
A Genetic Approach for Software Architecture 
Recovery from Object-Oriented Code 

Abdelhak-Djamel Seriai 
LIRMM, University of Montpellier 2/CNRS 

162 rue Ada 
F-34392 Montpellier Cedex 5, France 

seriai@lirmm.fr 

Sylvain Chardigny 
MGPS 

Port-Saint-Louis,  
France 

chardigny.sylvain@gmail.com
 
 

Abstract— Software architecture is recognized as a critical 
element in the successful development and evolution of software-
intensive systems. Despite the important role of architecture 
representation and modeling many existing systems like legacy or 
eroded ones do not have a reliable architecture representation. In 
this paper we present an approach for architecture recovery 
from object-oriented code. It’s based on a genetic algorithm 
which uses a fitness function measuring the semantic-correctness 
of software components. Following our model, architecture which 
is a partition of classes is considered as a chromosome. A group 
of classes is a gene. This algorithm gives satisfactory results in 
terms of consistency and adequacy metrics. 

 

Keywords- Component; software architecture; recovery; 
component based; object oriented; reverse engineering 

I.  INTRODUCTION  
Software architecture is recognized as a critical element in 

the successful development and evolution of software-intensive 
systems [5]. Software architecture expresses the overall 
structure of a system in an abstract, structured manner. The 
main goal of a software architectural representation of a system 
is to identify the major components that constitute this system, 
and the interactions between these components [1]. According 
to Garlan [6], software architecture plays an important role in 
at least six aspects of software development: understanding, 
reuse, construction, evolution, analysis and management. 
Despite the important role of architecture representation and 
modeling, many existing systems do not have a reliable 
architecture representation. Indeed these systems could have 
been designed without an architecture design phase, as it is the 
case of most legacy systems. For other systems, the available 
representation can diverge from the system implementation. 
This appears, first, during the implementation phase due to 
gaps between the expected architecture and the implemented 
one. These gaps become greater because of lack of 
synchronization between software documentation and 
implementation. Taking into account the previous 
considerations, it is obvious that an approach of architecture 
recovery allows architects and developers to take advantage of 
all the benefits of having an architecture model available. In 
this context, we propose an approach to extract a component-
based architecture from object-oriented systems. Our goal is to 
decrease the need for human expertise which is expensive and 
not always available. Our process aims at selecting among all 

the architectures which can be abstracted from a system, the 
best one according to the semantic-correctness of architecture. 
Based on the norm ISO 9126 [10], we formulate these 
characteristics as measurable properties and specify the 
recovery process as a balancing problem of these ones. Based 
on this formulation, we developed a recovery architecture 
process exploiting a hierarchical clustering algorithm. 
Nevertheless, the result of this process (i.e. architectures) was 
not completely satisfactory. We studied the process on several 
case studies (e.g. Jigsaw, ArgoUML, Eclipse, etc.). The results 
were sometimes offset from the known architectures. This is 
due to the nature of the clustering algorithm. In fact, this 
heuristic algorithm is memory less. For some systems, this 
feature may deter the clustering process from the best 
architectures. It explores only a limited number of possible 
ones. It is not a meta-heuristic and it does not use the space 
exploration of all possible architectures. Thus, our objective in 
this paper is to propose an alternative formulation of our 
approach based on a genetic algorithm (GA). This choice is due 
to the characteristics of this type of algorithm. A GA allows us 
to consider architecture recovery as a metaheuristic 
optimization problem. It aims to explore the solution space to 
identify the best possible. GAs were introduced in the late 
1960’s by John Holland [7]. They are based on the Darwinian 
theory of evolution whereby species compete to survive and the 
fittest get a higher chance to remain until the end and produce 
progeny. The basic idea of a GA is to start from a set of initial 
solutions, and to use biologically inspired evolution 
mechanisms to derive new and possibly better solutions.  

The remainder of this paper is structured as follows. 
Section 2 presents principle of our architecture recovery 
approach: semantic-correctness driven. The GA encoding of 
the recovery process is presented in section 3. Case studies are 
presented in section 4. They present the results of our approach 
using GA and compare these results to the clustering-based 
ones. Section 5 discusses related work. Conclusion and future 
works are given in section 6.  

II. SEMANTIC-CORRECTNESS DRIVEN ARCHITECTURE 
RECOVERY : AN OVERVIEW 

In our approach, recovering a component-based architecture of 
an object oriented system consists of using its implementation 
code in order to identify the architectural elements. As first 
step toward this goal, we defined a mapping model of object 



oriented concepts (i.e. classes, methods, interfaces, packages, 
etc.) and architectural ones (i.e. components, connectors, 
interfaces, etc.). It defines architecture as a partition of the 
system classes. Each element of this partition represents a 
component. These elements are named “shape” and include 
classes which can belong to different object-oriented 
packages. A shape is composed of two sets of classes: the 
“shape interface” includes classes linked with others from the 
outside of the shape, e.g. a method call to the outside; and the 
“center” composed of the remainder classes of the shape. We 
assimilate component to shape and component interfaces to 
“shape interface”. Connectors are all links existing between 
components. Consequently, the architecture configuration is 
the set of shapes constituting a partition of the system classes. 
As a result of these considerations, the search-space of 
architecture recovery problem is composed of all architectures 
which are partitions of the system classes. This means that, in 
a system which contains n classes, the search-space contains O 
(n!) potential architectures. 
Thus to select the best architecture compared to its semantic 
correctness, we propose to define fitness function measuring 
this characteristic. An architecture is semantically correct if its 
elements (components, connectors and configuration) are. We 
limit ourselves here to study component semantic-correctness 
and define function to measure it. This study is based on the 
most commonly admitted definitions of software component 
rather than architectural one. Indeed architectural component 
constraints are included in the software component ones. In 
addition these supplementary constraints make easier a 
migration from an object-oriented system to a component-
based one. 

A. Semantic characteristics of a software component 
Szyperski defines in [17] a component as a unit of 

composition with contractually specified interfaces and explicit 
context dependencies only. A software component can be 
deployed independently and is subject to composition by third 
parties. In [9] Heinemann and Councill define a component as 
a software element that conforms to a component model and 
can be independently deployed and composed without 
modification according to a composition standard. In [12] Luer 
makes a distinction between component and deployable 
component. He defines a component as a software element that 
(a) encapsulates a reusable implementation of functionality, (b) 
can be composed without modification, and (c) adheres to a 
component model. A deployable component is (a) 
prepackaged, (b) independently distributed, (c) easily installed 
and uninstalled and (d) self-descriptive.  

In combining and refining the common elements of these 
definitions and others commonly accepted ones [11], we 
propose the following definition of a component: A component 
is a software element that (a) can be composed without 
modification, (b) can be distributed in an autonomous way, (c) 
encapsulates an implementation of functionality, and (d) 
adheres to a component model. In our approach, the definition 
of a component model is the Luer one [12]: a model component 
is the combination of (a) a component standard that governs 
how to construct individual components and (b) a composition 

standard that governs how to organize a set of components into 
an application and how those components globally 
communicate and interact with each other. As compared to the 
definitions of Luer and Heineman and Councill, we 
intentionally do not include the criterion that a component must 
adhere on a composition theory and the properties of 
component self-descriptive, pre-packaged and easy to install 
and uninstall. These are covered through the criterion that a 
component must adhere to a component model and does not 
need to be repeated. In conclusion, according to our software 
component definition, we identify three semantic 
characteristics of software components: composability, 
autonomy and specificity. The specificity of a component 
means that it must contain a limited number of functionalities. 

B. Refinement model of the semantic correctness 
In the previous section, we have identified three semantic 

characteristics that we propose to evaluate. To do so, we adapt 
the characteristic refinement model given by the norm ISO-
9126 [ISO]. According to this model, we can measure the 
characteristic semantic correctness by refining it in the previous 
three semantic characteristics which are consequently 
considered as sub-characteristics. 

1) From characteristic to properties 
Based on the study of the semantic sub-characteristics, we 
refine them into a set of component measurable properties. 
Thus, a component is autonomous if it has no required 
interface. Consequently, the property number of required 
interfaces should give us a good measure of the component 
autonomy. Then, a component can be composed by means of 
its provided and required interfaces. However, a component 
will be more easily composed with another if services, in each 
interface, are cohesive. Thus, the property average of service 
cohesion by component interface should be a correct measure 
of the component composability. Finally, the evaluation of the 
number of functionalities is based on the following statements. 
Firstly a component which provides many interfaces may 
provide various functionalities. Indeed each interface can offer 
different services. Thus the higher the number of interfaces is, 
the higher the number of functionalities can be. Secondly if 
interfaces (resp. services in each interface) are cohesive (i.e. 
share resources), they probably offer closely related 
functionalities. Thirdly if the code of the component is closely 
coupled (resp. cohesive), the different parts of the component 
code use each other (resp. common resources). Consequently, 
they probably work together in order to offer a small number 
of functionalities. From these statements, we refine the 
specificity sub characteristic to the following properties: 
number of provided interfaces, average of service cohesion by 
component interface, component interface cohesion and 
component cohesion and coupling. 

2) From properties to metrics 
According to our object-component/architecture model, 
component interfaces are assimilated to shape interface. 
Therefore, the average of the interface-class cohesion gives a 
correct measure of the average of service cohesion by 
component interface. Secondly the component interface 
cohesion, the internal component cohesion and the internal 



component coupling can respectively be measured by the 
properties interface class cohesion, shape class cohesion and 
shape class coupling. Thirdly in order to link the number of 
provided interfaces property to a shape property, we associate 
a component provided interface to each shape-interface class 
having public methods. Thanks to this choice, we can measure 
the number of provided interfaces using the number of shape 
interface classes having public methods. Finally, the number 
of required interfaces can be evaluated by using coupling 
between the component and the outside. This coupling is 
linked to shape external coupling. Consequently, we can 
measure this property using the property shape external 
coupling. In order to measure these properties, we need to 
define metrics. The properties shape class coupling and shape 
external coupling require a coupling measurement. We define 
the metric Coupl(E) which measures the coupling of a shape 
E and CouplExt(E) which measures the coupling of E with 
the rest of classes. They measure three types of dependencies 
between objects: method calls, use of attributes and 
parameters of another class. Moreover they are percentages 
and are related through the equation: CouplExt(E) = 100 −  
Coupl(E). Due to space limitations, we do not detail these 
metrics. Shape properties average of interface-class cohesion, 
interface-class cohesion, and shape-class cohesion require a 
cohesion measurement. The metric “Loose Class Cohesion” 
(LCC), proposed by Bieman and Kang [2], measures the 
percentage of pair of methods which are directly or indirectly 
connected. Two methods are connected if they use directly or 
indirectly a common attribute. Two methods are indirectly 
connected if a connected method chain connects them. This 
metric satisfies all our needs for the cohesion measurement: it 
reflects all sharing relations, i.e. sharing attributes in object 
oriented system, and it is a percentage. Consequently, we use 
this metric to compute the cohesion for these properties. The 
refinement model is summarized in Fig.1.  
 

 
Fig.1. Refinement model of the semantic-correctness 

characteristic of component 
 

3) Evaluation of the semantic correctness  
According to our refinement model of semantic-correctness of 
component, we define the functions Spe, A, C which measure 
respectively specificity, autonomy and composability of this 
component. In these functions nbPub(I) is the number of 

interface classes having a public method and IiI is the shape 
interface cardinality. 

 
 

 

 
 
The evaluation of the semantic correctness characteristic is 
based on the evaluation of each sub-characteristic. That is why 
we define this function as a linear combination of each sub-
characteristic evaluation function (Spe, A, and C): 
 

 

 
This form is linear because each of its parts must be 
considered uniformly. The weight μi associated with each 
function allows the software architect to modify, as needed, 
the importance of each sub-characteristic. 

III. GENETIC MODEL FOR ARCHITECTURE RECOVERED FROM 
OBJECTI-ORIENTED CODE 

GA starts derivations from an initial solution called the initial 
population and then generates a sequence of populations. Each 
derived population is obtained by “mutating” the previous one. 
Elements of the obtained solutions are called chromosomes. 
The fitness of each chromosome is measured by an objective 
function called the fitness function. Each chromosome 
(possible solution) consists of a set of genes. At each 
generation, the process consists to apply some genetic 
operators which are crossover, mutation and selection in order 
to generate the next generation. On each chromosome, the 
algorithm applies two operators: crossover and mutation. Each 
operator is applied following a specific probability given as an 
input parameter of the algorithm. During crossover, two 
chromosomes are selected using a selection method that gives 
priority to the fittest ones; they exchange some of their genes 
giving birth to two other chromosomes. Each selected pair of 
chromosomes produces a new pair of chromosomes that 
constitute the next generation. Mutation consists of changing 
randomly one or more genes in a chromosome. Finally a 
selection is operated on chromosomes to choose the next 
generation. This selection can increase or reduce or keep stable 
the size of the population. The algorithm stops if a convergence 
criterion is satisfied or if a fixed number of generations is 
reached. The implementation of GA to recover architecture 
requires specifying how solutions are encoded into 
chromosomes, how the three genetic operators crossover, 
mutation and selection are defined and which fitness function 
and initial population to be used. As we have already defined 
the function in the section II.B.3, we address the remaining 
questions in the following sections. 

A. Encoding architecture as chromosome  
Our genetic model of architecture must adhere to our 

object-component/architecture mapping model indicating that 



an architecture is a partition of classes (cf. section II). This can 
be translated following different possible formulations. One of 
these formulations is to represent architecture as a 
chromosome. Thus, in this model a chromosome is a partition 
of classes. Another formulation is to model shape as 
chromosome and architecture as the whole population. This 
choice makes difficult to check partition property. Instead of 
the basic idea of GA which aims to optimize one element in a 
population, this model aims to optimize one population. We opt 
for representing architecture as a chromosome. Therefore this 
requires defining the genes which constitute the chromosomes. 
Again several options are available. Thus a gene may represent 
a class and the value of the gene may represent the shape which 
contains this class. An alternative formulation would be to 
represent a shape as a gene and then the value of the gene 
would be a set of classes. We opt for the second formulation 
because it makes easier to check the partition property. Indeed 
the union of the gene values must be all the system classes and 
each intersection of gene values must be empty.  

B. Definition of the genetic operators 
In order to apply GA we need to define the genetic 

operators. These are the selection, the crossover and the 
mutation operators. The process of evolution starts by selecting 
several pair of chromosomes whose the number vary according 
to a probability PC. Then the crossover is applied on each pair 
to generate two new chromosomes. The mutation is applied to 
each chromosome (new and old) with the probability PM. PC 
and PM are given as given as parameters of GA. Finally some 
chromosomes are selected for the next generation. We present 
in the following each of these three operators. 

1) Selection operator 
There are two selection operators which are used in GA. The 
first one selects the pair of chromosomes for the crossover and 
the second selects the next generation among the 
chromosomes. The selection of the chromosome pair is done 
according to the roulette-wheel technique [7]. Each 
chromosome is assigned a portion of the wheel that is 
proportional to its fitness. A marble is thrown and the 
chromosome where the marble halts is selected. The selection 
of the chromosomes for the next generation is done according 
to two criteria: the age of the chromosomes and their fitness. 
The new chromosomes are automatically added to the next 
generation. As we decided to keeps the population size 
constant, the other chromosomes are selected among the old 
chromosomes according to the fitness function. 

2) Crossover operator  
A standard way to perform the crossover operation on 
chromosomes is to cut each of the two parent chromosomes 
into two subsets of genes (shapes in our case). Two new 
chromosomes are created by interleaving the subsets. If we 
apply such operation, it is possible that the resulting 
chromosomes can no longer represent well-defined partitions. 
Two specific problems can occur. If the intersection of two 
shapes is not empty, then the solution is inconsistent. The 
second problem is when the solution is incomplete. This 
occurs when the union of all the shapes does not contain all 
the system classes. In both cases, the architecture represented 

by the chromosome is not even a partition. Figure 2(a) 
illustrates these two situations. To preserve the consistency 
and the completeness of the offspring, we propose a crossover 
operator based on the operator defined for grouping problems 
[4]. To obtain an offspring, we select a random subset of 
shapes from one parent and add it to the set of shapes of the 
second parent. By keeping all the shapes of one of the parents, 
completeness of the offspring is automatically ensured. To 
guarantee consistency, we eliminate from the older shapes, the 
classes contained in the added shapes. Figure 2(b) illustrates 
the new crossover operator.  

3) Mutation operator  
Mutation is a random change in the genes that happens with a 
small probability. In the case of our architecture recovery 
model, the mutation operator randomly moves some classes 
from one shape to another one. This mutation operator keeps 
the partition property safe. 

  
   Fig.2 (a) insufficient of                  Fig.2 (b) Crossover that 
     the standard crossover  preserves consistency and 

      completeness 

C. Choice of the initial population 
 The initial population is the set of chromosomes which is 
used at the start of the GA. The choice of this population is 
often randomly made. Nevertheless better the initial 
population is better the solutions is. We opt for an initial 
population which represents partition obtained by the strongly-
connected components of the system classes. In this graph 
whose vertices are the system classes, there is an arc between 
two vertices A and B if the class A uses the class B, i.e. uses 
an attribute, a parameter or a return variable whose type is B 
and creates or uses an object whose type can be B. A Strongly-
connected component is a subset of the graph vertices where 
any vertex can be reached from any other vertex by a path. 
These strongly-connected components are a partition of the 
graph vertices and consequently a partition of the system 
classes. This partition is an approximation of the system 
architecture. We use it as an initial chromosome for our GA.  

IV. CASE STUDY 
As case studies, we validate the genetic algorithm 
implementation of our architecture recovery process on many 
systems with different sizes: small systems whose number of 
classes is less than 50 (e.g. JPhotoAlbum with 17 classes), 



systems of medium size where the number of classes is 
between 50 and 500 (e.g. Jigsaw with 300 classes) and larger 
systems with more than 1,000 classes. (e.g. ArgoUML with 
over than 1500 classes). In most cases, the results show that 
the recovered architectures are closer to the known 
architectures than those obtained by the clustering algorithm. 
The difficulty was to choose the adequate parameters for GA. 
Due to space limitation, we give below only the case study of 
the Jigsaw system which is a Java based web server.  

A. GA parameters  
To execute the GA we have to determine some parameters. 
These are the elements of the initial population, the rate of 
crossover and mutation, the size of the initial population, and 
the number of generation. We launch several tests in order to 
analyze the impact of each parameter on the result. Firstly, we 
choose to use an initial population based on randomize 
partitions plus one partition calculated from the strongly-
connected components of the system classes. Secondly, the 
tests realized show that the elements of the population become 
similar all along the process. This is due to our crossover 
operator. To avoid having only one element in the population 
after some generation, we choose a great rate of mutation. 
Indeed we choose to put the mutation and the crossover rate to 
80 %. Nevertheless, this choice of rate is not enough to 
palliate totally the activity of the crossover operator. 
Consequently we choose a big initial population (i.e.100) 
which reduces the risk to obtain a generation composed of 
only one duplicated element. In order to keep a correct 
execution time for the test, we choose to do 100 generations.  

B. Results  
Fig.3 presents the recovered and the known architectures of 
Jigsaw. The comparison of these architectures shows that most 
of components of the recovered architecture are the same or 
sub-components of the known ones. Therefore the obtained 
solution is relevant according to the known architecture of 
Jigsaw. The recovered architecture has fitness function score 
of 80.2 %. This shows the correlation between our fitness 
function and the relevance of the recovered architecture 
solution compared to the expected one.  
We validate the consistency of our approach by measuring the 
similarity of the recovered architectures of Jigsaw. We use the 
similarity measure proposed by Mitchell [18]. For each link 
between two classes it measures the number of solutions 
(architectures) for which this link is included in a component. 
To obtain the percentage of inclusion in a component, this 
value is then divided by the number of compared solutions. 
The different results are then aggregated at the levels: {[0, 0], 
(0, 10], (10, 75), [75, 100] }. These levels correspond to a 
similarity degree zero, low, medium and high.  
Table 1 shows degree of similarity obtained over 99 
executions of the recovery process. It shows that 81% of 
classes are in the zero or high categories. This demonstrates 
that the vast majority of classes are respectively always 
separated or together. Only 6.4% of class relationships are in 
the category medium. This shows that class neighborhoods are 
stable. Changes are due to classes that are on the borders of 

two components: the content of these classes is highly 
dependent on two distinct components. Therefore a significant 
portion of these class methods can be specified as connectors. 
 
Zero (%) 
S = 0% 

Low (%) 
0% < S<= 10% 

Medium (%) 
10% < S < 75% 

High (%) 
S<= 75% 
 

22.9 12.6 6.4 58.1 
TAB 1. A measure of degree of similarity of obtained solution 
on Jigsaw 
 

 
Fig.3 Recovered and known architectures of Jigsaw system 

 
The result of clustering and genetic algorithms is significantly 
different. This difference is due to the way how the process 
explores the solution space. On the one hand, clustering 
explores one solution per iteration. On the other hand, GA 
explores several solutions (100 in our test) per iteration and 
the number of genetic operations done by iteration is limited to 
2 operations by element of the population. It is clear that GA 
explores a bigger space than clustering algorithm. GA has a 
better ratio between the execution time and the quality of the 
resulting solution. 

V. RELATED WORK  
Various works are proposed in literature in order to recover 
architecture from an object-oriented system [15]. We 
distinguish these works according to two criteria: the input and 
the technique. Firstly the inputs of the recovery approaches are 
various. Most often it works from source code representations, 
but it also considers other kinds of information which for most 
of them are non-architectural. We can cite, for example, 
human expertise, which is used in an interactive way in order 
to guide the process [13], and physical organization, e.g. files, 
folders and packages [8]. Some works use architectural input. 
Medvidovic [13] uses styles in Focus in order to infer a 
conceptual architecture. Finally most works are based on the 
human expertise: some use the expertise of the architect which 
uses the tools as an input whereas others use the expertise of 
the one which proposed this approach. In our approach we use 
architectural semantic in order to reduce this need of human 
expertise. Secondly the techniques used to recover architecture 



are various and can be classified according to their automation 
level. Firstly some approaches are quasi manual. For example, 
Focus [13] proposes a guideline to a hybrid process which 
regroups classes and maps the extracted entities to conceptual 
architecture obtained from an architectural style according to 
the human expertise. Secondly most approaches propose semi-
automatic techniques. It automates repetitive aspects of the 
recovery process but the reverse engineer steers the iterative 
refinement or abstraction, leading to the identification of 
architectural elements. Thus ManSART [8] tries to match 
source code elements on the architectural styles and patterns 
defined by reverse engineers. Our approach is quasi-automatic 
too. The main difference with other quasi-automatic 
approaches is that it refines the commonly used definitions of 
components into semantic characteristics and refinement 
models whereas others works use the expertise of the authors 
in order to define rules driving the process. Some works aim to 
find the best grouping of elements to subsystems, i.e., the best 
clusters of an existing software system. Some of these works 
use a genetic algorithm to compute the best partition [3, 14]. 
For example, in [14] the problem representation uses 
chromosomes where each gene represents a class and contains 
the number of the corresponding cluster. Among these 
approaches of software clustering, the work of Mancoridis and 
Mitchell [3] is close to our approach. They introduced the 
concept of software modularization as a clustering problem for 
which search is applicable. Their tool Bunch uses a variety of 
search algorithms. Result is a graph of dependence between 
modules. This is not an architectural view of the system.  

VI. CONCLUSION  
We presented in this paper an approach of architecture 
recovery of object-oriented systems. Architecture recovery is 
formulated as a search-based problem based on a genetic 
algorithm (GA). To use genetic algorithms, we adapted our 
object-component/architecture model to manipulate the 
architectures (solutions) as chromosomes and group of classes 
as genes. The properties of this algorithm make it particularly 
efficient in cases where the computation time is less important 
compared to the quality of the result. Case studies show that 
fitness function score is proportional to the relevance of the 
obtained architectures compared to the expected ones.  
As a perspective of this work, we intend to define a method to 
combine, for a given system, the results obtained by using the 
genetic implementation of our architecture recovery process 
with those obtained by the use of the implementation based on 
simulated annealing [16]. Our goal is to get more relevant 
architectures in all use cases. 

 

REFERENCES 
 
[1] Kaz1 : Bass, L., Clements, P., Kazman, R.: Software Architecture in 

Practice,Addison-Wesley, 1998, ISBN 0-201-19930-0.J. Clerk Maxwell, 
A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: 
Clarendon, 1892, pp.68–73 

[2] J. M. Bieman and B.-K. Kang, “Cohesion and reuse in an object-oriented 
system,” in Proc. of the Symp. On Software reusability,SSR ’95, pp. 
259–262, 1995. 

[3] D. DOVAL, S. MANCORIDIS et B. S. MITCHELL. Automatic 
clustering of software systems using a genetic algorithm. In STEP ’99 : 
Proceedings of the Software Technology and Engineering Practice, page 
73, Washington, DC, USA, 1999. IEEE Computer Society. 

[4] Emanuel FALKENAUER. Genetic Algorithms and Grouping Problems. 
John Wiley & Sons, Inc., New York, NY, USA, 1998. 

[5] Garlan, D., Shaw, M.: "An Introduction to Software Architecture," In V. 
Ambriola and G. Tortora (ed.), Advances in Software Engineering and 
Knowledge Engineering, Series on Software Engineering and 
Knowledge Engineering, Vol 2, World Scientific Publishing Company, 
Singapore, pp. 1-39, 1993. 

[6] Garlan. Software architecture: a roadmap. In ICSE – Future of SE Track, 
pp. 91–101, 2000. 

[7] Holland, J. Adaptation in Natural and Artificial Systems, Ann Arbor, 
MI: The University of Michigan Press, 1975. 

[8] D. R. Harris, H. B. Reubenstein, and A. S. Yeh, “Reverse engineering to 
the architectural level,” in Proc. of ICSE, pp. 186–195, ACM, Inc., 1995. 

[9]  G. Heinemann and W. Councill, Component-based software 
engineering. Addison-Wesley, 2001. 

[10] ISO/IEC-9126-1 in Software engineering - Product quality - Part 1: 
Quality Model, ISO-IEC, 2001. 

[11] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse. Addison 
Wesley/ACM Press, 1997.GP  

[12]  C. Luer and A. van der Hoek, “Composition environments for 
deployable software components,” tech. rep., 2002. 

[13] N. Medvidovic and V. Jakobac, “Using software evolution to focus 
architectural recovery,” Automated Software Engineering, vol. 13, pp. 
225–256, 2006. 

[14] Olaf SENG, Markus BAUER, Matthias BIEHL et Gert PACHE. Search-
based improvement of subsystem decompositions. In GECCO ’05 : 
Proceedings of the 2005 conference on Genetic and evolutionary 
computation, pages 1045–1051, New York, NY, USA, 2005. ACM.  

[15] D. Pollet, S. Ducasse, L. Poyet, I. Alloui, S. Cimpan, and H. Verjus, 
“Towards a process-oriented software architecture reconstruction 
taxonomy,” in Proc. of the CSMR, pp. 137–148, 2007. 

[16] Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, Dalila Tamzalit: 
Search-Based Extraction of Component-Based Architecture from 
Object-Oriented Systems. ECSA 2008: 322-325 

[17]  C. Szyperski, Component Software. ISBN: 0-201-17888-5, Addison-
Wesley, 1998. 

[18] Brian S. Mitchell et Spiros Mancoridis. On the evaluation of the bunch 
search-based software modularization algorithm. Soft Comput., 12(1) 
:77–93, 2008. 

 

 


