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A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM andwPiRiid exchange
bandwidth for signal-to-noise ratio has intensified the interesgiereral theory of communication. A
basis for such a theory is contained in the important papers of NyauistHartley on this subject. In the
present paper we will extend the theory to include a number of new faatguarticular the effect of noise
in the channel, and the savings possible due to the statisticalistwadtthe original message and due to the
nature of the final destination of the information.
The fundamental problem of communication is that of reproducing at oim¢ either exactly or ap-
proximately a message selected at another point. Frequently the messageshairgy that is they refer
to or are correlated according to some system with certain physical or conceptitias. These semantic
aspects of communication are irrelevant to the engineering problem. giifigint aspect is that the actual
message is ongelected from a sedf possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen #iees unknown at the time of design.
If the number of messages in the set is finite then this number or anytoroafunction of this number
can be regarded as a measure of the information produced when one messagernsfidm the set, all
choices being equally likely. As was pointed out by Hartley the most ahtlmice is the logarithmic
function. Although this definition must be generalized considerablgnwie consider the influence of the
statistics of the message and when we have a continuous range of messagék,in all cases use an
essentially logarithmic measure.
The logarithmic measure is more convenient for various reasons:

1. Itis practically more useful. Parameters of engineering importance sticheadandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the numbepassibilities. For example,
adding one relay to a group doubles the number of possible statesm@dys. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squares thenlmer of possible messages, or
doubles the logarithm, etc.

2. Itis nearer to our intuitive feeling as to the proper measure. Thipsebl related to (1) since we in-
tuitively measures entities by linear comparison with common standardgsfe@ls, for example, that
two punched cards should have twice the capacity of one for informatoage, and two identical
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operatioressample in terms of the loga-
rithm but would require clumsy restatement in terms of the number sdipiities.

The choice of a logarithmic base corresponds to the choice of a unitdasuring information. If the
base 2 is used the resulting units may be called binary digits, or m@#ylbits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay opdldlp circuit, can store one bit of
information.N such devices can stokebits, since the total number of possible states'ia@d log 2N = N.

If the base 10 is used the units may be called decimal digits. Since

log, M =log;oM/log;2
= 3.32log (M,
INyquist, H., “Certain Factors Affecting Telegraph Spedggll System Technical Journadpril 1924, p. 324; “Certain Topics in

Telegraph Transmission Theorf!l.E.E. Trans.y. 47, April 1928, p. 617.
2Hartley, R. V. L., “Transmission of InformationBell System Technical Journaluly 1928, p. 535.
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Fig. 1—Schematic diagram of a general communication system

a decimal digit is about—?bits. A digit wheel on a desk computing machine has ten stable poséiuhs
therefore has a storage capacity of one decimal digit. In analytical work wheggation and differentiation
are involved the baseis sometimes useful. The resulting units of information will beazhtatural units.
Change from the baseto baseb merely requires multiplication by Ig@.

By a communication system we will mean a system of the type indicated sabaltyain Fig. 1. It
consists of essentially five parts:

1. Aninformation sourcevhich produces a message or sequence of messages to be communicated to the

receiving terminal. The message may be of various types: (a) A sequencers &tin a telegraph
of teletype system; (b) A single function of tinfgt) as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the messggeenthought of as a
function f(x,y,t) of two space coordinates and time, the light intensity at point) and timet on a
pickup tube plate; (d) Two or more functions of time, ddY), g(t), h(t) — this is the case in “three-
dimensional” sound transmission or if the system is intended tacgeseveral individual channels in
multiplex; (e) Several functions of several variables — in color telexithe message consists of three
functionsf(x,y,t), g(x,y,t), h(x,y,t) defined in a three-dimensional continuum — we may also think
of these three functions as components of a vector field defined in thenregisimilarly, several
black and white television sources would produce “messages” consistamgumber of functions
of three variables; (f) Various combinations also occur, for examplel@vision with an associated
audio channel.

2. A transmitterwhich operates on the message in some way to produce a signal suitabientor
mission over the channel. In telephony this operation consists merelgarfging sound pressure
into a proportional electrical current. In telegraphy we have an encogliagation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the. nressamiltiplex
PCM system the different speech functions must be sampled, compresaatized and encoded,
and finally interleaved properly to construct the signal. Vocoder systeievision and frequency
modulation are other examples of complex operations applied to the medssalgtain the signal.

3. Thechannelis merely the medium used to transmit the signal from transmitter tovescéi may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. Thereceiverordinarily performs the inverse operation of that done by the trétesreconstructing
the message from the signal.

5. Thedestinatioris the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communicaticdersgs To do this it is first
necessary to represent the various elements involved as mathematical entitibgy glealized from their



physical counterparts. We may roughly classify communication systaoihiiee main categories: discrete,
continuous and mixed. By a discrete system we will mean one in whichthetmessage and the signal
are a sequence of discrete symbols. A typical case is telegraphy where gegmesa sequence of letters
and the signal a sequence of dots, dashes and spaces. A continuous syeeein istdch the message and
signal are both treated as continuous functions, e.g., radio or televigi mixed system is one in which
both discrete and continuous variables appear, e.g., PCM transmissipaauth.

We first consider the discrete case. This case has applications not only inurocation theory, but
also in the theory of computing machines, the design of telephone exe&hand other fields. In addition
the discrete case forms a foundation for the continuous and mixed cagdswilthbe treated in the second
half of the paper.

PART I: DISCRETE NOISELESS SYSTEMS

1. THE DISCRETENOISELESSCHANNEL

Teletype and telegraphy are two simple examples of a discrete channelrfemitting information. Gen-
erally, a discrete channel will mean a system whereby a sequence of choices fniten seti of elementary
symbolsS, . .., S, can be transmitted from one point to another. Each of the synth@sssumed to have
a certain duration in timg seconds (not necessarily the same for diffei®nfor example the dots and
dashes in telegraphy). It is not required that all possible sequences$flih capable of transmission on
the system; certain sequences only may be allowed. These will be posgitdésgor the channel. Thus
in telegraphy suppose the symbols are: (1) A dot, consisting efdiosure for a unit of time and then line
open for a unit of time; (2) A dash, consisting of three time unitslo$ure and one unit open; (3) A letter
space consisting of, say, three units of line open; (4) A word spade ohgs of line open. We might place
the restriction on allowable sequences that no spaces follow each othem(foridtter spaces are adjacent,
it is identical with a word space). The question we now consider is h@vcan measure the capacity of
such a channel to transmit information.

In the teletype case where all symbols are of the same duration, and amneeai the 32 symbols
is allowed the answer is easy. Each symbol represents five bits of informdfithe system transmits
symbols per second it is natural to say that the channel has a capacityii$ per second. This does not
mean that the teletype channel will always be transmitting informatidmsatate — this is the maximum
possible rate and whether or not the actual rate reaches this maximum depdénelsource of information
which feeds the channel, as will appear later.

In the more general case with different lengths of symbols and constaairihe allowed sequences, we
make the following definition:

Definition: The capacitg of a discrete channel is given by
C=Lim logN(T)
T—oo T
whereN(T) is the number of allowed signals of duratidn

Itis easily seen that in the teletype case this reduces to the previous hesah be shown that the limit
in question will exist as a finite number in most cases of interest. &epll sequences of the symbols
Si,..., S are allowed and these symbols have durattens. ,t,. What is the channel capacity? Nft)
represents the number of sequences of duratioem have

N(t) = N(t —t1) + N(t —t2) + -+ N(t — tn).

The total number is equal to the sum of the numbers of sequences enddadin. . ., S, and these are
N(t —t1),N(t —t2),...,N(t — ty), respectively. According to a well-known result in finite differendeg,)
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is then asymptotic for largeto X} whereXy is the largest real solution of the characteristic equation:

X U4 X 2o X =1



and therefore
C =logXo.

In case there are restrictions on allowed sequences we may still often obtfisrence equation of this
type and findC from the characteristic equation. In the telegraphy case mentioned above

N(t) = N(t —2) + N(t — 4) + N(t—5) + N(t — 7) + N(t — 8) + N(t — 10)

as we see by counting sequences of symbols according to the last or nkgtlast symbol occurring.
HenceC is — log o wherepyg is the positive root of & 12 + u* + p® 4 p” + 8 + 120, Solving this we find
C =0.539.

A very general type of restriction which may be placed on allowed sequences fislldveing: We
imagine a number of possible statasay, . .., am. For each state only certain symbols from the%et. .| S,
can be transmitted (different subsets for the different states). Wheonfdhese has been transmitted the
state changes to a new state depending both on the old state and thdgastimbol transmitted. The
telegraph case is a simple example of this. There are two states dependifgether or not a space was
the last symbol transmitted. If so, then only a dot or a dash can be extramd the state always changes.
If not, any symbol can be transmitted and the state changes if a space @tlsenwjse it remains the same.
The conditions can be indicated in a linear graph as shown in Fig. 2. Tibéga points correspond to the
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Fig. 2—Graphical representation of the constraints orgtafgh symbols.

states and the lines indicate the symbols possible in a state andutlimgestate. In Appendix 1 it is shown
that if the conditions on allowed sequences can be described in thifevithexist and can be calculated
in accordance with the following result:

Theorem 1:Let bi(-s) be the duration of thé" symbol which is allowable in stateand leads to statp
Then the channel capacf®yis equal tdogW wheréW is the largest real root of the determinant equation:

(s)
ZWibiJ’ — dij ‘ =0
S

wheredij = 1ifi = j and is zero otherwise.
For example, in the telegraph case (Fig. 2) the determinant is:

-1 W24W) |
(W234W=8) (wW24w4-_1)| "

On expansion this leads to the equation given above for this case.

2. THE DISCRETESOURCE OFINFORMATION

We have seen that under very general conditions the logarithm of theamarfbossible signals in a discrete
channel increases linearly with time. The capacity to transmit information eapécified by giving this
rate of increase, the number of bits per second required to specify the [zarsicunal used.

We now consider the information source. How is an information sourbe described mathematically,
and how much information in bits per second is produced in a given souteetha@in point at issue is the
effect of statistical knowledge about the source in reducing the requireditapf the channel, by the use



of proper encoding of the information. In telegraphy, for examplentiessages to be transmitted consist of
sequences of letters. These sequences, however, are not completely randemerah, they form sentences
and have the statistical structure of, say, English. The letter E oomanes frequently than Q, the sequence
TH more frequently than XP, etc. The existence of this structure altovesto make a saving in time (or
channel capacity) by properly encoding the message sequences into signal sedtigséssiready done
to a limited extent in telegraphy by using the shortest channel syralatat, for the most common English
letter E; while the infrequent letters, Q, X, Z are represented by longeesegs of dots and dashes. This
idea is carried still further in certain commercial codes where common wordplaades are represented
by four- or five-letter code groups with a considerable saving in aeetiate. The standardized greeting
and anniversary telegrams now in use extend this to the point of ergradientence or two into a relatively
short sequence of numbers.

We can think of a discrete source as generating the message, symbol byl.symilbchoose succes-
sive symbols according to certain probabilities depending, in generglremm@eding choices as well as the
particular symbols in question. A physical system, or a mathematical nobdesystem which produces
such a sequence of symbols governed by a set of probabilities, is knaavstashastic processWe may
consider a discrete source, therefore, to be represented by a stochastis.p@uregersely, any stochastic
process which produces a discrete sequence of symbols chosen from &finiteyde considered a discrete
source. This will include such cases as:

1. Natural written languages such as English, German, Chinese.

2. Continuous information sources that have been rendered discreteneyggmntizing process. For
example, the quantized speech from a PCM transmitter, or a quantizeditalesignal.

3. Mathematical cases where we merely define abstractly a stochastic process eviechtes a se-
guence of symbols. The following are examples of this last type wfcso

(A) Suppose we have five letters A, B, C, D, E which are chosen each wittapilidy .2, successive
choices being independent. This would lead to a sequence of which theifgjltsa typical
example.

BDCBCECCCADCBDDAAECEEA
ABBDAEECACEEBAEECBCEAD.

This was constructed with the use of a table of random nunfbers.

(B) Using the same five letters let the probabilities be .4, .1, ,21,2espectively, with successive
choices independent. A typical message from this source is then:

AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD.

(C) A more complicated structure is obtained if successive symbols amehoneen independently
but their probabilities depend on preceding letters. In the simplest dabkés dype a choice
depends only on the preceding letter and not on ones before that. Thecstasisucture can
then be described by a set of transition probabiliti€$), the probability that letteris followed
by letterj. The indices andj range over all the possible symbols. A second equivalent way of
specifying the structure is to give the “digram” probabilitiEs, ), i.e., the relative frequency of
the digrami j. The letter frequencigy(i), (the probability of letter), the transition probabilities

3See, for example, S. Chandrasekhar, “Stochastic Problefbyisics and AstronomyReviews of Modern Physics 15, No. 1,
January 1943, p. 1.
4Kendall and SmithTables of Random Sampling Numbe2smbridge, 1939.



pi(j) and the digram probabilitigs(i, j) are related by the following formulas:
p(i) =3 p(i.j) =3 p(,i) = p(i)pj()
p(i,i):pj(i)pi(i) | |
Zpi(j) = IZlf)(i) =3 pli,j) =1

1)

As a specific example suppose there are three letters A, B, C with thalglity tables:

pi(j) j i | p(i) p(i, j) j

A B C A B C
I L B I S L
Cls 5 1 Cl % Cle 13

A typical message from this source is the following:

ABBABABABABABABBBABBBBBABABABABABBBACACAB
BABBBBABBABACBBBABA.

The next increase in complexity would involve trigram frequenciesibunore. The choice of
a letter would depend on the preceding two letters but not on the message theft point. A
set of trigram frequencieg(i, j, k) or equivalently a set of transition probabilitipg (k) would
be required. Continuing in this way one obtains successively morela@atgul stochastic pro-
cesses. In the genenmalgram case a set ofgram probabilitieg(i1, iz, ...,in) or of transition
probabilitiespi, i,.....i,_; (in) iS required to specify the statistical structure.

(D) Stochastic processes can also be defined which produce a text consfstingequence of
“words.” Suppose there are five letters A, B, C, D, E and 16 “words” & linguage with
associated probabilities:

J10A .16 BEBE .11 CABED .04 DEB
.04 ADEB .04 BED .05 CEED .15 DEED
.05 ADEE .02BEED .08 DAB .01 EAB

.01BADD .05CA .04 DAD .05 EE

Suppose successive “words” are chosen independently and are separated by A $yaical
message might be:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE BEBE ADEE BED HD
DEED CEED ADEE A DEED DEED BEBE CABED BEBE BED DAB DEED ADEB.

If all the words are of finite length this process is equivalent to onta@fpreceding type, but
the description may be simpler in terms of the word structure andapilifies. We may also
generalize here and introduce transition probabilities between words, etc.

These artificial languages are useful in constructing simple problemsxamapées to illustrate vari-
ous possibilities. We can also approximate to a natural language by niearsedes of simple artificial
languages. The zero-order approximation is obtained by choosing alleiitérthe same probability and
independently. The first-order approximation is obtained by choasingessive letters independently but
each letter having the same probability that it has in the natural languddmis, in the first-order ap-
proximation to English, E is chosen with probability .12 (its fueqcy in normal English) and W with
probability .02, but there is no influence between adjacent letters and nengntb form the preferred

5 etter, digram and trigram frequencies are giveSétret and Urgertty Fletcher Pratt, Blue Ribbon Books, 1939. Word frequen-
cies are tabulated iRelative Frequency of English Speech Soud€ewey, Harvard University Press, 1923.



digrams such as TH, ED, etc. In the second-order approximation, digraotuse is introduced. After a
letter is chosen, the next one is chosen in accordance with the frequendieshigh the various letters
follow the first one. This requires a table of digram frequengi€$). In the third-order approximation,
trigram structure is introduced. Each letter is chosen with proba&siltihich depend on the preceding two
letters.

3. THE SERIES OFAPPROXIMATIONS TOENGLISH

To give a visual idea of how this series of processes approaches a langpégge syquences in the approx-
imations to English have been constructed and are given below. In all cases/erassumed a 27-symbol
“alphabet,” the 26 letters and a space.

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZABIBZL-
HJQD.

2. First-order approximation (symbols independent but with fregiesrof English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTVA
NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVETU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

5. First-order word approximation. Rather than continue with teéragr. . , n-gram structure it is easier
and better to jump at this point to word units. Here words are chosapéamtiently but with their
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENNAT-
URAL HERE HE THE AIN CAME THE TO OF TO EXPERT GRAY COME TO FURNHES
THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transition prokasilare correct but no further struc-
ture is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETRIS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

The resemblance to ordinary English text increases quite noticeably at g¢heradniove steps. Note that
these samples have reasonably good structure out to about twice thdhrahig taken into account in their
construction. Thus in (3) the statistical process insures reasonabletéwo-letter sequences, but four-
letter sequences from the sample can usually be fitted into good senten@ssdquences of four or more
words can easily be placed in sentences without unusual or strained conssugte particular sequence
of ten words “attack on an English writer that the character of this” is not ahadasonable. It appears then
that a sufficiently complex stochastic process will give a satisfactpresentation of a discrete source.

The first two samples were constructed by the use of a book of randorharanm conjunction with
(for example 2) a table of letter frequencies. This method might have dm#imued for (3), (4) and (5),
since digram, trigram and word frequency tables are available, but aegieqpiivalent method was used.



To construct (3) for example, one opens a book at random and selects a ledted@n on the page. This
letter is recorded. The book is then opened to another page and one readisisitdtter is encountered.
The succeeding letter is then recorded. Turning to another page this sedendslsearched for and the
succeeding letter recorded, etc. A similar process was used for (4), (5) and@uld be interesting if
further approximations could be constructed, but the labor involeedines enormous at the next stage.

4. GRAPHICAL REPRESENTATION OF AMARKOFF PROCESS

Stochastic processes of the type described above are known mathematicély et dviarkoff processes
and have been extensively studied in the literafufihe general case can be described as follows: There
exist a finite number of possible “states” of a syst&n.S,,...,S,. In addition there is a set of transition
probabilities; pi(j) the probability that if the system is in stafeit will next go to stateS;. To make this
Markoff process into an information source we need only assume thageisspiroduced for each transition
from one state to another. The states will correspond to the “residnéuwdnce” from preceding letters.

The situation can be represented graphically as shown in Figs. 3, 4 an@ 5states” are the junction

D 2

Fig. 3—A graph corresponding to the source in example B.

points in the graph and the probabilities and letters produced for sititanare given beside the correspond-
ing line. Figure 3 is for the example B in Section 2, while Fig. 4 esponds to the example C. In Fig. 3

Fig. 4—A graph corresponding to the source in example C.

there is only one state since successive letters are independent. Intlvége 4re as many states as letters.
If a trigram example were constructed there would be at mbstates corresponding to the possible pairs
of letters preceding the one being chosen. Figure 5 is a graph for thefoasedostructure in example D.
Here S corresponds to the “space” symbol.

5. ERGODIC AND MIXED SOURCES

As we have indicated above a discrete source for our purposes can beeceddi be represented by a
Markoff process. Among the possible discrete Markoff processes thergioup with special properties
of significance in communication theory. This special class consists dfetigedic” processes and we
shall call the corresponding sources ergodic sources. Although augdefinition of an ergodic process is
somewhat involved, the general idea is simple. In an ergodic processsexgrgnce produced by the process

6For a detailed treatment see M. Frechdéthode des fonctions arbitraires. Théorie des évamsnen chaine dans le cas d’'un
nombre fini d'états possible®aris, Gauthier-Villars, 1938.



is the same in statistical properties. Thus the letter frequencies, digeguencies, etc., obtained from
particular sequences, will, as the lengths of the sequences increase, approaihlieifis independent
of the particular sequence. Actually this is not true of every sequencéidset for which it is false has
probability zero. Roughly the ergodic property means statistical lyemeity.

All the examples of artificial languages given above are ergodic. This gyopeelated to the structure
of the corresponding graph. If the graph has the following two ertige the corresponding process will
be ergodic:

1. The graph does not consist of two isolated parts A and B such thatripissisible to go from junction
points in part A to junction points in part B along lines of the grapthie direction of arrows and also
impossible to go from junctions in part B to junctions in part A.

2. Aclosed series of lines in the graph with all arrows on the lines jpgjih the same orientation will
be called a “circuit.” The “length” of a circuit is the number of lines inTihus in Fig. 5 series BEBES
is a circuit of length 5. The second property required is that the greatestoa divisor of the lengths
of all circuits in the graph be one.

Fig. 5—A graph corresponding to the source in example D.

If the first condition is satisfied but the second one violated by ltgivia greatest common divisor equal
tod > 1, the sequences have a certain type of periodic structure. The variaenseq fall intal different
classes which are statistically the same apart from a shift of the originwhich letter in the sequence is
called letter 1). By a shift of from 0 up td — 1 any sequence can be made statistically equivalent to any
other. A simple example witd = 2 is the following: There are three possible lettayb,c. Lettera is
followed with eitherb or ¢ with probabilities% and% respectively. Eitheb or cis always followed by letter
a. Thus a typical sequence is

abacacacabacababacac

This type of situation is not of much importance for our work.

If the first condition is violated the graph may be separated into a sabgfaphs each of which satisfies
the first condition. We will assume that the second condition is @tsfed for each subgraph. We have in
this case what may be called a “mixed” source made up of a number of pure centponhe components
correspond to the various subgraphd.qfLy, L3, ... are the component sources we may write

L= piLk1+ pol2+ psba+---

"These are restatements in terms of the graph of conditiwes @i Fréchet.



wherep; is the probability of the component souice

Physically the situation represented is this: There are several diffesanted.;, Lo, L3,... which are
each of homogeneous statistical structure (i.e., they are ergodic). Wat #aawa priori which is to be
used, but once the sequence starts in a given pure complgnértontinues indefinitely according to the
statistical structure of that component.

As an example one may take two of the processes defined above and agsugizandp, = .8. A
sequence from the mixed source

L=.2L1+.8L,

would be obtained by choosing filst or L, with probabilities .2 and .8 and after this choice generating a
sequence from whichever was chosen.

Except when the contrary is stated we shall assume a source to be ergasl@ssSumption enables one
to identify averages along a sequence with averages over the ensemblaldéEespiences (the probability
of a discrepancy being zero). For example the relative frequency of ttee Fetin a particular infinite
sequence will be, with probability one, equal to its relative frequendlyerensemble of sequences.

If B is the probability of stateandpj(j) the transition probability to statg then for the process to be
stationary it is clear that thg must satisfy equilibrium conditions:

P =3 Rpi()).

In the ergodic case it can be shown that with any starting conditiorr thmabilitiesP; (N) of being in state
j afterN symbols, approach the equilibrium valued\ass co.

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff processveGhafine a quantity which
will measure, in some sense, how much information is “produced” by suchcags, or better, at what rate
information is produced?

Suppose we have a set of possible events whose probabilities af@cce areps, p2,..., pn. These
probabilities are known but that is all we know concerning which evelhbecur. Can we find a measure
of how much “choice” is involved in the selection of the event or of how utaterve are of the outcome?

If there is such a measure, g4yp1, p2,. .., Pn), it is reasonable to require of it the following properties:

1. H should be continuous in thg.

2. If all the p; are equalp; = % thenH should be a monotonic increasing functionnofWith equally
likely events there is more choice, or uncertainty, when there are mosifsvents.

3. If a choice be broken down into two successive choices, the origirslould be the weighted sum
of the individual values oH. The meaning of this is illustrated in Fig. 6. At the left we haveséhr

1/2 " 1/2
1/3
2/3
s » 1/3
1/3>1/6

Fig. 6—Decomposition of a choice from three possibilities.

possibilitiesp; = % p2 = % p3 = %. On the right we first choose between two possibilities each with

probability%, and if the second occurs make another choice with probabigtiés The final results
have the same probabilities as before. We require, in this special case, that
H(3,5.5) =H(3,3) +3H(.3).

The Coefficiem‘il is because this second choice only occurs half the time.
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In Appendix 2, the following result is established:
Theorem 2: The onlyH satisfying the three above assumptions is of the form:

n
H=-KY pilogp
i; | |

whereK is a positive constant.

This theorem, and the assumptions required for its proof, are in nme@gssary for the present theory.
Itis given chiefly to lend a certain plausibility to some of our later dgbns. The real justification of these
definitions, however, will reside in their implications.

Quantities of the fornid =—3 pilog p; (the constanK merely amounts to a choice of a unit of measure)
play a central role in information theory as measures of informationgetaid uncertainty. The form ef
will be recognized as that of entropy as defined in certain formulations ddtatat mechanidswherep; is
the probability of a system being in c&lof its phase space is then, for example, thel in Boltzmann'’s
famousH theorem. We shall call = — § pilogp; the entropy of the set of probabilitigs, . .., pn. If Xis a
chance variable we will writél (x) for its entropy; thusis not an argument of a function but a label for a
number, to differentiate it froril (y) say, the entropy of the chance variable

The entropy in the case of two possibilities with probabilifiesndq = 1 — p, namely

H = —(plogp+qlogq)

is plotted in Fig. 7 as a function qf.

1.0
0 /] AN
8

BITS

o 1 2 3 4 5 6 7 8 9 10
p

Fig. 7—Entropy in the case of two possibilities with probiieis p and(1— p).

The quantityH has a number of interesting properties which further substantiate itraasanable
measure of choice or information.

1. H = 0if and only if all thep; but one are zero, this one having the value unity. Thus only when we
are certain of the outcome dolsvanish. Otherwisél is positive.

2. For a givem, H is a maximum and equal to logwhen all thep; are equal (i.e.%). This is also
intuitively the most uncertain situation.

8See, for example, R. C. TolmaRrinciples of Statistical Mechanic€xford, Clarendon, 1938.
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3. Suppose there are two evemtandy, in question withm possibilities for the first and for the second.
Let p(i, j) be the probability of the joint occurrenceidbr the first andj for the second. The entropy of the
joint event is

Z p(i, j) logp(i,
while

H() = =3 p(i,j)log y p(i,])
1] ]
H(y) == 3 p(i.i)log ¥ p(i, j)-
] ]
It is easily shown that
H(x.y) <H(X) +H(y)

with equality only if the events are independent (igi, j) = p(i)p(j)). The uncertainty of a joint event is
less than or equal to the sum of the individual uncertainties.

4. Any change toward equalization of the probabilifggsp,, ..., pn increase$i. Thus if p1 < p2 and
we increasep;, decreasing, an equal amount so thai andp, are more nearly equal, théhincreases.
More generally, if we perform any “averaging” operation on ghef the form

P = zaij Pj
J

wherey;ajj = ¥ ;aj =1, and allaj; > O, thenH increases (except in the special case where this transfor-
mation amounts to no more than a permutation ofghwith H of course remaining the same).

5. Suppose there are two chance evargady as in 3, not necessarily independent. For any particular
valuei thatx can assume there is a conditional probabitityj) thaty has the valug. This is given by

p(i, j)
>ip(.j)
We define theonditional entropyof y, Hx(y) as the average of the entropyydbr each value ok, weighted
according to the probability of getting that particukaiThat is

pi(j) =

Z p(i. 1) logpi(]

This quantity measures how uncertain we arg o the average when we knowSubstituting the value of
pi(j) we obtain

Zp i) logp(i, +Zp IogZp
(X,y>f (%)

or
H(x,y) = H(X) + Hx(y).

The uncertainty (or entropy) of the joint eveq)y is the uncertainty of plus the uncertainty of whenx is
known.
6. From 3 and 5 we have

H(X) +H(y) > H(x,y) = H(X) + Hx(y).
Hence
H(y) > Hx(y).

The uncertainty of is never increased by knowledgeofit will be decreased unlegsandy are independent
events, in which case it is not changed.

12



7. THE ENTROPY OF ANINFORMATION SOURCE

Consider a discrete source of the finite state type considered aboveadfopossible statehere will be a
set of probabilitieg;(j) of producing the various possible symb@lsThus there is an entrogy; for each
state. The entropy of the source will be defined as the average ofthessgghted in accordance with the
probability of occurrence of the states in question:

H—ZPHi

fZPpl i)logpi(]

This is the entropy of the source per symbol of text. If the Markoffcess is proceeding at a definite time
rate there is also an entropy per second
H =¥ fiH
?

wheref; is the average frequency (occurrences per second) ofi s@alearly
H' = mH

wheremis the average number of symbols produced per seddrad.H' measures the amount of informa-
tion generated by the source per symbol or per second. If the logaribaséeis 2, they will represent bits
per symbol or per second.

If successive symbols are independent theis simply— ¥ pjlog pi wherep; is the probability of sym-
boli. Suppose in this case we consider a long messaljesgtnbols. It will contain with high probability
aboutp; N occurrences of the first symbg;N occurrences of the second, etc. Hence the probability of this

particular message will be roughly N o
p= p]l:’l ppz ppnN

or

logp=N% pilogp
|

logp= —NH
. logl/p
H= N

H is thus approximately the logarithm of the reciprocal probability tyfdcal long sequence divided by the
number of symbols in the sequence. The same result holds for any sotatad @ore precisely we have
(see Appendix 3):

Theorem 3:Given any > 0 and$ > 0, we can find afNp such that the sequences of any lerigth No
fall into two classes:

1. A set whose total probability is less than

2. The remainder, all of whose members have probabilities satisfymmpéquality

logp™?!
N

H <s.

ogp !

. I .
In other words we are almost certain to h very close taH whenN is large.

A closely related result deals with the number of sequences of various plidéabConsider again the
sequences of lengt and let them be arranged in order of decreasing probability. We defif)eto be
the number we must take from this set starting with the most prelaie in order to accumulate a total
probabilityq for those taken.

13



Theorem 4:

Lim Jogn@ _
N— o0 N
whenq does not equd or1.

We may interpret log(q) as the number of bits required to specify the sequence when we consider only
logn(q)

the most probable sequences with a total probaliglitfyhen is the number of bits per symbol for

the specification. The theorem says that for laxgghis will be independent af and equal tdd. The rate
of growth of the logarithm of the number of reasonably probable semsan given byH, regardless of our
interpretation of “reasonably probable.” Due to these results, whichraxeg in Appendix 3, it is possible
for most purposes to treat the long sequences as though there werfdusttBem, each with a probability
2-HN,

The next two theorems show thet andH’ can be determined by limiting operations directly from
the statistics of the message sequences, without reference to the statessitidri probabilities between
states.

Theorem 5:Let p(B;) be the probability of a sequenBgof symbols from the source. Let
1
Gn ="} .Z P(Bi)logp(Bi)

where the sum is over all sequen8ggontainingN symbols. Thely is a monotonic decreasing function
ofN and
Lim Gy = H.
N—o0
Theorem 6:Let p(B;,S;) be the probability of sequend®d followed by symbolS; and pg,(Sj) =
p(Bi,S;j)/p(Bi) be the conditional probability &; afterB;. Let

Fv =~ p(Bi,S))logps (S))
l)

where the sum is over all block of N — 1 symbols and over all symbo. ThenFy is a monotonic
decreasing function o,

Fn =NGy — (N—1)Gn-_1,

1 N
GN = Fn;

N nzl
Fn <G,

andLimy_Fny =H.

These results are derived in Appendix 3. They show that a series of apatens toH can be obtained
by considering only the statistical structure of the sequences extpadar 12,...,N symbols.Fy is the
better approximation. In fad®y is the entropy of the\!" order approximation to the source of the type
discussed above. If there are no statistical influences extending over maoisd symbols, that is if the
conditional probability of the next symbol knowing the precediNg- 1) is not changed by a knowledge of
any before that, thefy = H. Fy of course is the conditional entropy of the next symbol when(khe 1)
preceding ones are known, whiBy, is the entropy per symbol of blocks bf symbols.

The ratio of the entropy of a source to the maximum value it could héie still restricted to the same
symbols will be called itselative entropy This is the maximum compression possible when we encode into
the same alphabet. One minus the relative entropy igeithendancy The redundancy of ordinary English,
not considering statistical structure over greater distances than abottetigls, is roughly 50%. This
means that when we write English half of what we write is determined &gtitucture of the language and
half is chosen freely. The figure 50% was found by several independentasettich all gave results in

14



this neighborhood. One is by calculation of the entropy of the apprations to English. A second method
is to delete a certain fraction of the letters from a sample of Englidhatec then let someone attempt to
restore them. If they can be restored when 50% are deleted the redundandyengusater than 50%. A
third method depends on certain known results in cryptography.

Two extremes of redundancy in English prose are represented by BadishEagd by James Joyce’s
book “Finnegans Wake”. The Basic English vocabulary is limited to 85@l&/and the redundancy is very
high. This is reflected in the expansion that occurs when a passage iatedristo Basic English. Joyce
on the other hand enlarges the vocabulary and is alleged to achieve a coorpoéssimantic content.

The redundancy of a language is related to the existence of crosswor@éguizthe redundancy is
zero any sequence of letters is a reasonable text in the language and anynevisidnal array of letters
forms a crossword puzzle. If the redundancy is too high the langugmesies too many constraints for large
crossword puzzles to be possible. A more detailed analysis shows ttaagsume the constraints imposed
by the language are of a rather chaotic and random nature, large crosswalesmre just possible when
the redundancy is 50%. If the redundancy is 33%, three-dimensiorssveood puzzles should be possible,
etc.

8. REPRESENTATION OF THEENCODING AND DECODING OPERATIONS

We have yet to represent mathematically the operations performed by tkeniti@n and receiver in en-

coding and decoding the information. Either of these will be called erelis transducer. The input to the
transducer is a sequence of input symbols and its output a sequencputfounbols. The transducer may
have an internal memory so that its output depends not only on the piggensymbol but also on the past
history. We assume that the internal memory is finite, i.e., ther¢ @&fisite numbem of possible states of

the transducer and that its output is a function of the present staté@amidsent input symbol. The next
state will be a second function of these two quantities. Thus a trarsdan be described by two functions:

Yn = f(Xn, an)
ant1 = 9(Xn, an)

where

Xn is then input symbol,

an is the state of the transducer when tfeinput symbol is introduced,

Yn is the output symbol (or sequence of output symbols) produced whisnintroduced if the state isy.

If the output symbols of one transducer can be identified with thet sypubols of a second, they can be
connected in tandem and the result is also a transducer. If there exists d sacsducer which operates
on the output of the first and recovers the original input, the fiestsducer will be called non-singular and
the second will be called its inverse.

Theorem 7: The output of a finite state transducer driven by a finite state stalistource is a finite
State statistical source, with entropy (per unit time) less than or eqtiztof the input. If the transducer
is non-singular they are equal.

Leta represent the state of the source, which produces a sequence of sygnddslets be the state of
the transducer, which produces, in its output, blocks of symiolshe combined system can be represented
by the “product state space” of paifs, 3). Two points in the spacgvi, 1) and(az, 32), are connected by
a line if a1 can produce ar which changeg; to 2, and this line is given the probability of thatn this
case. The line is labeled with the blockygfsymbols produced by the transducer. The entropy of the output
can be calculated as the weighted sum over the states. If we sum fi¥stamh resulting term is less than or
equal to the corresponding term foy hence the entropy is not increased. If the transducer is non-singular
let its output be connected to the inverse transducet; |H; andH; are the output entropies of the source,
the first and second transducers respectively, tier H, > H; = H; and thereforéd; = H,.
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Suppose we have a system of constraints on possible sequences/pktiadich can be represented by

alinear graph as in Fig. 2. If probabilitiqeﬁ were assigned to the various lines connecting ststatej
this would become a source. There is one particular assignment which rresitme resulting entropy (see
Appendix 4).

Theorem 8:Let the system of constraints considered as a channel have a cdpaciygW. If we
assign
(s _ E\N*‘f:js)
plj B;

Whereéi(js) is the duration of the!" symbol leading from stafeto statej and theB; satisfy

9
B = ZBJ'W 1
S,)

thenH is maximized and equal .

By proper assignment of the transition probabilities the entromyofbols on a channel can be maxi-
mized at the channel capacity.

9. THE FUNDAMENTAL THEOREM FOR ANOISELESSCHANNEL

We will now justify our interpretation oH as the rate of generating information by proving tHatleter-
mines the channel capacity required with most efficient coding.

Theorem 9:Let a source have entropy (bits per symbadl and a channel have a capady bits per
secondl. Then it is possible to encode the output of the source in such a waytemsmit at the average

C . N . . .
rateﬁ — e symbols per second over the channel wheigearbitrarily small. It is not possible to transmit at

C
an average rate greater thﬁn

The converse part of the theorem, tlﬁatcannot be exceeded, may be proved by noting that the entropy

of the channel input per second is equal to that of the source, since thaittansust be non-singular, and
also this entropy cannot exceed the channel capacity. H¢heeC and the number of symbols per second
=H'/H <C/H.

The first part of the theorem will be proved in two different ways. Thet finethod is to consider the
set of all sequences &f symbols produced by the source. Fblarge we can divide these into two groups,
one containing less tha®N members and the second containing less tf&hr@embers (wher® is
the logarithm of the number of different symbols) and having a fwiatbability less tham. AsN increases
n andu approach zero. The number of signals of durafioim the channel is greater thaff2?T with 6
small whenT is large. if we choose

H
T= < c + A) N

then there will be a sufficient number of sequences of channel symbolsfbigh probability group when

N andT are sufficiently large (however smal) and also some additional ones. The high probability group
is coded in an arbitrary one-to-one way into this set. The remaining segsi@ne represented by larger
sequences, starting and ending with one of the sequences not used fagtth@rdbability group. This
special sequence acts as a start and stop signal for a different code. In betwHmireatsime is allowed

to give enough different sequences for all the low probability messadpgswill require

R

whereyp is small. The mean rate of transmission in message symbols per secbtiebwibe greater than

{(15)%%%1 71: [(15)(%+A)+5(§+¢)}1
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As N increases, A andy approach zero and the rate approacﬁes

Another method of performing this coding and thereby proving therdmaa@an be described as follows:
Arrange the messages of lendthin order of decreasing probability and suppose their probabilities are
p1> P2 > P3- - > pn. LetPs= zifl pi; that isPs is the cumulative probability up to, but not including,

We first encode into a binary system. The binary code for messiagibtained by expandirig; as a binary
number. The expansion is carried outtgplaces, wherey is the integer satisfying:

1 1
log, — <ms< 1+log, —.
Ps Ps

Thus the messages of high probability are represented by short codeoaadttow probability by long
codes. From these inequalities we have

oms S Ps< o5

The code folPs will differ from all succeeding ones in one or more ofiitg places, since all the remaining
P are at Ieas% larger and their binary expansions therefore differ in the firgblaces. Consequently all
the codes are different and it is possible to recover the message frondésl€the channel sequences are
not already sequences of binary digits, they can be ascribed binary numberaibitrary fashion and the
binary code thus translated into signals suitable for the channel.

The average numbet’ of binary digits used per symbol of original message is easily estimatéed.
have

But,

and therefore,

1
GNSH/<GN+N

As N increase&y approachesl, the entropy of the source aktl approaches.

We see from this that the inefficiency in coding, when only a finite defa symbols is used, need
not be greater thar,{q plus the difference between the true entrépyand the entropysy calculated for
sequences of length. The per cent excess time needed over the ideal is therefore less than

GN 1
H * HN L

This method of encoding is substantially the same as one found indeptgnty R. M. Fand. His
method is to arrange the messages of leiyith order of decreasing probability. Divide this series into two
groups of as nearly equal probability as possible. If the message is firshgroup its first binary digit
will be O, otherwise 1. The groups are similarly divided into ®ibf nearly equal probability and the
particular subset determines the second binary digit. This process iawg@huntil each subset contains
only one message. Itis easily seen that apart from minor differences (getethéiyast digit) this amounts
to the same thing as the arithmetic process described above.

10. DISCUSSION ANDEXAMPLES

In order to obtain the maximum power transfer from a generator to a |deahsformer must in general be
introduced so that the generator as seen from the load has the load resistens#udtion here is roughly
analogous. The transducer which does the encoding should match the tectimeehannel in a statistical
sense. The source as seen from the channel through the transducer shethdsame statistical structure

9Technical Report No. 65, The Research Laboratory of Elgittso M.I.T., March 17, 1949.
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as the source which maximizes the entropy in the channel. The content afehh&ds that, although an
exact match is not in general possible, we can approximate it as closely as désiesdtio of the actual
rate of transmission to the capac@ymay be called the efficiency of the coding system. This is of course
equal to the ratio of the actual entropy of the channel symbols to the maxjmssible entropy.

In general, ideal or nearly ideal encoding requires a long delay in the trdesanitd receiver. In the
noiseless case which we have been considering, the main function oéthysisito allow reasonably good
matching of probabilities to corresponding lengths of sequences. Wjthod code the logarithm of the
reciprocal probability of a long message must be proportional touretidn of the corresponding signal, in
fact

~1
‘ logp™ C‘

T
must be small for all but a small fraction of the long messages.

If a source can produce only one particular message its entropy is zerop @hdmnel is required. For
example, a computing machine set up to calculate the successive digiigrofluces a definite sequence
with no chance element. No channel is required to “transmit” this to anothet. g@ne could construct a
second machine to compute the same sequence at the point. However, thisimayactical. In such a case
we can choose to ignore some or all of the statistical knowledge wediidlie source. We might consider
the digits ofr to be a random sequence in that we construct a system capable of sendinguemnceeaf
digits. In a similar way we may choose to use some of our statistieaklauge of English in constructing
a code, but not all of it. In such a case we consider the source with thermaxentropy subject to the
statistical conditions we wish to retain. The entropy of this sousterchines the channel capacity which
is necessary and sufficient. In theexample the only information retained is that all the digits are chosen
from the set 01,...,9. In the case of English one might wish to use the statistical ggyssible due to
letter frequencies, but nothing else. The maximum entropy source isttadingt approximation to English
and its entropy determines the required channel capacity.

As a simple example of some of these results consider a source wihidhgas a sequence of letters

chosen from among, B, C, D with probabilities, %, £, £, successive symbols being chosen independently.
We have

H=—(}log3+ Zlogs + Zlog3)
= I bits per symbol
Thus we can approximate a coding system to encode messages from thisistubgeary digits with an

average of—1 binary digit per symbol. In this case we can actually achieve the limitahge by the following
code (obtained by the method of the second proof of Theorem 9):

A 0
B 10
C 110
D 111

The average number of binary digits used in encoding a sequemtsyohbols will be

N(3 x1+%x2+§x3) =7N.
It is easily seen that the binary digits 0, 1 have probabili%ie% so theH for the coded sequences is one
bit per symbol. Since, on the average, we hé\kﬂ'nary symbols per original letter, the entropies on a time
basis are the same. The maximum possible entropy for the originallsgtd= 2, occurring whem, B, C,
D have probabilitieg, %, 1, 2. Hence the relative entropy { We can translate the binary sequences into
the original set of symbols on a two-to-one basis by the follgwable:

00 A
01 B
10 c
11 D’
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This double process then encodes the original message into the sanmasslyutlwith an average compres-
sion ratiog.

As a second example consider a source which produces a sequéssarndB’s with probability p for
Aandq for B. If p < gqwe have

H = —logpP(1—p)* P
= —plogp(1— p)*~P/P
= plog

2

In such a case one can construct a fairly good coding of the message on aa@neldby sending a special
sequence, say 0000, for the infrequent syn#bahd then a sequence indicating themberof B's following
it. This could be indicated by the binary representation with all numban&ining the special sequence
deleted. All numbers up to 16 are represented as usual; 16 is representedibytthi@ary number after 16
which does not contain four zeros, namely-270001, etc.

It can be shown that g8— 0 the coding approaches ideal provided the length of the special sequence is
properly adjusted.

PART II: THE DISCRETE CHANNEL WITH NOISE

11. REPRESENTATION OF ANOISY DISCRETECHANNEL

We now consider the case where the signal is perturbed by noise diarsgrtission or at one or the other
of the terminals. This means that the received signal is not necessarilgrtiee &s that sent out by the
transmitter. Two cases may be distinguished. If a particular transnsitj@e! always produces the same
received signal, i.e., the received signal is a definite function of thertrittesl signal, then the effect may be
called distortion. If this function has an inverse — no two transmisigdals producing the same received
signal — distortion may be corrected, at least in principle, by merely paifay the inverse functional
operation on the received signal.

The case of interest here is that in which the signal does not always urttiergame change in trans-
mission. In this case we may assume the received sigit@be a function of the transmitted sigriaand a
second variable, the noidée

E=f(SN)
The noise is considered to be a chance variable just as the message wasrageweral it may be repre-
sented by a suitable stochastic process. The most general type of isuigtelchannel we shall consider
is a generalization of the finite state noise-free channel described psBvigée assume a finite number of
states and a set of probabilities

Pa,i(B,])-

This is the probability, if the channel is in stateand symbol is transmitted, that symbglwill be received
and the channel left in stat¢ Thusa andg range over the possible statesyer the possible transmitted
signals and over the possible received signals. In the case where successive syreliotiependently per-
turbed by the noise there is only one state, and the channel is describield®t of transition probabilities
pi(j), the probability of transmitted symbbbeing received ag.

If a noisy channel is fed by a source there are two statistical processesathesource and the noise.
Thus there are a number of entropies that can be calculated. First thereeistibyeyH (x) of the source
or of the input to the channel (these will be equal if the transmitteiois-singular). The entropy of the
output of the channel, i.e., the received signal, will be denotdd (yy. In the noiseless cast(y) = H(x).
The joint entropy of input and output will ke (xy). Finally there are two conditional entropiklg(y) and
Hy(x), the entropy of the output when the input is known and converselyorfgthese quantities we have
the relations

H(xy) = H(X) +Hx(y) = H(y) + Hy(x).

All of these entropies can be measured on a per-second or a per-symbol basis.
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12. EQUIVOCATION AND CHANNEL CAPACITY

If the channel is noisy it is not in general possible to reconstruct thggnal message or the transmitted
signal withcertaintyby any operation on the received sigial There are, however, ways of transmitting
the information which are optimal in combating noise. This is thdojgnm which we now consider.

Suppose there are two possible symbols 0 and 1, and we are trangmitt rate of 1000 symbols per
second with probabilitiepg = p1 = % Thus our source is producing information at the rate of 1000 bits
per second. During transmission the noise introduces errors smthéie average, 1 in 100 is received
incorrectly (a0 as 1, or 1 as 0). What is the rate of transmission ofrirftion? Certainly less than 1000
bits per second since about 1% of the received symbols are incorrect. @umfitdse might be to say
the rate is 990 bits per second, merely subtracting the expected numbeorst &rhis is not satisfactory
since it fails to take into account the recipient’s lack of knowledge of wiiee errors occur. We may carry
it to an extreme case and suppose the noise so great that the receivedssgratmitirely independent of
the transmitted symbols. The probability of receiving %iwhatever was transmitted and similarly for O.
Then about half of the received symbols are correct due to chance alone, and ®®/giving the system
credit for transmitting 500 bits per second while actually no infororais being transmitted at all. Equally
“good” transmission would be obtained by dispensing with the chaemtglely and flipping a coin at the
receiving point.

Evidently the proper correction to apply to the amount of informatiansmitted is the amount of this
information which is missing in the received signal, or alternativedyuhcertainty when we have received
a signal of what was actually sent. From our previous discussion ai@nérs a measure of uncertainty it
seems reasonable to use the conditional entropy of the message, knosviegeived signal, as a measure
of this missing information. This is indeed the proper definitaswe shall see later. Following this idea
the rate of actual transmissioR, would be obtained by subtracting from the rate of production the.,
entropy of the source) the average rate of conditional entropy.

R=H(x) — Hy(x)

The conditional entropiy(x) will, for convenience, be called the equivocation. It measures the average
ambiguity of the received signal.

In the example considered above, if a 0 is receivedatpesterioriprobability that a 0 was transmitted
is .99, and that a 1 was transmitted is .01. These figures are reversesifectived. Hence

Hy(x) = —[.99109.99+ 0.0110gQ01]
= .081 bits/symbol

or 81 bits per second. We may say that the system is transmitting at 20tfie 81 = 919 bits per second.
In the extreme case where a 0 is equally likely to be received as a 0 or 1 atatlgifioir 1, thea posteriori
probabilities are}, 1 and

Hy(x) = ~[3l0g3 + 3 log3]
= 1 bit per symbol

or 1000 bits per second. The rate of transmission is then 0 as it sheuld

The following theorem gives a direct intuitive interpretation of élgivocation and also serves to justify
it as the unique appropriate measure. We consider a communication systean abserver (or auxiliary
device) who can see both what is sent and what is recovered (with errors doisdd iThis observer notes
the errors in the recovered message and transmits data to the receivingyaoia “correction channel” to
enable the receiver to correct the errors. The situation is indicated schetpati¢ag. 8.

Theorem 10:If the correction channel has a capacity equaH{gx) it is possible to so encode the
correction data as to send it over this channel and correct all but an arbitraéll/fsactione of the errors.
This is not possible if the channel capacity is less Hg(x).
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Fig. 8—Schematic diagram of a correction system.

Roughly thenHy(x) is the amount of additional information that must be supplied per skabthe
receiving point to correct the received message.

To prove the first part, consider long sequences of received mebtagred corresponding original
messagél. There will be logarithmicallyT Hy(x) of theM’s which could reasonably have produced each
M’. Thus we havd Hy(x) binary digits to send eachseconds. This can be done witfrequency of errors
on a channel of capacityly(x).

The second part can be proved by noting, first, that for any discrete chanaialesy, y, z

Hy(x,2) > Hy(x).
The left-hand side can be expanded to give

Hy(2) + Hyz(x) > Hy (X
Hye(¥) > Hy(X) — Hy(2) > Hy(X) ~H(2).

If we identify x as the output of the sourcgas the received signal azds the signal sent over the correction
channel, then the right-hand side is the equivocation less the raeneftission over the correction channel.
If the capacity of this channel is less than the equivocation the right$idedvill be greater than zero and
Hyz(x) > 0. But this is the uncertainty of what was sent, knowing both the recsigeal and the correction
signal. If this is greater than zero the frequency of errors cannot beaailyismall.

Example:

Suppose the errors occur at random in a sequence of binary digits: pitybplhat a digit is wrong

andg = 1- p that it is right. These errors can be corrected if their position is knoWmus the

correction channel need only send information as to these positions.afftagnts to transmitting
from a source which produces binary digits with probabifitior 1 (incorrect) and for O (correct).

This requires a channel of capacity

—[plogp+qlogq]
which is the equivocation of the original system.

The rate of transmissioR can be written in two other forms due to the identities noted above. W& ha
R=H(x)

=H(y)
=HX) +H(y) —H(xy).



The first defining expression has already been interpreted as the amouirofation sent less the uncer-
tainty of what was sent. The second measures the amount received less thétpswtbich is due to noise.
The third is the sum of the two amounts less the joint entropy agétore in a sense is the number of bits
per second common to the two. Thus all three expressions have a cetd#ivgrsignificance.

The capacityC of a noisy channel should be the maximum possible rate of trangmjds., the rate
when the source is properly matched to the channel. We therefore defineatireetbapacity by

C = Max(H(x) — Hy(x))

where the maximum is with respect to all possible information soursed as input to the channel. If the
channel is noiselesbly(x) = 0. The definition is then equivalent to that already given for a noiselessiehan
since the maximum entropy for the channel is its capacity.

13. THE FUNDAMENTAL THEOREM FOR ADISCRETECHANNEL WITH NOISE

It may seem surprising that we should define a definite cap@dity a noisy channel since we can never
send certain information in such a case. It is clear, however, that by sehéingformation in a redundant
form the probability of errors can be reduced. For example, by repeatngdissage many times and by a
statistical study of the different received versions of the messagedbalgtity of errors could be made very
small. One would expect, however, that to make this probability afrerapproach zero, the redundancy
of the encoding must increase indefinitely, and the rate of transmits®oefore approach zero. This is by
no means true. If it were, there would not be a very well defined capacity, uaaapacity for a given
frequency of errors, or a given equivocation; the capacity going downeasrtbr requirements are made
more stringent. Actually the capaciB/defined above has a very definite significance. It is possible to send
information at the rat€ through the chann&ith as small a frequency of errors or equivocation as desired
by proper encoding. This statement is not true for any rate greate€théan attempt is made to transmit

at a higher rate tha@, sayC + Ry, then there will necessarily be an equivocation equal to or greater than the
exces®y. Nature takes payment by requiring just that much uncertainty, so thatewetactually getting

any more thar€ through correctly.

The situation is indicated in Fig. 9. The rate of information inte thannel is plotted horizontally and
the equivocation vertically. Any point above the heavy line in the sdadgion can be attained and those
below cannot. The points on the line cannot in general be attained, batviibusually be two points on
the line that can.

These results are the main justification for the definitio@ aihd will now be proved.

Theorem 11:Let a discrete channel have the capaCitgnd a discrete source the entropy per se¢dnd
If H < C there exists a coding system such that the output of the source cambmiited over the channel
with an arbitrarily small frequency of errors (or an arbitrarily small igqaation). IfH > C it is possible
to encode the source so that the equivocation is lessHha@ + e wheree is arbitrarily small. There is no
method of encoding which gives an equivocation less HharC.

The method of proving the first part of this theorem is not by eximia coding method having the
desired properties, but by showing that such a code must exist in ancgrtaip of codes. In fact we will

QUNNNNANNN
ATTAINABLE
REGION

C H(x)

Fig. 9—The equivocation possible for a given input entrapg thannel.
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average the frequency of errors over this group and show that this avesiagoe made less thanlf the
average of a set of numbers is less tlhahere must exist at least one in the set which is less ¢hdrhis
will establish the desired result.

The capacityC of a noisy channel has been defined as

C = Max(H(x) — Hy(x))

wherex is the input and/ the output. The maximization is over all sources which might be usegasto
the channel.

Let S be a source which achieves the maximum capagitif this maximum is not actually achieved
by any source le§ be a source which approximates to giving the maximum rate. Supdseused as
input to the channel. We consider the possible transmitted and receivesheeg of a long duratioh. The
following will be true:

1. The transmitted sequences fall into two classes, a high probabiitypgrith about 24 members
and the remaining sequences of small total probability.

2. Similarly the received sequences have a high probability set of aB6# Znembers and a low
probability set of remaining sequences.

3. Each high probability output could be produced by abdt%® inputs. The probability of all other
cases has a small total probability.

All the €'s andé’s implied by the words “small” and “about” in these statements approach zexe as
allow T to increase an8y to approach the maximizing source.

The situation is summarized in Fig. 10 where the input sequences arns poirihe left and output
sequences points on the right. The fan of cross lines represents theofgragsible causes for a typical
output.

E
°
M .
° °
° .

H(X)T
HIGH PROBABILITY 2HWYT
MESSAGES HIGH PROBABILITY

RECEIVED SIGNALS

2H/()T
REASONABLE CAUSES
. FOR EACHE °

2Hx(y)T

o REASONABLE EFFECTS o
FOR EACHM

[

Fig. 10—Schematic representation of the relations betwgans and outputs in a channel.
Now suppose we have another source producing information aRnatth R < C. In the periodT this

source will have 2R high probability messages. We wish to associate these with a selection pbssible
channel inputs in such a way as to get a small frequency of errors. We wilpsiis association in all
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possible ways (using, however, only the high probability grofimputs as determined by the souigg

and average the frequency of errors for this large class of possiblagcegstems. This is the same as
calculating the frequency of errors for a random association of the messadjebannel inputs of duration

T. Suppose a particular outpyit is observed. What is the probability of more than one message in the set
of possible causes gi? There are 2R messages distributed at random IH'®) points. The probability of

a particular point being a message is thus
2T(R-H(¥)

The probability that none of the points in the fan is a message (apartthe actual originating message) is

P [1— 2T(R-H09 2™,

Now R < H(x) — Hy(x) soR— H(x) = —Hy(x) —n with n positive. Consequently

P=[1-2 THKX-Tn] 2T

approaches (ab — )
127,

Hence the probability of an error approaches zero and the first part of thethé&oproved.

The second part of the theorem is easily shown by noting that we couldynsersdC bits per second
from the source, completely neglecting the remainder of the informgmerated. At the receiver the
neglected part gives an equivocatidiix) — C and the part transmitted need only add his limit can also
be attained in many other ways, as will be shown when we consider the vonsicase.

The last statement of the theorem is a simple consequence of our defirfilfoSuppose we can encode
a source witlH (x) = C+ain such a way as to obtain an equivocatidy{x) = a— e with e positive. Then
R=H(x) =C+aand

H(X) —Hy(X) =C+e¢

with e positive. This contradicts the definition Gfas the maximum off (x) — Hy(X).

Actually more has been proved than was stated in the theorem. If the averagebbf numbers is
within e of of their maximum, a fraction of at mogte can be more thatye below the maximum. Sinceis
arbitrarily small we can say that almost all the systems are arbitrarilg ¢ttothe ideal.

14. DISCUSSION

The demonstration of Theorem 11, while not a pure existence prasfstme of the deficiencies of such
proofs. An attempt to obtain a good approximation to ideal coding bgvitng the method of the proof is
generally impractical. In fact, apart from some rather trivial cases and certétimgjraituations, no explicit
description of a series of approximation to the ideal has been found.aBlyothis is no accident but is
related to the difficulty of giving an explicit construction for a gaggproximation to a random sequence.

An approximation to the ideal would have the property that if thealds altered in a reasonable way
by the noise, the original can still be recovered. In other words theatsitiarwill not in general bring it
closer to another reasonable signal than the original. This is accomptisttezicost of a certain amount of
redundancy in the coding. The redundancy must be introduced in tpempway to combat the particular
noise structure involved. However, any redundancy in the sourdeusuiklly help if it is utilized at the
receiving point. In particular, if the source already has a certain redungamtyo attempt is made to
eliminate it in matching to the channel, this redundancy will help combigen For example, in a noiseless
telegraph channel one could save about 50% in time by proper encoding wfdssages. This is not done
and most of the redundancy of English remains in the channel symblois.h#&s the advantage, however,
of allowing considerable noise in the channel. A sizable fraction ofdtters can be received incorrectly
and still reconstructed by the context. In fact this is probably not aalppdoximation to the ideal in many
cases, since the statistical structure of English is rather involvechengasonable English sequences are
not too far (in the sense required for the theorem) from a random selectio

24



As in the noiseless case a delay is generally required to approach the ideahgndbdiow has the
additional function of allowing a large sample of noise to affect tigmal before any judgment is made
at the receiving point as to the original message. Increasing the sampbdveies sharpens the possible
statistical assertions.

The content of Theorem 11 and its proof can be formulated in a somewfeatdifway which exhibits
the connection with the noiseless case more clearly. Consider thelpasgiials of duratioi and suppose
a subset of them is selected to be used. Let those in the subset all be tsequail probability, and suppose
the receiver is constructed to select, as the original signal, the mostipeotause from the subset, when a
perturbed signal is received. We defld€T, q) to be the maximum number of signals we can choose for the
subset such that the probability of an incorrect interpretation is lessadhequal ta.

logN(T,q)
T

Theorem 12:IT_im = C, whereC is the channel capacity, provided tlydoes not equal 0 or

—00
1.

In other words, no matter how we set out limits of reliability, we castidguish reliably in timer
enough messages to correspond to aBdubits, whenT is sufficiently large. Theorem 12 can be compared
with the definition of the capacity of a noiseless channel given in Section 1.

15. EXAMPLE OF A DISCRETECHANNEL AND ITS CAPACITY

A simple example of a discrete channel is indicated in Fig. 11. There @ plossible symbols. The firstis
never affected by noise. The second and third each have probahdftgoming through undisturbed, and
g of being changed into the other of the pair. We have (letting —[plogp + glogg] andP andQ be the

¢ —>—0
p
TRANSMITTED ¥ RECEIVED
SYMBOLS SYMBOLS
q
p

Fig. 11—Example of a discrete channel.
probabilities of using the first and second symbols)

H(x) = —PlogP — 2QlogQ
Hy(x) = 2Qa.

We wish to choos® andQ in such a way as to maximizé(x) — Hy(x), subject to the constraif+-2Q = 1.
Hence we consider

U = —PlogP — 2QlogQ — 2Qa + A\(P+ 2Q)

oU
i —1-logP+A=0
oU
30~ —2—-2l0gQ—2a+2X=0.
Eliminating A
logP =1logQ+ «
P=Qe" =Qg3
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1

0= 52

__B
P_,6+2

The channel capacity is then
B+2
C=log 5
Note how this checks the obvious values in the casesl andp = % In the first,3 = 1 andC = log 3,
which is correct since the channel is then noiseless with three possibleots; If p = % B =2 and
C =log2. Here the second and third symbols cannot be distinguished atdalicirtogether like one
symbol. The first symbol is used with probabilRy= % and the second and third together with probability
%. This may be distributed between them in any desired way and still achievegkimum capacity.
For intermediate values g the channel capacity will lie between log2 and log3. The distinction
between the second and third symbols conveys some information bas matich as in the noiseless case.
The first symbol is used somewhat more frequently than the otherdwsause of its freedom from noise.

16. THE CHANNEL CAPACITY IN CERTAIN SPECIAL CASES

If the noise affects successive channel symbols independently it can bebddsoyi a set of transition
probabilitiesp;j. This is the probability, if symbadilis sent, thaf will be received. The maximum channel
rate is then given by the maximum of

— > Rpijlogy Rpij + Rpijlogp;
1) 1 ]
where we vary th@ subject tos P = 1. This leads by the method of Lagrange to the equations,

Psj
=pu s=12,....
YiPpij

> bsjlog
J

Multiplying by Ps and summing ors shows thaf. = C. Let the inverse ofs; (if it exists) behs; so that
S shstpsj = &tj. Then:

2 hstpsjlogpsj—logy Rpw =C 3 hs.

S,) I S

Hence:
> P = exp[—CZ hst+ > hstpsjlog ps;}
1 S S,)

or,
P= Z hit exp[fcz hst+ ) hstpsjlog psj} :
S 5]

This is the system of equations for determining the maximizing valtiBs with C to be determined so
thaty B = 1. When this is don€ will be the channel capacity, and tRethe proper probabilities for the
channel symbols to achieve this capacity.

If each input symbol has the same set of probabilities on the lines ergdrgim it, and the same is true
of each output symbol, the capacity can be easily calculated. Examples are shégirili2. In such a case
Hyx(y) is independent of the distribution of probabilities on the inpumbsols, and is given by- 3 p;log p;
where thep; are the values of the transition probabilities from any input symbloé channel capacity is

Max[H(y) — Hx(y)] = MaxH(y) + 3 pilogpi.

The maximum oH (y) is clearly lognwheremis the number of output symbols, since it is possible to make
them all equally probable by making the input symbols equally probaiile channel capacity is therefore

C=logm+ % pilogpi.
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1/2

a b Cc

Fig. 12—Examples of discrete channels with the same tiangitobabilities for each input and for each output.

In Fig. 12a it would be
C=log4—log2=log2

This could be achieved by using only the 1st and 3d symbols. In Blg. 1
C=log4— %log3- %log6
=log4—log3— log2
=log %2% .
In Fig. 12¢ we have
C=log3- }log2—1log3— tlog6
— |Og i
273366
Suppose the symbols fall into several groups such that the noise causes a symbol in one group to
be mistaken for a symbol in another group. Let the capacity fontheyroup beC, (in bits per second)

when we use only the symbols in this group. Then it is easily shtwat) for best use of the entire set, the
total probabilityR, of all symbols in thenth group should be

2Cn
_ZW'

Within a group the probability is distributed just as it wouldibthese were the only symbols being used.
The channel capacity is

Pn

C=log}y 2.
17. AN EXAMPLE OF EFFICIENT CODING

The following example, although somewhat unrealistic, is a case ichaxact matching to a noisy channel
is possible. There are two channel symbols, 0 and 1, and the noise dffsttatblocks of seven symbols.
A block of seven is either transmitted without error, or exactly onetsyrof the seven is incorrect. These
eight possibilities are equally likely. We have

C = Max[H(y) — Hx(y)]
= 3[7+§logg]
= 4 bits/symbol

An efficient code, allowing complete correction of errors and transmittingeatateC, is the following
(found by a method due to R. Hamming):
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Let a block of seven symbols B§, X, ..., X7. Of theseXs, X5, Xg and X7 are message symbols and
chosen arbitrarily by the source. The other three are redundant and calculfiboves

X4 ischosento makea = Xs+ X5+ Xs+ X7 even
X2 “ " " " ﬂ — X2 + X3 + x6 + X7 “
Xl “ “ “ “ ’Y == xl "F ><3 + XS "F X7 “

When a block of seven is received and+ are calculated and if even called zero, if odd called one. The
binary numbery 5 then gives the subscript of thé that is incorrect (if O there was no error).

APPENDIX 1
THE GROWTH OF THENUMBER OF BLOCKS OFSYMBOLS WITH A FINITE STATE CONDITION

LetN;(L) be the number of blocks of symbols of lendtlending in staté. Then we have
Nj(L) = 3 Ni(L— D)
1S

Wherebilj , bizj e b{}‘ are the length of the symbols which may be chosen in staté lead to stat¢. These
are linear difference equations and the behavidr asc must be of the type

Nj = AjWt.
Substituting in the difference equation
(5)
AWE =5 AW
2
or

(s)
A=Y AW
IS

()
3(zw i -s)aso
| S
For this to be possible the determinant

DW) = [aj| =

(S)
T
S

must vanish and this determinés which is, of course, the largest real root®f 0.
The quantityC is then given by

AnL
C — Lim 292 AW

L—oo

= logW

and we also note that the same growth properties result if we reqgairalttblocks start in the same (arbi-
trarily chosen) state.
APPENDIX 2
DERIVATION OF H = — 5 pilogp;

LetH (% %, e %) = A(n). From condition (3) we can decompose a choice fa8hequally likely possi-

bilities into a series om choices frons equally likely possibilities and obtain

A(S™) = mA(s).
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Similarly ™ "
A(t") = nA(t).

We can choosa arbitrarily large and find amto satisfy
SN <t < gmHD),
Thus, taking logarithms and dividing mlogs,

m logt m 1 m logt
<—<—+- or ———‘
n—logs— n n n logs

wheree is arbitrarily small. Now from the monotonic propertyAfn),
A(S™) < A(t") <A™
MA(S) < NA(t) < (M+1)A(9).

Hence, dividing bynA(s),

m<@<m+} or m—@‘<
n—A)~n n n A ¢
%E—g;k& A(t) = K logt

whereK must be positive to satisfy (2). N
Now suppose we have a choice fronpossibilities with commeasurable probabilitigs= —;] where

then; are integers. We can break down a choice frpm possibilities into a choice from poslsibilities
with probabilitiesps, . . ., py and then, if théth was chosen, a choice framwith equal probabilities. Using
condition (3) again, we equate the total choice frpim as computed by two methods

KIoani = H(pl,...,pn)+KZpiIogni.

Hence

H=K {z pi Ioani - Z pi Iogni}
- Jog M — .
=-K> IogZni =—K> pilogpi.
If the p; are incommeasurable, they may be approximated by rationals and the sarsssxpmust hold

by our continuity assumption. Thus the expression holds in gengnalchoice of coefficier is a matter
of convenience and amounts to the choice of a unit of measure.

APPENDIX 3
THEOREMS ONERGODIC SOURCES

If it is possible to go from any state with > 0 to any other along a path of probabilipy> O, the system is
ergodic and the strong law of large numbers can be applied. Thus theenafttimes a given paty; in
the network is traversed in a long sequence of leMyth about proportional to the probability of being at
i, sayPR, and then choosing this patR;;N. If N is large enough the probability of percentage eférin
this is less tham so that for all but a set of small probability the actual numbers lieiwitie limits

(P, Pij j:(S)N.

Hence nearly all sequences have a probaliigiven by
(Ppij£d)N
p= I_l Pij :

29



andb% is limited by

lo
Sp Z(Pplj +6) log pjj

or
Iog p

zpplj logpij | <

This proves Theorem 3.

Theorem 4 follows immediately from this on calculating upper and lowentstiorn(q) based on the
possible range of values @fin Theorem 3.

In the mixed (not ergodic) case if

L=> pLi
and the entropies of the componentsidie> Ho > --- > H, we have the

Theorem: Lim 'ogﬂ(m = ¢(q) is a decreasing step function,

s1
©(q) =Hs inthe interval Z i <q< Zm

To prove Theorems 5 and 6 first note th&t is monotonic decreasing because increadingdds a
subscript to a conditional entropy. A simple substitutionggf(S;) in the definition offy shows that

FN =NGy—(N—-1)Gn-1

. . ) 1 . .
and summing this for al givesGy = N z F.. HenceGy > Fy andGy monotonic decreasing. Also they
must approach the same limit. By using Theorem 3 we se%thaGNim H.
—00

APPENDIX 4
MAXIMIZING THE RATE FOR A SYSTEM OF CONSTRAINTS

Suppose we have a set of constraints on sequences of symbols thahésfimite state type and can be
represented therefore by a linear graph. l,(?t be the lengths of the various symbols that can occur in

passing from staté to statej. What distribution of probabilitie® for the different states andi(js) for
choosing symbaé in statei and going to stat¢ maximizes the rate of generating information under these
constraints? The constraints define a discrete channel and the maximunusttle less than or equal to
the capacityC of this channel, since if all blocks of large length were equally likelig thte would result,
and if possible this would be best. We will show that this rate can bieaathby proper choice of tHé and

pt.
The rate in question is

~sRpJlogp N

SR pi(f’fi(f’ M

Lets; = Zs EV|dentIy fora maX|murrpI kexpﬁi(js). The constraints on maximization &yé =
1Lypj=1, ZP(pIJ dij) = 0. Hence we maX|mize

—> Ppijlogpij

zplpijéij z ! Z’u'p” an pIJ IJ
0U _ MR(1+logpy) +NRC
opj M2

U:

+ A+ pi+7iP = 0.

30



Solving for pj;
pij = AB;D ‘il

Since

Spi=1 Al=yBD
] ]
BjD i

Pi= S RD %

ZSBSD is

The correct value ob is the capacityC and theB; are solutions of

Bi=3 BjC"
for then
B; N
pj = g.C
BJ —tii _ p.
S P.Eic i =P
or P b
e 0
Z BiC B,
So that if\; satisfy
S C =
P = Bivi.

Both the sets of equations fBf and~; can be satisfied sin€2is such that

|C7[ij — (Sij ‘ =0.
In this case the rate is 5 B
~ 3PpjlogglC i FRpijlogg
> Ppij ij 2 Ppij G

but
> Ppij(logB; — logB;) =  PjlogB; —  RilogBi =0
J

Hence the rate i€ and as this could never be exceeded this is the maximum, justifyingshmasl solution.
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PART IIl: MATHEMATICAL PRELIMINARIES

In this final installment of the paper we consider the case where the signéhe messages or both are
continuously variable, in contrast with the discrete nature assumeafereetTo a considerable extent the
continuous case can be obtained through a limiting process from tre@igase by dividing the continuum
of messages and signals into a large but finite number of small regidmsibnulating the various parameters
involved on a discrete basis. As the size of the regions is decreasegbtraseeters in general approach as
limits the proper values for the continuous case. There are, however reefe effects that appear and also
a general change of emphasis in the direction of specialization of the geneltd teparticular cases.

We will not attempt, in the continuous case, to obtain our results thighgreatest generality, or with
the extreme rigor of pure mathematics, since this would involveeatgieal of abstract measure theory
and would obscure the main thread of the analysis. A preliminary shagyever, indicates that the theory
can be formulated in a completely axiomatic and rigorous manner which esloth the continuous and
discrete cases and many others. The occasional liberties taken with linribioggses in the present analysis
can be justified in all cases of practical interest.

18. TS AND ENSEMBLES OFFUNCTIONS

We shall have to deal in the continuous case with sets of functions aedhbtes of functions. A set of
functions, as the name implies, is merely a class or collection of fursstgenerally of one variable, time.
It can be specified by giving an explicit representation of the variousifurgtn the set, or implicitly by
giving a property which functions in the set possess and others d&aote examples are:

1. The set of functions:
fo(t) = sin(t +6).

Each particular value @f determines a particular function in the set.
2. The set of all functions of time containing no frequencies WVeaycles per second.
3. The set of all functions limited in band ¥ and in amplitude té\.
4. The set of all English speech signals as functions of time.

An ensemblef functions is a set of functions together with a probability measurereby we may
determine the probability of a function in the set having certain @riigs® For example with the set,

fo(t) = sin(t +6),

we may give a probability distribution fa@, P(6). The set then becomes an ensemble.
Some further examples of ensembles of functions are:

1. Afinite set of functiondy(t) (k= 1,2,...,n) with the probability offy being py.
2. Afinite dimensional family of functions
f(a1,a2,...,an;t)
with a probability distribution on the parameters
p(a,...,an).

For example we could consider the ensemble defined by

with the amplitudes; distributed normally and independently, and the phéseistributed uniformly
(from 0 to 2r) and independently.

1in mathematical terminology the functions belong to a mesaspace whose total measure is unity.
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3. The ensemble .
. <« _ SinT(2Wt—n)
=3 & owin)
with thea; normal and independent all with the same standard devigfdnThis is a representation
of “white” noise, band limited to the band from 0\ cycles per second and with average poer

4. Let points be distributed on theaxis according to a Poisson distribution. At each selected point the
function f(t) is placed and the different functions added, giving the ensemble

i f(t+1ty)

k=—00

where they are the points of the Poisson distribution. This ensemble can lmdeyad as a type of
impulse or shot noise where all the impulses are identical.

5. The set of English speech functions with the probability measueady the frequency of occurrence
in ordinary use.

An ensemble of function§, (t) is stationaryif the same ensemble results when all functions are shifted
any fixed amountin time. The ensemble

fo(t) = sin(t + 0)
is stationary iff is distributed uniformly from 0 to 2. If we shift each function by, we obtain

fo(t+11) =sin(t +1t1+6)
=sin(t + )

with ¢ distributed uniformly from 0 to 2. Each function has changed but the ensemble as a whole is
invariant under the translation. The other examples given above ardatisnary.

An ensemble iergodicif it is stationary, and there is no subset of the functions in the st s
probability different from 0 and 1 which is stationary. The ensemble

sin(t + 6)

is ergodic. No subset of these functions of probabit®, 1 is transformed into itself under all time trans-
lations. On the other hand the ensemble

asin(t +6)

with a distributed normally and uniform is stationary but not ergodic. The subset of these functidgtins
abetween 0 and 1 for example is stationary.

Of the examples given, 3 and 4 are ergodic, and 5 may perhaps be considerédms@nsemble is
ergodic we may say roughly that each function in the set is typical of thengne. More precisely it is
known that with an ergodic ensemble an average of any statistic over thmeless equal (with probability
1) to an average over the time translations of a particular functioneob#t® Roughly speaking, each
function can be expected, as time progresses, to go through, withapergrequency, all the convolutions
of any of the functions in the set.

2This representation can be used as a definition of band dmiteite noise. It has certain advantages in that it involesef
limiting operations than do definitions that have been usethé past. The name “white noise,” already firmly entrencimethe
literature, is perhaps somewhat unfortunate. In opticdeMight means either any continuous spectrum as contragtbda point
spectrum, or a spectrum which is flat witlavelength(which is not the same as a spectrum flat with frequency).

3This is the famous ergodic theorem or rather one aspect sittieorem which was proved in somewhat different formutatio
by Birkoff, von Neumann, and Koopman, and subsequently rdined by Wiener, Hopf, Hurewicz and others. The literaton
ergodic theory is quite extensive and the reader is refdordétle papers of these writers for precise and general fationk; e.g.,
E. Hopf, “Ergodentheorie,Ergebnisse der Mathematik und ihrer Grenzgebiet&; “On Causality Statistics and Probabilitydurnal
of Mathematics and Physicg, Xlll, No. 1, 1934; N. Wiener, “The Ergodic Theorenjuke Mathematical Journal;. 5, 1939.
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Just as we may perform various operations on numbers or functionsaio olew numbers or functions,
we can perform operations on ensembles to obtain new ensembles. Suppasgniple, we have an
ensemble of function$, (t) and an operatof which gives for each functior, (t) a resulting function

Ga (b):
ga(t) =T frx(t)'

Probability measure is defined for the ggft) by means of that for the séf (t). The probability of a certain
subset of they, (t) functions is equal to that of the subset of thét) functions which produce members of
the given subset gf functions under the operatidn Physically this corresponds to passing the ensemble
through some device, for example, a filter, a rectifier or a modulatoe otiiput functions of the device
form the ensemblg,, (t).

A device or operator will be called invariant if shifting the input merely shifts the outpi.e., if

Oa (t) =Tf, (t)

implies

Oa(t+t1) =T (t+11)
for all f,(t) and allt;. Itis easily shown (see Appendix 5 thaflifis invariant and the input ensemble is
stationary then the output ensemble is stationary. Likewise ifripatiis ergodic the output will also be
ergodic.

A filter or a rectifier is invariant under all time translations. The operatif modulation is not since the
carrier phase gives a certain time structure. However, modulation iganvamder all translations which
are multiples of the period of the carrier.

Wiener has pointed out the intimate relation between the invariance ofcphyievices under time
translations and Fourier theohHe has shown, in fact, that if a device is linear as well as invariant Fourier
analysis is then the appropriate mathematical tool for dealing with thzgm.

An ensemble of functions is the appropriate mathematical representatibe ofessages produced by
a continuous source (for example, speech), of the signals produceddnysanitter, and of the perturbing
noise. Communication theory is properly concerned, as has been emphasizeshisy, Wbt with operations
on particular functions, but with operations on ensembles of funct®eemmunication system is designed
not for a particular speech function and still less for a sine wave, btihéoensemble of speech functions.

19. BAND LIMITED ENSEMBLES OFFUNCTIONS

If a function of timef(t) is limited to the band from O t@V cycles per second it is completely determined
by giving its ordinates at a series of discrete points sp%épdeconds apart in the manner indicated by the
following result®

Theorem 13:Let f (t) contain no frequencies ovéf. Then

sinT(2Wt—n)
Zxﬂ W)
where n
X =1(z)

4Communication theory is heavily indebted to Wiener for muoglits basic philosophy and theory. His classic NDRC report,
The Interpolation, Extrapolation and Smoothing of StadignTime SeriegWiley, 1949), contains the first clear-cut formulation of
communication theory as a statistical problem, the studypefations on time series. This work, although chiefly comeé with the
linear prediction and filtering problem, is an importantlat@ral reference in connection with the present paper. \Af afso refer
here to Wiener'<CyberneticyWiley, 1948), dealing with the general problems of commsation and control.

5For a proof of this theorem and further discussion see theoeatpaper “Communication in the Presence of Noise” ptblisin
the Proceedings of the Institute of Radio Engineers37, No. 1, Jan., 1949, pp. 10-21.
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In this expansiorf (t) is represented as a sum of orthogonal functions. The coefficigmtsthe various
terms can be considered as coordinates in an infinite dimensional “functae.5pln this space each
function corresponds to precisely one point and each point to one fanctio

A function can be considered to be substantially limited to a flmall the ordinatesx, outside this
interval of time are zero. In this case all buf\?/ of the coordinates will be zero. Thus functions limited to
a bandV and durationT correspond to points in a space Gf\® dimensions.

A subset of the functions of bal and durationT corresponds to a region in this space. For example,
the functions whose total energy is less than or equialdorrespond to points in a2V dimensional sphere
with radiusr = v2WE.

An ensemblef functions of limited duration and band will be represented by a pritityatiistribution
p(xa,...,%n) inthe correspondingdimensional space. If the ensemble is not limited in time we can consider
the 2ZI'W coordinates in a given intervalto represent substantially the part of the function in the intéFval
and the probability distributiop(x, ..., Xn) to give the statistical structure of the ensemble for intervals of
that duration.

20. ENTROPY OF ACONTINUOUS DISTRIBUTION

The entropy of a discrete set of probabilitigs. . ., p, has been defined as:

H=-3 pilogp.

In an analogous manner we define the entropy of a continuous distribwith the density distribution
function p(x) by:

H=— [ p(xlogp(xdx
With ann dimensional distributiop(xa, . .., X)) we have

H :—/---/p(Xla---,Xn)|09p(X1,...,Xn)dxl...dxn_

If we have two arguments andy (which may themselves be multidimensional) the joint and conditional
entropies ofp(x,y) are given by

H(xy) = f// p(x,y)logp(x,y) dxdy

and
_ P(X,Y)
Hu(y) = — [ poxy)log P axdy
_ P(X,Y)
Hy(X) = — // p(x.y)log ) dxdy
where

p(x) = / p(x.y)dy
p(y) = [ p(xy)dx

The entropies of continuous distributions have most (but npbélihe properties of the discrete case.
In particular we have the following:

1. If xis limited to a certain volumein its space, thehl (x) is a maximum and equal to legvhenp(x)
is constant (1v) in the volume.
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2. With any two variableg, y we have
H(xy) <H(X) +H(y)

with equality if (and only if)x andy are independent, i.ep(x,y) = p(X)p(y) (apart possibly from a
set of points of probability zero).

3. Consider a generalized averaging operation of the following type:

P(y) = [ alxy)pdx

with
/a(x,y)dx: /a(x,y)dy: 1, a(x,y) > 0.

Then the entropy of the averaged distributipiiy) is equal to or greater than that of the original
distributionp(x).

4. We have
H(X,y) = H(X) + Hx(y) = H(y) + Hy(x)

and

Hx(y) < H(y).

5. Letp(x) be a one-dimensional distribution. The formpgk) giving a maximum entropy subject to the
condition that the standard deviatiomodbe fixed atr is Gaussian. To show this we must maximize

HOO = - [ PO)logp(X)dx
with
0? = /p(x)xzdx and 1= /p(x)dx
as constraints. This requires, by the calculus of variations, maximizing
[ [=P0010gP() + Ap()E + up(x)] dx

The condition for this is
—1—logp(X) + M +pu=0

and consequently (adjusting the constants to satisfy the constraints)

1 270 2
_ = A(x¢/207)

X) = e .
P(X) Vero

Similarly in n dimensions, suppose the second order moment&®f. .., x,) are fixed aty;:

Ajj :/‘"/Xixjp(xl:---:xn)dxl“‘d)‘n-

Then the maximum entropy occurs (by a similar calculation) whiea, . . . , X,) is then dimensional
Gaussian distribution with the second order momeé)ts
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. The entropy of a one-dimensional Gaussian distribution whaselatd deviation is is given by
H(x) = logVv2reo.

This is calculated as follows:

p(X) = ——e (/2"

V2ro
2
—logp(x) = logVv2ro + x
202

H9 =~ [ p0)logp(x)dx
. .
:/p(x) Iog\/ﬂodx+/p(x)ﬁdx

02
=logVv2ro+ —
202

= logV2ro + logy/e
=logv2reos.

Similarly then dimensional Gaussian distribution with associated quadratic &ris given by

1
P(XL, -, %) = (|;,-)|an exp(~3 3 aijxx;)
and the entropy can be calculated as

H = log(2re)"?|a;| 2
wherela;j| is the determinant whose elements ase

. If xis limited to a half line p(x) = 0 for x < 0) and the first moment ofis fixed ata:

a= | " p(xxdx

then the maximum entropy occurs when

and is equal to loga

. There is one important difference between the continuous and discteipies. In the discrete case
the entropy measures in asoluteway the randomness of the chance variable. In the continuous
case the measurementédative to the coordinate systerf we change coordinates the entropy will

in general change. In fact if we change to coordingdes y, the new entropy is given by

H(y) :'/.../p(xl,...,xn)\](g) Iogp(xl,...,xn)J()_;) dys---dyn

whereJ (5) is the Jacobian of the coordinate transformation. On expandingdheitiom and chang-

ing the variables ta; - - - X,, we obtain:

H(y) :H(x)—/---/p(xl,...,xn)log\](;—(/) dxq...dx,.
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Thus the new entropy is the old entropy less the expected logarittime dacobian. In the continuous
case the entropy can be considered a measure of randoralais® to an assumed standartamely
the coordinate system chosen with each small volume elethent- dx, given equal weight. When
we change the coordinate system the entropy in the new system measusrsdbmness when equal
volume elementdy; - - - dyn in the new system are given equal weight.

In spite of this dependence on the coordinate system the entropy cosespimportant in the con-
tinuous case as the discrete case. This is due to the fact that the derivedtsafigeformation rate
and channel capacity depend on thifferenceof two entropies and this differena®es notdepend
on the coordinate frame, each of the two terms being changed by the same amount

The entropy of a continuous distribution can be negative. The scateasurements sets an arbitrary
zero corresponding to a uniform distribution over a unit volumeistridhution which is more confined
than this has less entropy and will be negative. The rates and capacitidsowidyer, always be non-
negative.

9. A particular case of changing coordinates is the linear transformation
Yi = ajX.
|
In this case the Jacobian is simply the determinagit * and

H(y) = H(x) +log|aj -

In the case of a rotation of coordinates (or any measure preserving traasiun)J = 1 andH (y) =
H(X).

21. ENTROPY OF ANENSEMBLE OFFUNCTIONS

Consider an ergodic ensemble of functions limited to a certain band ¢t Wictycles per second. Let

p(X1,...,%n)

be the density distribution function for amplitudes. . ., x, atn successive sample points. We define the
entropy of the ensemble per degree of freedom by

:—Hmn/ /pm,, )ylogp(xa, ..., %) dX ... dX.
We may also define an entropy per second by dividing, not by, but by the timeT in seconds fon
samples. Since=2TW, H = 2WH'.

With white thermal nois@ is Gaussian and we have

=logv 2weN,
H =WIlog2reN.

For a given average pow@\t, white noise has the maximum possible entropy. This followmftbe
maximizing properties of the Gaussian distribution noted above.

The entropy for a continuous stochastic process has many propertieg@usato that for discrete pro-
cesses. In the discrete case the entropy was related to the logarithmpobhiadility of long sequences,
and to thenumberof reasonably probable sequences of long length. In the continuous caseléted in
a similar fashion to the logarithm of th@obability densityfor a long series of samples, and taumeof
reasonably high probability in the function space.

More precisely, if we assumgxy, ..., Xn) continuous in all the; for all n, then for sufficiently large

w%p
n

HI
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for all choices of(xs, ..., xn) apart from a set whose total probability is less thiawith 6 ande arbitrarily
small. This follows form the ergodic property if we divide theasp into a large number of small cells.

The relation ofH to volume can be stated as follows: Under the same assumptions comsder t
dimensional space correspondingptxs, ..., X,). LetVy(q) be the smallest volume in this space which
includes in its interior a total probability. Then

Lim '109Va(a) _
n—o n
providedqg does not equal O or 1.

These results show that for largéhere is a rather well-defined volume (at least in the logarithmic sense)
of high probability, and that within this volume the probabilitgnsity is relatively uniform (again in the
logarithmic sense).

In the white noise case the distribution function is given by

1 1<,
P(X1, -3 %n) = —sa7s €XP— o0 B X

(2rN)"/2
Since this depends only 021)(1-2 the surfaces of equal probability density are spheres and the entiie distr
bution has spherical symmetry. The region of high probability iptzese of radius/nN. Asn — o the
probability of being outside a sphere of radiy(N + ¢) approaches zero ar%dtimes the logarithm of the
volume of the sphere approaches{6greN.

In the continuous case it is convenient to work not with the enttbpy an ensemble but with a derived
guantity which we will call the entropy power. This is defined as the pawarwhite noise limited to the
same band as the original ensemble and having the same entropy. In otHerifid’ is the entropy of an
ensemble its entropy power is L

!
Ni = 27Teexp2—| .
In the geometrical picture this amounts to measuring the high pratyalilume by the squared radius of a
sphere having the same volume. Since white noise has the maximwpyefdr a given power, the entropy
power of any noise is less than or equal to its actual power.

22. ENTROPY LOSS INLINEAR FILTERS

Theorem 14:If an ensemble having an entroply per degree of freedom in ba¥d is passed through a
filter with characteristitY (f) the output ensemble has an entropy

1
Ho=H;+ — [ log|Y(f)]2df.
2=Hi+ g [ logl¥(1)]

The operation of the filter is essentially a linear transformation ofdioates. If we think of the different
frequency components as the original coordinate system, the new fggeenponents are merely the old
ones multiplied by factors. The coordinate transformation matrikus essentially diagonalized in terms
of these coordinates. The Jacobian of the transformation i €ore anch cosine components)

J=i|j|v<fi>2

where thef; are equally spaced through the balidThis becomes in the limit

1 2
expy /W log|Y (f)|2df.
Sincel is constant its average value is the same quantity and applying thetheorthe change of entropy

with a change of coordinates, the result follows. We may also phrasésitrs of the entropy power. Thus
if the entropy power of the first ensembleNs that of the second is

Nlexpv—]\'/ /Wlog\Y(f)|2df.
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TABLE |

ENTROPY| ENTROPY
GAIN POWER |POWER GAIN|  IMPULSE RESPONSE
FACTOR |IN DECIBELS
1
1w e .
w > 1 869 sir?(t/2)
& /2
0 w 1
1
1-w? --—> 2\4 sint  cost
E (5) | -5 2[?3*?2]
0 w 1
1
1-wd --—> cog—1 cogt  sint
i 0411 | 387 6[T7?+t—3]
0 w 1
1
V1— (w2 ---> 2
1w i (3) 267 Ta
e 2t
0 w 1
1
|
|
|
| 1 —8.69 ! [cof1— a)t —cost]
| 2o ' at?
o
0 w 1

The final entropy power is the initial entropy power multiplied by ggmetric mean gain of the filter. If
the gain is measured ofb, then the output entropy power will be increased by the arithmetic miegain
overW.

In Table | the entropy power loss has been calculated (and also exprestgdaona number of ideal
gain characteristics. The impulsive responses of these filters are atsofgiVW = 27, with phase assumed
to be 0.

The entropy loss for many other cases can be obtained from these resultsxaRple the entropy
power factor Y€ for the first case also applies to any gain characteristic obtain fronw by a measure
preserving transformation of theaxis. In particular a linearly increasing gai{w) = w, or a “saw tooth”
characteristic between 0 and 1 have the same entropy loss. The reciprocahgdire meciprocal factor.
Thus J/w has the facto€?. Raising the gain to any power raises the factor to this power.

23. ENTROPY OF ASUM OF TWO ENSEMBLES

If we have two ensembles of functiofig(t) andgs (t) we can form a new ensemble by “addition.” Suppose
the first ensemble has the probability density funciidry,...,X,) and the second(x,...,xn). Then the
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density function for the sum is given by the convolution:

r(xl,---,xn):/---/p(yl,-.-,yn)Q(xl—yl,---,xn—yn)dyl---dyn.

Physically this corresponds to adding the noises or signals repredsnted original ensembles of func-
tions.
The following result is derived in Appendix 6.

Theorem 15:Let the average power of two ensembleNgeandN, and let their entropy powers b&
andNy. Then the entropy power of the suN, is bounded by

N1+ N2 <Nz < Np+ Na.

White Gaussian noise has the peculiar property that it can absorb any otkeron signal ensemble
which may be added to it with a resultant entropy power approximately egtizd tsum of the white noise
power and the signal power (measured from the average signal value, whiimially zero), provided the
signal power is small, in a certain sense, compared to noise.

Consider the function space associated with these ensembles maglirgensions. The white noise
corresponds to the spherical Gaussian distribution in this spaceigita snsemble corresponds to another
probability distribution, not necessarily Gaussian or spherical. heesecond moments of this distribution
about its center of gravity b&;. Thatis, if p(Xy, ..., X) is the density distribution function

ay = [+ [ Pix i) xj — ) d -

where thew; are the coordinates of the center of gravity. Nayis a positive definite quadratic form, and
we can rotate our coordinate system to align it with the principal doestof this forma;; is then reduced
to diagonal formb;;. We require that eachy; be small compared ti, the squared radius of the spherical
distribution.
In this case the convolution of the noise and signal produce appateiyre. Gaussian distribution whose
corresponding quadratic form is
N + bj.

The entropy power of this distribution is

[ﬂ(Nerii)]l/n

or approximately
1/n
= [N+ Y bi(N)™
1
=N + ﬁ Z bii .
The last term is the signal power, while the first is the noise power.

PART IV: THE CONTINUOUS CHANNEL

24. THE CAPACITY OF A CONTINUOUS CHANNEL

In a continuous channel the input or transmitted signals will be poatis functions of timé (t) belonging
to a certain set, and the output or received signals will be perturbed nersidhese. We will consider
only the case where both transmitted and received signals are limited taadahdV. They can then
be specified, for a tim&, by 2T W numbers, and their statistical structure by finite dimensional bigtdn
functions. Thus the statistics of the transmitted signal will beeined by

P(x1,..., %) = P(X)
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and those of the noise by the conditional probability distrifnuti

Pa,ota (Y15 -+ Yn) = Px(Y)-

The rate of transmission of information for a continuous channetigdd in a way analogous to that
for a discrete channel, namely
R=H(X) — Hy(x)

whereH (x) is the entropy of the input andy(x) the equivocation. The channel capacitjs defined as the
maximum ofR when we vary the input over all possible ensembles. This means that iteadfimensional
approximation we must vafy(x) = P(Xq,...,X,) and maximize

/P ) logP(x dx+//P X,Y) Iog ))/) dxdy

This can be written
P(x,y)

P(X)P(y)

using the fact thaf/ P(x,y) logP(x) dxdy= /P(x) logP(x) dx. The channel capacity is thus expressed as
follows: o '

/ P(x,y)log ———dxdy

y)
C= Ian?o'\F/,lax / P(x,y) Iog Py) dxdy

It is obvious in this form thaR andC are mdependent of the coordinate system since the numerator
. . P(xy) . . .
and denominator in lo P will be multiplied by the same factors wherandy are transformed in
any one-to-one way. This integral expression@as more general thaH (x) — Hy(x). Properly interpreted
(see Appendix 7) it will always exist whild (x) — Hy(x) may assume an indeterminate form- o in some
cases. This occurs, for examplexiis limited to a surface of fewer dimensions tham its n dimensional
approximation.

If the logarithmic base used in computikt(x) andHy(x) is two thenC is the maximum number of
binary digits that can be sent per second over the channel with arbitrardly equivocation, just as in
the discrete case. This can be seen physically by dividing the space ofssigttab large number of
small cells, sufficiently small so that the probability den$#yy) of signalx being perturbed to pointis
substantially constant over a cell (eithexalr y). If the cells are considered as distinct points the situation is
essentially the same as a discrete channel and the proofs used there wilBapjitl is clear physically that
this quantizing of the volume into individual points cannot in anggbical situation alter the final answer
significantly, provided the regions are sufficiently small. Thusctggacity will be the limit of the capacities
for the discrete subdivisions and this is just the continuous capdefined above.

On the mathematical side it can be shown first (see Appendix 7) thas ihe message,is the signal,

y is the received signal (perturbed by noise) anglthe recovered message then

H(x) —Hy(x) > H(u) — Hy(u)

regardless of what operations are performedida obtainx or ony to obtainv. Thus no matter how we
encode the binary digits to obtain the signal, or how we decode the eecsignal to recover the message,
the discrete rate for the binary digits does not exceed the channel capadigverglefined. On the other
hand, it is possible under very general conditions to find a codingsy&tr transmitting binary digits at the
rateC with as small an equivocation or frequency of errors as desired. Thisisftnuexample, if, when we
take a finite dimensional approximating space for the signal functR(msy) is continuous in botlx andy
except at a set of points of probability zero.

An important special case occurs when the noise is added to the signal addpendent of it (in the
probability sense). Thel(y) is a function only of the difference= (y — x),

Px(y) = Q(yf X)
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and we can assign a definite entropy to the noise (independent of tretictadi the signal), namely the
entropy of the distributio(n). This entropy will be denoted byt (n).

Theorem 16:Ifthe signal and noise are independent and the received signal is the sugrtrahsmitted
signal and the noise then the rate of transmission is

R=H(y) —H(n),
i.e., the entropy of the received signal less the entropy of the noigeciidnnel capacity is

C = MaxH(y) —H(n).
PX)
We have, sincg = X+ n:
H(xy) = H(x,n).

Expanding the left side and using the fact tkandn are independent
H(y) + Hy(x) = H(x) + H(n).

Hence
R=H(x) — Hy(X) = H(y) —H(n).

SinceH (n) is independent dP(x), maximizingR requires maximizingt (y), the entropy of the received
signal. If there are certain constraints on the ensemble of transmitfedls;j the entropy of the received
signal must be maximized subject to these constraints.

25. CHANNEL CAPACITY WITH AN AVERAGE POWER LIMITATION

A simple application of Theorem 16 is the case when the noise is a viitsal noise and the transmitted
signals are limited to a certain average poWwerThen the received signals have an average p&wveN
whereN is the average noise power. The maximum entropy for the received smptalss when they also
form a white noise ensemble since this is the greatest possiblggfdra powetP + N and can be obtained
by a suitable choice of transmitted signals, namely if they form aenmdiise ensemble of powBxr The
entropy (per second) of the received ensemble is then

H(y) =WIlog2re(P+ N)

3

and the noise entropy is
H(n) =Wlog2reN.

The channel capacity is
C=H(y)—H(n) :WIogP:\]N.

Summarizing we have the following:

Theorem 17:The capacity of a channel of ba perturbed by white thermal noise povwwémwhen the
average transmitter power is limitedRas given by

P+N
C=WiIlo .
9N
This means that by sufficiently involved encoding systems we can trangmaitybdigits at the rate

P+N

Wlog, bits per second, with arbitrarily small frequency of errors. It is meggible to transmit at a

higher rate by any encoding system without a definite positive frequedfrarrors.
To approximate this limiting rate of transmission the transmisigdals must approximate, in statistical
properties, a white noise.A system which approaches the ideal rate may be described as follows: Let

6This and other properties of the white noise case are diedusem the geometrical point of view in “Communication ireth
Presence of Noiselbc. cit.
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M = 2% samples of white noise be constructed each of durdtiofhese are assigned binary numbers from
0 toM — 1. At the transmitter the message sequences are broken up into grosipadfor each group
the corresponding noise sample is transmitted as the signal. Attleéser theM samples are known and
the actual received signal (perturbed by noise) is compared with each of thensaifipée which has the
least R.M.S. discrepancy from the received signal is chosen as the traksigihal and the corresponding
binary number reconstructed. This process amounts to choosing theprabable & posterior) signal.
The numbeM of noise samples used will depend on the tolerable frequenégrrors, but for almost all
selections of samples we have

.. logM(e,T) P+N
Ty Wleeg

)

so that no matter how smallis chosen, we can, by taking sufficiently large, transmit as near as we wish

to TWlog PJ,\FI N

- P+N . . .
Formulas similar taC = Wlog + for the white noise case have been developed independently

by several other writers, although with somewhat different interpogtst We may mention the work of
N. Wiener! W. G. Tuller® and H. Sullivan in this connection.

In the case of an arbitrary perturbing noise (not necessarily white #iemise) it does not appear that
the maximizing problem involved in determining the channel cap&itgn be solved explicitly. However,
upper and lower bounds can be set@n terms of the average noise powéthe noise entropy powe; .
These bounds are sufficiently close together in most practical cases thfareatisfactory solution to the
problem.

Theorem 18:The capacity of a channel of bakd perturbed by an arbitrary noise is bounded by the
inequalities

binary digits in the timél .

P+N P+N
Wlog% < C < Wlog +1

where

P = average transmitter power
N = average noise power
N1 = entropy power of the noise.

Here again the average power of the perturbed signals wilt 8eN. The maximum entropy for this
power would occur if the received signal were white noise and would/ieg 2re(P + N). It may not
be possible to achieve this; i.e., there may not be any ensemble ahitetssignals which, added to the
perturbing noise, produce a white thermal noise at the receiver, but etHsasets an upper boundit(y).
We have, therefore

C = MaxH(y) —H(n)
<Wlog2re(P+ N) —Wlog2reN.

This is the upper limit given in the theorem. The lower limit can beaot#d by considering the rate if we
make the transmitted signal a white noise, of pofem this case the entropy power of the received signal
must be at least as great as that of a white noise of p&weN; since we have shown in in a previous
theorem that the entropy power of the sum of two ensembles is greater tleaualrto the sum of the
individual entropy powers. Hence

MaxH (y) > Wlog2re(P+ Np)
"Cybernetics, loc. cit.

8“Theoretical Limitations on the Rate of Transmission ofolmhation,” Proceedings of the Institute of Radio Engineers37,
No. 5, May, 1949, pp. 468—78.
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and

C>WiIlog2re(P+ N;) —Wlog2reN

P+N
=Wlog -ll\-l L
1

As P increases, the upper and lower bounds approach each other, so we have as atiasytept

P+N
Wlog Ijl- .
1

If the noise is itself whiteN = N; and the result reduces to the formula proved previously:
P
C :Wlog(1+ N)'

If the noise is Gaussian but with a spectrum which is not necessarilNilas, the geometric mean of
the noise power over the various frequencies in the Wandhus

prm%AbWHmf

whereN(f) is the noise power at frequendy
Theorem 19:If we set the capacity for a given transmitter poegqual to
P+N—-n

C=WIlog N
1

thenr is monotonic decreasing Bsincreases and approaches 0 as a limit.
Suppose that for a given power the channel capacity is

PL+N—m

W log N
1

This means that the best signal distribution, géy), when added to the noise distributigfx), gives a
received distributiom(y) whose entropy power i€ + N — 11). Let us increase the power B + AP by
adding a white noise of powetP to the signal. The entropy of the received signal is now at least

H(y) =Wlog2re(PL+ N —n1+ AP)

by application of the theorem on the minimum entropy power of a sum.célesince we can attain the
H indicated, the entropy of the maximizing distribution must be at laagfreat ang must be monotonic
decreasing. To show that— 0 asP — o consider a signal which is white noise with a laRjeWhatever
the perturbing noise, the received signal will be approximately a wioige, ifP is sufficiently large, in the
sense of having an entropy power approactirgN.

26. THE CHANNEL CAPACITY WITH A PEAK POWER LIMITATION

In some applications the transmitter is limited not by the averagepoutput but by the peak instantaneous
power. The problem of calculating the channel capacity is then that of maxgnikinvariation of the
ensemble of transmitted symbols)

H(y) —H(n)

subject to the constraint that all the functioi($) in the ensemble be less than or equalA8 say, for all
t. A constraint of this type does not work out as well mathematically aswarge power limitation. The

most we have obtained for this case is a lower bound valid fogalhn “asymptotic” upper bound (valid

for Iarge%) and an asymptotic value &ffor 5 small.
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Theorem 20:The channel capaci@ for a bandW perturbed by white thermal noise of poweris
bounded by
2'S
> —30
C>Wlog N’

. ) - S
whereS is the peak allowed transmitter power. For sufficiently Iaﬁe

2
=S+N

wheree is arbitrarily small. ASS — 0 (and provided the banll starts af)

C/WIog(l-l-%) — 1

We wish to maximize the entropy of the received S|gna|NIfs large this will occur very nearly when

we maximize the entropy of the transmitted ensemble.

The asymptotic upper bound is obtained by relaxing the conditiotiseansemble. Let us suppose that
the power is limited t@not at every instant of time, but only at the sample points. The maxientropy of
the transmitted ensemble under these weakened conditions is certainly tir@aterequal to that under the
original conditions. This altered problem can be solved easily. The mamientropy occurs if the different
samples are independent and have a distribution function which isacafisim—/Sto ++/S. The entropy
can be calculated as

Wlog4s.

The received signal will then have an entropy less than

Wlog(4S+ 27eN)(1+¢)

withe — 0 as§ — oo and the channel capacity is obtained by subtracting the entropy of the ndiste,
Wlog 2reN:

2S+N
Wlog(4S+ 2reN)(1+ €) — Wlog(2reN) = Wlog ”eT (1+e€).

This is the desired upper bound to the channel capacity.
To obtain a lower bound consider the same ensemble of functions. Letftihietions be passed through
an ideal filter with a triangular transfer characteristic. The gain is to b ahifrequency 0 and decline

linearly down to gain O at frequendy. We first show that the output functions of the filter have a peak
Co . . . . sin27?Wt . .

power limitationSat all times (not just the sample points). First we note that a pugsw going into

s

the filter produces

1sirf7Wt
2 (TWt)2
in the output. This function is never negative. The input funciorthe general case) can be thought of as
the sum of a series of shifted functions )
asm 2TWt
2n1Wit

wherea, the amplitude of the sample, is not greater th@ Hence the output is the sum of shifted functions
of the non-negative form above with the same coefficients. These dmsdieing non-negative, the greatest
positive value for any is obtained when all the coefficierashave their maximum positive values, i.¢/S.

In this case the input function was a constant of amplity@and since the filter has unit gain for D.C., the
output is the same. Hence the output ensemble has a peak ower
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The entropy of the output ensemble can be calculated from that of the émgemble by using the
theorem dealing with such a situation. The output entropy is equattimplut entropy plus the geometrical

mean gain of the filter:
W W W= f\2
246 _
/O logG dff'/o log( - ) df=-aw.

Hence the output entropy is
Wlog4S— 2w :Wlog%S
and the channel capacity is greater than

Wlog— —.
9 me3 N
We now wish to show that, for sma& (peak signal power over average white noise power), the channel
capacity is approximately
S
C=Wlog{ 1+ — |.
os(1x)
. S S . . .

More premselyC/WIog 1+ — | - 1as— — 0. Since the average signal powers less than or equal

N N
. S
to the peal§, it follows that for all N

P S
< — | < — .
CWIog<1+ N> Wlog<1+ N>

. . . S
Therefore, if we can find an ensemble of functions such that they correspamdte nearlyWlog( 1+ N

and are limited to ban@/ and pealSthe result will be proved. Consider the ensemble of functions of the
following type. A series of samples have the same value, eithefSor —+/S, then the next samples have
the same value, etc. The value for a series is chosen at random, prob%alﬁii'rtyh/é and% for —/S. If

this ensemble be passed through a filter with triangular gain charact€uisii gain at D.C.), the output is
peak limited to+S. Furthermore the average power is ne&bnd can be made to approach this by taking
sufficiently large. The entropy of the sum of this and the thermal ra@iade found by applying the theorem
on the sum of a noise and a small signal. This theorem will apply if

S
IS

: - . S :
is sufficiently small. This can be ensured by takiggsmall enough (afteris chosen). The entropy power
will be S+ N to as close an approximation as desired, and hence the rate of transmissan as we wish

to Si N
_|_
WI09<T>.

PART V: THE RATE FOR A CONTINUOUS SOURCE

27. HDELITY EVALUATION FUNCTIONS

In the case of a discrete source of information we were able to deterndedirate rate of generating
information, namely the entropy of the underlying stochastic prod¥ghk a continuous source the situation
is considerably more involved. In the first place a continuously vlrighantity can assume an infinite
number of values and requires, therefore, an infinite number of binang dagiexact specification. This
means that to transmit the output of a continuous sourceexlat recoveryat the receiving point requires,
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in general, a channel of infinite capacity (in bits per second). Since, onginegliannels have a certain
amount of noise, and therefore a finite capacity, exact transmission isgityte.

This, however, evades the real issue. Practically, we are not interestedcintensmission when we
have a continuous source, but only in transmission to within a cettégrance. The question is, can we
assign a definite rate to a continuous source when we require only andetédity of recovery, measured in
a suitable way. Of course, as the fidelity requirements are increased thédlraterease. It will be shown
that we can, in very general cases, define such a rate, having the propertyighaissible, by properly
encoding the information, to transmit it over a channel whose capacitya émthe rate in question, and
satisfy the fidelity requirements. A channel of smaller capacity is insufficien

It is first necessary to give a general mathematical formulation of the id&detity of transmission.
Consider the set of messages of a long duration,Tsagconds. The source is described by giving the
probability density, in the associated space, that the source will sedegtdbsage in questidtix). A given
communication system is described (from the external point of viewgiing the conditional probability
P«(y) that if message is produced by the source the recovered message at the receiving poirgyvill e
system as a whole (including source and transmission system) istibbbyi the probability functioR(x, y)
of having messageand final outpuy. If this function is known, the complete characteristics of the system
from the point of view of fidelity are known. Any evaluation of fidglimust correspond mathematically
to an operation applied #8(x,y). This operation must at least have the properties of a simple ordefring
systems; i.e., it must be possible to say of two systems represeni(kby) andP»(x,y) that, according to
our fidelity criterion, either (1) the first has higher fidelity, (2) #eeond has higher fidelity, or (3) they have
equal fidelity. This means that a criterion of fidelity can be represented bsnanally valued function:

V(P(x,y))

whose argument ranges over possible probability functrRirsy).

We will now show that under very general and reasonable assumptionmttti{)nv(P(x, y)) can be
written in a seemingly much more specialized form, namely as an average aftefus(x,y) over the set
of possible values of andy:

V(P(ey) = [[ Pexy)p(xy) dxdy

To obtain this we need only assume (1) that the source and system areeagduht a very long sample
will be, with probability nearly 1, typical of the ensemble, and (2) thatévaluation is “reasonable” in the
sense that it is possible, by observing a typical input and owpandyi, to form a tentative evaluation
on the basis of these samples; and if these samples are increased in dheatemative evaluation will,
with probability 1, approach the exact evaluation based on a full kngeledP(x,y). Let the tentative
evaluation be(x,y). Then the function(x,y) approaches (8 — ) a constant for almost afk, y) which
are in the high probability region corresponding to the system:

p(xy) = V(P(xy))
and we may also write
pxy) = [[ POxy)p(xy) dxdy
since h
// P(x,y)dxdy= 1.

This establishes the desired result.

The functiorp(x,y) has the general nature of a “distance” betweandy.® It measures how undesirable
it is (according to our fidelity criterion) to receiyewhenx is transmitted. The general result given above
can be restated as follows: Any reasonable evaluation can be represented as anod\eedégiance function
over the set of messages and recovered messaaasdy weighted according to the probabiliB(x,y) of
getting the pair in question, provided the durafionf the messages be taken sufficiently large.

The following are simple examples of evaluation functions:

9tis not a “metric” in the strict sense, however, since ingrahit does not satisfy eith@(x,y) = p(y,X) or p(x,y) + p(¥,2) > p(X, 2).
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1. R.M.S. criterion.
2

v=(x(t)—y(t)".
In this very commonly used measure of fidelity the distance fungtigry) is (apart from a constant
factor) the square of the ordinary Euclidean distance between the paamtsy in the associated
function space.

)
pey) = 1 [ X0 -yt

2. Frequency weighted R.M.S. criterion. More generally one can appbrdiff weights to the different
frequency components before using an R.M.S. measure of fidelity. §kiguivalent to passing the
differencex(t) — y(t) through a shaping filter and then determining the average power in thatou
Thus let

and

then
1 T
poxy) =7 [ f2de
T Jo

3. Absolute error criterion. L
poy) =7 [ x® -yt
0

4. The structure of the ear and brain determine implicitly an evaluaifdather a number of evaluations,
appropriate in the case of speech or music transmission. There ixdmpée, an “intelligibility”
criterion in whichp(x,y) is equal to the relative frequency of incorrectly interpreted words when
message(t) is received ag(t). Although we cannot give an explicit representatiop©fy) in these
cases it could, in principle, be determined by sufficient experimentatmme®f its properties follow
from well-known experimental results in hearing, e.g., the ear is relgtimsensitive to phase and the
sensitivity to amplitude and frequency is roughly logarithmic.

5. The discrete case can be considered as a specialization in which we havesscithed an evaluation
based on the frequency of errors. The funciidr y) is then defined as the number of symbols in the
sequencgy differing from the corresponding symbolsxrdivided by the total number of symbols in
X.

28. THE RATE FOR A SOURCE RELATIVE TO A FIDELITY EVALUATION

We are now in a position to define a rate of generating information tammdinuous source. We are given
P(x) for the source and an evaluatiordetermined by a distance functigiix,y) which will be assumed
continuous in botkx andy. With a particular systerR(x,y) the quality is measured by

v= ([ p(xy)Px.y) axay

Furthermore the rate of flow of binary digits correspondinBt®,y) is
P(xy)
R://Px, lo "~ _dxd
(x.y)log poop(y) XY

We define the rat®; of generating information for a given quality of reproduction to be the minimum of
Rwhen we keep fixed atv; and varyPx(y). That is:

_ i P(xy)
Ry = 'Sﬁ'(';‘) //P(x,y) Iogmdxdy
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subject to the constraint;

vi= [[ POcy)n(ey) dxay

This means that we consider, in effect, all the communication systems tigat be used and that
transmit with the required fidelity. The rate of transmission irs lpgr second is calculated for each one
and we choose that having the least rate. This latter rate is the rate we #ssisource for the fidelity in
guestion.

The justification of this definition lies in the following result:

Theorem 21:If a source has a raf®, for a valuationv, it is possible to encode the output of the source
and transmit it over a channel of capadltyvith fidelity as neax; as desired providedy < C. This is not
possible iRy > C.

The last statement in the theorem follows immediately from the definitfd?; and previous results. If
it were not true we could transmit more th@rbits per second over a channel of capa€ityThe first part
of the theorem is proved by a method analogous to that used for TheoreWelfnay, in the first place,
divide the(x,y) space into a large number of small cells and represent the situation aseteltase. This
will not change the evaluation function by more than an arbitrarily semabunt (when the cells are very
small) because of the continuity assumedd6x,y). Suppose thaP;(x,y) is the particular system which
minimizes the rate and givéy. We choose from the high probabilifis a set at random containing

2(R1+6)T

members where — 0 asT — . With largeT each chosen point will be connected by a high probability
line (as in Fig. 10) to a set ofs. A calculation similar to that used in proving Theorem 11 shows thit wi
largeT almost allx’s are covered by the fans from the choggoints for almost all choices of thgs. The
communication system to be used operates as follows: The selected poiassigreed binary numbers.
When a messageis originated it will (with probability approaching 1 a — =) lie within at least one
of the fans. The corresponding binary number is transmitted (or bteem chosen arbitrarily if there are
several) over the channel by suitable coding means to give a small pibbabdrror. SinceRy < C this is
possible. At the receiving point the correspondjrig reconstructed and used as the recovered message.

The evaluationv; for this system can be made arbitrarily closevioby taking T sufficiently large.
This is due to the fact that for each long sample of mesgégand recovered messayg) the evaluation
approachesg; (with probability 1).

It is interesting to note that, in this system, the noise in the re@a/message is actually produced by a
kind of general quantizing at the transmitter and not produced by the moike channel. It is more or less
analogous to the quantizing noise in PCM.

29. THE CALCULATION OF RATES

The definition of the rate is similar in many respects to the definitfarhannel capacity. In the former

y)
R= Mln/ P(x,y)lo dxd
My /] POy o9 Bgpiyy XY

with P(x) andvy = // P(x,y)p(x,y) dxdyfixed. In the latter

C= Max/ P(x,y)log (() ﬁodxdy

with P(y) fixed and possibly one or more other constraints (e.g., an average paation) of the form

K= [JPXy)A(xy) dxdy.
A partial solution of the general maximizing problem for determinirgyrdite of a source can be given.
Using Lagrange’s method we consider

//[ (X,Y) Iog PP }g/) + uP(XY)p(X,y) + v (X)P(X,y) | dxdy
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The variational equation (when we take the first variatiofP@ny)) leads to
Py(x) = B(x)e M0

where) is determined to give the required fidelity aBk) is chosen to satisfy
/B(x)e’*p(xvy) dx=1.

This shows that, with best encoding, the conditional probability oértain cause for various received
y, By(x) will decline exponentially with the distance functip(x,y) between the andy in question.

In the special case where the distance funcpioqy) depends only on the (vector) difference betwren
andy,

p(X,y) = p(X—y)
we have
/B(x)e*’\p(X*V) dx=1.

HenceB(x) is constant, say, and

Py(X) = ae Y
Unfortunately these formal solutions are difficult to evaluate inipaldr cases and seem to be of little value.
In fact, the actual calculation of rates has been carried out in only a few verjesiages.

If the distance functiop(x,y) is the mean square discrepancy betweandy and the message ensemble
is white noise, the rate can be determined. In that case we have

R=Min[H(x) — Hy(x)] = H(x) — MaxHy(x)

with N = (x—y)2. But the MaxHy(x) occurs whery —x is a white noise, and is equal log 2reN where
W, is the bandwidth of the message ensemble. Therefore

R=Wlog2reQ— W log2reN
=W Iog%
whereQ is the average message power. This proves the following:

Theorem 22:The rate for a white noise source of powggand bandV; relative to an R.M.S. measure
of fidelity is
Q

N
whereN is the allowed mean square error between original and recovered messages.

More generally with any message source we can obtain inequalities bouhdiraje relative to a mean
square error criterion.

Theorem 23:The rate for any source of bakd is bounded by

Q Q
N N

R=W;log

W; log <R<Wlog

whereQ is the average power of the sour€g, its entropy power ani the allowed mean square error.

The lower bound follows from the fact that the Mdx(x) for a given(x—y)? = N occurs in the white
noise case. The upper bound results if we place points (used in thieopideeorem 21) not in the best way
but at random in a sphere of radiif€) — N.
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APPENDIX 5

Let S; be any measurable subset of thensemble, an&, the subset of thé ensemble which give§;
under the operatiom. Then
S=TS.
LetH* be the operator which shifts all functions in a set by the tim&hen
H*S = HMTS =TH'S
sinceT is invariant and therefore commutes with. Hence ifm[§ is the probability measure of the st
MH*S] = MTH*S)] = MH*S)]
= M[S] =m[S]

where the second equality is by definition of measure ingtspace, the third since thke ensemble is
stationary, and the last by definition @imeasure again.

To prove that the ergodic property is preserved under invariant opesatetS; be a subset of thg
ensemble which is invariant under', and letS; be the set of all functions which transform intcs;. Then

H S =H TS =TH'S; =5
so thatH*S; is included inS, for all A. Now, since
MH*S] = m[S]

this implies
H'S =S
for all A with m[S] # 0,1. This contradiction shows th& does not exist.

APPENDIX 6

The upper bound\iz < N; + N, is due to the fact that the maximum possible entropy for a pdwer N,
occurs when we have a white noise of this power. In this case the gmooger isN; + No.

To obtain the lower bound, suppose we have two distributions dimensionsp(x;) andq(x) with
entropy powerdN; andN,. What form shouldp andg have to minimize the entropy powdls of their
convolutionr (x;):

r(x) = [ py)a0s ~y) dy.
The entropyHs of r is given by

Ha = — [ 1(x)logr(x) dx.

We wish to minimize this subject to the constraints
Hy = [ p(x)logp(x) dx

Hz = [ a(x)loga(x) dx
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We consider then
U=- / [r(x)logr (x) + Ap(x) log p(x) + pq(x) logq(x)] dx

oU =— /[[1+Iogr(x)]6r(x)+/\[1+Iog P(X)]8p(X) + p[1+ logg(x)]sq(x)] dx.

If p(x) is varied at a particular argumext= s, the variation irr (x) is

or(x) =q(x —s)

and
0U = — /CI(Xi —g)logr(x)dx — Alogp(s) =
and similarly wherg is varied. Hence the conditions for a minimum are
/q(m —s)logr(x)dx = —Alogp(s)
/DX. s)logr(x;) dx = —plogq(s).

If we multiply the first byp(s) and the second by(s) and integrate with respect pwe obtain

or solving forA andyu and replacing in the equations

H1/q s)logr(x)dx = —Hzlogp(s)
Hz/ p(xi —s)logr(x) dx = —Hslogq(s).

Now suppose(x;) andq(x;) are normal

.. |n/2
p(xi) = iA”)n/z exp—3 5 AjXiXi

/2
a(xi) = (Zuﬁn/z exp—3 3 BijXiX;.

Thenr (x) will also be normal with quadratic for@;;. If the inverses of these forms aag, bij, ¢j then

Cij = &j + bij.
We wish to show that these functions satisfy the minimizing comaiif and only ifajj = Kbjj and thus

give the minimunHs under the constraints. First we have
n 1
logr (xi) = 5l0g5-1Gij| — 3 ) Cijxix;
n 1
[atx -~ s)logr(x)dx = JlogICy| - § 3 Cyss -~ 3 Ciby.

This should equal
H3
|2 o 095 |A|J\—§ZAHSSJ
. . Hq . Hy . . .
which required\j = H_C”" In this case; = H—Bij and both equations reduce to identities.
3
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APPENDIX 7

The following will indicate a more general and more rigorous approadtet central definitions of commu-
nication theory. Consider a probability measure space whose elementdaredypairgx, y). The variables

X, y are to be identified as the possible transmitted and received signals el@ogduratior . Let us call

the set of all points whosebelongs to a subs&; of x points the strip ove$;, and similarly the set whose

y belong to$; the strip overS;. We dividex andy into a collection of non-overlapping measurable subsets
X; andY; approximate to the rate of transmissitry

= %ZP(N,%)IOQ

where

P(X;) isthe probability measure of the strip ovér
P(Y;) is the probability measure of the strip ovér
P(X,Y;i) isthe probability measure of the intersection of the strips

A further subdivision can never decredge For letX; be divided intoX; = X; + X{" and let

P(Y1)=a P(X1) =b+c
P(X;) =b P(X{,Y1) =d
P(X{)=c P(X{, Y1) =€

P(X1,Y1) =d+e
Then in the sum we have replaced (for e Y; intersection)

d+e

d e
7a(b+c) by dloga—b-l-elogg:

(d+e)log

It is easily shown that with the limitation we have by, d, €,

d+e]?® dde
[b-l— C} ~ bdce
and consequently the sum is increased. Thus the various possibleisiaingi form a directed set, with
R monotonic increasing with refinement of the subdivision. We may détineambiguously as the least

upper bound foR; and write it

y)
=7 /P X,Y) Iog Ply) dxdy

This integral, understood in the above sense, includes both theaons and discrete cases and of course
many others which cannot be represented in either form. It is trivial éftfimulation that ifx andu are
in one-to-one correspondence, the rate frotay is equal to that fronx toy. If vis any function ofy (not
necessarily with an inverse) then the rate freto y is greater than or equal to that fraxrto v since, in
the calculation of the approximations, the subdivisionyg afe essentially a finer subdivision of those for
v. More generally ify andv are related not functionally but statistically, i.e., we have a prolhginileasure
spacqy, V), thenR(x,v) < R(x,y). This means that any operation applied to the received signal, even though
it involves statistical elements, does not increse

Another notion which should be defined precisely in an abstract formnlafidhe theory is that of
“dimension rate,” that is the average number of dimensions required pencgézapecify a member of
an ensemble. In the band limited ca®¥ Aumbers per second are sufficient. A general definition can be
framed as follows. Lef,(t) be an ensemble of functions and }et[f,(t), fz(t)] be a metric measuring
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the “distance” fromf, to fgz over the timeT (for example the R.M.S. discrepancy over this interval.) Let
N(e, 6, T) be the least number of elemerftavhich can be chosen such that all elements of the ensemble
apart from a set of measuseare within the distanceof at least one of those chosen. Thus we are covering
the space to withim apart from a set of small measureWe define the dimension ratefor the ensemble
by the triple limit
L . logN(e, o, T
A =Lim Lim Lim g0, ) (e )
6—0 e—0 T—oo T |Og€
This is a generalization of the measure type definitions of dimensitopilogy, and agrees with the intu-
itive dimension rate for simple ensembles where the desired restivisics.
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