* Writing papers is a skill

How to write a = Many papers are badly written
* great research paper = Good writing is a skill you can learn

! = It's a skill that is worth learning:
Simon Peyton Jones

= You will get more brownie points (more

Microsoft Research, Cambridge papers accepted etc)

= Your ideas will have more impact

Increasing importance

= You will have better ideas

i Writing papers: model 1 Writing papers: model 2

e] T

= Forces us to be clear, focused

= Crystallises what we don't understand

= Opens the way to dialogue with others:
reality check, critique, and collaboration

i Do not be intimidated

Fallacy = You need to have a fantastic idea before
you can write a paper. (Everyone else
seems to.)

Write a paper,
and give a talk, about
any idea,

no matter how weedy and insignificant it
may seem to you

i Do not be intimidated

Write a paper, and give a talk, about any
idea, no matter how insignificant it may
seem fo you

= Writing the paper is how you develop the
idea in the first place

= It usually turns out to be more interesting
and challenging that it seemed at first

i The purpose of your paper

Why
i bother?
Fallacy

we write papers and
give talks mainly to
impress others, gain
recognition, and get
promoted

L USED TO WATE WRITING
ATRIGMMENTS , BUT Now
—, T eyl THEM, y

WITH A LITTLE PRACTICE,

WRITING CAMN BE AW

INTIMIDATING AND

IMPEMETRABLE FO&!

WANT To SR MY Book
REPORT ?

I REALVZED THAT THE
PURPCRE OF WRITING 13
To IMFLATE WERK WDEAS,
ORSCURE POOR REASOMING,
AND HIBIT CLARITY.

TTHE DHAMICS OF WTERBEING
A WENOLOGICHL IMPERATIVES

[0 PRICHIC TRANSRELATIONAL
SENDER MODES. T

* Papers communicate ideas

= Your goal: to infect the mind of your
reader with your idea, like a virus

= Papers are far more durable than~

programs (think Mozart) r?ﬁ

Idea
* The Idea A re-usable insight,
useful o the reader

= Figure out what your idea is

= Make certain that the reader is in no
doubt what the idea is. Be 100% explicit:
= "The main idea of this paper is...."
= "In this section we present the main

contributions of the paper.”

= Many papers contain good ideas, but do

not distil what they are.

i One ping

= Your paper should have just one "ping":
one clear, sharp idea

= Read your paper again: can you hear the
\\pingll?
= You may not know exactly what the ping

is when you start writing; but you must
know when you finish

= If you have lots of ideas, write lots of
papers

Thanks to Joe Touch for “one ping”

* The purpose of your paper is not...

= Your reader does not have a WizWoz

= She is primarily interested in re-usable
brain-stuff, not executable artefacts

i Your narrative flow T wish T

knew how

to solve

= Here is a problem that!
= It's an interesting problem

I see how

= It's an unsolved problem that works.
Ingenious!

= Here is my idea
= My idea works (details, data)

= Here's how my idea compares to ot} 7
people’s approaches efh

i Structure (conference paper)

= Title (1000 readers)

= Abstract (4 sentences, 100 readers)

= Introduction (1 page, 100 readers)

= The problem (1 page, 10 readers)

= My idea (2 pages, 10 readers)

= The details (5 pages, 3 readers)

= Related work (1-2 pages, 10 readers)

= Conclusions and further work (0.5 pages)

i The abstract

= I usually write the abstract last

= Used by program committee members
to decide which papers to read

= Four sentences [Kent Beck]
i State the problem
2. Say why it's an interesting problem
5. Say what your solution achieves
s+ Say what follows from your solution

i Example

1. Many papers are badly written and
hard to understand

2. This is a pity, because their good ideas
may go unappreciated

3. Following simple guidelines can
dramatically improve the quality of
your papers

4. Your work will be used more, and the
feedback you get from others will in

.
+i1nn imnAnAavus AR HDQ‘I)hHI‘L\

i Structure

= Abstract (4 sentences)

= Introduction (1 page)

= The problem (1 page)

= My idea (2 pages)

= The details (5 pages)

= Related work (1-2 pages)

= Conclusions and further work (0.5 pages)

i The introduction (1 page)

1. Describe the problem
2. State your contributions
...and that is all

ONE PAGE!

i Describe the problem

1 Introduction

There are two basic ways to implement function application in Use an
a higher-order language, when the function is unknown: the
pusi’ngfemer model og;}lthgé eval/epply model [11]. To illustrate the example
difference, consider the higher-order function zipWith, which zips to
together two lists, using a function k to combine corresponding list
clements: introduce
zipWith :: (a->b->c) -> [a] -> [b] -> [c]
ziphith k 1 00 =0 the
zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys
Here k is an unknown functi y ; / pr‘ObIem
: ction, passed as an argument; global flow

analysis aside, the compiler does not know what function k is bound
to. How should the compiler deal with the call k x y in the body
of zipWith? It can’t blithely apply k to two arguments, because
k might in reality take just one argument and compute for a while
before returning a function that consumes the next argument; or k
might take three arguments, so that the result of the zipWith isa
list of functions.

i State your contributions

= Write the list of contributions first

s The list of contributions drives the
entire paper: the paper substantiates
the claims you have made

= Reader thinks "gosh, if they can really
deliver this, that's be exciting; IT'd
better read on”

State your contributions

Which of the two is best in practice? The trouble is that the eval- .
uation model has a pervasive effect on the implementation, so it is Bu I I e"‘ed I |S'|'
too much work to implement both and pick the best. Historically,

compilers for strict languages (using call-by-value) have tended to f

use eval/apply, while those for lazy languages (using call-by-need) (0

have often used push/enter, but this is 90% historical accident —ei- . .

ther approach will work in both settings. In practice, implementors CO n'rr'[buT'ons
choose one of the two approaches based on a qualitative assessment

of the trade-offs. In this paper we put the choice on a firmer basis:

o We explain precisely what the two models are. in a common
notational framework (Section 4). Surprisingly, this has not
been done before.

e The choice of evaluarion model affects many other design
choices in subtle but pervasive ways. We identify and dis-
cuss these effects in Sections 5 and 6, and contrast them in DO nOT Ieave The
Section 7. There are lots of nitry-gritty details here, for which

we make no apology — they were far from obvious to us, and reader to guess what

articulating these details is one of our main contuibutions. ibuti |
1In terms of its impact on compiler and run-time system com- your contributions are!

plexity, eval/apply seems decisively superior, principally be-
cause push/enter requires a stack like no other: stack-walking

Contributions should be refutable

NO! YES!

We describe the WizWoz | We give the syntax and semantics of
system. It is really cool. a language that supports concurrent
processes (Section 3). Its innovative

fontiinog ano
recararco arcoy

We study its properties We prove that the type system is

sound, and that type checking is
decidable (Section 4)

We have used WizWoz in We have built a GUT toolkit in
practice WizWoz, and used it to implement a
text editor (Section 5). The result is

balf 0

+lho | o of o T oo yonaion
ary e Ibilglll v i yuavla vel STVTT.

i No "rest of this paper is..."

m NoOT: 'Therest of this paper is structured as
follows. Section 2 introduces the problem.
Section 3 ... Finally, Section 8 concludes”.

= Instead, use forward references from
the narrative in the introduction.
The introduction (including the
contributions) should survey the whole
paper, and therefore forward reference
every important part.

Structure

= Abstract (4 sentences)
= Introduction (1 page)

The problem (1 page)

My idea (2 pages)

The details (5 pages)

Related work (1-2 pages)

Conclusions and further work (0.5 pages)

i No related work yet!

py Related
work
Your reader Your idea

We adopt the notion of transaction from Brown [1], as modified
for distributed systems by White [2], using the four-phase
interpolation algorithm of Green [3]. Our work differs from
White in our advanced revocation protocol, which deals with the
case of priority inversion as described by Yellow [41.

\\//

-

i No related work yet

I feel

= Problem 1: the reader knows - pan

nothing about the problem yet;

so your (carefully trimmed) (@
description of various technical
tradeoffs is absolutely
incomprehensible

= Problem 2: describing I_feel
alternative approaches gets —
between the reader and your

iden

i Structure

= Abstract (4 sentences)

= Introduction (1 page)

= The problem (1 page)

= My idea (2 pages)

s The details (5 pages)

= Related work (1-2 pages)

= Conclusions and further work (0.5 pages)

i Presenting the idea

3. The idea

Consider a bifircuated semi-lattice D, over a
hyper-modulated signature S. Suppose p; is an
element of D. Then we know for every such p;

there is an epi-modulus j, such that p; < p;.
= Sounds impressive...but

= Sends readers to sleep

= In a paper you MUST provide the details,
but FIRST convey the idea

i Presenting the idea

= Explain it as if you were speaking to
someone using a whiteboard

= Conveying the intuition is primary, not
secondary

= Once your reader has the intuition, she

can follow the details (but not vice
versa)

= Even if she skips the details, she still

+nlrome Ay eamot+hina valiinhls

i Putting the reader first

= Do not recapitulate your personal
journey of discovery. This route may
be soaked with your blood, but that is
not interesting to the reader.

= Instead, choose the most direct route
to the idea.

i The payload of your paper

Introduce the problem, and
your idea, using

EXAMPLES

and only then present the
general case

The Simon PJ

i USing examples question: is there

any typewriter

2 Background e

To set the scene for this paper, we begin with a brief overview of
the Scrup your boilerplate approach to generic programming. Sup-
pose that we want to write a function that computes the size of an
arbitrary data structure. The basic algorithm is “for each node, add
the sizes of the children, and add 1 for the node itself”. Here is the

entire code for gsize: Example

gsize :: Data a => a -> Iat r'|9h1'
gsize t = 1 4+ sum (gmapQ gsize t)
The type for gsize says that it works over any type a, provided a C(WC(Y
is a dura type — that is, that it is an instance of the class Data!
The definition of gsize refers to the operation gmapQ, which is a
method of the Data class:
class Typeable a => Data a where
...other methods of class Data...
gmapQ :: (forall b. Data b => b ->» r) -» a —-» [r]

i The details: evidence

= Your introduction makes claims

= The body of the paper provides
evidence to support each claim

= Check each claim in the introduction,
identify the evidence, and forward-
reference it from the claim

= Evidence can be: analysis and
comparison, theorems, measurements,
case studies

i Structure

= Abstract (4 sentences)

= Introduction (1 page)

= The problem (1 page)

= My idea (2 pages)

= The details (5 pages)

= Related work (1-2 pages)

= Conclusions and further work (0.5 pages)

i Related work

Fallacy =~ To make my work look good, I
have to make other people's
work look bad

i The truth: credit is not like money

Giving credit to others does not
diminish the credit you get from
your paper
= Warmly acknowledge people who have helped

you

= Be generous to the competition. “In his
inspiring paper [Foo98] Foogle shows.... We
develop his foundation in the following ways..."

4

| AI‘IIY\f\lAIIDAhD I‘lDfIIIhDE‘E‘D(‘ ;V\ \NiAnLIN nhhﬂf\nl‘h

i Credit is not like money

Failing to give credit to others
can kill your paper

If you imply that an idea is yours, and the
referee knows it is not, then either

= You don't know that it's an old idea (bad)

= You do know, but are pretending it's yours
(very bad)

i Structure

= Abstract (4 sentences)

= Introduction (1 page)

= The problem (1 page)

= My idea (2 pages)

= The details (5 pages)

= Related work (1-2 pages)

= Conclusions and further work (0.5 pages)

i Conclusions and further work

= Be brief.

* The process of writing

i The process

= Start early. Very early.

= Hastily-written papers get rejected.

= Papers are like wine: they need fime to
mature

= Collaborate

= Use CVS to support collaboration

i Getting help

Get your paper read by as many
friendly guinea pigs as possible
= Experts are good
= Non-experts are also very good

= Each reader can only read your paper for the
first time once! So use them carefully

= Explain carefully what you want ("I got lost
here" is much more important than "Jarva is
mis-spelt”.)

i Getting expert help

= A good plan: when you think you are done,
send the draft to the competition saying
"could you help me ensure that I describe
your work fairly?".

= Often they will respond with helpful
critique (they are interested in the area)

= They are likely to be your referees anyway,
so getting their comments or criticism up
front is Jolly Good.

i Listening to your reviewers

Treat every review like gold dust

Be (truly) grateful for criticism as
well as praise

This is really, really, really hard

But it's
really, really, really, really, really, really,
really, really, really, really
important

i Listening to your reviewers

= Read every criticism as a positive
suggestion for something you could
explain more clearly

= DO NOT respond "you stupid person, I
meant X". Fix the paper so that X is
apparent even to the stupidest reader.

= Thank them warmly. They have given up
their time for you.

* Language and style

i Basic stuff

= Submit by the deadline

= Keep to the length restrictions
= Do not narrow the margins

= Do not use 6pt font

= On occasion, supply supporting evidence (e.g.

experimental data, or a written-out proof)
in an appendix

= Always use a spell checker

i Visual structure

= Give strong visual structure to your
paper using
= sections and sub-sections
= bullets
= italics
= laid-out code

= Find out how to draw pictures, and
use them

i Visual structure

Info pointer

Payload ‘

Info table
@——» Entry code

Object type
Layout info

Type-specific
fields

Tigure 3. A heap object

The thice cases above do not exhaust the possible forms of £. 1t
might also be a THUNK, but we have alieady dealt with that case
(tule THUNK). 1t might be a CON, in which case there cannot be any
pending arguments on the stack, and rules UPDATE ot RET apply.

4.3 The eval/apply model

The Jast block of Figare 2 shows how the cvalfapply model deals
with function application. The first three rules all deal with the case
of 2 FUN applicd to some arguments:

« If there are exactly the right number of arguments, we behave
exactly like rule KNOWNCALL, by tail<alling the function.
Rule EXACT s still necessary — and indeed has a direct coun-
terpait in the implementatioh — becanse the function might
not be statically known

® 1f there are too many aiguments, tule CALLK pushes a call

remainder of the object is called the payloud, and may consist of
a mixture of peinters and non-peinters. For example, the object
CON(C a...an) would be represented by an ochject whose info
pointet tepiesented the constructor C and whose payload is the ar-
suments ay . ..dy.

The info table contains:

» Exccutable code for the object. For example, a FUN objeet
has code for the fanction body

o An object-type field, which distinguishes the various kinds of
ohjects (FUN, PAP, CON etc) from each othet.

» Layout information for garbage collection putposes, which
describes the size and layout of the paylead. By “layout” we
mean which fields contain pointeis and which contain non-
peintets, information that is essential for accnmte garbage col-
lection.

e Type-specific information, which vaties depending on the ob-
ject type. For example, a FUN object contains ifs atty, a
CON object contains its constructer tag, a small integer that
distinguishes the different constructors of a data type; and so
on.

1n the case of a PAP, the size of the object is not fixed by its info
table; instead, its size is stored in the object itself. The layout of its
fields (c.g. which are pointers) is described by the (initial segment
of) an argument-descriptor ficld in the info table of the FUN object
which is always the first field of a PAP. The other kinds of heap
object all have a size thatis statically fixed by theit info table.

A very commen opetation isto jump to the entry code for the object,
so GHC uses a slightly-optimised version of the tepresentation in
Figare 3. GHC places the info table at the addresses immediarely

i Use the active voice

The passive voice is "respectable” but it DEADENS
your paper. Avoid it at all costs.

NO YES

It can be seen that-... We can see that...
34 tests were run We ran 34 tests

These properties were We wanted to retain these
thought desirable properties

It might be thought that You might think this would
this would be a type error be a type error

Use simple, direct language

NO

displaced horizontally

On an annual basis

Endeavour to ascertain

The object under study was

YES

The ball moved sideways

Yearly

Find out

It could be considered that the
speed of storage reclamation
left something to be desired

The garbage collector was really
slow

Summary

If you remember nothing else:
= Identify your key idea
= Make your contributions explicit

= Use examples

A good starting point:

W ; - adu cmu.edu/user/
S BTN

