
Recovering Traceability links between Feature Models and
Source Code of Product Variants

Hamzeh Eyal-Salman

LIRMM, University of Montpellier 2
161, rue Ada

34095 Montpellier cedex 5, France
(33) 04 67 41 85 85

Hamzeh.Eyalsalman@lirmm.fr

Abdelhak-Djamel Seriai
LIRMM, University of Montpellier 2

161, rue Ada
34095 Montpellier cedex 5, France

(33) 04 67 41 85 85
Abdelhak.Seriai@lirmm.fr

Ra’fat Al-msie’deen
LIRMM, University of Montpellier 2

161, rue Ada
34095 Montpellier cedex 5, France

(33) 04 67 41 85 85
Rafat.Al-msiedeen@lirmm.fr

ABSTRACT
Usually software product variants, developed by copy-paste-
modify technique, are often a starting point for building
Software Product Line. The distinguishing factor between
traditional software engineering and software product line
engineering is the variability. Traceability of variability in a
software product line has been recognized as crucial factor for its
success. This paper presents a method based on information
retrieval namely, latent semantic indexing, to establish
traceability links between object-oriented source code of product
variants and its FM to support conversion from traditional
software development into software product line development.
Tracing and maintaining interrelationships between artifacts
within a software system also are needed to automate products
derivation process, facilitate program comprehension, make the
process of maintaining the system less dependent on individual
experts.
Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement–Restructuring, reverse engineering, and
reengineering; H.3.3 [Information Systems]: Information Search
and Retrieval- Clustering , Information filtering.

General Terms
Theory, Design, Documentation.

Keywords
Traceability links, feature models, source code, variability,
software product line , latent semantic indexing.

1. INTRODUCTION
Product variants often evolve over the time from an initial product
to a family of similar product variants that meet the need of a
large group of consumers. The successful development of the
initial product attracts new customers. For example, Wingsoft
Financial Management System (WFMS) was developed for Fudan
University and then evolved many times so that WFMS systems
have been now used in over 100 universities in China [17].

Usually, developers use copy-paste-modify technique to build a
new product variant from existing ones. Such ad hoc reuse
technique causes a critical problem as the number of features and
product variants grows because we must maintain each product
variant separately from others and it also becomes difficult to find
and trace features for reuse in new products.

As these problems accumulate, it becomes necessary to re-
engineering product variants into a Software Product Line (SPL)
for systematic reuse. SPL aims to decreasing development cost
and time by developing a family of systems rather than one
system at a time [16]. In the SPL, there are two models: feature
model (FM) as representative of variability model and core asset
model. FM has a pivot role because it represents a set of
configurations where each valid configuration represents a specific
product and it also is extensively used to automate the product
derivation process [4]. Figure1 shows a simplified FM inspired by
the mobile phone industry [3].

There are three issues that must be considered to reengineering
product variants into SPL: FM, SPL artifacts (core assets model)
and mapping between FM and SPL artifacts [12].

FM of product variants can be provided by system’s developers
and experts who accompanied and contributed product variants
evolution. FM may also be reverse engineered from the
documentations of products variants [1].

Figure 1. A sample feature model [5].
Regarding to SPL artifacts, the development team can utilize the
available reusable elements such as: source code, design
documents, test cases, etc. to building the required SPL core
assets.

These parts (FM and core asset model) must be connected to
exploit them during SPL life cycle [12]. The traceability links
between source code of product variants and its FM are used to
automate products derivation process in order to automatically
configures all the assets for a product according to the features
selection from the FM, exploit source code as an important
artifact in SPL core asset, ensure consistency between extracted
FM and source code, facilitate program comprehension process,
make the process of maintaining the system less dependent on
individual experts and recovery of various architectural elements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

This paper proposes a method based on information retrieval (IR)
methods namely, latent semantic indexing , to establish and
maintain traceability links between source code of product
variants and textual descriptions of features as representative of
FM. Feature names and descriptions can be extracted from
documentation and code comments.
IR has proven useful in many disciplines such as the management
of huge scientific and legal literature, image extraction and speech
recognition. We believe that IR techniques can provide a way to
establish the traceability links between source code and FM.

The remainder of the paper is organized as follows. Section 2
discusses background and related work. Section 3 shows the
traceability link recovery process. Section details latent semantic
indexing. Section 5 shows the experimental results. Finally,
Section 6 presents conclusions and feature work.

2. BACKGROUND & RELATED WORK
Software traceability is the ability to describe and follow the life
of an artifact (requirements, code, tests, models, reports, plans,
etc.) developed during the software lifecycle in both forward and
backward directions (e.g., from requirements to the software
architecture and the code components implementing them and
vice-versa) [7].

Traceability relations refer to overlap, satisfiability, dependency,
evolution, generalization/refinement, conflict and rationalization
associations between various software artifacts [13]. In general,
traceability relations can be classified as horizontal
traceability or vertical traceability relations .The former type
includes relations between different models, and the latter type
includes relations between elements of the same model [10][15].

FM is a variability modeling technique widely used in SPLE to
cover the variability in all SPL life cycle from requirements to test
cases [3]. Variability defines what the allowed combinations of
features (also called configurations) are. FM consists of feature
diagram and cross tree constraint likes require and exclude
constraints. Feature diagram is a tree like representation, the root
of the tree refers to the complete system, tree nodes are features
and tree edges represent dependency rules [14]. In the literature,
there are many definitions of feature; in this paper we will
consider the following definition [8]:

“A distinctively identifiable functional abstraction that must be
implemented, tested, delivered, and maintained”

Many researchers attempted to establish traceability link via
information retrieval (IR) approach [2][11]. IR-based approaches
assume that all software artifacts are in textual format. Then, they
compute textual similarity between two software artifacts using
cosine similarity, e.g., a class and a requirement. The three IR
methods which commonly used in traceability generation are
probabilistic method, vector space method and latent semantic
indexing.

Antoniol et al. [2] used probabilistic method (PM) and vector
space model (VSM) to establish traceability links between source
code and documentations. In each method, one type of particular
artifacts treats as a query and another type of artifacts treats as a
document. For example, source code treats as a query against
requirements specification as a document and information is
retrieved by literally matching terms in documents with a query.

Andrian et al. [11] used latent semantic indexing to establish
traceability links between documentation and source code. In LSI,

a query and a document can have cosine similarity even if they do
not share any terms as long as their terms are semantically similar.

Ziadi et al. [20] proposed an approach to automate feature
identification from the source code of similar products variants.
This approach assumes that product variants use the same
vocabulary to name packages, classes, attributes and methods; it
treats the source code as a set of construction primitives and then
applies an algorithm to identify features.
Ghanam et al. [6] presented an approach to link feature models to
code artifacts using executable acceptance tests to ensure
consistency between FM and code artifacts, and to trace the
evolution of variability in the feature model.

3. OUR APPROACH TO RECOVER
TRACEABILITY LINKS
This section describe our proposed approach to recovering
traceability links between source code of product variants and its
FM. Figure2 gives an overview about the traceability links
process. The inputs of this process are FM, features description
and object-oriented source code of product variants. The figure
also shows three main phases:

1. Variability point extraction: In this phase, the variability
points are reversed engineered from the source code where it
can reflect four types of variations: package variation, class
variation, method variation and attribute variation. To process
source code, a parser is used to extract all information from
the source code.

2. Mapping between variability points and FM: In this phase, we
defined a corresponding model between variability points in
the source code and variable features of FM (see figure 3).
This model defines a feature as a block of variations. Each
block acts a set of variations that appear together in the source
code. The variability (variable features) can be implemented
by four types of variations: packages variation, class variation,
method variation and attribute variation. This paper will
consider just class variation as a variability point in the source
code. Class variation means a set of classes that make the
difference among product variants in term of the provided
functionality.

3. Applying a traceability method: In this phase, we will use
latent semantic indexing to recovering the traceability links
between source code and FM.

Figure 2.Traceabilityrecovering process overview.

Figure 3: Feature to source code mapping model.

# Feature	 name Description
1 photo capture	 photo,	 compression	 photo,	 scrambling	 photo,	 count	 photo
2 Music Play,	 generate	 tones,	 organize	 music
3 Video capture	 video,	 compression	 video,	 scrambling	 video
4 Favourites set	 favourites,	 view	 favourites,	 save	 favourites
5 Copy_Media copy	 media,	 store	 media
6 SMS_Transfer send	 sms,	 receive	 sms

7 Basic_Operations create	 media,	 delete	 media,	 edit	 media,	 label	 media,	 sorting	
media,	 move	 media,	 search	 media,save	 media

8 View_Play_Media view	 media,	 play	 media

4. LATENT SEMANTIC INDEXING (LSI)
LSI is a technique that projects queries and documents into a
space with latent semantic dimensions. The basic assumption of
LSI is that there exists some implicit relationships among the
words of documents, that is to say, there are some latent semantic
structures in free text. Semantic structure means an abstract
semantic format which consists of semantic category and semantic
relationship in natural languages [11].
LSI was developed to overcome problems that occur in the space
vector model (VSM) namely, synonymy and polysemy, by
replacing the original term–document matrix with an
approximation. This is done using singular value decomposition
(SVD), a technique originally used in signal processing to
mitigate noise while preserving the original signal. Assuming that
the original term–document matrix is noisy (the aforementioned
synonymy and polysemy), the approximation is interpreted as a
noise reduced – and thus better – model of the text corpus [9].

LSI will use feature descriptions as query to retrieve the classes
related to the feature. In most object oriented languages class
names are composed of concatenated terms like
(EmailAddressFormatChecker) so that each term reflects partially
the class functionality. We assume that programmers use
meaningful names (i.e. names derived from the domain) to name
classes.

Features descriptions and classes’ names must be manipulated and
normalized to become suitable as input of LSI. This preprocessing
step include: all capital letters must be transformed into lower
case letters, removing stop-words (such as articles, punctuation
marks, numbers, etc.), all classes’ names must be split into terms
and performing word stemming.
LSI technique consists of the following steps [11]:

1. Constructing a term-document matrix whose [i, j]th element
refers to the association between the ith term and jth
document. This matrix is called VSM space. We will
measure the weight of each term using Term Frequency (TF).
TF refers to number of times term i occurs in the document j.

2. Decomposition VSM space LSI subspace by applying (SVD)
to the term-document matrix. SVD is performed on the
matrix to determine patterns in the relationships among the
terms.

3. Computing the cosine similarity in LSI subspace by
equation1.

4. Filtering results according to a predetermined threshold, and
then the traceability links between FM and source code are
retrieved. In our work, the threshold is chosen in a heuristic
way and its value is 0.5. This value means that classes that

will be retrieved have a similarity with a feature description
greater than or equal 0.5.

The effectiveness of IR methods is measured using IR metrics:
recall, precision. For a given query, recall is the percentage of
actual retrieved links over the total number of relevant links while
precision is the percentage of correctly retrieved links to the total
number of retrieved links (see equation 2 and 3) where (i)
represents query set. [2].
Both measures have values between [0, 1]. If recall = 1, it
means that all the correct links are recovered, however there
could be recovered links that are not correct. If the

precision=1, it means that all the recovered links are correct,
however there could be correct links that were not recovered.
Choosing a higher threshold for the link recovery will result in
higher precision, while lowering the threshold will increase
the recall. In general, the result of higher precision is a lower
recall (and vice versa).

It is important to mention her that LSI will be applied two times.
First, to recover traceability links between common feature and
common classes while the second time to recover traceability
links between variable features and variable classes. We can
extract common classes by conducting a lexical matching among
product variants’ classes while common features can be extracted
from FM. This task aims to recover traceability links with high
precision by reducing number of classes.

5. EXPERIMENTAL RESULTS
In order to validate our approach as traceability recovering
method between source code and FM, we will consider simple
mobile media system to test this method. Figure 2, in the
introduction section, represent a feature model for mobile media
software. Favourites, Copy_Media and SMS_Transfer are
optional features while View_Play_media and Basic_Operations
are mandatory features. Media is alternative feature. Three
configurations were chosen to realize three products including all
mobile media features.

We assumed that each feature is described with certain words as
shown in the table 1 below. For example, SMS_Transfer feature
in the row 6 is described by (send sms, receive sms).

Table1. Features description.

Also, we assumed that each feature is implemented with certain
classes as shown in the table 2 below. For example,

# Features Classe	 Name Class	 Id
CapturePhoto 1

CompressionPhoto 2
ScramblingPhoto 3

CountPhoto 4
GenerateTones 5
OrganizeMusic 6
CaptureVideo 7

CompressionVideo 8
ScramblingVideo 9
SetFavourites 10
ViewFavourites 11
SaveFavourites 12
CopyMedia 13
StoreMedia 14
SendSMS 15

recieveSMS 16
CreateMedia	 17
DeleteMedia 18
EditMedia 19
LabelMedia 20
SortingMedia 21
MoveMedia 22
SearchMedia 23
SaveMedia 24
ViewMedia 25
PlayMedia 26

7

8

Photo

Music

Video

Favourites

Copy_Media

SMS_Transfer

Basic_Operation

View_Play_Media

1

2

3

4

5

6

SMS_Transfer feature in the row 6 is implemented by
(SendSMS and recieveSMS classes).

Table 2. Real implementations of features

Table 3 summarizes the results we obtained on recovering
the traceability links between source code and FM using LSI.
The first column represents the threshold value of cosine
similarity, column 2 represents the number of correct links
recovered, column 3 represents the number of incorrect links
recovered, column 4 represents the number of correct links
that were not recovered, column 5 represents the total number
of recovered links (correct + incorrect), and the last two
columns the precision and recall values. LSI gives high precision
and recall values.

Table 3. LSI results.
Cosine

threshold
Correct links

retrieved
Incorrect links

retrieved
Missed links

recovered
Total links
recovered Precision Recall

0.5 21 3 5 24 87.50% 80.77%

6. CONCLUSIONS AND FUTURE WORK
This paper presents a method based on information retrieval
namely, LSI, to establish traceability links between object-
oriented source code of product variants and its FM, this
traceability links is used to support conversion from traditional
software development into SPL.

The results obtained in the simple reported case study proved that,
in general, LSI can be used to recovering traceability links
between FM and object oriented source code of product variants
with high recall (80.77%) and precision (87.50%).

As future work we will consider other types of source code
variations (package variation, method variation and attribute

variation) and use all other information provided by the FM (such
as cross tree constraints, alternative features and ect.) to recover
more reliable traceability links.

7. REFERENCES
[1]. Acher, M., Cleve, A., Perrouin, G., Heymans, P.,

Vanbeneden, C., Collet, P. and Lahire, P. 2012. On
extracting feature models from product descriptions.
InProceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive
Systems (VaMoS '12). ACM, New York, NY, USA, 45-54.

[2]. Antoniol, G., Canfora, G., Casazza, G., Lucia, A. and Merlo,
E. 2002. Recovering Traceability Links between Code and
Documentation. IEEE Trans. Softw. Eng. 28, 10 (October
2002), 970-983.

[3]. Benavides, D., Segura, S. and Ruiz-Cort, A. 2010.
Automated analysis of feature models 20 years later: A
literature review. Inf. Syst. 35, 6 (September 2010), 615-
636.

[4]. Clements, P. and Northrop, L. 2001. Software product lines:
practices patterns. Addison-Wesley Longman Publishing
Co., Boston, MA, USA,

[5]. Figueiredo, E., Cacho, N., Sant'Anna, C., Monteiro, M.,
Kulesza, U., Garcia, A., Soares, S., Ferrari, F., Khan, S.,
Filho, F. and Dantas, F. 2008. Evolving software product
lines with aspects: an empirical study on design stability.
In Proceedings of the 30th international conference on
Software engineering (ICSE '08). ACM, New York, NY,
USA, 261-270.

[6]. Ghanam, Y. and Maurer, F. 2010. Linking feature models to
code artifacts using executable acceptance tests.
In Proceedings of the 14th international conference on
Software product lines: going beyond (SPLC'10), Jan Bosch
and Jaejoon Lee (Eds.). Springer-Verlag, Berlin, Heidelberg,
211-225.

[7]. Gotel, O. and Finkelstein, C.1994. An analysis of the
requirements traceability problem. In Proceedings of 1st
International Conference on Requirements Engineering
(Colorado Springs, CO). IEEE Computer Society Press, Los
Alamitos, CA, 94–101.

[8]. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M.
(1998). FORM: a feature oriented reuse method with
domain-specific reference architectures. Annals of Software
Engineering, 5(1):143–168.

[9]. Kuhn,A., Ducasse, S. and Girba,T. 2007. Semantic
clustering: Identifying topics in source code. Inf. Softw.
Technol. 49, 3 (March 2007), 230-243.

[10]. Lindvall, M. and Sandahl, K. 1996. Practical implications of
traceability. Softw. Pract. Exper. 26, 10 (October 1996),
1161-1180.

[11]. Marcus, A. and Maletic, J. 2003. Recovering documentation-
to-source-code traceability links using latent semantic
indexing. In Proceedings of the 25th International
Conference on Software Engineering (ICSE '03). IEEE
Computer Society, Washington, DC, USA, 125-135.

[12]. Pohl,K., Böckle, G. and Linden, F. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[13]. Ramesh, B. and Jarke, M. 2001. Toward Reference Models
for Requirements Traceability. IEEE Trans. Softw. Eng. 27,
1 (January 2001), 58-93.

[14]. Schobbens, P.Y, Heymans, P. and Trigaux, J.C. 2006.
Feature Diagrams: A Survey and a Formal Semantics.
In Proceedings of the 14th IEEE International Requirements
Engineering Conference (RE '06). IEEE Computer Society,
Washington, DC, USA, 136-145.

[15]. Spanoudakis, G. and Zisman, A., Software Traceability:
A Roadmap, in Handbook of Software Engineering and
Knowledge Engineering, Chang, S. K., Ed. World Scientific
Publishing Co, 2005, pp. 395-428.

[16]. Weiss, D. and Lai, C. 1999. Software Product-Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[17]. Ye, P., Peng, X., Xue, Y. and Jarzabek, S.2009: A
Case Study of Variation Mechanism in an Industrial
Product Line. ICSR. 126-136.

[18]. Ziadi, T., Frias, L., Silva, M. and Ziane, M. 2012. Feature
Identification from the Source Code of Product Variants.
16th European Conference on Software Maintenance and
Reengineering. 417-422.

