
Macsum agregation learning and missing values

Strauss Olivier1 and Agnès Rico2

1 LIRMM, Université de Montpellier, CNRS, France
2 ERIC, Université Claude Bernard Lyon 1, CNRS, France
Olivier.Strauss@lirmm.fr Agnes.Rico@univ-lyon1.fr

Abstract. In recent work, a new kind of aggregation method has been
proposed under the name of MacSum aggregation function that can be
viewed as an interval valued aggregation function that is controlled by a
precise vector of weights. This aggregation can be seen as a real valued
extension of the possibility based aggregation. In this article, we show
that a MacSum aggregation can be learned by using an input-output
database where some input vectors have missing values.

Keywords: Interval valued aggregation · Choquet integral · Non mono-
tonic set functions · Missing values · Image processing.

1 Introduction

In many applications (chemistry, medicine, robotics, economy, control, etc.) it
is crucial to model the relationship between inputs and outputs of a physical
process. We’re interested here in multi-input, single-output processes (MISO),
i.e. having a real-valued input vector and a real single valued output. In this
context, linear models are widely used due to their ease of implementation and
excellent predictive power. A linear model can be seen as an aggregation function
of inputs producing an output that is nothing more than a weighted sum of
the inputs. Aggregation is then entirely defined by the weights used. If all the
weights are positive and sum to one, then a linear aggregation can be seen as
a mathematical expectation based on a discrete probability distribution formed
by the aggregation weights. From now on, we’ll call the vector of weights used
in a linear aggregation a kernel. A linear aggregation is entirely defined by its
kernel

The linear model – i.e. its kernel – is very simple to learn from a set of inputs-
outputs of the physical process to be modeled. To achieve this, more or less
sophisticated regression methods are used, with the aim of bringing the model
closer to the real process - at least on the training data, the most commonly
used method being linear regression based on Euclidean distance.

Naturally, linear models are used to model non-linear processes, with good
performance. It’s no coincidence that these models are one of the key features
of convolutional neural networks, which are currently revolutionizing modeling
approaches. However, one of the weaknesses of linear models is the difficulty of

2 O. Strauss A. Rico

accessing a measure of accuracy with which the physical process is modeled, or
to account for missing values in the train database.

In the 2000s, Loquin et al. proposed to build on the close relationship between
probability and possibility to extend the notion of linear aggregation [5]. They
propose a kind of imprecise linear aggregation governed, like ordinary linear
aggregation, by a vector of weights, called maxitive kernel, of dimension equal
to the dimension of the inputs. In this extension, an imprecise linear model can
be considered as a convex set of precise linear models. The set of kernels that
are represented by the maxitive kernel are said to be dominated by the maxitive
kernel. As shown in a number of articles (see e.g. [4]), this modeling approach
makes it very easy to take into account the imperfection of modeling a process by
a linear model, while retaining the same algorithmic simplicity. Its computation
is based on asymmetric Choquet integral [1]. However, a shortcoming of this
extension is that it can only model sets of linear aggregation functions whose
weights are positive and sum to one.

In a recent paper [7], the work of Loquin et al. has been extended to any
set of weights. Under the name of MacSum, we proposed an imprecise linear
aggregation operator ruled by a single kernel whose dimension equal the dimen-
sion of the input vector. MacSum aggregation takes as input two real vectors:
an input vector and a kernel. Its output is a real interval corresponding to the
convex set of real outputs that would have been obtained by a convex set of
linear aggregations with the same gain (the gain of a linear operator is the sum
of its weights).

The kernel of a MacSum aggregation can be learned from a set of inputs-
outputs as in the case of a classical linear aggregation [7]. Moreover, it can take
as input an interval-valued vector in order to take into account the imprecise
nature of the input data (e.g. sensor data whose precision has been calibrated).
This extension to imprecise inputs is achieved without any significant increase
in algorithmic complexity [3].

In this article, we investigate the possibility of using the intervallist nature
of the inputs to learn a MacSum model with input vectors of which some values
are missing. The problem of missing values in learning is a fairly central one, to
which we give an interesting answer here.

Indeed, most of the time, when some input values are missing, the range of
their possible values is generally known – the range [0, 255] for 8-bit quantized
values, the range [0, 5]V for a measurement voltage, the range [0.5, 1.5] g/l for
fasting blood glucose, etc. In this article, we propose to replace missing values by
their possible range of variation. We illustrate this proposal with an experiment
in image processing.

This article is organized as follows. Section 2 presents some useful notations
and definitions. Section 3 presents the MacSum aggregation model and how it
can be learnt with a dataset having some missing values. Section 4 is dedicated
to an illustrative experiment. We then conclude.

Macsum agregation learning and missing values 3

2 Preliminaries

In this section, we try to summarize the main points of three previous articles,
namely [7], [2] and [3].

2.1 Notations

– Ω = {1, . . . , N} ⊂ N is a finite set.
– A real vector of RN will be denoted x = (x1, · · · , xN) ∈ RN .
– Let x ∈ RN, we define x+,x− ∈ RN such that ∀i ∈ Ω, x+i = max(0, xi) and
x−i = min(0, xi).

– x = [x, x] is a real interval whose lower bound is x and upper bound is x.
– IR is the set of real intervals.
– A vector of real intervals is an element of IRN denoted x = (x1, x2, .., xN).

2.2 Definitions

Let us recall briefly some definitions.

– A set function is a function µ : 2Ω → R that maps any subset of Ω onto
a real values complying with µ(∅) = 0. To a set function µ is associated a
complementary set function µc defined by: ∀A ⊆ Ω, µc(A) = µ(Ω)− µ(Ac).

– A set function µ is said to be concave or supermodular iff:

∀A,B ⊆ Ω, µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B).

– A set function µ is said to be additive iff:

∀A,B ⊆ Ω, µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

3 Operator based aggregation

3.1 Operators

An operator is a set function µϕ of Ω entirely defined by a vector ϕ ∈ RN–
hereafter called the kernel of the operator – having the same dimension as Ω.
We define two operators here: the linear operator and the MacSum operator.

Let ϕ ∈ RN be a vector.
• The linear operator λϕ is defined by:

∀A ⊆ Ω, λϕ(A) =
∑
i∈A

ϕi.

Obviously, the linear operator is additive, so its complementary operator is itself.
• The MacSum operator νϕ and its complementary operator νcϕ, intro-

duced in [7], and defined as ∀A ⊆ Ω:

νϕ(A) = max
i∈A

ϕ+
i + min

i∈Ω
ϕ−i − min

i∈Ac
ϕ−i , (1)

νcϕ(A) = min
i∈A

ϕ−i + max
i∈Ω

ϕ+
i −max

i∈Ac
ϕ+
i . (2)

4 O. Strauss A. Rico

As shown in [7], the MacSum operator is a concave set function.
There is a very interesting link between linear and MacSum operators. Let

ϕ,ψ ∈ RN be two vectors of Ω, then we say that the kernel ϕ dominates the
kernel ψ iff ∀A ⊆ Ω, νcϕ(A) ≤ λψ(A) ≤ νϕ(A) (i.e. the set function νϕ dominates
the set function λψ).

We define the MacSum-core (or simply the core) of a kernel ϕ as the subset
M(ϕ) ∈ RN of the kernels of Ω that are dominated by ϕ:

M(ϕ) = {ψ ∈ RN / ∀A ⊆ Ω, νcϕ(A) ≤ λψ(A) ≤ νϕ(A)}.

3.2 Aggregation

Let ϕ ∈ RN be a vector of Ω used as a kernel.
Let µϕ a concave operator and x ∈ RN a real vector. Then we define Aµ :

RN ×RN → IR as being a µ-interval-valued aggregation function. It associates,
to any vector x ∈ RN , a real interval [y] ∈ IR via the weighting sequence defined
by the kernel ϕ by: [y] = [y, y] = Aµ(x,ϕ) with y = Aµ(x,ϕ) = Čµc

ϕ
(x) and

y = Aµ(x,ϕ) = Čµϕ(x), Č being the discrete asymmetric Choquet integral [1].
We thus define:
• The linear aggregation.
Since λϕ = λcϕ, Čλc

ϕ
= Čλϕ thus Aλ(x,ϕ) = Aλ(x,ϕ) = y and therefore

Aλ(x,ϕ) = [y, y] is a degenerate interval, i.e. a real value.
• The MacSum aggregation.
Aν(x,ϕ) = [y] = [y, y] = [Čνc

ϕ
(x), Čνϕ(x)].

Given the link between the linear and MacSum operators, we have:

∀ϕ ∈ RN ,∀x ∈ RN ,∀ψ ∈M(ϕ),Aλ(x,ψ) ∈ Aν(x,ϕ). (3)

The values of y and y can be obtained by [2]:

y =

N∑
k=1

ϕ+
bkc.

(
k

max
i=1

xbic −
k−1
max
i=1

xbic

)
+

N∑
k=1

ϕ−dke.

(
k

min
i=1

xdie −
k−1
min
i=1

xdie

)
, (4)

y =

N∑
k=1

ϕ+
bkc.

(
k

min
i=1

xbic −
k−1
min
i=1

xbic

)
+

N∑
k=1

ϕ−dke.
(

k
max
i=1

xdie −
k−1
max
i=1

xdie

)
, (5)

where b.c is a permutation that sorts ϕ in decreasing order (ϕb1c ≥ · · · ≥ ϕbNc)
and d.e is a permutation that sorts ϕ in increasing order (ϕd1e ≤ · · · ≤ ϕdNe)

with ϕbN+1c = ϕdN+1e = 0 and max0
i=1 xbic = 0 = min0

i=1 xdie.
Equations (5) and (4) are easy to derive w.r.t. the kernel (see [2]):
∀k ∈ {1, ..., N}, let be l, u the indices such that blc = k and due = k, then:

δAν(x,ϕ)

δϕk
=
(

l
max
i=1

xbic −
l−1

max
i=1

xbic

)
+

(
u

min
i=1

xdie −
u−1
min
i=1

xdie

)
, (6)

δAν(x,ϕ)

δϕk
=

(
l

min
i=1

xbic −
l−1
min
i=1

xbic

)
+
(

u
max
i=1

xdie −
u−1
max
i=1

xdie

)
. (7)

Macsum agregation learning and missing values 5

3.3 Extending operator-based aggregation to interval data

Extending linear aggregation to intervals is fairly straightforward. Let x ∈ IRN
be an interval-valued vector of Ω and ϕ ∈ RN be a vector of Ω used as a kernel,
we can define:

Aλ(x,ϕ) = {Aλ(x,ϕ) / x ∈ x} =
[

inf
x∈x
Aλψ (x), sup

x∈x
Aλψ (x)

]
, (8)

=
[
Aλ(x∗,ϕ),Aλ(x∗,ϕ)

]
.

where x∗ and x∗ are the vectors of RN such that ∀i ∈ Ω, x∗i = xi, x∗i = xi if
ϕi ≥ 0 and x∗i = xi, x∗i = xi if ϕi < 0.

As presented in [3], extending MacSum aggregation to intervals is rather
straightforward too. In fact, there are two possible ways of building this exten-
sion: the disjunctive aggregation and the conjunctive aggregation.

The disjunctive aggregation is conservative and tries not to reject any infor-
mation. It can be set as:

Dν(x,ϕ) =
⋃
x∈x
Aν(x,ϕ) = {Aλ(x,ψ) / x ∈ x, ψ ∈M(ϕ)} , (9)

= {Aλ(x,ψ) / x ∈ x, ψ ∈M(ϕ)},=
[
Aν(x∗,ϕ),Aν(x∗,ϕ)

]
.

The conjunctive aggregation tries to reduce the set of values to those for
which each set being aggregated agrees. It can be set either as:

CCν (x,ϕ) =
⋂
x∈x

Aν(x,ϕ) =
⋂
x∈x

{Aλ(x,ψ) / ψ ∈M(ϕ)}, or as: (10)

CBν (x,ϕ) =
⋂

ψ∈M(ϕ)

Aλ(x,ψ) =
⋂

ψ∈M(ϕ)

{Aλ(x,ψ) / x ∈ x}. (11)

Equation (10) means that the conjunction consists of intersecting all the intervals
produced by the MacSum aggregation for each possible entry contained in the
interval x while equation (11) means that the conjunction consists of intersecting
all the intervals produced by linear aggregation for each ψ ∈M(ϕ).

Both interpretations lead to:

Cνϕ(x) =
[

min
(
Aν(x∗,ϕ),Aν(x∗,ϕ)

)
,max

(
Aν(x∗,ϕ),Aν(x∗,ϕ)

)]
. (12)

It is straightforward that computing the derivative w.r.t. the kernel of both
conjunctive and disjunctive approaches can easily be achieved by considering
Equations (6) and (7).

3.4 Learning an operator based aggregation

Learning an operator based aggregation means that, based on a dataset of M
input-output pairs

{
(xj , yj)

}
j=1...M

, it may be possible to find a kernel ϕ̂ ∈ RN

that ensures that the valueAµ(xj , ϕ̂) is as close as possible to yj ∀j ∈ {1, . . . ,M}

6 O. Strauss A. Rico

(where µ can be either λ or ν). The most common method consists of minimizing,
for the entire database, the quadratic difference between the prediction given by
the aggregation function and the measurement. For the linear modelling, this
can easily be achieved iteratively using the gradient descent method.

Regarding the MacSum modelling, in [2] it has been proposed to minimize
the quadratic distance between yj and the center of the interval Aν(xj , ϕ̂). We
propose to use the same method, with the difference that the derivatives, used
in the gradient descent, are calculated considering the extreme values x∗ and x∗,
according to the intervallist extension chosen.

In this work, since at least one value of the interval-valued input is expected to
reduce the discrepancy between predicted and measured values, the conjunctive
extension seems the most appropriate.

4 Experiments

We propose to evaluate the ability of the MacSum operator to take into account
input data with missing values in order to learn its kernel. As the vast majority
of operations in image processing are based on convolution operations (which
can be assimilated to linear aggregations), we propose to learn the kernel of a
linear convolution on the basis of a set of examples. To avoid favoring the linear
approach too much, we propose to model an infinite-response convolution with
a finite-response model. To achieve this, we compute the horizontal gradient of
a set of images with the Shen-Castan operator [6], which is an infinite impulse
response filter, and model it by a convolution over a 5× 5 neighborhood. In this
experiment, we show that learning can still be performed even in the event of
partial contamination of the database by missing data.

4.1 Data-set

As with article [3], we used a thousand 600 × 600 natural images sourced from
the CLEF3 project (see e.g. Figure (1)). The Shen-Castan horizontal component
of the gradient has been computed using a0 = 0.3 as a spread parameter. For
each experiment, we randomly selected 60 images from the 1000 images in the
database and randomly selected again 100 pixels, producing 6000 samples for
each experiment.

For each sample, we considered the 5× 5 neighborhood of the original image
(for the input vector) and the corresponding value of the horizontal component of
its gradient (for the output value). Each database element is therefore made up of
an input vector of 25 integer values ranging in [0, 255] and a signed real output
value. Centered random Gaussian noise has been added to the output value,
with a standard deviation of 30% of the standard deviation of the corresponding
gradient image.

In this experiment, we proposed to learn the kernel associated with derivating
the image within both linear and MacSum aggregation modeling.

3 https://www.imageclef.org/

Macsum agregation learning and missing values 7

Fig. 1. Four out of the 1000 images used for this experiment.

Fig. 2. The Shen-Castan derivative of the four images depicted in Figure (1).

We have divided the database into three parts of 2000 samples. The samples
of the first third are assumed to be with no missing values. We call this set
the uncontaminated training data-set. In the second third, certain values of the
input data vector are assumed to be missing. The number of missing data items
in each input vector is fixed for each experiment. On the other hand, the choice of
which element of the input vector (among the 25) is missing has been randomly
selected beforehand. We call this set the contaminated training data-set. We also
call the complete training data-set the data-set obtained by supplementing the
uncontaminated training data-set by the contaminated training data-set. The
last third of the database has been used to test the quality of the learning. We
call this set the test data-set.

4.2 How can missing values be accounted for?

In image processing, when a piece of data is missing or corrupted (e.g. in the
case of impulse noise), it’s common to use information from its neighborhood
to assess the missing value. It is also possible to infer the missing value(s) by
considering the complete data whose values are close to the known values of the
contaminated vector (this is what is used in in-painting). In this case, however,
the fact that the missing value is completely unknown is not expressed at all. As
far as linear aggregation is concerned, the only way to represent the fact that
the missing value is unknown is to give it an arbitrary value. We tested two
methods, one consisting in giving a random value in the range [0, 255], the other
in systematically giving the same value, which in this case would be the center

8 O. Strauss A. Rico

of this range, i.e. 127.5. As we found no significant difference in the behavior
of the estimate when choosing one or other of these methods, we opted for the
simplest, i.e. to systematically give the value 127.5 to missing values.

When it came to MacSum aggregation, we had two options. The first was to
give a missing value an arbitrary value, as with linear aggregation. The second
was to replace a missing value by the interval [0, 255]. We present these two
solutions for comparison.

4.3 Running the experiment

The aim was to determine whether the information provided by the contaminated
data-set can be used to improve learning in the same way as a data complement
without missing values.

Each experiment consisted in generating a database of 6000 samples and
dividing it into three subsets as explained in section 4.1. For each experiment,
we arbitrarily performed 200 iterations of the learning algorithm for both mod-
els (additive and MacSum), having found that each algorithm converged well
for this number of iterations. For each model, we carried out the training with,
firstly, the uncontaminated training data-set, then the complete training data-
set. We observed the improvement, or deterioration, of learning by calculating
the Pearson coefficient of determination R2 using the test data-set. This experi-
ment was carried out 100 times for four different levels of contamination (namely
1/25, 4/25, 8/25 and 12/25). This experiment has been run 100 times.

4.4 Results

To make reading the results easier, we propose two types of visualization.
In Figure (3) we present four illustrations where each point has as its abscissa

the R2 value obtained using only the uncontaminated training data-set and as its
ordinate the R2 value obtained with the complete training data set. Each Figure
corresponds to a different level of contamination. Results obtained by learning
the MacSum modeling are plotted in red, and those obtained by learning the
linear modeling are plotted in blue. Results obtained by representing a missing
value by an interval are plotted with a circle ◦ and those obtained by representing
missing values by arbitrary values are plotted with a star ∗. We have also drawn
the unit slope line in green.

The reading is the following. Any point above the line (in green) is symp-
tomatic of increased learning by supplementing the uncontaminated base with
the contaminated base. Any point below the unit line is symptomatic of a dete-
rioration in learning by supplementing the uncontaminated base with a contam-
inated base.

There are several facts to be noted when looking at these Figures.
– First, using only uncontaminated data, the linear model is better able than

the MacSum model to represent a linear system.
– Second, supplementing uncontaminated data with contaminated data to

learn a linear model always results in degraded learning. This is also true for a

Macsum agregation learning and missing values 9

MacSum model if the missing value are replaced by an arbitrary value. On the
other hand, if missing values are replaced by their interval of variation, learning
performance improves, even with a contamination rate approaching 50%.

– Third, as contamination increases, the rate of increase in learning perfor-
mance due to the use of contaminated data decreases.

R sans données contaminées
2

R

a
v
e
c
 d

o
n
n
é
e
s
 c

o
n
ta

m
in

é
e
s

2

a) R sans données contaminées
2

R

a
v

e
c
 d

o
n

n
é
e
s
 c

o
n

ta
m

in
é
e
s

2

b)

R sans données contaminées
2

R

a
v
e
c
 d

o
n
n
é
e
s
 c

o
n
ta

m
in

é
e
s

2

c) R sans données contaminées
2

R

a
v
e
c
 d

o
n
n
é
e
s
 c

o
n
ta

m
in

é
e
s

2

d)

Fig. 3. Comparison of learning with and without missing values, with missing values
rate of 4% (a), 16% (b), 32% (c), 48% (d)

Contamination rate 4% 16% 32% 48%

Linear without contaminated data 0.68 0.68 0.68 0.68

Linear with contaminated data < 0.01 0.02 0.04 0.05

MacSum without contaminated data 0.51 0.51 0.49 0.50

MacSum without contaminated data 0.59 0.59 0.57 0.57

Table 1. Mean value of Pearson coefficient R2 for different rates of contamination.

Table 1 gives the mean R2 values for each experiment, while Table 2 shows the
number of times the use of contaminated data improved learning. For MacSum
modeling, we report in these tables only the approach of modeling the missing
value by an interval. As can be clearly seen, the approach of replacing missing

10 O. Strauss A. Rico

Contamination rate 4% 8% 32% 48%

MacSum 100% 100% 96% 93%

Linear 0% 0% 0% 0%

Table 2. Percentage of experience where the R2 coefficient has been improved.

values with arbitrary values does not improve learning capabilities (either for
the linear approach or for the MacSum approach). On the other hand, replacing
missing values with their range of possible values enables the MacSum approach
to take advantage of the information available in the auxiliary data. Naturally,
this ability diminishes somewhat as the level of contamination increases.

Table 1 gives the mean R2 values for each experiment while Table 2 gives
the number of times the use of contaminated data improved learning. For the
MacSum modeling, we report in these tables only the approach of modeling the
missing value by an interval. As can be clearly observed, the approach of replac-
ing missing values with arbitrary values does not improve learning capabilities
(either for the linear- or for the MacSum approach) as all ? points are well be-
low the green diagonal. On the other hand, replacing missing values with their
range of possible values allows the MacSum approach to take advantage of the
information available in the auxiliary data. Obviously, this ability diminishes
somewhat as the level of contamination increases.

5 Conclusion

Learning a parametric model from an input-output database generally involves
estimating a parameter to minimize a measure of compatibility between the
output predicted by the model and the corresponding output of the database.
In this context, when certain input vector values are missing, it is generally
preferable to remove the contaminated data from the database. In this article,
we propose to take advantage of the intervallist nature of the MacSum operator
to include data with miss ing values in the training database. We have shown
on an example that this choice was appropriate, as the addition of such data to
the learning base improves its performance (in the sense of the linear coefficient
of determination). However, this article raises more questions than it answers.
For example, the choice of the minimized criterion for learning is perhaps a little
simplistic, and it would be interesting to develop a learning method more in line
with the intervallist nature of both the operator and the data.

Acknowledgment

The authors would like to thank Dorian Kauffmann for his useful remarks and
comments.

Macsum agregation learning and missing values 11

References

1. Grabisch, M., Sugeno, M., Murofushi, T.: Fuzzy measures and integrals: theory and
applications. Heidelberg: Physica (2000)

2. Hmidy, Y., Rico, A., Strauss, O.: Macsum aggregation learning. Fuzzy Sets and
Systems 459, 182–200 (2023)

3. Hmidy, Y., Rico, A., Strauss, O.: Extending the Macsum Aggregation to Interval-
Valued Inputs. In: SUM 2022 - 15th International Conference Scalable Uncertainty
Management. Lecture Notes in Computer Science, vol. 13562, pp. 338–347. Springer
International Publishing, Paris, France (2022)

4. Loquin, K., Strauss, O.: Histogram density estimators based upon a fuzzy partition.
Statistics and Probability Letters 78(13), 1863–1868 (September 2008)

5. Loquin, K., Strauss, O.: On the granularity of summative kernels. Fuzzy Sets and
Systems 159(15), 1952–1972 (August 2008)

6. Shen, J., Castan, S.: Towards the unification of band-limited derivative operators
for edge detection. Signal Processing 31(2), 103–119 (1993)

7. Strauss, O., Rico, A., Hmidy, Y.: Macsum: a new interval-valued linear operator.
International journal of approximate reasoning 145, 121–138 (2022)

