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Abstract

Companies often develop a set of software variants that
share some features and differ in other ones to meet spe-
cific requirements. To exploit existing software variants and
build a Software Product Line (SPL), a Feature Model (FM)
of this SPL must be built as a first step. To do so, it is nec-
essary to mine optional and mandatory features in addition
to associating the FM with its documentation. In our pre-
vious work, we mined a set of feature implementations as
identified sets of source code elements. In this paper, we
propose a complementary approach, which aims to doc-
ument the mined feature implementations by giving them
names and descriptions, based on the source code elements
that form feature implementations and use-case diagrams
of software variants. The novelty of our approach is that it
exploits commonality and variability across software vari-
ants, at feature implementations and use-cases levels, to
run Information Retrieval methods in an efficient way. To
validate our approach, we applied it on Mobile media and
ArgoUML-SPL case studies. The results of this evaluation
showed that most of the features have been documented cor-
rectly.

Keywords: Software variants, Software Product Line,
Feature documentation, Code comprehension, Formal Con-
cept Analysis, Relational Concept Analysis, Use-case dia-
gram, Latent Semantic Indexing.

1 Introduction

Software variants often evolve from an initial product,
developed for and successfully used by the first customer.
These product variants usually share some common fea-
tures and differ regarding others. As the number of features

and the number of software variants grows, it is worth re-
engineering them into a Software Product Line (SPL) for
systematic reuse [1]. The first step towards re-engineering
software variants into SPL is to mine the Feature Model
(FM) of these variants. To obtain such a FM, common and
optional features for software variants have to be identified.
This consists in identifying among source code elements,
groups of such elements that implement candidate features
and associating them with their documentation (i.e., a fea-
ture name and description). In our previous work [2], we
proposed an approach for feature mining from the object-
oriented source code of software variants (REVPLINE ap-
proach1). REVPLINE allows us mining of functional fea-
tures as a set of Source Code Elements (SCEs) (e.g., pack-
age, class, attribute, method or method body elements).

To assist a human expert to document the mined feature
implementations, we propose an automatic approach which
associates names and descriptions using source code ele-
ments of feature implementations and use-case diagrams
of software variants. Compared with existing work that
documents source code (cf. section 6), the novelty of our
approach is that we exploit commonality and variability
across software variants at feature implementation and use-
case levels, to apply Information Retrieval (IR) methods in
an efficient way. Considering commonality and variability
across software variants enables us to cluster the use-cases
and feature implementations into disjoint and minimal clus-
ters based on Relational Concept Analysis (RCA); where
each cluster is disjoint from the others and consists of a
minimal subset of feature implementations and their cor-
responding use-cases. Then, we use Latent Semantic In-
dexing (LSI) to define a similarity measure that enables us
to identify which use-cases characterize the name and de-

1REVPLINE stands for RE-engineering Software Variants into Soft-
ware Product Line.
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scription of each feature implementation by using Formal
Concept Analysis (FCA).

The remainder of this paper is structured as follows: Sec-
tion 2 briefly presents the background. Section 3 shows
an overview of the feature documentation process. Sec-
tion 4 presents the feature documentation process step by
step. Section 5 describes the experimentation. Section 6 dis-
cusses the related work. Finally, section 7 concludes and
provides perspectives for this work.

2 Background

This section provides a glimpse on FCA, RCA and LSI.
It also shortly describes the example that illustrates the re-
maining sections of the paper.

2.1 Formal and Relational Concept Analysis

FCA [3] is a classification technique that extracts a par-
tially ordered set of concepts (the concept lattice) from a
dataset composed of objects described by attributes (the for-
mal context). A concept is composed of two sets: an object
set called the concept’s extent and an attribute set called
the concept’s intent. The extent is the maximal set of ob-
jects which share the maximal set of attributes of the intent
(cf. Section 4.3). We use the concepts of the AOC-poset,
namely the concepts that introduce at least one object or
one attribute. The interested reader can find more informa-
tion about our use of FCA in [2].

RCA [4] is an iterative version of FCA in which the
objects are classified not only according to the attributes
they share, but also according to the relations between them
(cf. Section 4.1). Data are encoded into a Relational Context
Family (RCF), which is a pair (K,R), where K is a set of
formal (object-attribute) contexts Ki = (Oi, Ai, Ii) and R
is a set of relational (object-object) contexts rij ⊆ Oi×Oj ,
where Oi (domain of rij) and Oj (range of rij) are the ob-
ject sets of the contexts Ki and Kj , respectively (cf. Table
1). A RCF is used in an iterative process to generate, at each
step, a set of concept lattices. Firstly, concept lattices are
built, using the formal contexts only. Then, in the follow-
ing steps, a scaling mechanism translates the links between
objects into conventional FCA attributes and derives a col-
lection of lattices whose concepts are linked by relations
(cf. Figure 2). The interested reader can find more informa-
tion about RCA in [4]. For applying FCA and RCA we used
the Eclipse eRCA platform2.

2.2 Latent Semantic Indexing

LSI is an advanced Information Retrieval (IR) method
[1]. LSI assumes that software artifacts can be regarded

2The eRCA : http://code.google.com/p/erca/

as textual documents. Occurrences of terms are extracted
from the documents in order to calculate similarities be-
tween them and then to classify together a set of similar
documents as related to a common concept (cf. Section 4.2).
The heart of LSI is the singular value decomposition tech-
nique. This technique is used to mitigate noise introduced
by stop words (like ”the”, ”an”, ”above”) and to overcome
two issues arising in natural languages processing: syn-
onymy and polysemy. The effectiveness of IR methods is
usually measured by metrics including recall, precision and
F-measure. In our context, for a given use-case (query),
recall is the percentage of correctly retrieved feature im-
plementations (documents) to the total number of relevant
feature implementations, while precision is the percentage
of correctly retrieved feature implementations to the total
number of retrieved feature implementations. F-Measure
defines a trade-off between precision and recall, so that it
gives a high value only in cases where both recall and pre-
cision are high. All measures have values in [0%, 100%].
If recall equals 100%, all relevant feature implementations
(documents) are retrieved. However, some retrieved fea-
ture implementations might not be relevant. If precision
equals 100%, all retrieved feature implementations are rele-
vant. Nevertheless, relevant feature implementations might
not be retrieved. If F-Measure equals 100%, all relevant
feature implementations are retrieved. However, some re-
trieved feature implementations might not be relevant. The
interested reader can find more information about our use
of LSI in [2].

2.3 The Mobile Tourist Guide Example

We consider in this example four software variants of a
Mobile Tourist Guide (MTG) application. These applica-
tions enable users to inquire about some tourist informa-
tion on mobile devices. MTG 1 supports core MTG func-
tionalities: view map, place marker on a map, view direc-
tion, launch Google map and show street view. MTG 2 has
the core MTG functionalities and a new functionality called
download map from Google. MTG 3 has the core MTG
functionalities and a new functionality called show satel-
lite view. MTG 4 supports search for nearest attraction,
show next attraction and retrieve data functionalities, to-
gether with the core ones.

3 The Feature Documentation Process

Our goal is to document the mined feature implementa-
tions by using the use-case diagrams of these variants. In
our work, we rely on the same assumption as in the work
of [5] stating that each use-case represents a feature. The
feature documentation process aims at identifying which
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use-cases characterize the name and description of each fea-
ture implementation. We rely on lexical similarity to iden-
tify the use-cases that characterize the name and descrip-
tion of feature implementations. The performance and effi-
ciency of the IR technique depends on the size of the search
space. In order to apply LSI, we take advantage of the
commonality and variability between software variants to
group feature implementations and the corresponding use-
cases in the software family into disjoint, minimal clusters
(e.g., Concept 1 of Figure 2). We call each disjoint mini-
mal cluster a Hybrid Block (HB). After reducing the search
space to a set of hybrid blocks, we rely on textual similarity
to identify, from each hybrid block, which use-cases depict
the name and description of each feature implementation.

For a product variant, our approach takes as inputs the set
of use-cases that documents the variant and the set of mined
feature implementations that are produced by REVPLINE.
Each use-case is identified by its name and description. This
information represents domain knowledge that is usually
available from software variants documentation (i.e., re-
quirement model). In our work, the use-case description
consists of a short paragraph in a natural language. Our
approach provides as its output a name and description for
each feature implementation based on a use-case name and
description. Each use-case is mapped into a functional fea-
ture thanks to our assumption. If two or more use-cases
have a relation with the same feature implementation, we
consider them all as the documentation for this feature im-
plementation.

Figure 1 shows an overview of our feature documenta-
tion process. The first step of this process aims at iden-
tifying hybrid blocks based on RCA (cf. Section 4.1). In
the second step, LSI is applied to determine the similarity
between use-cases and feature implementations (cf. Section
4.2). This similarity measure is used to identify use-case
clusters based on FCA. Each cluster identifies the name and
description for feature implementation (cf. Section 4.3).

4 Feature Documentation Step by Step

In this section, we describe the feature documentation
process step by step. According to our approach, we iden-
tify the feature name and its description in three steps as
detailed in the following.

4.1 Identifying Hybrid Blocks of Use-cases and
Feature Implementations via RCA

We use the existing use-case diagrams of software vari-
ants to document the feature implementations mined from
those variants. In order to apply LSI in an efficient way,
we need to reduce the search space for use-cases and fea-
ture implementations. Starting from existing feature im-

plementations and use-cases, these elements are clustered
into disjoint minimal clusters (i.e., hybrid blocks) to apply
LSI. The search space is reduced based on the commonality
and variability of software variants. RCA is used to clus-
ter: the use-cases and feature implementations common to
all software variants; the use-cases and feature implementa-
tions that are shared by a set of software variants, but not all
variants; the use-cases and feature implementations that are
held by a single variant.

A RCF for feature documentation is automatically gen-
erated from use-case diagrams and the mined feature im-
plementations associated with software variants3. The RCF
corresponding to our approach contains two formal contexts
and one relational context, as illustrated in Table 1. The first
formal context represents the use-case diagrams. The sec-
ond formal context represents feature implementations. In
the formal context of use-case diagrams, objects are use-
cases and attributes are software variants. In the formal
context of feature implementations, objects are feature im-
plementations and attributes are software variants. The rela-
tional context (i.e., appears-with) indicates which use-case
appears in the same software variants as feature implemen-
tations.

For the RCF presented in Table 1, a close-up view of two
lattices of the Concept Lattice Family (CLF) is represented
in Figure 2. As an example of hybrid block we can see in
Figure 2 a set of use-cases (in the extent of Concept 1 of
the Use case Diagrams lattice) that always appear with a
set of feature implementations (in the extent of Concept 6
of the Feature Implementations lattice). As shown in Figure
2, RCA allows us to reduce the search space by exploiting

3Source code : https://code.google.com/p/rcafca/

Figure 1: The feature documentation process.
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Table 1: The RCF for features documentation.
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View Map 7 7 7 7 7

Launch Google Map 7 7 7 7 7

View Direction 7 7 7 7 7

Show Street View 7 7 7 7 7

Place Marker on Map 7 7 7 7 7

Download Map 7

Show Satellite View 7

Show Next Attraction 7 7 7

Search For Nearest Attraction 7 7 7

Retrieve Data 7 7 7

commonality and variability across software variants. In our
work, we are filtering CLF to get a set of hybrid blocks from
bottom to top4. Figure 2 shows an example of hybrid block
(the dashed block).

4.2 Measuring the Lexical Similarity Between
Use-cases and Feature Implementations via
LSI

Based on the previous step, each hybrid block consists of
a set of use-cases and a set of feature implementations. We
need to identify from each hybrid block which use-cases
characterize the name and description of each feature imple-
mentation. To do so, we use textual similarity between use-
cases and feature implementations. This similarity measure
is calculated using LSI. We rely on the fact that a use-case

4Source code : https://code.google.com/p/fecola/

Figure 2: Parts of the CLF deduced from Table 1.

corresponding to the feature implementation is supposed to
be lexically closer to this feature implementation than to
the other feature implementations. Similarity between use-
cases and feature implementations in the hybrid blocks is
computed in three steps as detailed below.

4.2.1 Building the LSI Corpus

In order to apply LSI, we build a corpus that represents a
collection of documents and queries. In our work, each
use-case name and description in the hybrid block repre-
sents a query and each feature implementation represents
a document. This document contains all the segments of
SCE names as a result of splitting words into terms us-
ing the Camel-case technique. Regardless of word location
(first, middle or last) in the SCE name, we store all words
in the document. For example, for the SCE name Manu-
alTestWrapper all words are important: manual, test and
wrapper. We apply the same technique to all feature imple-
mentations. Our approach creates a query for each use-case.
This query contains the use-case name and its description.
We apply the same process to all use-cases. To be pro-
cessed, documents and queries must be normalized as fol-
lows: stop words, articles, punctuation marks, or numbers
are removed; text is tokenized and lower-cased; text is split
into terms; stemming is performed (e.g., removing word
endings); terms are sorted alphabetically. We use Word-
Net5 to do some simple preprocessing (e.g., stemming and
removal of stop words). The most important parameter of
LSI is the number of term-topics (i.e., k-Topics) chosen. A
term-topic is a collection of terms that co-occur often in the
documents of the corpus, for example {user, account, pass-
word, authentication}. In our work, the number of k-Topics
is equal to the number of feature implementations for each
corpus.

4.2.2 Building the Term-document and the Term-
query Matrices for each Hybrid Block

All hybrid blocks are considered and the same processes
are applied to them. The term-document matrix is of size
m×n, where m is the number of terms extracted from fea-
ture implementations and n is the number of feature im-
plementations (i.e., documents) in a corpus. The matrix
values indicate the number of occurrences of a term in a
document, according to a specific weighting scheme. In our
work, terms are weighted with the TF-IDF function (the
most common weighting scheme) [1] . The term-query ma-
trix is of size m×n, where m is the number of terms that are
extracted from use-cases and n is the number of use-cases
(i.e., queries) in a corpus. An entry of term-query matrix
refers to the weight of the ith term in the jth query.

5http://wordnet.princeton.edu/
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4.2.3 Building the Cosine Similarity Matrix

Similarity between use-cases and feature implementations
in each hybrid block is described by a cosine similarity ma-
trix which columns (documents) represent vectors of feature
implementations and rows (queries) vectors of use-cases.
The textual similarity between documents and queries is
measured by the cosine of the angle between their corre-
sponding vectors [2].

4.3 Identifying Feature Name via FCA

Based on the cosine similarity matrix we use FCA to
identify, from each hybrid block of use-cases and feature
implementations, which elements are similar. To transform
the (numerical) cosine similarity matrices into (binary) for-
mal contexts, we use a 0.7 threshold (after having tested
many threshold values). This means that only pairs of use-
cases and feature implementations having a calculated sim-
ilarity greater than or equal to 0.70 are considered similar.

For example, for the hybrid block Concept 1 of Figure 2
the number of term-topics of LSI is equal to 5. In the for-
mal context associated with this hybrid block, the use-case
”Launch Google Map” is linked to the feature implemen-
tation ”Feature Implementation 1” because their similarity
equals 0.86, which is greater than the threshold. However,
the use-case ”View Direction” and the feature implemen-
tation ”Feature Implementation 5” are not linked because
their similarity equals 0.10, which is less than the threshold.
The resulting AOC-poset is composed of concepts which
extent represents the use-case name and intent represents
the feature implementation.

For the MTG example, the AOC-poset of Figure 3 shows
five non comparable concepts (that correspond to five dis-
tinct features) mined from a single hybrid block (Concept 1
from Figure 2). The same feature documentation process is
used for each hybrid block.

5 Experimentation

To validate our approach, we ran experiments on two
Java open-source softwares: Mobile media software vari-
ants (small systems) [6] and ArgoUML-SPL (large systems)
[7]. We used 4 variants for Mobile media, 10 for ArgoUML.

Figure 3: The documented features from Concept 1.

The advantage of having two case studies is that they imple-
ment variability at different levels: class and method lev-
els. In addition, these case studies are well documented and
their feature implementations, use-case diagrams and FMs
are available for comparison of our results and validation of
our proposal6. Table 2 summarizes the obtained results.

Table 2: Features documented from case studies.
Evaluation Metrics
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Mobile Media
1 Delete Album HB 1 4 100% 100% 100%
2 Delete Photo HB 1 4 100% 50% 66%
3 Add Album HB 1 4 100% 100% 100%
4 Add Photo HB 1 4 100% 50% 66%
5 Exception handling HB 2 1 100% 100% 100%
6 Count Photo HB 3 3 100% 50% 66%
7 View Sorted Photos HB 3 3 100% 50% 66%
8 Edit Label HB 3 3 100% 100% 100%
9 Set Favourites HB 4 2 100% 50% 66%
10 View Favourites HB 3 2 100% 50% 66%
ArgoUML-SPL
1 Class diagram HB 1 1 100% 100% 100%
2 Logging HB 2 2 100% 50% 66%
3 Cognitive support HB 2 2 100% 100% 100%
4 Deployment diagram HB 3 1 100% 100% 100%
5 Collaboration diagram HB 4 2 100% 50% 66%
6 Sequence diagram HB 4 2 100% 50% 66%
7 State diagram HB 5 1 100% 100% 100%
8 Activity diagram HB 6 2 100% 100% 100%
9 Use case diagram HB 6 2 100% 100% 100%

For the two case studies presented, we observe that the
recall values are 100% of all the features that are docu-
mented. The recall values are an indicator for the efficiency
of our approach. The values of precision are between [50%
- 100%], which is high. F-Measure values rely on preci-
sion and recall values. The values of F-Measure are high
too, between [66% - 100%] for the documented features.
Results show that recall value in all cases is 100% and
value of precision either 100% or 50% it is because of the
similarity threshold (0.70) in addition, this result is due to
search space reduction. In most cases, the contents of hy-
brid blocks are in the range of [1− 4] use-cases and feature
implementations. Another reason for this good result is that
a common vocabulary is used in the use-case descriptions
and feature implementations, thus lexical similarity was a
suitable tool. In our work we cannot use a fixed number
of topics for LSI because we have hybrid blocks (clusters)
with different sizes.

The column (k-Topics) in Table 2 represents the num-
ber of term-topics. All feature names produced by our ap-
proach, in the column (Feature Name) of Table 2, represent
the names of the use cases. For example, in the FM of Mo-
bile media [6] there is a feature called sorting. The name
proposed by our approach for this feature is view sorted
photos and its description is ”the device sorts the photos
based on the number of times photo has been viewed”.

6Case studies and code : http://www.lirmm.fr/CaseStudy
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As a limitation to our approach, developers might not use
the same vocabularies to name SCEs and use-cases across
software variants. This means that lexical similarity may not
be reliable (or should be improved with other techniques) in
all cases to identify the relationship between use-cases and
feature implementations. Furthermore, using FCA as clus-
tering technique has also limits. FCA deals with binary for-
mal context. This affects the quality of the result, since a
similarity value of 0.99 (resp. 0.69) is treated as a similarity
value of 0.70 (resp. 0). Selecting the appropriate number
of dimensions (K) for the LSI representation is an open re-
search question.

6 Related Work

Most existing approaches are designed to extract labels,
names, topics or identify code to use-case traceability links
in a single software system. In the context of feature doc-
umentation, most existing approaches manually assign fea-
ture names (without any description) to feature implemen-
tations. Conversely our approach is designed to automati-
cally assign a name and a description to each feature im-
plementation in a set of software variants based on several
techniques (FCA, RCA and LSI). Feature documentation is
inferred from use case names and descriptions.

Ziadi et al. [8] propose an approach to identify features
across software variants. In their work, they manually cre-
ate feature names. In our previous work [2], we manually
propose feature names for the mined feature implemen-
tations. Braganca and Machado [5] describe an approach
for automating the process of transforming UML use-cases
into FMs. In their work, each use-case is mapped to a
feature. The identification of relationships (i.e., traceabil-
ity links) between use-case diagrams and source code for
a single software is the subject of the work by Grechanik
et al. [9]. Kuhn et al. [10] present a lexical approach that
uses the log-likelihood ratios of word frequencies to au-
tomatically provide labels for components of single soft-
ware. Xue et al. [1] propose an automatic approach to iden-
tify the code-to-feature traceability link for a collection of
software product variants.

7 Conclusion and Perspectives

In this paper, we proposed an approach for documenting
the mined feature implementations of a set of software vari-
ants. We exploit commonalities and variabilities between
software variants at feature implementation and use-case
levels to apply IR methods in an efficient way in order to
automatically document the mined features. We have imple-
mented our approach and evaluated its results on two case
studies. The results of this evaluation showed that most of

the features were documented correctly. Regarding future
work, we plan to use the mined and documented features to
build automatically the relations between the features of a
FM (i.e., reverse engineering FMs).
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