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Abstract

The ORCCAD programming environment for robotic systems allows
users to address automatic control laws in continuous time at the
lower levels, and aspects of discrete-time logic at the higher lev-
els. ORCCAD provides tools of specification, formal verification,
simulation, and real-time code generation integrated within a set of
dedicated graphical interfaces. Basic robot actions, which are in-
trinsically hybrid entities, are handled by the ROBOT-TASK struc-
ture, which smartly interfaces aspects of continuous and discrete
time. ROBOT-TASKs are further logically composed into more
complex actions, ROBOT-PROCEDUREsS, through a dedicated lan-
guage. While system performance can be checked using simula-
tions, crucial properties such as deadlock avoidance, safety, and
liveness can be formally verified at both levels. The approach is
illustrated with an underwater inspection mission.

1. Introduction

It has long been a goal in robotics to build autonomous ve-
hicles to replace humans in hostile or unreachable environ-
ments, such as in nuclear plants, mines, underwater areas,
and on other planets. Some good solutions have been found
to parts of the problems raised by these autonomous robots,
thus decreasing the gap between fiction and reality. These
solutions touch upon numerous issues: mechanics, sensing,
modeling, automatic control, etc.

Of increasing importance is the role played by the em-
bedded software required to integrate all of these aspects.
To design any operational robotics system, it is crucial to
formally organize this software within a control architecture
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to tackle the classical software concerns of reuse, flexibil-
ity, validation, and real-time performances. In addition, the
specifics of the targeted robotics domain must be preserved.
This leads to the development of an architecture that handles
all of the dynamics aspects without affecting the traditional
software engineering aspects.

This problem typically falls under the hybrid system
paradigm, because controlling a robot intimately merges dis-
crete and continuous aspects. Hybrid systems are currently
addressed by two distinct communities that have different be-
liefs about the difficulties. From the computer science point
of view, the complexity generally lies in the size of the event-
based transition system (related to the discrete aspects), while
the dynamics issues that are considered inside the states are
very simple. Therefore, the related analysis tools rely on
various logic-based techniques. By contrast, the approach
from the automatic control domain privileges models with
algebro-differential equations describing complex dynamics
and transition, while the number of states is small. The as-,
sociated analysis methods are, for example, the differential
systems with abrupt changes. To date, there has been little
overlap between the two approaches. Indeed, the gap remains
large and the problem encountered by the robotics commu-
nity is that an autonomous robot system often falls precisely
in this gap: complex dynamics on the one hand, complex
event-based behavior on the other hand. Therefore, we have
aimed to address these two issues with similar care, although
there is presently no way of handling them formally in a uni-
fied approach. In this paper, we show how we consider this
problem by carefully defining the adequate levels of analysis
and the related modeling tools.

In addition, an autonomous robot belongs to the class of
critical systems. Indeed, system safety issues are critical
because any dysfunction of the system (often impossible to
overcome while in operation) can lead to significant dam-




age. For example, the consequences of a robot failing to
repair a leakage in a nuclear plant can be dramatic, from
both social and economic viewpoints. Thus, system safety
issues play an essential role. Because hardware has im-
proved both in terms of power and reliability, the major
problems in this area now come from system’s software
components. In this case, “safety” means that the specifi-
cation, programming, and implementation must be as correct
as possible. This requires the application of validation ap-
proaches at all possible levels before releasing the system
into operation.

These problems are not new; they have long been encoun-
tered in other areas, for example, in satellites, planes, and
high-speed trains. However, they have appeared more re-
cently in robotics because only a few complex systems have
actually reached an operational level that justifies the related
studies. The robotics community is now facing these prob-
lems and should therefore learn from the studies performed in
these other areas. In particular, as shown in the remainder of
the paper, our work takes advantage of techniques developed
for safety purposes in the real-time domain.

As a consequence, we propose an approach to robotics
programming that handles hybrid aspects as well as safety
issues within a single dedicated framework implemented in a
system called ORCCAD. Our system is organized around two
key entities: an elementary task, called the ROBOT-TASK, and
the ROBOT-PROCEDURE, which enforces a modular construc-
tion of complex missions. ORCCAD allows one to use various
specification and validation tools, but it is also implementa-
tion oriented. By this, we mean that it automatically produces
real-time code to download. It targets various domains, such
as automated highways, autonomous mobile robots, under-
water systems, and manufacturing manipulators. To date, it
has been used on several complex missions performed by
operational systems, for example, pipeline inspection by an
underwater vehicle (Figure la), automatic vehicle driving
(Figure 1b), indoor exploration (Figure 1d), and complex
manipulation tasks (Figures 1c and le).

ORccAD relies on a set of simple, well-defined, and origi-
nal concepts:

1. The continuous-time control part (data flow) and the
associate discrete-event handling are precisely merged
at a single level. Therefore, we define a behavior in an
original and formal way.

2. All the models of the discrete-event-based specifica-
tions rely, at all levels, on the synchrony assumption.
Because we use a single synchronous language for their
programming, a strong semantics is inherited, which
opens the way to formal verification; furthermore, de-
terminism is ensured.

3. Dedicated interfaces and a mission-oriented language
are defined to hide the related technical aspects to a
nonexpert user. Owing to their careful design, we can
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guarantee that the underlying formal models are pre-
served.

The outline of this paper is as follows. In Section 2,
we present the basic definitions of the ROBOT-TASK and
the ROBOT-PROCEDURE. Section 3 describes the specifica-
tion tools. Section 4 presents formal verification aspects.
Section 5 is oriented toward implementation issues. The ap-
proach is illustrated in Section 6 using an underwater appli-
cation. We present our conclusion and trends for the future
in Section 7.

2. Basic Concepts
2.1. Motivation

Traditional control architectures' proposed in the technical
literature can be classified into three categories: hierarchical,
behavioral, and hybrid. The first category adopts a top-down
approach (Albus, Lumia, and McCain 1988). It highlights
the supremacy of high-level control and restricts low-level
horizontal communications. Hierarchical control also has
poor flexibility, and it is not well adapted to the control of
new-generation robots, which have to handle many sensors
in reactive and reflex loops. By contrast, a bottom-up ap-
proach is adopted in the second category (Brooks 1986). This
approach includes a group of communicating software mod-
ules known as “behaviors,” which are based on models from
psychology and organized in a “subsumption” architecture.
Using this approach, it is clearly difficult to design high-
level control to achieve nontrivial objectives. Furthermore,
composition laws do not have enough semantics to allow
safety issues to be considered in a clever way. The third ap-
proach, hybrid control, is the most recent (Bellingham and
Consi 1990; Byrmes 1993; Alami et al. 1998; Schneider et
al. 1998); it was developed to overcome the inherent defects
in the previously mentioned approaches. A hybrid architec-
ture permits the design of efficient low-level control, with an
easy connection to high-level reasoning, .

Our approach falls within this latter class. The following
considerations have motivated this choice. When consider-
ing a control architecture through a top-down analysis, it is
clear that the entities handled are further specialized as one
draws near the lowest levels. In a symmetric way, a bottom-
up approach progressively changes the considered abstrac-
tion level from the physical world to an end-user’s view of a
robot’s mission. At the highestlevel, the viewed entities have
acomplex semantic content but only roughly involve the dy-
namic properties of the controlled system. In fact, here, the

1. Here, we do not consider approaches aimed at the rapid prototyping
of control applications, such as the well-known Matlab_simulink de-
velopment chain (MathWorks-Inc 1997). Although interesting features
are proposed, they are not yet dedicated to the control and supervision of
complex critical systems.




Fig. 1. Complex operational systems that have employed ORCCAD. (a) VORTEX/IFREMER underwater manipulator. (b)

LIGIER/PRAXITELE electrical car. (c) The Salisbury hand. (d) The INRIA wheeled manipulator. (¢) STAUBLI RX90 manipulator
arm.




user mostly handles discrete events, global parameters, and
symbolic data. In general, the related models are the ones
used by planning and reasoning techniques. On the contrary,
when staying close to the physical aspects of the robot and its
controller, we must consider very local issues, such as events
or numerical data, which reflect the dynamic behavior of the
system interacting with the environment. At this level, the
main models considered come from system theory, for ex-
ample, continuous differential equations, discrete recurrent
equations, and automata.

In addition, it is common to classify the different levels
according to their time scales from the millisecond at the
bottom to the hour at the top. A complementary way to
view this problem is by using the nature of the time itself:
continuous time at the physical level, discretized time in the
control implementation, event-based time at the highest lev-
els. Indeed, all time models have to coexist within the overall
system, with some overlap of their influence areas.

However, in any efficient architecture there exists a partic-
ular intermediary layer where all time issues are of equivalent
importance. In this case, the system is truly a hybrid one.
When going down, the continuous dynamics and its control
become the main issues; when going up, these latter aspects
are masked, with the only remaining view being event driven
and symbolic. It is clear that the design of the entities at the
hybrid level is crucial for the system, for two reasons. First,
they will be further assembled to build a complex applica-
tion and therefore must include all the necessary information.
Second, they have to run on the real system without any risk
of damaging it. This means that the specified control must
work correctly. In the next section, we present our approach
to such a key entity, which we call the ROBOT-TASK.

2.2. A Key Feature: The ROBOT-TASK

The ideas that underlie the ROBOT-TASK concept are partic-
ularly simple.

1. We can now easily do many complex tasks using auto-
matic control in robotics: visual servoing, force-based
control, nonstationary control of nonholonomous vehi-
cles, etc. Therefore, itis natural to offer the designer ad-
vanced approaches to the automatic control az g higher
level than is usually done.

2. In a hybrid system, discrete events are closely related
to continuous aspects. In a way similar to the automatic
control approach, we can now handle the events asso-
ciated with a system control and programming problem
in a clever way, using, for example, the Ramadge-
Wonham theory of discrete-event systems (Ramadge
and Wonham 1989) or the synchronous approach (Ben-
veniste and Berry 1991). We therefore propose to use
such an approach coherently with the automatic con-
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trol part. This leads us to apply advanced event-based
techniques at a level lower than is usually done.

3. In real-time systems, either simple or as complex as
an autonomous robot, user-defined exceptions must be
handled. It is known that their specification as well
as their harmonious handling in real time are diffi-
cult problems (and even more difficult when full pre-
emptive actions are authorized). To efficiently handle
exceptions, we propose to strongly constrain their de-
sign in the ROBOT-TAsK and to process them hierarchi-
cally.

As a consequence, these assumptions led to the design of
the ROBOT-TASK entity in ORCCAD, which is defined as the
complete specification (Simon et al. 1993) of

* acontrol law in continuous time, which has an invariant
structure along the whole duration of the ROBOT-TASK
(which is assumed known, even if infinite); and

* aset of events to be received and emitted at the begin-
ning of the ROBOT-TAsK, during its execution and at its
end, and the associated processing.

Thus, a ROBOT-TASK represents an elementary robotic ac-
tion, just like the point-to-point free motion of an arm, or
the sensor-aided grasping of an object, or the stationary lat-
eral driving control of a vehicle. It can also be viewed as a
formally defined behavior, which includes reactivity through
the event-based specification along with true sensor-based
control through its explicit continuous-time part.

To simplify the specification of a ROBOT-TASK and im-
prove the reliability of the resulting system, several software-
engineering issues have been adopted: simplicity of the spec-
ification by graphical user interfaces, modularity through an
object-oriented approach, automatic real-time code genera-
tion, and the possibility of validation by hybrid simulation or
formal verification. These aspects will be considered further
in Section 5.

RoBoT-TAsKs will later be detailed according to differ-
ent views. In Section 3.1, the specification of ROBOT-TASKs
data-flow aspects is detailed. In Section 3.2, its event-based
part is presented in-depth. Verification issues are addressed
in Section 4, and simulation aspects are illustrated in Sec-
tion 5.4.

2.3. The ROBOT-PROCEDURE

Given a set of ROBOT-TAsKs, the ROBOT-PROCEDURE en-
tity is used to logically and hierarchically compose ROBOT-
TAsKs into structures of increasing complexity. The ROBOT-
PROCEDURE allows for the description of robotic actions that
range from elementary actions all the way up to full mis-
sion specifications. With no need for replanning, the ROBOT-
PROCEDURE permits one to choose adequate sequences of
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actions given observed situations and to manage predefined
exception-recovery procedures when “weak” failures occur.

For instance, in the mission example of underwater ma-
nipulation operations that is detailed in Section 6, a typi-
cal ROBOT-PROCEDURE demands the alternative execution
of vision-based and sonar-based ROBOT-TASKs (with the ob-
jective to stabilize the vehicle in front of an offshore structure)
and, in parallel, the execution of point-to-point motions of the
arm (to subsequently operate on this structure). Other exam-
ples concern indoor explorations, which coordinate vision-
based ROBOT-TAsKs with the elementary action of station-
ary lateral driving control of a vehicle (Pissard-Gibollet et
al. 1995).

We define a ROBOT-PROCEDURE as the complete specifi-
cation (Espiau, Kapellos, and Jourdan 1995) of:

* a main program, characterizing the nominal execu-
tion of the action, i.e., defining the logical and tem-
poral arrangements of the ROBOT-TASKs and Rosort-
PROCEDURE; and

* asetof triplets (event, processing, assertion) that spec-
ifies the processing to apply to handle an event and the
information to transmit to the planning level (if pro-
vided).

Here also, software-engineering issues form the basis of
the ROBOT-PROCEDURE specification and implementation: A
dedicated formal language is designed and presented in Sec-
tion 3.2.3, logical verification aspects are addressed in Sec-
tion 4.2, and these are integrated into the ORCCAD tools in
Section 5.

3. Specification

The thorough specification of a robotics application requires
the description of both the continuous (algorithm design) and
discrete (logical events) aspects, as well as their real-time
characteristics (execution periods, synchronization). In our
approach, this specification is obtained thanks to the RoBoOT-
TAsk and ROBOT-PROCEDURE entities previously introduced.
As outlined below, the continuous aspects (cf. Section 3.1)
are handled within the structure of a RoBOT-TASK, while the
discrete aspects of the application (cf. Section 3.2) are mainly
modeled within the structure of a ROBOT-PROCEDURE,

3.1. Continuous Time and Data Flow
3.1.1. Generalities

The ROBOT-TASK in ORCCAD is the minimal granularity seen
by an end user at the application level and the maximum gran-
ularity considered by control-system engineers at the control
level. Tt characterizes, in a structured way, continuous-time
closed-loop control laws, along with their temporal features
related to implementation and management of associated

events. Here, data-flow and discrete-event aspects are mixed.
The design of a ROBOT-TasK s achieved by using modules
that exchange data through typed ports. They belong to three
classes.

3.1.1.1. The “Physical Resource” Class

A module of this class is used to specify an interface be-
tween the ROBOT-TASK and physical entities (actuators, sen-
sors, etc.) of the controlled process. It requires user-defined
drivers and uses driver-type ports to characterize inputs and
outputs in relation to the corresponding physical devices.

3.1.1.2. The “Algorithm” Class

This class is used to specify the algorithms necessary to com-
pute the control law of the ROBOT-TASK. Modules in this
class consume and produce data to and from the data-type
input-output ports. An algorithm can be specialized by tak-
ing into account the particularities of the application domains,
Although we have handled a number of domains (cf. Figure
1), we have placed the emphasis on handling robot manipu-
lators. As stated in (Samson, Le Borgne, and Espiau 1991), a
wide class of rigid robot-control laws can be derived more or
less from a decoupling and feedback linearization approach.
As detailed in Simon et al. (1993), this allows one to de-
fine a set of hierarchical subclasses, which can considerably
help the user in the specification, including task functions,
working spaces, dynamical models, Jacobians, and control
methods. In this class, we also find observers. An observer
isamodule that takes data flows as inputs and produces events
as outputs. These events are fed to the robot task automaton.

3.1.1.3. The “Robot Task Automaton” Class

The automaton specified in this module is the model of the
transition system that locally controls the ROBOT-TAsk and
thus represents its local behavior. It requires the declaration
of event-type input-output ports to characterize the related”
events as the preconditions, the postconditions, and the ex-
ceptions. The concept is further detailed in Section 3.2,

The design of a ROBOT-TASK can be achieved by creating
(or selecting from available libraries) and then connecting in-
stances of these module classes. Asan introductory example,
consider Figure 2 (see Section 6 for an elaborate RoBOT-
TASK). It represents a computed torque-control law for a
pendulum. The module PENDULE encapsulates the physical
access to the pendulum, and the module ATRPENDULE repre-
sents the local behavior of the ROBOT-TAsk. The other mod-
ules belong to the algorithm class: JOINTSTATE consumes
the angle of the pendulum and, given the angle limits, sig-
nals when they are encountered by producing events toward
the ATRPENDULE; Trajectory computes the desired trajec-
tory to follow in the joint space; ERROR and CMD compute
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Fig. 2. The RoBoT-TAsK structure for the control of a simple pendulum.

the torque with a PD control scheme. Meanwhile, CMD mon-
itors excessive values of the torque to avoid saturation, and
ERROR warns when the tracking error becomes too signifi-
cant. In our environment, the types of modules and ports are
graphically distinguished using different colors and forms
(data are denoted by e, and events are symbolized by < ).

3.1.2. Real-Time Aspects

So far, the specification of the ROBOT-TASK through modules
has mainly been performed in continuous time. At this stage,
temporal properties need to be added to the modules to take
implementation aspects into account. These concern the dis-
cretization of time, computation duration, communication,
and synchronization between the modules.

The implementation of a ROBOT-TASK is obtained by the
translation of the overall specification (continuous and tem-
poral properties) into a set of communicating real-time com-
puting tasks, called MODULE-TASKs, each of which imple-
ments a part of the control law (one or more modules).
Most of the MODULE-TASKs are periodic tasks. To ease
the automatic code generation from the dedicated graphi-
cal user interface (see Section 5), the structure of a periodic
MODULE-TASK is as shown in Figure 3. Such a structure
clearly separates computations related to control-algorithms
issues, communications related to implementation issues, and
calls to the underlying operating system. The real-time at-
tributes of a MODULE-TASK induced by the temporal proper-
ties of its modules are

* its (nominal or worst case) duration, which depends
mainly on the algorithm, the programming language
used to encode it (generally C or C++), and the target

Local parameters:

3b;

* Initialization code */
X1 =X1(0);
Xn = Xn(0) ;

/* infinite loap */

while(1) {
Synchronization with RTC
Reading X1 ;

Reading Xn ;
Calculations ;

Yi=f(a,b, X1,.,Xn);
Xn Posting Y1 ;

Posting ¥n ;

aeyn - asyn

Period {= RTC)
Nominal duration
Priority

CPUID

Temporai
attributes

Fig. 3. The basic structure of a periodic MODULE-TASK.

processor (the duration is estimated for simulation and
schedulability analysis purposes);

* its activation period;

* the set of input and output ports of the MODULE-TASK
and their assocjated communication protocols;

* the modules’ priority, allowing a run-time scheduling
by the operating system; and

+ the assigned processor (in the multiprocessor case).

In complex robotic control systems, there are often closed
loops (in the sense of control laws) running at different sam-
pling rates. For example, the data associated with feedback
paths may be updated more frequently than the data associ-
ated with feedforward paths. Indeed, controller performance
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may also be influenced by how tightly cooperative tasks are
coupled with respect to their durations. As a consequence,
OrccaD makes different communication and synchroniza-
tion mechanisms available to link pairs of MODULE-TASKs
via their typed ports.

* ASYN-AsYN: Each task is running freely and the com-
munication does not add synchronization;

* SYN-SYN: The first task to reach the rendezvous is
blocked until the second one is ready;

* ASYN-SYN: The writer is running freely and posts mes-
sages onto its output ports at each period, and the reader
either reads the message if a new one is available or is
blocked until a new message is posted; and

* SYN-ASYN: The reader runs freely, and the writer is
blocked up to the next request (except if a new one has
been posted since the last reading).

Here, we are mainly concerned with closed-loop control;
therefore, we shall often consider that the best data is either
the last or the next available one. Thus, these protocols do not
provide data queuing and generally allow loss of data, except
for those that are used to send signals to the ROBOT-TAsSK
and application automata to manage the logical behavior of
control laws.

3.2. Event-Based Part

To build a complex robotic application, several control laws
must be combined, each one achieving a given subobjective.
The control laws are launched in sequence or in parallel,
they might be aborted, and they must report their execution
status. Thus, the control-law part of the ROBOT-TASK must be
controlled. Asa consequence, once specified, the continuous
part of the ROBOT-TASK is encapsulated with event-based
modeling. This encapsulation provides the cornerstone to
building controllers for the RoBOT-TASKs (cf. Section 3.2.2).
Then, the whole application controller can in turn be specified
as the logical composition of the ROBOT-TASK’s discrete-
event controllers (cf. Section 3.2.3).

3.2.1. Requirements and Adopted Solution
3.2.1.1. Requirements

Several formalisms can be envisioned to design a discrete-
event controller (automaton-based description, general-
purpose languages, etc). We chose to design our controller
within the framework of reactive systems (Harel and Pnueli
1985) theory. A reactive system maintains a continuous inter-
action with its environment, at a speed that is determined by
its environment, by emitting signals as responses to its stim-
uli. Consequently, the discrete-event part of the concept of
behavior, which traditionally lacks models permitting formal

composition, can be formally defined as the sets of allowed
sequences of input-output signals that constitute the interface
of a system with its environment.

A robotic system is a reactive system that is in continu-
ous interaction with its environment and should satisfy the
following requirements:

* Possibility of concurrency: The concurrency between
the robotic system and its environment must be taken
into account. Furthermore, it is often convenient and
natural to consider such a system as a set of parallel
components that cooperate to achieve a desired behay-
ior.

* Real-time performances: The real-time constraints de-
rive from the obligation to react at the rthythm imposed
by the environment surrounding the robotics system.
Also, the response time must be compatible with the
dynamics of the controlled system,

* Determinism: A system is deterministic if the same set
of (ordered) inputs produces the same set of (ordered)
outputs whenever the control system is executed. With
such an observational point of view, a robotic system’s
behavior becomes predictable and reproducible, a criti-
cal feature that improves the reliability of robotics sys-
tems. Clearly, their design, analysis, and debugging
become much easier,

3.2.1.2. The ESTEREL Language

To contend with such requirements, it is natural to focus
on synchronous languages that are especially designed to
tackle reactive systems, and subsequently ease their speci-
fication, offer validation possibilities, and generate efficient
executable code. Among them, we have chosen the ESTEREL
language (Berry and Gonthier 1992; Berry 1997) because of
its adequacy in handling control problems. Thus, the reac-
tive controller of a robotic system can be expressed using
ESTEREL once its logical behavior has been well defined.

+

3.2.2. The Event-Based Part of the ROBOT-TASK

Defining an elementary action with a continuous-time control
law is not sufficient. It is also necessary to specify how
and when this control can be activated and how and why it
terminates; also, we must be able to take into account various
types of errors that are liable to occur at run time.

Hence, we associate a transition system with the control
law that locally controls the RoBOT-TAsK. It handles three
types of logical events.

* Preconditions—allow the ROBOT-TASK to actually
start. These are synchronizing events or signals emit-
ted by sensors. A temporal watchdog can be associated
with each precondition;




* Exceptions—are emitted exclusively by observers (we
will give more details of this concept below); and

* Postconditions—term not used in the usual sense for
computer science. In this context, postconditions
gather events required to terminate a ROBOT-TASK and
events that are emitted at the end of the task. A watch-
dog can be associated with postcondition waiting.

To simplify the exception specification and make process-
ing more reliable, the exceptions are further divided into three
predefined classes, corresponding to different decision levels.

* Type 1—anexception belonging to this class has arange
limited to the ROBOT-TASK itself. In other words, it
can be handled inside an algorithmic module of the
RoBoT-TASK. For instance, a reasonable but neverthe-
less too-large tracking error can lead to a demand of
gain increase within two limits, as done by Kapellos
et al. (1995). As another example, consider a biped
robot in stationary walk. From one step to the next the
control is the same, but the leg index switches from
left to right. This problem can be solved using a single
control scheme and having a Type-1 event emitted at
each phase transition.

* Type 2—here, the detected problem is not fatal, but
local handling is no longer possible. The ROBOT-TASK
should be stopped and the control transferred to the
upper level, which must know the decision to make.
This is, for example, the case when a robot manipulator
enters its joint-limits area or reaches a singularity. It
also occurs if a nonholonomous vehicle appears unable
to achieve some maneuver by feedback alone.

* Type 3—in this case, the failure is serious (actuator
breakdown or water leakage, for example), and the sys-
tem has to be driven to a safe position while emergency
procedures can be undertaken. Again, the control is
performed at a level higher than that of the RoBoT-
TASK.

The reception of all these events rhythms the evolution
of the action according to a predefined scheme: Roughly
speaking, the satisfaction of the preconditions leads to the
activation of the control law. If a specified exception oc-
curs during an execution, it is handled according to its type;
the reception of the postconditions implies the ending of the
action.

Using this typology of events, a user can easily specify the
event-based part of any ROBOT-TAsK. Furthermore, because
of the predefined behavior, the corresponding ESTEREL pro-
gram can be automatically generated with no need for the user
to effectively encode it “by hand.” This automatic generation
also hides the additional signals necessary to link this discrete
controller with, first, the real-time surrounding software (cf.
Section 5) and second, with the controller of the application
in which this ROBOT-TASK is used (cf. Section 3.2.3, below).
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This behavior can be compiled into a finite automaton as il-
lustrated in Figure 4 because of the mathematical semantics
at the basis of the implementation of the ESTEREL language.
For example, the EndKill signal is used for a connection
with the real-time software, while the Abort_Local signal
is connected to the application controller.

3.2.3. The ROBOT-PROCEDURE and the MAESTRO Language

In the ROBOT-TASK, the predominant concern is to address
the continuous automatic control aspects relating to their re-
alization. On the contrary, the ROBOT-PROCEDURE (Espiau,
Kapellos, and Jourdan 1995) aims to coordinate the ROBOT-
TASKs to complete a mission. This puts the stress on reactiv-
ity handling. Here also, reactivity is formally handled within
the context of reactive systems theory, as described next.

As with the ROBOT-TASK scheme, a systematic and struc-
tured way of specification is adopted to formalize a ROBOT-
PROCEDURE. However, unlike the ROBOT-TASK, the ROBOT-
PROCEDURE is a stand-alone entity that propagates only un-
recoverable errors outside its scope. It comprises:

* asetof preconditions that need to be fulfilled before the
main program starts;

* amain program (nominal execution of the action) com-
posed of ROBOT-TASKS, ROBOT-PROCEDURES and
conditions;

* aset of postconditions that induce the end of the pro-
cedure;

* a set of reaction rules (and eventually assertions) to
process every exception; and

* apredefined behavior for the logical coordination of the
previous items.

The exception events are either reported by the participat-
ing ROBOT-PROCEDURE. These elements are coordinated as
follows: the main program is activated after satisfaction of
the preconditions and normally ends when the postconditions *
are satisfied. If an exception occurs, this nominal execution
is aborted and replaced by the specified handling program.

To specify the ROBOT-PROCEDURE, we propose the MAE-
STRO language, a well-defined high-level specification for-
malism (Coste-Maniere and Turro 1997). Using this lan-
guage, the user reasons in terms of actions (namely, ROBOT-
TasKs and ROBOT-PROCEDURES) to be arranged through var-
ious types of intuitive, classical, and/or reactive operators.
The specification i$ independent of the target model into
which it can be translated and hides many programming
tricks, such as additional signals required by a modular de-
composition.

MAESTRO offers several kinds of constructs to specify the
main program and conditions, as illustrated in Figure 5. They
comprise:
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* requests to launch ROBOT-TASKS or ROBOT-
PROCEDURES;

* classical control structures such as SEQUENCE, PAR-
ALLEL, and LOOP to compose the ROBOT-TASKs and
ROBOT-PROCEDURES; and

¢ a preemptive statement, Do/UNTIL, which aborts its
body execution if a particular event occurs, This event
may characterize the execution of a ROBOT-TASK (an
exception or its end, for instance) or be produced by
an external observation function. The Do/UNTIL con-
struct may also include a reaction to be executed only
if the condition actually holds.

Variables and types are provided: The RoBOT-TAsKs can
be parameterized at launch time or retum data upon termina-
tion. Because the aim of ROBOT-PROCEDUREs is to specify a
behavior, no computation is allowed on variables; their pur-
pose is to store the value returned by a given ROBOT-TAsK. In
turn, this value may be used to parameterize another ROBoT-
TAsk.

Once the mission has been specified with MAESTRO, it
is necessary to produce a controller that can be both ver-

ified and executed. As with the ROBOT-TASK, the con-
troller is automatically generated into the ESTEREL language.
Thus, the direct benefits of using ESTEREL are accessible
with no need for the user to master its programming. Of
course, the complexity of the ESTEREL controller is greater
than the high-level MAESTRO specification written by the
user because it requires merging the following building
blocks:

* ageneric skeleton that expands the interface of the con-
troller with the real-time environment and composes,
in parallel, all the controllers of the ROBOT-TAsKs and
ROBOT-PROCEDURES involved in the mission. In ad-
dition, the sequencing protocols required to guarantee
good dynamics properties of the system are added here
(e.g., to guarantee that an actuator is not addressed by
two control laws simultaneously or to minimize the time
during which a physical resource is not controlled [Si-
mon, Kapellos, and Espiau 1996]);

* the ROBOT-TAsKs controllers, which are built by ex-
panding abstract views that convey all the necessary
information to individually control the execution of the
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Fig. 5. The MAESTRO program, illustrating the programming of an underwater mission.

RoBOT-TASKs. These result from the user’s specifica-
tions of the ROBOT-TASKs: preconditions, exceptions,
postconditions, the type of data produced and consumed
by the action, and the physical resource to which the
RoBOT-TASK is dedicated; and

¢ the ROBOT-PROCEDUREs controllers, which are ob-
tained by expanding the MAESTRO specification. Each
operator has its own translation into ESTEREL, thus
defining its operational semantics.

4. Formal Verification

Formal verifications and hybrid simulations are two comple-
mentary methods available to validate a robot controller.

With the formal verification, we can formally prove that
the system will behave as expected. From the automatic
control point of view, this requires, for example, obtaining
theoretical results of stability and convergence. For instance,
concerning the software aspect, it is necessary to formally
verify that the critical parts of the system will not have dead-
locks or that they will react to successive events exactly as
specified (cf. Section 4.2). Furthermore, the introduction
of discretization and synchronization issues between pieces
of code can have important consequences for the resulting
behavior, which again requires the use of formal analysis
procedures (cf. Section 4.1).

There are still theoretical issues with formal methods that
remain unresolved. Therefore, further investigation is neces-

sary to study the behavior of the controller using simulations.
Our specific approach to the simulation of hybrid systems is
described in Section 5.4.

4.1, Verification of the Synchronization Skeleton of a
ROBOT-TASK

We are interested here in examining the effects of some tem-
poral issues, which appear inside the ROBOT-TASK specifica-
tion, on its overall behavior (Simon, Castillo, and Freedman
1995). We consider the set of MODULE-TASKs that consti-
tute the ROBOT-TASK, without taking into account scheduling®
aspects. Verifications can then be carried out using the syn-
chronization skeleton of the ROBOT-TASK, i.e., a description
of the temporal and synchronization constraints that exist in-
side the set of MODULE-TASKs. This description takes into
account the MODULE-TASK period and duration, the ordered
Iist of associated communication ports, and the kind of syn-
chronization associated with connected ports.

Design inconsistencies may arise in several ways. Struc-
tural deadlocks are owing to the synchronization structure
itself, independent of the numerical values of temporal at-
tributes. In addition, badly chosen numerical values of tem-
poral attributes, such as task period and duration, may lead
to temporal inconsistencies and unsafe (e.g., nonperiodic)
behavior of the ROBOT-TASK, even if it is free of structural
deadlocks.
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Structural deadlocks may be associated with circularity in
inter-MODULE-TASK communication. Other structura] dead-
locks are more subtle and emerge when the order in which
a MODULE-TAsK communicates over multiple ports is incor-
rectly specified. In the example shown in Figure 6, MobuLE-
TASK 2 blocks while waiting to “read” from MoDULE-Task
3, which blocks MODULE-TASK 1 from “writing,” which in
turn blocks MODULE-TAsk 3 from “reading.” Clearly, this
structural deadlock may be simply eliminated, but identify-
ing such deadlock on the graphical user-interface screen js
usually difficult because of the complexity of some control
laws when many synchronizing links are interleaved.

Therefore, we need modeling and analysis tools to au-
tomatically check for deadlock avoidance in the network
of synchronized MODULE-TAsKs. Among various model-
ing tools, Petri nets theory (Murata 1989) provides a simple
and efficient way to carry out this task. Besides modeling
capabilities, a Petri net can be analyzed in a formal way to
obtain information about the dynamic behavior of the mod-
eled system.

As shown in Figure 7 on the left, the sequential behavior of
the simplest periodic MoDULE-Task (reading an input port,
performing a calculation, or writing to an output port) may
be modeled by a condition/event Petri net with one transi-
tion associated with each input or output port and a timed
transition associated with the MODULE-Task computation.
Periodic MODULE-TasKks are synchronized with a real-time
clock that is also modeled by a Petri net. Using these Petri
net models for the MODULE-Tasks and synchronization pro-
tocols, we are able to define the Petri net model of the set of
synchronized MODULE-TAsks illustrated in Figure 6.

Because each place has just one input transition and one
output transition, the MODULE-TAsk behavior is determin-
istic, and the resulting Petri net is a so-called connected
marked graph, which exhibits a useful structural property:

marked graph is live if and only if the initial marking places
at least one token in any direct circuit of the Petri net,

A simple algorithm using linear programming with inte-
gers (Murata 1989) allows us to compute the circuits and
therefore draw conclusions about the liveness of the Petri
net model of the set of MODULE-TASKs. This algorithm
has been encoded inside 2 C package, allowing us to au-
tomatically build the Petrj net model from the graphical user
interface of ORCCAD, to search for the directed circuits, and
to perform the liveness analysis.

Using this package, the directed circuits of Figure 7 may be
identified. If we consider the initial marking corresponding
to all three MODULE-TAsks waiting for activation (places p1,
P6, p11 marked), the reader may verify that one circyit (the
dotted line) has no token and therefore that the marking is
not live.

Temporal inconsistencies can occur in complex networks
of MODULE-TAsKs, in which the interleaving of computing
paths can hide, for example, multiple synchronization, As
a result, the beginning of the execution of a MODULE-TASK
can be delayed at each activation of the control law, leading
to missed deadlines.

Such a situation can be checked by observing the evolution
ofthe reachability graph of the Petrinet until either the normal
completion of the ROBOT-TASK or a deadlock occurs. In
fact, a safe timed Petri net will reach a steady-state (periodic)
behavior after a finite time without being trapped in a sink
place. Searching for this steady-state behavior consists of
going through the reachability graph unti] a marking already
visited is once again reached. This operation is usually faster
than a systematic exploration of the reachability graph up to
the completion of the RoBOT-TaAsk,

As an alternative, we note that algebraic methods for an-
alyzing timed Petri nets are now emerging e.g., algebra on
the (max, +) semi-ring (Baccelli et al. 1992). Indeed, since
our basic Petri net models are timed-event graphs, they can
be translated into a linear model in the (max, +) algebra, thus
allowing us to exploit the (max, +) counterparts of classj-
cal concepts in system theory, such as state-space recursive
equations, transfer functions, or feedback loops. In this way,
it would be possible to analyze both the transient and asymp-
totic behavior of our multitasking controller implementations
within the framework of discrete-event dynamic systems and
to evaluate their performance, €.8., as expressed by token-
production rate,

4.2. Logical and Temporal Verifications

Both logical and quantitative temporal analyses can be per-
formed on the RoBoT-Task and the ROBOT-PROCEDURE,
Logical analysis is performed using behavioral methods
(Boudol et al. 1990) and theorem-proving techniques (Kahn
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Fig. 7. A Petri net model of the three MODULE-TASKs with deadlock.

1987), while real-time model-checking methods (Henzinger
etal. 1992) are used for temporal verification (Espiau, Kapel-
los, and Jourdan 1995).

The paradigm of specification-translation provides two
representations, which are semantically equivalent. Thus,
it becomes possible to progressively apply the verification
process at every step of the design process, from the most
abstract form (i.e., a MAESTRO program) to the most detailed
form (i.e., an ESTEREL program and its corresponding au-
tomaton). As a consequence, the “correctness” of the con-
troller is ensured at each step of the translation. Two classes
of properties can be distinguished:

» “structural properties” that can be checked indepen-
dently of a particular application. (Some are enforced
by construction and others can be checked by the user
of the ORCCAD software environment) (see Section 5);
and

¢ properties related to the coherency of the specification
with respect to application-dependent requirements that
can be formulated interactively by the end user.

It is well known to practitioners of formal verification
methods that the verification process is all the more well
supported if it is integrated early in the development. This
preoccupation led us to design the MAESTRO language (cf.
Section 3.2.3) in a formal framework that enables one to ap-
ply theorem-proving methods to the corresponding programs.

Special emphasis was put on the structure of the gener-
ated ESTEREL code, for which the main elements are now
recalled (a complete description can be found in [Espiau,
Kapellos, and Jourdan 1995]). The generated controller is
designed as the parallel composition of a set of ESTEREL
modules (denoted by boxes in Figure 8), which are synchro-
nized by systematic signal exchanges (arrows interconnect-
ing boxes). Modules labeled action._i represent the controller
of each action (ROBOT-TASK or ROBOT-PROCEDURE), while
the module coordinator deals with their synchronization; the
exchanged signals indicate the significant instants of their
evolution (start, end, and abort). As explained below, the
detection of these instants is relevant to the verification pro-~
cess, for example, when the property to verify is expressed in
terms of actions (e.g., check that the execution of two actions
cannot overlap).

In the sequel, we present the nature of the most significant
results associated with the verification process as applied to
the design of an application.

4.2.1. Structural Properties
4.2.1.1. Structural properties of the ROBOT-TASK
We proved the correctness of the predefined generic structure

of the logical evolution of a ROBOT-TASK and, subsequently,
that the behavior of a ROBOT-TASK is correct independent of
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a specific that (i.e., whatever the types and the number of
events used in the ROBOT-TASK automaton) (Espiau, Kapel-
los, and Jourdan 1995). Itis “nonblocking,” and it adequately
handles the different exceptions and abortion requests in any
internal state. Therefore, the basic objects (i.e., the ROBOT-
TAsks) composed for the design of complex robotic actions
are guaranteed to have “good” properties.

4.2.1.2. Structural properties of the ROBOT-PROCEDURE

The user is more freely involved in the design process of the
ROBOT-PROCEDURE than in ROBOT-TASK since it is at this
step that one specifies the logic of the application. Hence, all
structural properties cannot be enforced by construction.

However, critical parts of the behavior are hidden from
the end user, and the corresponding structure of the ROBOT-
PROCEDURE is constrained to be generic, thus allowing us
to obtain partial results on structural properties. In partic-
ular, access to the actuators of the controlled physical re-
source is guaranteed to be nonconflicting when switching
from one ROBOT-TASK to another and is as fast as possible
to maintain the stability of the system (cf. the existence of a
module labeled “transition,” see Figure 8). As an example,
consider the automaton shown in Figure 9. This illustrates
the sequential execution of five different ROBOT-TAsKs for
which the start and stop commands are symbolically renamed
START.servoingand Servoing _stopped. We observe that
for each task switching, the stopping and starting signals are
correctly ordered and the transition takes place in a single
automaton transition. It thus minimizes the latency when
switching from one control law to another.

?Sdrvging_stoped
. ISTART_servoing

‘ ?Servoing_sto g
. ISTART_servoing

Fig.9. An example of a transition between two ROBOT-
TASKs.

Furthermore, incoherent specifications are detected dur-
ing the specification of a ROBOT-PROCEDURE with MAESTRO.
The generic structure of the actions and the semantics of the
MAESTRO’s operators are expressed with natural semantics
rules. They enable us to check the user’s statements with




the actions and their scope. For example, a program is only
considered valid when

* all exceptions are resolved;

¢ possible deadlock or endless wait sources (e.g., a loop
statement or ROBOT-TASK without postconditions) are
encapsulated by a preemptive construct (i.e., an until
statement); and

* variables are coherently used (type checking and the
detection of variables not assigned).

The end user is thus provided with automatic and transpar-
ent preliminary verification of the coherence of the MAESTRO
programs. The origins of the errors detected while perform-
ing verification of the MAESTRO specifications are directly
expressed in terms of actions and conditions (e.g., “ROBOT-
TASK.i not encapsulated in a pre-emptive statement”), and
subsequently are directly understandable by the user. Once
the MAESTRO specification has been checked according to
the above properties, the same properties are subsequently
ensured on the generated ESTEREL controller because the gen-
erated ESTEREL code exactly matches the semantics of each
operator. Then, more extensive and detailed verifications can
be performed on the ESTEREL formalism (as explained in the
sequel).

4.2.2. Coherence with the Application-Dependent Require-
ments

The conformance of the ROBOT-PROCEDURE behavior with
respect to the mission constraints can be verified interactively.
These constraints have to be expressed in a generic way, as
relationships between actions, between events and actions,
or between events. In the verification process, the user must
indicate the relevant set of events and/or actions related to
the constraints to be checked. A global automaton is then
abstracted and reduced by well-chosen signals among those
considered in the translation of the ROBOT-PROCEDURE into
its automaton model via ESTEREL. For example, the follow-
ing property can be formally proven to be true during the
execution of the underwater mission of pipeline inspection:
“The arm will move to perform the inspection if and only if
the base is stabilized.” This process will be further detailed
in Section 6 (cf. Figure 14).

5. Implementation: ORCCAD Tools

The complete design of a robot controller requires the in-
tegration of all the theoretical concepts introduced in the
previous sections. The objective is to provide, in a coher-
ent environment, a set of connected dedicated tools that fully
benefit from these theories (efficiently applied to tackle all the
specificities of the robotics domain) but hide their implemen-
tation details. The purposes are thus to enforce a separation
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of concerns, insulating the user from unnecessary detail and
severing machine dependencies. Thus, the ORCCAD envi-
ronment has been designed as a toolbox, where in-house and
existing established tools are coherently organized around
the ORCCAD object-oriented kernel (see Figure 10).

5.1. The ORCCAD Kernel

The main entities described in Section 3 constitute the
ORcCAD kernel. It is implemented in an independent library
that gives access to a C++ class hierarchy. The instantiation
of all of these entities allows the user to describe a complete
robotic application. '

The module is the elementary unit at the basis of the im-
plementation of the ROBOT-TASK. Once designed through
the ORCCAD graphical user interface, modules are stored in
a library according to their types, which can be algorithmic,
physical resource, or ROBOT-TASK automaton.

A RoBOT-TASK in the ORCCAD kernel consists of a set of
interconnected modules, to which temporal attributes have
been associated (cf. Section 3.1). The synchronization mech-
anisms on the ports are also specified. Coherence tests are
performed during the specification phase also carried out with
the ORCCAD graphical user interface. When the specifica-
tion is “correct,” the abstract view of the ROBOT-TASK is
produced. It includes the set of typed events involved in
the reactive management of the ROBOT-TASK, the concerned
physical resource, and its parameters.

AROBOT-PROCEDURE s a collection of ROBOT-TASKs, and
its logical composition is specified with the MAESTRO lan-
guage. MAESTRO has been prototyped using the CENTAUR
generic interactive environment (Borras et al. 1988) and
handles the ROBOT-TASKs through their abstract views. A
user-friendly structured editor is directly available to the end
user to program the application with simple mouse selections
(cf. Figure 5). Internal semantic validation is performed on
the specified ROBOT-PROCEDURE within the CENTAUR en-
vironment before the ESTEREL code is generated for further
verification or execution using theorem-proving techniques.

So far, the MAESTRO language is still in a prototype version.
Thus, the logical composition of the ROBOT-TAsSKs must still
be partially encoded directly in ESTEREL through a graphical
user interface.

5.2. The User Interface

A graphical user interface provides a convenient way to spec-
ify arobot controller according to the ORCCAD methodology.
The graphical part, written using the ILOG-VIEwWS (Tlog 1995)
class hierarchy, is the front end of the kernel; the objects
required for the specification of a robotic application are in-
stantiated through this interface. For example, modules and
RoBOT-TASKs are instantiated as illustrated Figures 11 and
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Fig. 11. The OrccAD module editor.

13. Tools for verification (cf. Figure 12), simulation, or exe-
cution can also be reached from this interface.

5.3. Verification of the ESTEREL Controller

Once the application controller has been built, verifications
must be performed to improve its reliability (cf. Section 4.2).
Thus, the next step consists of providing the end user with
a simplified interface to the adequate verification tools. The
complexity of such a process is hidden, and only the relevant
results are provided. This facility is offered in the OrRccaD
environment (see Figure 12) to perform the observation of
the controller automata, which results from the compilation
of the associated ESTEREL program. The system transforms
criteria expressed by the user in terms of conditions and ac-
tions into observation criteria that is understandable in the
grammar of the MAUTO (Roy and de Simone 1990) and
Fc2rooLs (Bouali et al. 1996) verification environments
(Fernandezet al. 1996). These criteria, which appear obscure
to nonspecialists of formal verification, can be automatically
generated using the abstract views of each ROBOT-TASK and
the generic structure of the ROBOT-PROCEDURES. Then, the

observation of the controller automaton with respect to this
criterion is carried out in MAUTO or Fc2ToOoLs. The resulting
reduced automaton can be displayed in a graphical represen-
tation readily understandable to the user for interpretation.
Afterward, it may be necessary to respecify parts of the ap-
plication that do not meet the criteria to overcome defects.

#

5.4. Simulation

The ORCCAD environment facilitates the access to tools ded-
icated to simulations dealin g with logical only and combined
logical and continuous (i.e., hybrid) aspects of the RoBoT-
TAsks and ROBOT-PROCEDUREs.

5.4.1. Logical Simulation

With the XES simulation environment (Berry 1997), the user
caninteractively run the resulting ESTEREL controller through
an intuitive graphic interface. Thus, one can manually trigger
input events, such as preconditions, exceptions, and postcon-
ditions, and subsequently check that the sequence of output
events generated (e.g., launch or stop the commands to the




Fig. 13. The RoBOT-TASK structure for the control in the operational space of the PA10 arm.
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physical device) effectively reflects the expected logical be-
havior.

5.4.2. Hybrid Simulation

Owing to the present lack of tools for fully predicting and
formally analyzing the performance of a nonlinear system
controlled by a multirate architecture, a global simulation
plays a very important role in the design and test of hybrid
systems and remains an essential component of an integrated
environment. A main characteristic of the SIMPARC simula-
tion package (Astraudo and Borrelly 1992) is that it allows
one to simulate both the plant dynamics and important tem-
poral characteristics of the controller (such as sampling rates
and communication delays), including the basic features of
real-time operating systems.
The main objects modeled by SIMPARC are:

* adescription of the controller, using a library of hard-
ware components including processors, memory, real-
time clocks, converters, etc. Numerical attributes such
as converter resolution or bus-communication delays,
may be set in these components through the dedicated
graphical user interface of SIMPARC (see Figure 15);

* a model of the physical system under control, which
must be given as a set of ordinary differential equa-
tions. During a simulation, this model is numerically
integrated coherently with the evolution of time in the
controller;

* the basic features of a real-time operating system, such

" as real-time tasks, shared memory, semaphores, and
message queues;

* someray-tracing-based models of sensors, which allow
us to simulate acoustic sounders, multibeam sonars, or
video cameras; and

* the robot environment, which is modeled using facets.

Owing to the simulation model of the operating system,
the control code generated by ORCCAD can be mapped on
the SIMPARC simulated architecture in a structure similar to
the one of the downloadable code.

As a result, simulations of the whole hybrid system can
run under SIMPARC. Although such simulations have already
been conducted, automatic generation of the simulation pro-
gramis not yet available in the current version of the ORCCAD
environment.

5.5. Execution

The execution component of the system translates a ROBOT-
PROCEDURE specification into a real-time C++ code for a
given robotic system. Achieving this requires two steps.

First, ORCCAD produces code that is independent of the real-
time targeted environment. Then, this code is further inte-
grated with its run-time libraries. The whole robot-control
software is made of three parts:

* aset of real-time tasks, usually periodic and synchro-
nized according to consumer/producer protocols, ded-
icated to the computation of the continuous aspects of
the system (mainly the control laws);

* the discrete-event automaton directly generated in C by
the ESTEREL compiler; and

* the interface between the two previous parts. Its role
is double: it transforms meaningful discontinuities oc-
curring in the continuous aspects of the system into the
discrete events that are fed to the automaton; vice versa,
it links the appropriate requests made to the real-time
layer with each output event produced by the automa-
ton.

The ORCCAD execution subpart (see Figure 10) consists
of an application-independent run-time library and the C++
code generator used to automatically implement the robot
controller specified by the user. The target system sup-
ported by the run-time library is the real-time operating
system VXWORKS 5.3 (WindRiver Systems 1995). So far,
the generated code is mono-processor and mono-rate.

6. A Simple Example: An Underwater Mission

To illustrate the concepts described in the previous sections,
we have chosen to guide the reader through the design of
a complex underwater application. Further details on this
application can be found in Simon, Kapellos, and Espiau
(1996).

6.1. Experimental Setup and Mission Scenario
6.1.1. The Experimental Setup s

VORTEX (cf. Figure la)isa remotely operated vehicle (RbV)
designed by Ifremer as a testbed for control laws and con-
trol architectures. VORTEX is equipped with a set of screw
propellers and traditional sensors, such as a compass, in-
clinometers, a depth meter, and gyrometers, allowing it to
measure its internal state. A video camera is used for target-
tracking tasks, and a belt with eight ultrasonic sensors allows
us to perform positioning and wall-following tasks. A 7 de-
gree of freedom Mitsubishi PA10 arm is mounted underneath
the vehicle for manipulation tasks.

Control algorithms for the arm and the free-floating base
are computed on two different external VME backplanes.
Synchronization events and state-measurement data are ex-
changed between the controllers, which are each running
RoBOT-TAsKs and ROBOT-PROCEDURE: related to both sub-
systems.




6.1.2. The Mission Scenario

The following mission scenario involving arm/base coordi-
nation of the VORTEX vehicle within its test pool has been cho-
sen (preliminary results were obtained in the UNION project
[Rigaud et al. 1998]). At a given depth, with the arm folded
in its parking position and locked using the brakes, the ve-
hicle swims ahead to a setpoint in front of a wall. There,
VORTEX stabilizes using the acoustic sensors. This ends the
first (initialization) phase of the mission.

During the second phase, the vehicle remains stabilized
while the arm is in operation. The arm is unlocked and
driven to several predefined positions while vehicle stabil-
ity is monitored. In reaction to a loss of stability, the arm
motion is frozen until stability is recovered. On completion
of arm motions or when an operator decides, the arm is locked
again in parking position and the vehicle returns to its initial
position.

The system operator also defines several exceptions and
recovery behaviors. At any time, if a water leak is detected,
hardware fails, or the depth limit is crossed, then the mis-
sion is aborted and an emergency ascent is performed. Also,
the vehicle must never swim with an unlocked arm. It is
worth noting that these recovery behaviors are mission- and
context-dependent (e.g., a loss of vehicle stability is consid-
ered to be fatal during the initialization phase, while it leads
to synchronizations between arm and vehicle actions during
the working phase).

6.2. The Design Process

To achieve this mission, various ROBOT-TASKs and ROBOT-
PROCEDURES have to be specified, verified, and implemented.
Let us consider the design of one of each entity: the ROBOT-
TASKk dedicated to the control motion of the arm and the
ROBOT-PROCEDURE associated with the second phase of the
mission, which consumes the described ROBOT-TASK.

6.2.1. AROBOT-TASK
6.2.1.1. Control law design

Controlling the PA10 arm during its motions requires us
to specify a control law belonging to the class of decou-
pling/feedback linearizations in a dedicated task space. The
goal assigned to the manipulator is defined as the regulation
to zero of an n-dimensional output function e(g, t) (where ¢
is a vector of generalized coordinates), aimed at presenting
the user’s objective. In the present case, the output function
includes the tracking by the arm tip of a trajectory in the six-
dimensional space of frames SE(3). Because the robot has
seven joints, one degree of freedom is available for simulta-
neously achieving a secondary task, which can be expressed
as the minimization of a scalar cost function h,(q). Classical
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secondary goals of that kind are the avoidance of kinematic
singularities or of joint limits, the minimization of the veloc-
ity norm, etc. The two tasks are finally gathered into a single
task through the expression

oh
e = erl + a(lg — JFJI)a—qs,

where e; expresses the trajectory tracking task

o = (P@—P®
! Algt)y )’

where A is a parameterization of the attitude error, P is the
position of the tip, and o is a positive weighting factor. (J; =
%11) is the Jacobian matrix of e;.

The final control law is

o\ 1

~ { Oe de

= —-kM|—= —q
<8q> G (p,De + aqq

& o\ 1
ae ~ Py ae A
+ 5{) +N-M (a—q> f

Here, I is the atray of control actuator torques, M and N
represent the Lagrangian dynamics, k, 44, G, and D are tuning
parameters, and f comes from the second derivatives of e.
The “hats” indicate that more or less complex models of the
concerned terms can be used. In fact, it should be emphasized
that the ROBOT-TASK designer may easily select the adequate
models and tuning parameters in ORCCAD, since they belong
to some predefined classes in an object-oriented description
of the control.

6.2.1.2. Specification of the ROBOT-TASK

The method of Section 3.1 can now be used to create a ROBOT-
Task called PA10TTSE3. Figure 13 provides a graphical
representation of this ROBOT-TASK. Most modules are al-
gorithmic, periodic modules instantiated from a library. For -
example, the KIN module represents the model of the kine-
matics of the arm. The JL_OBS is an observer that sends an
event of Type 2 to the ROBOT-TASK automaton (cf. Sec-
tion 3.2) in case of reaching a joint limit to trigger a corre-
sponding predefined external exception handling. The PA10
module provides a gateway to the physical system through
user-defined drivers. Besides this scheme, which looks like
a classical block diagram, numerical and temporal values are
added to the modules in view of automatic real-time code
generation.

Y

6.2.2. A ROBOT-PROCEDURE

The complete description of the operational mission naturally
requires the description of four main ROBOT-PROCEDURES:
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the first procedure prepares the vehicle for cruising; the
second procedure is used to navigate in the pool until the
vehicle reaches the inspection place and is stabilized; the
third ROBOT-PROCEDURE coordinates the actions of the plat-
form and the arm to simulate the inspection of an underwater
structure with the arm tip; and the final procedure drives the
vehicle to its homing position.

The whole mission requires 11 ROBOT-TASKs. The
PA10TTSE3 ROBOT-TASK described previously forms the ba-
sis of the third ROBOT-PROCEDURE. Its Specification is illus-
trated in Figure 5 using the MAESTRO language (cf. Section
3.2). In conformity with the specification of the mission sce-
nario, this ROBOT-TASK is launched in parallel to the RoBoT-
TAsk dedicated to the basis stabilization. Each time the basis
becomes unstable, the brakes of the arm are activated until
stability is recovered.

6.2.3. Formal Verification: Coherence with Requirements

Once the ROBOT-PROCEDURE is specified using MAESTRO,
the corresponding ESTEREL code can be automatically gen-
erated and the resulting automaton is ready for verification,
Figure 14 illustrates the verification of one of the constraints
expressed in the mission scenario. Here, we want to certify
that the arm is motionless when the platform is recovering
stabilization using the ultrasound sensors, The ROBOT-TAsks
involved in this property are KEEPSTABLEUS and PA10TTSE3,
Therefore, we observe and reduce the global automaton
with respect to the signals associated with the start and end
of both of these actions, namely, STARTKEEPSTABLEUS,
BFKEEPSTABLEUS, STARTPA10TTSE3, BFPA10TTSE3, and
ABORTPA10TTSE3.

The resulting automaton shows that no overlapping oc-
curs and, subsequently, that both tasks always run in se-
quence: From the state 0C3, either KEEPSTABLEUS is ex-
ecuted (state 0c4) or PA10TTSE3 (state 0c5). In particu-
lar, if KEEPSTABLEUS runs from state 0c5, the PA10TTSE3
task is aborted, and is only reactivated after the end of the
KEEPSTABLEUS task.

6.2.4. Simulation: Use of SIMPARC

Using the SIMPARC software package, we are able to per-
form realistic simulations of the VORTEX complex nonlinear
dynamic system, Figure 15 shows the model of the VORTEX
controller. The coupled dynamics of the robot, including
drag, lift, and hydrostatic forces, are computed. According
to the limits of the actual hardware, the sampling rates of the
vehicle control and arm control are set to 100 ms and 10 ms,
while the acoustic sensors are triggered every 360 ms.
Figure 16 shows the pitch and roll orientation errors of the
vehicle stabilized in a pool corner using the ultrasonic sensors
during a fast motion of the arm. The first and second joints
are turned by 90° in 3 5. Owing to the rather large hydrostatic
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Fig. 16. Roll and pitch errors during arm motion.

stability of VORTEX, the vehicle does not capsize even if it is
not actively controlled. However, closed-loop stabilization
with the ultrasound sensors reduces both transient and steady-
state errors.

Tuning some parameters of the simulation file rapidly
shows that the main limitation in the ROV stabilization per-
formance comes from the low sampling rate of the acoustic
sensors. Therefore, should an improvement in the stability
of the underwater platform be needed, it would be more ef-
fectively obtained with an upgrade of the sensor electronics
rather than with an increase of the computing power, The
information is of direct benefit to the system designer.

6.2.5. Experimental Results

Figure 17 represents experimental results obtained when ex-
ecuting the aforementioned missjon scenario (Kapellos et
al. 1997). The top plot shows the front acoustic sensor
signals, which are used in particular to stabilize the vehi-
cle in front of the pool’s wall while the arm is in motion. The
bottom plot shows the pitch angle of the vehicle, which is the
best way to detect the moments during which the arm is jn*
motion, owing to the low accuracy of time profiling between
the two backplanes.

7. Summary and Future Trends

The approach described in this paper has been success-
fully applied to various kind of robots, such as ma-
nipulators, wheeled mobile robots (Pissard-Gibollet et
al. 1995), free-floating underwater manipulation systems
(Coste-Manigre, Peuch, and Perrier 1995; Simon, Kapel-
los, and Espiau 1996), and the automatic driving of elec-
trical cars (Kapellos et al. 1995). A freeware “frozen” ver-
sion of ORCCAD, described in Section 5, is now available
(http://www.inrialpes.fr/iramr/pub/Orccad/). It is expected
that it could also be used jn other fields of automation and
embedded systems, such as computerized railway systems
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Fig. 14. Conformity with one of the specifications for the mission scenario.
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Fig. 15. The SIMPARC model of the underwater system hardware.

and the automotive industry. However, aside from its suc-
cess, we consider that this work still leaves several questions
open.

* Tools improvements—multirate control could provide
optimization in the use of computing power. Cur-
rently, this is an unresolved problem for embedded
systems. A connection between ORCCAD and SYNDEX
(Lavarenne et al. 1991) is forecast to provide a gate-
way toward code optimization on distributed architec-
tures, such as networks of microcontrollers. Concern-
ing the high-level specification of the logical behavior
of RoBOT-TASKs and ROBOT-PROCEDURES, which is

SHARED MEMORY

— ARM CONTROLLER

currently done through a textual approach with ESTEREL
and MAESTRO, we also envision to offer the user a
StateCharts-like graphical approach.

Logical behaviors distribution—while most previous
applications used a centralized implementation of the
logical behaviors in a single automaton, new problems,
such as the control of the teleoperated system depicted
in Figure 1, raised the problem of distributing the syn-
chronous control code on an asynchronously distributed
target. Distributing the ROBOT-PROCEDURE’s logical
behaviors may improve the system’s reliability against
communication faults by giving some autonomy to the
subsystems. However, setting asynchronous links be-
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Fig. 17. Some experimental results of executing the mission
scenario.

tween the local automata leads to loosing the capability
of formal verification for the global system. The new
techniques for distributing synchronous specifications
on asynchronous distributed targets while preserving
global verification capabilities that are emerging from
the synchronous programming community (Caspi, Gi-
rault, and Pilaud 1994) deserve to be studied and inte-
grated in our tools.

* Handling of symbolic information—in practice, lo gicis
necessary but not sufficient. Clearly, an end user has to
specify some issues in the form of symbolic (or linguis-
tic) variables and understand messages from the system
with the same semantics. This points out the necessity
for a system like ORCCAD to handle symbolic aspects
(inputs, outputs, and computations) with the same rigor
as it does for events or continuous variables. Because
the external views of the ROBOT-TAsKs and ROBOT-
PROCEDUREs are pure discrete-event systems described
by automata, it is expected that the application of the
supervisory control theory for discrete event systems
(Ramadge and Wonham 1989) may provide a solution
to automatically generate a safe controller from an end
user’s constraints.
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