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Abstract

Locating source code elements relevant to a given fea-
ture is an important step in the process of re-engineering
software variants, developed by an ad-hoc reuse technique,
into a Software Product Line (SPL) for systematic reuse.
Existing works on using Information Retrieval (IR) tech-
niques do not consider the abstraction gap between feature
and source code levels. In our recent work, we have im-
proved the effectiveness of IR-based feature location by in-
troducing an intermediate level between feature and source
code levels, called “code-topics”. We used Formal Con-
cept Analysis (FCA) to identify such “code-topics” . In
this paper, we investigate the results of using Agglomerative
Hierarchical Clustering (AHC) algorithm to identify code-
topics. In our experimental evaluation, we show that AHC
significantly increases the recall of feature location with a
minor decrease of precision compared to FCA.

Keywords: Software product line, product variants, fea-
ture location, FCA, AHC, IR.

1 Introduction
Software product variants are a set of similar software

products developed by ad-hoc copying with adaptations to
meet new demands of customers [1]. They share some fea-
tures, called mandatory features, and also support different,
customer-specific features, called optional features. A fea-
ture is “a prominent or distinctive user-visible aspect, qual-
ity or characteristic of a software system” [2]. As numbers
of variants and features grow, maintaining such software
variants and developing new variants becomes more diffi-
cult and expensive over time. Therefore, a transition to a
systematic reuse approach, such as Software Product Line
Engineering (SPLE) becomes necessary.

SPLE is a engineering discipline providing methods to
promote systematic software reuse for developing short
time-to-market and quality products in a cost-efficient
way [3]. These products are known as SPL. SPL is rarely
developed from scratch. It is often built by exploiting ar-
tifacts of pre-existing software product variants. To re-

engineer software variants into a SPL, it is important to
locate source code elements (e.g., classes) that implement
each feature [4]. Feature location is needed to understand
the source code of software variants and support product
derivation from SPL core assets[3]. Manually locating fea-
ture implementations is an error-prone and time consuming
task. This is because maintainers must understand several
software artifacts to decide which feature is implemented
by which source code elements.

Information Retrieval (IR) techniques have been widely
used for feature location [5][6]. In our recent work [4],
we have improved the effectiveness of IR-based feature lo-
cation in a collection of product variants by bridging the
abstraction gap between feature and source code levels.
This bridging is performed by introducing an intermediate
level, called code-topic. A code-topic is a cluster of simi-
lar classes that reveal source code intention. A code-topic
can be a functionality implemented by the source code and
provided by a feature. In our recent work [4], we have com-
bined a technique called Formal Concept Analysis (FCA)
and IR to identify such code-topics. In this paper, we pro-
pose to investigate the results of using Agglomerative Hier-
archical Clustering (AHC) to identify “code-topics” .

The rest of this paper is organized as follows. Section 2
presents necessary background to understand our proposal.
Then, Section 3 shows how AHC can be used to identify
code-topics. In sections 4 and 5, we present experimental
evaluation and discuss related work, respectively. Finally,
Section 6 concludes the paper.

2 Background
2.1 IR-based Feature Location

IR-based feature location methods exploit source code
information (identifier and comments) to locate a feature’s
implementation. These methods works by conducting lexi-
cal matching between source code information and feature
information (i.e., feature description). Different IR tech-
niques, such as Vector Space Model (VSM) and Latent Se-
mantic Indexing (LSI), have been proposed in the context
of locating features in the source code. These techniques
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share four steps: corpus creation, preprocessing, indexing
and querying. For more details, the reader can refers to [7].
In both LSI and VSM, the textual similarity between source
code documents (corpus) and features documents (queries)
is measured by the cosine of the angle between their corre-
sponding vectors. Both LSI and VSM return a ranked list
of source code documents against each feature document.

The effectiveness of IR techniques is measured by their
recall, precision and F-Measure [7]. For a given query, re-
call is the percentage of retrieved documents that are rele-
vant to the total number of relevant documents, while preci-
sion is the percentage of retrieved documents that are rele-
vant to the total number of retrieved documents. F-Measure
defines a tradeoff between precision and recall so that it
gives a high value only in case where both recall and preci-
sion are high. All measures have values in [0,1].

2.2 IR-based Feature Location in a Collection of
Product Variants: An Overview

In this section, we give an overview of our recent
work [4], in order to more easily understand our proposal.

2.2.1 Basic Assumptions

We focus on functional features that express the behavior
or the way users may interact with a product. We restrict
ourselves to object-oriented systems. A functional feature
can be implemented by a set of packages, classes, methods
and attributes. A class represents a main building unit in all
object-oriented programming where it encapsulates func-
tionality and data. Moreover, developers typically think of
a class as a set of responsibilities that simulate a concept or
functionality from the application domain. Consequently,
we assume that a functional feature is implemented by a set
of classes.

The functional feature’s implementation spans multiple
classes. We assumed that classes that contribute to imple-
ment a feature have shared terms and called near to each
other. By grouping these classes into a cohesive unit based
on their natural language content, we can get more rele-
vant information describing features implemented by these
classes. Therefore, we proposed the code-topic, as a coher-
ent cluster of similar classes that are grouped based on their
textual contents to implement a functionality. The code-
topic constitutes an intermediate level that bridges the ab-
straction gap between feature and source code levels. Con-
sequently, the functional feature (i.e., its description) can be
textually matched to a set of code-topics (i.e., their source
code information) representing its functionalities. This al-
lows us to easily map a feature to a set of classes that are
similar and grouped as a code-topic instead of mapping each
feature to each class individually.

Figure 1. An Overview of the Code-Topic Iden-
tification Process.

2.2.2 Code-Topics Identification

In our recent work [4], we follow to strategy to improve
IR-based feature location. Firstly, we determined manda-
tory features (resp. their classes) across software variants
and grouped optional features (resp. their classes) into min-
imal disjoint sets at feature and source code levels. Sec-
ondly, we reduced the abstraction gap between feature and
source code levels by introducing the code-topic as an inter-
mediate level. In this paper, we only focus on reducing the
abstraction gap.

Figure 1 gives a general overview of the two kinds of
reduction. In this figure, we assume that a given collec-
tion of product variants provide a set of features {F1, F2,
. . . , F13} and contain a set of classes {C1, C2, . . . , C47}.
These features and classes are grouped into minimal disjoin
sets at feature and source code levels. VSM is used to com-
pute textual similarity between classes while FCA is used to
cluster together similar classes. Each cluster is interpreted
as a code-topic. LSI is used to link features and their cor-
responding code-topics. After determining the code-topics
corresponding to each feature, we easily determine classes
that implement each feature by decomposing each code-
topic to its classes. In our approach, a code-topic may be
associated to more than one feature.

3 Code-Topics Identification based on Hier-
archical Clustering

Clustering, in general, is the division of objects into
groups of similar objects. Each group, called a cluster,
consists of objects that are similar amongst themselves and
dissimilar to objects of other groups [8]. Clustering ap-
proaches are classified into hierarchical or non-hierarchical.
Hierarchical clustering methods are further categorized into
agglomerative (AHC for short) and divisive. Below, we
present how AHC is used to identify code-topics.
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3.1 Code-Topic Identification as a Partitioning
Problem

According to our definition of the code-topic, the content
of a code-topic matches a set of classes. Therefore, in order
to determine a set of classes that can belong to a code-topic,
it is important to formulate the code-topic identification as a
partitioning problem. The input is a set of classes (C). This
set could be classes of the common partition or classes of
any minimal disjoint set (see Figure 1). The output is a set
of code-topics (T) of C. C = {c1, c2, ..., cn} and T (C) =
{T1, T2, . . . , Tk}where: (1) ci is a class belonging to C; (2)
Ti is a subset of C; (3) k is the number of identified code-
topics; (4) T (C) does not contain empty elements: ∀Ti ∈
T (C), Ti 6= Φ; (5) The union of all T (C) elements is equal
to C:

⋃k
i=1 Ti = C.

For a given set of classes, we cluster them based on the
strength of the relationship between the classes. In our case,
this relationship refers to textual similarity. We use VSM
to compute this similarity. We create a document for each
class containing a list of terms extracted from all the iden-
tifiers of its corresponding class. VSM computes the tex-
tual similarity between two class documents by using co-
sine similarity between their corresponding vectors. One of
these documents is treated as a query. The cosine similarity
equation (refer to equation 1) represents a fitness function
to decide which class documents belong to a cluster.

F (dj , q) =

∑n
i=0 wi,jwi,q√∑n

i=0 w
2
i,j

√∑n
i=0 w

2
i,q

(1)

Where F is the fitness function with value in the range [0,1].
dj and q are class and query vector documents respectively
while w is a term weight. In our case, we try to maximize
the fitness value for each cluster where similar classes use
similar vocabulary.

3.2 Building a Hierarchy of Clusters
AHC groups similar classes that use similar vocabulary

together and aggregate them into clusters. The basis for
clustering classes is the strength of the relationship between
them. The previously defined fitness function is used to
measure this strength. AHC relies on a series of succes-
sive binary mergers, initially of individual class documents
and later of clusters formed during the previous stages. We
obtain from these binary mergers a single cluster dendro-
gram (dendgr) that contains a set of nested clusters. Figure 2
shows an example of dendrogram tree. At the lowest level,
each class is in its own unique cluster. At the highest level,
all classes belong to the same cluster. The internal nodes
represent new clusters formed by merging the clusters that
appear as their children in the tree.

Figure 2. An example of dendrogram tree.

3.3 Selection Candidate Code-Topics
Breaking the dendrogram tree based on predefined crite-

ria allows to group classes into clusters. Each cluster can
be a candidate code-topic. Therefore, we must select the
breaking point to obtain code-topics. This selection is per-
formed by an algorithm based on a depth-first search (refer
to algorithm 1). This algorithm takes as input the dendrog-
arm tree and returns a set of clusters. We interpret these
clusters as code-topics. For each node in the dendrogram
(starting from the root), we compare the fitness value of the
focused node and its sons ( dj and q in equation 1 become
cluster nodes). If the fitness value of the focused node is
less than the average of the fitness values of its two sons,
then the algorithm continues on to the next son nodes. Oth-
erwise, the focused node is identified as a code-topic, added
to the code-topics(T) and the algorithm computes the next
node in the stack. In this way, the most relevant code-topics
will be identified as the traversal continues.

Algorithm 1: CodeTopicDendrogramTraversal
Input: Dendrogram(dendgr)
Output: Code-Topics(T )

1 stack traversedClusters
2 push(traversedClusters, dendgr)
3 while (|traversedClusters| > 0) do
4 parent← pop(traversedClusters)
5 son1← getSon1Cluster(parent, dendgr)
6 son2← getSon2Cluster(parent, dendgr)
7 avg ← average(F (son1), F (son2))
8 if (F (parent) > (avg)) then
9 add(parent, T )

10 else
11 push(son1, traversedClusters)
12 push(son2, traversedClusters)

13 end
14 end
15 return T
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3.4 Code-Topics for Locating Feature Implemen-
tations

After identifying code-topics, we apply LSI (as shown in
Figure 1) to link mandatory features and their possible cor-
responding code-topics, as well as to link each minimal dis-
joint set of optional features and their possible correspond-
ing code-topics. LSI is applied by following the steps de-
scribed in section 2.1, but we build LSI’s corpus and queries
as follows. LSI’s corpus consists of code-topic documents,
which each one corresponds to a code-topic. Each docu-
ment consists of terms extracted from identifiers of corre-
sponding code-topic’s classes. LSI takes code-topic and
feature documents as input. Then, LSI measures the sim-
ilarity between the code-topics and features using the co-
sine similarity. This returns a list of code-topics, ordered
by their cosine similarity values against each feature. The
retrieved code-topics should have a cosine similarity value
greater than or equal to 0.70, where this value represents the
most widely used threshold for the cosine similarity [5].

After linking each feature with all its corresponding
code-topics, we can easily link each feature with its classes
by decomposing each code-topic to its classes. For instance,
if the feature f1 is linked to two code-topics: topic1= c1, c4
and topic2= c7, c6, by decomposing these topics into their
classes; we can find that f1 is implemented by five classes
c1, c4, c7, c6.

4 Experimental Evaluation

4.1 Case Studies and Experiments Setting
To validate our approach, we have applied it to a collec-

tion of seven variants of a large-scale system, ArgoUML-
SPL1 modeling tool, and five variants of a small-scale sys-
tem, MobileMedia2.

The ArgoUML-SPL is a Java open-source which sup-
ports all standard UML 1.4 diagrams. The ArgoUML-SPL’s
products are generated from the same framework so that
products that share the same features also share the same
code. The selected products differ in terms of provided fea-
tures but they support all UML diagram features. These
features are implemented by source code classes. To estab-
lish ground truth links between features and their classes
in order to evaluate our proposal, we compare code classes
of two generated products; one of them provides all fea-
tures while the other provides all features except the focused
one. The obtained classes represent the real implementa-
tion of the focused feature. We repeat this process for all
ArgoUML-SPL’s features. MobileMedia is a JAVA open
source that manipulates multimedia on mobile devices. In
our study, we have considered and analyzed variants that
only implement features as classes. To establish ground

1Available at http://argouml-spl.tigris.org/
2Available at http://www.ic.unicamp.br/ tizzei/mobilemedia/

Table 1. Precision, recall and F-measure of
AHC against FCA for ArgoUML-SPL and Mo-
bileMedia.

ArgoUML-SPL

Precision Recall F-measure

K AHC FCA AHC FCA AHC FCA

0.1 52% 70% 99% 40% 68% 51%

0.2 52% 57% 99% 9% 68% 16%

0.3 52% 57% 98% 5% 68% 9%

0.4 52% 62% 98% 4% 68% 8%

0.5 52% 57% 96% 2% 67% 3%

MobileMedia

Precision Recall F-measure

K AHC FCA AHC FCA AHC FCA

0.1 85% 85% 100% 100% 92% 92%

0.2 85% 85% 100% 100% 92% 92%

0.3 93% 93% 93% 93% 93% 93%

0.4 93% 93% 93% 93% 93% 93%

0.5 96% 96% 89% 89% 93% 93%

truth links between features and their source code classes,
we analyze manually the source code.

The most important parameter to LSI is the number of
chosen term-topics. A term-topic is a collection of terms
that co-occur frequently in the documents of the corpus.
The proper way to make such a choice is an open issue in
the literature. Too many term-topics leads to the association
of irrelevant terms and too few term-topics leads to loosely
relevant terms. We are unable to use a fixed number of
term-topics (#term-topics) because we have different sizes
of code-topic documents. Therefore, we use a factor K be-
tween 0.1 and 0.5. #term-topics is equal to (K × Ddim),
where Ddim is the document dimensionality of the term-
document matrix that is generated by LSI.

4.2 Results and Discussion
Table 1 summarizes precision, recall and F-measure re-

sults of locating all features of ArgoUML-SPL and Mo-
bileMdia by using AHC and FCA to identify code-topics.

On a large-scale system (ArgoUML-SPL), we notice that
AHC significantly improves the recall values with a minor
decrease in the precision compared to FCA. This improve-
ment in recall is due to the fact that AHC identifies code-
topics by determining a set of clusters so that classes of
each cluster are similar amongst themselves and dissimi-
lar to classes of other clusters. Regarding FCA, it identi-
fies code-topics by determining a set of clusters in which all
cluster’s members are similar to each other but it doesn’t
consider similarity between clusters (refer to [4]). This
means that FCA computes the textual similarity only among
classes while AHC computes the similarity not only among
classes but also among clusters. Therefore, the number of
code-topics obtained by FCA is higher than AHC (423, 17
respectively). Identifying a small number of code-topics
means that each code-topic document contain more rele-
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vant source code information. This is allow to do better
textual matching with feature descriptions, and hence the
recall. Regarding the minor decreasing in the precision, this
is due to the fact that AHC depends a lot on VSM compared
with FCA. AHC uses VSM to compute similarity between
classes and clusters while FCA uses VSM to compute sim-
ilarity only between classes. This means that the number
of false-positive links in the case of AHC is higher than
FCA because VSM retrieve false-positive links which leads
to impression. F-measure results refer to AHC achieve a
better compromise between precision and recall than FCA.

On a small system (MobileMedia), it is observed that
AHC and FCA produce the same precision, recall and F-
measure results for the following reasons. Firstly, most
minimal disjoint sets of optional features consist of only one
feature, and hence their corresponding minimal disjoint sets
of classes contain only the implementation of that feature,
no more and no less). Thus, in this case we do not require
LSI and code-topics. Secondly, MobileMedia’s features are
implemented by a small number of classes, sometimes by
only two classes. These classes have little information that
hinders building code-topics.

5 Related Work
The approach was proposed by Kuhn et al. [6] is the

closet to ours. They proposed an approach to identify lin-
guistic topics from object-oriented source code. Their ap-
proach relied on LSI to compute similarity among given set
of methods, classes or packages. Then, AHC was used to
cluster similar elements together as linguistic topics. The
clusters retrieved by their approach are not necessarily do-
main concepts (i.e., features), but rather code-oriented top-
ics. In our approach, we identify feature-oriented topics
where these topics are identified from a set of classes that
implement features.

Maskeri et al. [9] identify business topics from source
code by using Latent Dirichlet Allocation (LDA). Their in-
terpretation for a topic is a set of semantically related lin-
guistic terms identified from identifiers names and com-
ments. Kawaguchi et al. [10] proposed an automatic catego-
rization method for a large collection of software systems.
They use linguistic information in source code for identify-
ing categories (topics) from open source repositories (e.g.,
SourceForge). A category is a cluster of related identifiers.
Our approach differs from the works of Maskeri et al. and
Kawaguchi et al. in two ways. Firstly, topics in their ap-
proaches are clusters of terms while code-topics in our ap-
proach are clusters of software artifacts (classes). Secondly,
topics retrieved by their approach are code-oriented topics
while we identify feature-oriented topics, as they are identi-
fied from source code classes that implement features (and
only features).

6 Conclusion
In this paper, we have proposed to combine IR and AHC

to improve the effectiveness of IR-based feature location in
a collection of product variants. This improvement involves
reducing the abstraction gap between feature and source
code levels by introducing the concept of code-topic as an
intermediate level. We have compared between two algo-
rithms to identify code-topics: AHC and FCA. In our ex-
perimental evaluation using two different case studies, we
showed that AHC significantly increases the recall of IR-
based feature location with a minor decrease of precision
compared to FCA.
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