2015.



7. H. Washizaki et al. A technique for automatic component extraction from object-
oriented programs by refactoring. Science of Computer Programming, 2005.

8. I. Crnkovic et al. A classification framework for software component models. IEEE
Transactions on Software Engineering, 2011.

9. K. Lau et al. Software component models. Software Engineering, IEEE Transac-
tions on, 2007.

10. M. Clarke et al. An efficient component model for the construction of adaptive
middleware. In R. Guerraoui, editor, Middleware 2001, volume 2218. Springer
Berlin Heidelberg, 2001.

11. M. Shaw et al. Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

12. P. Spacek et al. A component-based meta-level architecture and prototypical imple-
mentation of a reflective component-based programming and modeling language.
In Proceedings of the 17th International ACM Sigsoft Symposium on Component-
based Software Engineering, CBSE ’14. ACM, 2014.

13. R. Kazman et al. Requirements for integrating software architecture and reengi-
neering models: Corum ii. In Reverse Engineering, 1998. Proceedings., 1998.

14. S. Allier et al. From object-oriented applications to component-oriented appli-
cations via component-oriented architecture. In Software Architecture (WICSA),
2011.

15. S. Becker et al. Model-based performance prediction with the palladio compo-
nent model. In Proceedings of the 6th International Workshop on Software and
Performance, WOSP ’07. ACM, 2007.

16. S. Chardigny et al. Extraction of component-based architecture from object-
oriented systems. In Software Architecture, 2008. WICSA 2008., 2008.

17. S. Ducasse et al. Software architecture reconstruction: A process-oriented taxon-
omy. Software Engineering, IEEE Transactions on, 2009.

18. S. Kebir et al. Quality-centric approach for software component identification from
object-oriented code. In Software Architecture (WICSA) and European Conference
on Software Architecture (ECSA), 2012.

19. T. Bures et al. Sofa 2.0: Balancing advanced features in a hierarchical component
model. In Software Engineering Research, Management and Applications, 2006.,
2006.

20. Z. Alshara et al. Migrating large object-oriented applications into component-based
ones: Instantiation and inheritance transformation. In Proceedings of the 2015
ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2015. ACM, 2015.

21. Sun Microsystems. Javabeans specification, 1997.
22. OMG. Omg corba component model v4.0, 2011.
23. Osgi Service Platform. The osgi alliance, release 6, 2015.
24. A. Seriai. Enactment of components extracted from an object-oriented application.

In Software Architecture. Springer International Publishing, 2014.
25. C. Szyperski. Component Software: Beyond Object-Oriented Programming.

Addison-Wesley Longman Publishing Co., Inc., 2nd edition, 2002.
26. M. Winter. The pecos software process. In Workshop on Components-based Soft-

ware Development Processes, ICSR, 2002.


