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Abstract—Components and connectors are the main building
blocks for software architectures. In the design phase of a
software system, components can either be created from scratch
or reused. When reused, they can either exist on component
shelves or identified from existing software systems. Thus,
software component identification is one of the primary chal-
lenges in component based software engineering. Typically, the
identification is done by analyzing existing software artifacts.
When considering object-oriented systems, many approaches
have been proposed to deal with this issue by identifying a
component as a high cohesive and loose coupled set of classes.
However, this assumption leads to two main limitations: in one
hand, the focus on simple metrics like high cohesion and loose
coupling will not necessarily lead to the identification of good
quality components. On the other hand, the identified com-
ponents external structure (provided and required interfaces)
is missing. As a result, the identified components can hardly
be reused, composed, packaged and documented. To overcome
these limitations, we propose in this paper an approach for
identifying components based on a fitness function to measure
the quality of a component. To evaluate this function, we use
a semantic- correctness model defined in our previous works.
Also, we propose to identify provided and required interfaces
of components.

Keywords-software component; object oriented; reverse en-
gineering; reuse; quality; legacy systems reengineering;

I. INTRODUCTION

Components and connectors constitute the main building

blocks for software architectures [1]. In the design phase of

a software system, components are either developed from

scratch or reused [1]. When reused, they can either exist on

component shelves or identified from existing systems. Thus,

software component identification is one of the primary

research problems in CBSE [2]. When applied to object

oriented systems, software component identification results

in a set of components where each one contains a set of

classes. On the one hand, the relationship between classes

belonging to a component must be high. On the other hand,

the relationship between classes belonging to two different

components must be low. Otherwise, software component

identification can be performed in two different manners [2]:

top-down and bottom-up. Top-down software component

identification is performed by analyzing domain business

models to get a set of business components. Bottom-up

software component identification is performed by extracting

reusable software components from existing software system

source code.

Most of the software component identification techniques

belong to the first category [3] [2] [4] [5]. This means

that they start from semi-formal domain business models

(Typically expressed in UML) and produce domain software

components. This constitutes an important shortcoming like

the inability to apply these approaches when domain busi-

ness models are missing.

Even if these artifacts are available, in most of time,

they do not express the true reality of the system due to

the erosion phenomenon [6]. The reality of the system is

reflected by its source code and this latter is the only artifact

always available for legacy systems.

In addition, in most of the existing software component

identification approaches, the result is a set of components

with high intra-component cohesion and low inter- compo-

nent coupling [2] [3] [4] [5] [7]. Components identified using

these approaches are not necessarily of high quality due to

the lack of a semantic-correctness model [8] [9] to identify

the best components of the system. Another shortcoming of

the existing approaches is that they identify only the classes

belonging to a component without specifying its external

structure (i.e. provided and required interfaces). Thus, the

identified components cannot be directly used, composed or

packaged for future reuse.

In this paper, we propose a bottom-up approach for soft-

ware component identification from existing object- oriented

source code that avoids the previous limitations.

In our previous works [8] [9], we have defined a semantic-

correctness model for extracting software architectures from

object-oriented source code. We rely on these results to pro-

pose a software component identification technique. Our ap-

proach is based on a mapping model between object-oriented

and component-based concepts and a fitness function to

measure the semantic-correctness of a component. Beyond

identifying the internal structure of software components,
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our approach identifies also their required and provided

interfaces. In addition, we propose two strategies to iden-

tify components: explorative and requirement-driven. The

former allows the identification of all potentially software

components in an object oriented system. The latter allows

the identification of components that meet some specific

requirements.

This paper is organized as follows: Section 2 introduces

the mapping model between object and component concepts

and the measurement model used to evaluate the semantic-

correctness of a component. In section 3, we present our

component identification approach based on the above-

mentioned models. In section 4, we describe how interfaces

of components are identified. Next, a heuristic-based method

for naming identified components and interfaces is presented

in section 5. Section 6 presents the application of our

approach on different systems of various sizes. In section 7,

we present a comparative study with related works. Section

8 concludes the paper.

II. MAPPING OBJECT TO COMPONENT

To identify software components from object-oriented

source code, we base our self on an adaptation of two

elements presented in our previous works [8] [9]:

• A mapping model between object-oriented concepts

(i.e. classes, interfaces, packages, etc) and component

based software engineering ones (i.e. components, in-

terfaces, sub-component, etc.).

• A measurement model of semantic- correctness of

a component. This model refines characteristics of

a component to measurable metrics. Based on these

metrics, we define a fitness function to measure the the

semantic-correctness of a component.

A. Mapping model between component and object concepts

We define components as disjoint collections of classes.

These collections are named shape and contain classes which

can belong to different object-oriented packages (cf. Fig.1).

Each shape is composed of two sets of classes: the shape

interface which is the set of classes which have a link with

some classes from the outside of the shape, e.g. a method

call or attribute use from the outside; and the center which

is the remainder of shape. As shown in Fig.1, we assimilate

component interface set to shape interface and component to

shape. Figure 2 shows the component-object mapping model

that we propose to handle the correspondence between object

and component concepts.

B. Semantic-correctness of components

In order to measure the component semantic-correctness,

we study component characteristics. This study is based on

the most commonly admitted definitions of software com-

ponent. Many definitions exist where each one characterizes

a component somewhat differently [10]. Nonetheless, some

Figure 1. Component Structure

Figure 2. Object-component mapping model

important commonalities exist among the most prevalent

definitions.

Szyperski defines, in [11], a component as a unit of

composition with contractually specified interfaces and ex-

plicit context dependencies only. A software component can

be deployed independently and is subject to composition

by third parties. In [12], Heinemann and Councill define

a component as a software element that conforms to a

component model and can be independently deployed and

composed without modification according to a composition

standard. Finally, Luer, in [13], makes a distinction be-

tween component and deployable component. He defines a

component as a software element that (a) encapsulates a

reusable implementation of functionnality, (b) can be com-

posed without modification, and (c) adheres to a component

model. A deployable component is a component that is

(a) prepackaged, (b) independently distributed, (c) easily

installed and uninstalled, and (d) self-descriptive.

In combining and refining the common elements of these

definitions and others commonly accepted, we propose the
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following definition of a component:
A component is a software element that (a) can be

composed without modification, (b) can be distributed in

an autonomous way, (c) encapsulates an implementation of

functionality, and (d) adheres to a component model. Our

component definition references component model. In our

approach, the definition of a component model is the Luer

one [13]: a model component is the combination of (a) a

component standard that governs how to construct individual

components and (b) a composition standard that governs

how to organize a set of components into an application and

how those components globally communicate and interact

with each other.
As compared to the definitions of Luer and Heineman

and Councill, we intentionally do not include the criterion

that a component must adhere on a composition theory

and the self-descriptive, pre-packaged and easy to install

and uninstall properties of component. These are covered

through the criterion that a component must adhere to a

component model and does not need to be repeated.
In conclusion, according to our software component defi-

nition, we identify three semantic characteristics of software

components: composability, autonomy and specificity.
1) From Characteristics to Properties: In the previous

section, we have identified three semantic characteristics that

we propose to evaluate. To do so, we adapt the character-

istic refinement model given by the norm ISO-9126 [14].

According to this model, we can measure the characteristic

semantic-correctness by refining it in the previous three

semantic characteristics which are consequently considered

as sub-characteristics. Based on the study of the semantic

sub-characteristics, we refine them to a set of component

measurable properties. Thus,

• A component is autonomous if it has no required

interface. Consequently, the property number of re-

quired interfaces should give us a good measure of the

component autonomy.

• Then, a component can be composed by means of its

provided and required interfaces. However, component

will be more easily composed with another if services,

in each interface, are cohesive. Thus, the property aver-

age of service cohesion by component interface should

be a correct measure of the component composability.

• Finally, the evaluation of the number of functionalities

is based on the following statements. Firstly a com-

ponent which provides many interfaces may provide

various functionalities. Indeed each interface can offer

different services. Thus the higher the number of inter-

faces is, the higher the number of functionalities can be.

Secondly if interfaces (resp. services in each interface)

are cohesive (i.e. share resources), they probably offer

closely related functionalities. Thirdly if the code of

the component is closely coupled (resp. cohesive), the

different parts of the component code use each other

(resp. common resources). Consequently, they probably

work together in order to offer a small number of

functionalities. From these statements, we refine the

specificity sub characteristic to the following proper-

ties: number of provided interfaces, average of service

cohesion by component interface, component interface

cohesion and component cohesion and coupling.

2) From Properties to Metrics: We cannot define the

metrics which measure these properties on shapes. Conse-

quently, according to our semantic-correctness measurement

model, we link the component properties to shape measur-

able properties.

• Firstly, according to our mapping model, component

interface set is linked to the shape interface. As a

result the average of the interface-class cohesion gives

a correct measure of the average of service cohesion

by component interface.

• Secondly the component interface cohesion, the internal

component cohesion and the internal component cou-

pling can respectively be measured by the properties

interface class cohesion, shape class cohesion and shape

class coupling.

• Thirdly in order to link the number of provided in-

terfaces property to a shape property, we associate a

component provided interface to each shape-interface

class having public methods. Thanks to this choice, we

can measure the number of provided interfaces using

the number of shape interface classes having public

methods.

• Finally, the number of required interfaces can be eval-

uated by using coupling between the component and

the outside. This coupling is linked to shape external

coupling. Consequently, we can measure this property

using the property shape external coupling. In order to

measure these properties, we need to define metrics.

The properties shape class coupling and shape external

coupling require a coupling measurement. We define the

metric Coupl(E) which measures the coupling of a shape

E and CouplExt(E) which measures the coupling of E with

the rest of classes. They measure three types of dependen-

cies between objects: method calls, use of attributes and

parameters of another class. Moreover they are percent-

ages and are related through the equation: couplExt(E) =

100 coupl(E). Due to space limitations, we do not detail

these metrics. Shape properties average of interface-class

cohesion, interface-class cohesion, and shape-class cohesion

require a cohesion measurement. The metric Loose Class

Cohesion (LCC), proposed by Bieman and Kang [15], mea-

sures the percentage of pair of methods which are directly or

indirectly connected. Two methods are connected if they use

directly or indirectly a common attribute. Two methods are

indirectly connected if a connected method chain connects

them. This metric satisfies all our needs for the cohesion
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measurement: it reflects all sharing relations, i.e. sharing

attributes in object oriented system, and it is a percentage.

Consequently, we use this metric to compute the cohesion

for these properties. The refinement model is summarized

in Fig.3.

3) Evaluation of the semantic-correctness: According

to the links previously established between the sub-

characteristics and the shape properties, we define the eval-

uation functions Spe, A and C respectively for specificity,

autonomy and composability, where nbPub(I) is the num-

ber of interface classes having a public method and I is the

shape interface of the component shape E:

1) Spe(E) = 1
5 · ( 1

|I| ·
∑

i∈I LCC(i) + LCC(I) +
LCC(E) + Coupl(E) + nbPub(I))

2) A(E) = couplExt(E) = 100− coupl(E)
3) C(E) = 1

|I| ·
∑

i∈I LCC(i)
The evaluation of the semantic-correctness characteristic

is based on the evaluation of each sub- characteristic. That

is why we define this function as a linear combination of

each fitness function of sub- characteristics (i.e. Spe, A, and

C):

S(E) =
1

∑
i λi

· (λ1 · Spe(E) + λ2 ·A(E) + λ3 · C(E))

This form is linear because each of its parts must be

considered uniformly. λi is the weight associated with each

sub function. It allows the software architect to modify, as

needed, the importance of each sub-characteristic.

III. IDENTIFICATION OF COMPONENTS

According to the mapping model between component and

object concepts, the content of a component matches a set of

classes. Thus, in order to define the sets of classes that can

belong to a component it is necessary to define a process

for grouping these classes. This association must be based

on a number of criteria to maximize the value of the fitness

function in these groups.

In addition to the fitness function, it is necessary to define

an algorithm which allows us to identify groups of classes.

Among the possible algorithms, we opted for a clustering

algorithm. This kind of algorithm is used for grouping

elements using a similarity function. This makes it suitable

for our problem insofar the fitness function defined below

will play the role of a similarity function.

Clustering approaches can be classified as hierarchical

or non-hierarchical. Hierarchical clustering techniques are

further divided into agglomerative and divisive techniques.

An agglomerative method involves a series of successive

mergers whereas a divisive method involves a series of suc-

cessive divisions [16]. The approach proposed here makes

use of a hierarchical agglomerative clustering algorithm

(cf. Algorithm 1) for grouping classes. The strength of

the relationship between the classes is used as basis for

Algorithm 1 HierarchicalClustering(file code):Tree dendro

classes← extractInformation(code);
clusters ← classes;

while (|clusters| > 1) do
(c1, c2) ← nearestClusters(clusters);
c3 ← Cluster(c1, c2);
remove(c1, clusters);
remove(c2, clusters);
add(c3, clusters);

end while
dendro ← get(0, clusters);
return dednro;

clustering them. This strength is measured using the fitness

function defined previously.

The technique proceeds through a series of successive bi-

nary mergers (agglomerations), initially of individual entities

(classes) and later of clusters formed during the previous

stages. The classes having the highest relationship strengths

are grouped first. The process continues until a cut-off point

is reached. We obtain from this single cluster a dendrogram

which represents the shape hierarchy. This dendrogram

contains all candidate components. The presented algorithm

uses the nearestClusters() function to determine which two

clusters will be merged in the next step. This function

returns the two clusters that maximize the value of the fitness

function.

A. Explorative versus requirement-driven identification ap-
proaches

We distinguish between two types of component iden-

tification: explorative and requirement-driven identification.

The explorative identification consists in using a clustering

algorithm to identify all potential components of an object-

oriented system. The requirement-driven identification con-

sists in identifying components that meet some requirements.

Requirements can consist, for example of list of classes or

interfaces that must belong to a component.

We propose an algorithm for each type of identification.

These algorithms considers that a dendrogram representation

of the systems has been already extracted using the algorithm

1.

1) Explorative Identification of Software Components:
In order to obtain a partition of classes, we have to select

nodes among the hierarchy resulting from the previous step.

This selection is done by an algorithm based on a depth-

first search (Algorithm 2) which selects nodes representing

shapes which will be the best components.

For each node, we compare the result of the fitness

function for the node shape and for its sons. If the node

result is inferior to the average of the result of its two sons,

then the algorithm continues on the next node or else the

node is identified to a shape, added to the partition and the
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Figure 3. The refinement model for semantic-correctness

Algorithm 2 DendrogramTraversal(Tree dendro):Partition R

stack traversalClusters;

push(root(dendro), traversalClusters);
while (!empty(traversalClusters)) do

Cluster father = pop(traversalClusters);
Cluster f1 = son1(father, dendro);
Cluster f2 = son2(father, dendro);
if (S(father) > average(S(f1), S(f2))) then

add(father,R);
else

push(f1, traversalClusters);
push(f2, traversalClusters);

end if
end while
return R;

algorithm computes the next node. In this way, good quality

components will be identified while the traversal continues.

2) Requirement-driven Identification of Software Compo-
nents: An architect may need to identify some compo-

nents that meet some specific needs. To do this, he can

define one or more key entities. These key entities can be

mainly classes and/or interfaces. Our approach identifies

a component around these key entities. We call this type

of component identification requirement-driven because the

result here is not a disjoint partition of all the system classes.

The requirement-driven identification extracts a component

around one or more key entities. In the case where these

entities are interfaces, the process firstly extract all the

classes that implement (resp. require) these provided (resp.

required) interfaces. In addition to these key entities, the

requirement-driven identification process accepts as input a

set of constraints that the identified component must meet.

For example, the architect can choose the maximal size

(number of classes) of the obtained component, the quality

threshold and the non-membership of a class in the desired

component.

The approach that we propose for requirement-driven

identification uses the dendrogram representation of the

system. The architect can choose if the key entities must

be grouped together from the beginning or not. Then, we

proceed with the next step which consists in pruning the

dendrogram to obtain a linked list that begin with the last

node that contains all key entities and ends with the root of

the tree.

Fig.4.a shows the result when the key entities are grouped

together from the beginning. Fig.4.b shows the resulting

dendrogram when the key entities are not grouped together.

Next, the linked list produced from the previous step (In

bold in Fig.4) is traversed from the bottom to the top. At each

step, one or more classes are added to the component and the

constraints given by the architect are evaluated. The traversal

stops when one or more constraints are not satisfied. The

linked list traversal algorithm is given below:

Algorithm 3 Traversal(LinkedList l, Constraints c):Cluster

result

while (hasNext(l)) do
l ← next(l);
Cluster component ← node(l);
if !(meet(component, c) then

return previous(l);
end if

end while
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(a)

(b)

Figure 4. Pruned dendrogram with key entities grouped together

In the previous algorithm, next() and previous() func-

tions return respectively the next node and the previous node

in the linked list. Meet(a, c) function returns true if the

component a satisfies the constraints c.

IV. IDENTIFICATION OF INTERFACES

In our approach, a shape is a set of classes that maximizes

the fitness function measuring the semantic-correctness of a

component. This definition alone does not allow an identified

component to be reused or assembled with other components

because it only indicates the internal structure of a compo-

nent and not its interface.

We propose some heuristics and a clustering algorithm to

identify the required and provided interfaces of a component.

As shown in Fig.1, a component shape is composed of two

parts: a shape center and a shape interface. Shape center

contains classes that do not have relationships with the

outside. Shape interface contains classes that invoke methods

from the outside and classes that have methods invoked from

the outside. These classes contain the methods that represent

the input of our algorithm.

A. Heuristics for interface identification

We rely on heuristics to measure the quality of interfaces.

Next, we give some details of these heuristics and the metrics

that they involve.

1) Heuristic 1: Method cohesion: Whether provided or

required, an interface is a set of strongly-related methods

with high cohesion. As in component identification, we use

the LCC metric to evaluate how much a set of methods are

cohesive.

2) Heuristic 2: Existing object oriented interfaces: The

meanings of an interface in object-oriented design and in

component-based software engineering are slightly different.

We consider that if two methods belong to the same object-

oriented interface, this increases their probability to belong

to the same component interface. We propose to measure the

number of methods belonging to the same object oriented in-

terface using the sameOOInterface(S : Setofmethods)
function. This function returns the size of the greatest subset

of S that contains methods belonging to the same object

oriented interface divided by the size of S.

3) Heuristic 3: Correlation of method use: A provided

interface is a set of services that a component offers to other

components. The identification of provided interfaces in a

component shape C involves the partitioning of the set of

methods of Cs interface shape invoked from the outside of

C. In addition to the two previous metrics (Cohesion and

sameOOInterface), we consider that when some methods are

invoked together many times (i.e. correlation of method use)

they must belong to the same provided interface. To illustrate

this, we show an example of this situation in Fig.5 where

m1, m2 and m3 are three methods of a shape interface and

C1 and C2 are identified component shapes.

Figure 5. Methods invocations from the same component shape

The following table summarizes the number of times

where each group formed from all possible combinations

of the methods m1, m2 and m3 is invoked together from

the same components.

Among all groups, {m1, m2} is the best because all of its

methods are invoked together many times. Thus, we propose

a function called correlationOfUse(S : Setofmethods).
This function returns the size of the greatest subset of S
that contains methods invoked together as many times as
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Combinations Invocations together from the same components
{m1,m2,m3} One time by C1
{m1,m2} One time by C1 and one time by C2
{m1,m3} One time by C1
{m2,m3} One time by C1

Table I
NUMBER OF INVOCATIONS OF EACH GROUP OF METHODS TOGETHER

possible divided by the size of S.

In the same manner, for identifying required interfaces,

we propose function called correlationOfInvocation(S :
Setofmethods). This function returns the size of the great-

est subset of S that contains methods that invoke together

the same component as many times as possible, divided by

the size of S.

B. Definition of the fitness function and the clustering algo-
rithm

Using the above metrics, we define two fitness functions

to measure respectively the quality of provided and required

interfaces. These fitness functions allows the architect to

vary the weight of each sub-function using the parameter

λi:

• provided(M) = 1∑
i
λi

· (λ1 · LCC(M) +

λ2 · sameOOInterface(M) + λ3 ·
correlationOfUse(M))

• required(M) = 1∑
i
λi

· (λ1 · LCC(M) +

λ2 · sameOOInterface(M) + λ3 ·
CorrelationOfInvokation(M))

Based on the definition of the previous fitness functions,

the interfaces identification problem can be formulated as

a clustering problem where the input is a set of methods

M = {m1, m2, ..., mn} and the output is a partition of M

noted P (M) = {p1, p2, ..., pk} where:

• mi is a method belonging to a class in the shape

interface.

• pi is a subset of M .

• k is the number of identified interfaces.

• P (M) does not contain empty elements: ∀pi, pi �= φ.

• The Union of all P (M) elements is equal to M :
⋃

pi =
M

• The elements of P (M) are pair wise disjoint: pi∩pj =
φ, if i �= j

To identify interfaces from a set of methods, we propose

an algorithm based on hierarchical clustering (Algorithm 4.

This algorithm proceeds in an agglomerative manner. This

means that at the beginning, each cluster contains only one

method, and pairs of clusters are merged at every step.

The strength of relationship between methods is obtained

using the fitness functions given previously for each type

of interface. The result of the algorithm is presented in a

dendrogram. The produced dendrogram is then traversed to

produce clusters. Each cluster is a set of methods repre-

senting an interface shape. The value of the parameter t in

algorithm 4 allows managing the granularity of the identified

interfaces. As t increases, the resulting interfaces will be

small grained.

Algorithm 4 dendrogramTraversal(Dendrogram d, double

t):Partition R

if isNotNull(d) then
Node n = nodeAsSet(d);
if f(n) > (t × (f(son1AsSet(d)) + f(son2AsSet(d))))
then

return n;
else

return dendrogramTraversal(son1(d)) ∪
dendrogramTraversal(son2(d));

end if
else

return φ;
end if

C. Documenting identified components and interfaces

A component can be efficiently reused if its documen-

tation (e.g. main purpose, name, interface names, etc.) is

available. Thus, the need to document the identified compo-

nents is important.

To reach this goal, we use an automatic heuristic to

discover the purpose of an identified component. We based

ourselves on the following observation: in many object

oriented languages, class names are a sequence of nouns

concatenated using a camel-case notation (i.e. StringBuffer,

ElementFilter, etc). The first word of a class name indicates

the main purpose of the class; the other words indicate

a complementary purpose of the class and so on. On the

other hand, an interface name should be an adjective that

qualifies its implementing class. Thus, an interface name

reflects one of the complementary functionalities of a given

class. For example, in the Java standard API, The ArrayList

class implements The Collection interface. According to the

previous assertions, our heuristic identifies component name

in three steps: extracting and tokenizing classes and inter-

faces name from identified components, weighting words

and constructing the component name.
Extracting and tokenizing classes and interfaces’ name

from identified components: In this step, class names are

split into words according to the camel-case syntax. For

example: StringBuffer is split into String and Buffer.
Weighting words: In this step, a weight is affected to

each extracted token. A large weight is given to tokens that

are the first word of a class name. A medium weight is given

to tokens that are the first word of an interface name. Finally

a small weight is given to the other tokens.

In the mapping model proposed above, a component is

composed of two elements: the center and the interface.

Classes belonging to the former are ones that have no
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relationship with the outside. In contrast, classes belonging

to the latter are ones that interact with the outside. Its clear

that the classes belonging to the provided interface of a

component shape constitute the provided functionalities and

services that it offers to other components, thus, its main

purpose. On the other hand, classes belonging to the center

of a component shape are less concerned with the main

purpose of the component and are mainly utility classes that

do not interact with the outside. Hence, a small weight will

be given to tokens extracted from classes that belong to the

center of a component shape and a large weight will be given

to ones extracted from classes that belong to the provided

interface of a component shape. For a given word, the weight

is calculated as follows:

weight(w) =
1∑
i
Ni

·(1.0×(N1+N2)+0.75×N3+0.5×(N4+N5))

Where:

• N1: Number of appearance as the first word of a class

name.

• N2: Number of appearance in an entity name belonging

to the provided interface of a component shape.

• N3: Number of appearance as the first word of an

interface name.

• N4: Number of appearance other than the first word in

an entity name.

• N5: Number of appearance in an entity name belonging

to the center of a component shape.

Constructing the component name: In this step, a

component name is constructed using the strongest weighted

tokens. The strongest weighted token is the first word of the

component name; the second strongest weighted word is the

second word of the component name and so on. The number

of words used in a component name is chosen by the user.

When many tokens have the same weight, all the possible

combinations are presented to the user and he can choose

the appropriate one.

We use a similar heuristic to discover interface name.

Except that we use in addition the name of the methods

belonging to the interface. For a given word, the weight

used to construct interface name is calculated as follows:

weight(w) =
1

∑
i Ni

·(1.0×(N1+N2)+0.75×N3+0.5×N4)

Where:

• N1: Number of appearance as the first word of an

interface name.

• N2: Number of appearance as the first word of a method

name.

• N3: Number of appearance as the first word of a class

name.

• N4: Number of appearance other than the first word in

an entity name.

V. CASE STUDIES

To validate our approach, we have experiment it on

many open-source systems. We choose open-source systems

because their documentations and source codes are publicly

available. Due to space limitations, we will give the results

obtained on only three systems of different sizes.

The execution time of our approach depends linearly on

the size of the system because of the non-stochastic nature

of the algorithms involved in each step.

In the following we will give the results obtained by

applying explorative identification, requirement-driven iden-

tification and interfaces identification on different systems,

followed by a discussion of the obtained results by varying

the weights of each part of the fitness function.

A. Explorative Approach

We have applied our explorative component identification

approach on many systems of different size. In this section

we will give the results obtained on two systems: JDOM1 ,

a well-known library containing 139 classes that provide a

complete, Java-based solution for accessing, manipulating,

and outputting XML data from Java code. Apache HTTP

Components2 , a toolset containing 368 classes focused

on HTTP and associated protocols. The following table

summarizes the application of our approach on the above-

mentioned systems. For each system we give the number of

identified components, the name and the purpose of the most

prominent components, the number of classes belonging to

them and the value of each sub-characteristic function.

Table II
IDENTIFIED COMPONENTS IN JDOM AND APACHE HTTP

COMPONENTS

Systems Number
of
Com-
po-
nents

Name
of some
components

Number
of
classes

Spe. Com. Aut.

JDOM 9

ObjectJDOM 19 0.42 0.53 0.68
Exception 35 0.41 0.51 0.68
SAX 21 0.46 0.55 0.61
DOMAdapter 29 0.48 0.56 0.58

HTTP 19

HttpBasic 105 0.39 0.50 0.72
HttpClient 59 0.49 0.50 0.69
HandlerCookie 29 0.54 0.60 0.51
ConnFactory 24 0.43 0.53 0.66

The purpose of the identified components can be deter-

mined according to their name and the classes that they

contain. For example, DocumentJDOM contains classes re-

sponsible for creating and manipulating JDOM Documents.

HttpBasic and BasicHttp contain the core HTTP classes

needed by all the other components.

1http://www.jdom.org
2http://hc.apache.org
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B. Requirement-driven approach

We have applied requirement-driven identification on

JEval3, a library containing 77 classes for the lexical

and syntactic analysis of mathematical expressions.

We have chosen net.sourceforge.jeval.function.math.Sin
as the key entity and a maximum of 5 classes

as a constraint. We have obtained the component

containing the following classes and having the

following values for each sub- characteristic function:
net.sourceforge.jeval.function.math.Sin
net.sourceforge.jeval.function.math.ToRadians Spe.=0.83
net.sourceforge.jeval.function.FunctionConstants Comp.=0.63
net.sourceforge.jeval.function.math.Cos Auto.=0.43
net.sourceforge.jeval.function.math.Asin

Indeed, this component contains all the classes that have

strong relationship with the key entity. According to their

name, these classes abstract the evaluation of mathematical

expressions composed of triangular functions.

C. Identification of Interfaces

We’ve applied required interface identification on the

HttpClient component identified above. The result was com-

posed of three interfaces. The following table gives the

name, the number of methods and the value of the different

metrics used to identify interfaces:

Table III
IDENTIFIED INTERFACES IN THE HTTPCLIENT COMPONENT

Name Number of
methods

Cohesion Same in-
terface

Invocation
Together

Thread 8 0.50 0.25 1.00
AuthState 8 0.57 0.62 0.87

Connection 11 0.50 0.18 1.00

The Thread interface contains methods related to creat-

ing and handling threads. The AuthState interface contains

methods used by the ClientHttp component to handle au-

thentification. The Connection interface contains methods

related to the establishment and the handling of HTTP

connections.

D. Varying sub-characteristics weights

One advantage of our approach is the possibility to vary

the weight of each sub-characteristics of the fitness function.

This allows the architect to choose the importance of each

characteristic of the identified components. We have applied

our approach Apache HTTP Component by varying the

different sub- characteristic weights of the fitness function.

We have obtained the results given in Table IV.

In the first line of the table, we have given more im-

portance to specificity and composability. The obtained

components are smaller and contain few classes and thus

few functionalities. This is in accordance with the definition

of the specificity of a component (cf. section II.B). In the

3http://jeval.sourceforge.net

Table IV
RESULTS WHEN VARYING SUB-CHARACTERISTICS WEIGHTS

Spe. Com. Aut. Number
of com-
ponents

Average
number
of classes

Size
of the
largest
compo-
nent

0.40 0.40 0.20 64 5.75 41
0.40 0.20 0.40 11 33 95
0.20 0.40 0.40 8 46 84

second line of the table, we have given less importance to

composability. The obtained components contain many co-

hesive classes and thus many provided interfaces. Thus, they

are less composable due to the diversity of their provided

interfaces. In the third line of the table, we have given more

importance to composability and autonomy. The result is

composed of components having few required interfaces.

This is in accordance with the definition of component

autonomy (cf. section II.B).

VI. RELATED WORKS

Many approaches have been proposed for the automatic

identification of software components from legacy systems.

The works presented in [4] [5] take as input UML diagrams

and uses a clustering algorithm to identify components

among the system classes. The produced clusters have high

cohesion and low external coupling. The above-mentioned

works relies extensively on UML diagrams while they are

not always available and they may not reflect the real

structure of the system. Our approach is based on the

analysis of source code which remains the only software

artifact that reflects the reality of the system.

Approaches presented in [3] [7] make use of only coupling

and cohesion metrics to identify components. However, the

use of only these two metrics can lead to poor quality

components. In our approach, we have studied the semantic-

correctness of components to guarantee that the identified

components will be of high quality. In addition, unlike the

previously cited works, our approach has the advantage to

allow the architect to give more importance to some sub-

characteristics.

The work presented in [3] is based on dynamic analysis

of the system at runtime. It identifies software components

from the execution trace of a use case. Its main drawback

is the a priori knowledge of the high-level system func-

tionalities. Also, it requires an extensive execution of many

execution scenarios to involve all the classes that constitutes

the system.

In [5], the authors propose to identify component external

structure as object oriented interfaces. We show that compo-

nent interfaces are slightly different from object ones insofar

they must be a set of highly correlated methods.
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VII. CONCLUSION

In our previous works [8] [9], we have proposed an

approach to extract software architecture from an object

oriented system.

In this paper, we rely on these previous works to pro-

pose a quality-centric component identification approach.

Our approach gives to the architect the choice between

two strategies to identify components. The first strategy is

explorative. The second strategy is requirement- driven.

In addition to the identification of the internal structure

of a component (i.e. the classes that constitutes it), we have

proposed a method for the identification of the required

and provided interfaces of a component. Also, we propose

to document the identified components by automatically

generating their name using some heuristics based on well

accepted code conventions.

As short-term perspective, we plan to extend our approach

to apply it on multiple versions/variants of the same system

to obtain highly reusable components. The obtained results

will guide our long-term perspective which consists in

recovering software product lines.
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