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Abstract

The sensitivity of histogram computation to the choice of a reference interval and number of bins can be attenuated by replacing
the crisp partition on which the histogram is built by a fuzzy partition. This involves replacing the crisp counting process by a
distributed (weighted) voting process. The counterpart to this low sensitivity is some confusion in the count values: a value of 10
in the accumulator associated with a bin can mean 10 observations in the bin or 40 observations near the bin. This confusion can
bias the statistical decision process based on such a histogram. In a recent paper, we proposed a method that links the probability
measure associated with any subset of the reference interval with the accumulator values of a fuzzy partition-based histogram. The
method consists of transferring counts associated with each bin proportionally to its interaction with the considered subset. Two
methods have been proposed which are called precise and imprecise pignistic transfer. Imprecise pignistic transfer accounts for the
interactivity of two consecutive cells in order to propagate, in the estimated probability measure, counting confusion due to fuzzy
granulation. Imprecise pignistic transfer has been conjectured to include precise pignistic transfer. The present article proposes a
proof of this conjecture.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Although substantial research has been focused on providing scientists with graphical tools for displaying the
probability density function (pdf) underlying a set of observations, the histogram is the oldest and still most widely
used method [11]. The major argument in favor of histogram-based analysis is its easy computation and interpretation.
Building a histogram on the basis of real observations involves partitioning a reference interval � of the real line into
p cells (or bins) (Ck)

k=1.. .p
and counting the number of observations in agreement with each cell. When the number

of observations tends to infinity, the ratio of the count associated with each cell and the number of observations tends
to the probability of the bin based on the pdf underlying the observation process [12,10].
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A histogram can therefore be viewed as a rough approximate decomposition of the sought after pdf on the basis of
the cells, with the roughness of this decomposition being due to both the cell widths and the number of observations.
The histogram – thanks to its close relation with the pdf – is an instrumental tool for designing discrete statistical
analysis methods including modes, moments and quantile estimations [15] or comparison of two sets of observations
(e.g. in image processing [1,3]). Such methods are usually based on representing the link between the histogram and
the pdf by means of an interpolation function to obtain an estimate of the pdf at any location of �. As shown in [13],
interpolating a histogram with a translation invariant kernel leads to defining a method for estimating the pdf that is
equivalent to the Parzen–Rosenblatt method, using a kernel that is not translation invariant. Using a histogram instead
of Parzen–Rosenblatt density estimation to define statistical tools has the advantage of leading to low-computational
algorithms.

However, the roughness of the histogram representation of the pdf and its sensitivity to the cell width and position
considerably lower the robustness of histogram-based statistical tools. Different proposals have been put forward in
the relevant literature to lower this sensitivity (see e.g. [6] and references therein), including replacement of the crisp
partition on which the histogram is built by a fuzzy partition 1 [5]. But this sensitivity still exists. It would thus be
interesting to have a tool for evaluating the sensitivity of a histogram-based statistical method. It would also be nice to
have a framework that makes it possible to define discrete statistical tools that are robust to the partitioning of �.

This is the core idea of the quasi-continuous histogram (qch) framework proposed in [13]. The qch framework allows
precise and imprecise estimations of the probability of any interval W of � based on the pdf underlying the considered
set of observations, and thus the histogram. It is based on transferring the counts ak associated with each fuzzy cell Ck

to the considered interval, proportionally to the interaction between the cell and the considered interval. Three methods
have been proposed.

The first one, called pignistic transfer, is closely related to Parzen–Rosenblatt kernel estimation. Within this method,
the interaction between a cell Ck and an interval W is defined as being the ratio 2 |W ∩ Ck |/|Ck |. The number of counts
associated with W, based on this transfer, is defined by

N̂b(W ) =
p∑

k=1

|W ∩ Ck |
|Ck | ak .

Then, the probability of W is simply obtained by dividing N̂b(W ) by the number of observations. It is the most natural
method for interpolating histograms and leads to a precise-valued probability P̂(W ).

The second one, called possibilistic transfer, leads to an interval-valued probability. Within this method, the interaction
between a cell Ck and the interval W is defined by two dual measures: the possibility and necessity of W restricted to
Ck . This transfer provides an interval-valued number of counts [Nb(W ), Nb(W )] associated with W defined by

Nb(W ) =
p∑

k=1

Nk(W )ak, Nb(W ) =
p∑

k=1

�k(W )ak,

where �k(W ) and Nk(W ) are the possibility and necessity of W restricted to Ck . Then, the interval-valued probability
[P(W ), P(W )] of W is simply obtained by dividing the interval [Nb(W ), Nb(W )] by the number of observations. It has
been proved that the possibilistic-based estimate includes the pignistic-based estimate due to the known domination
properties between summative and maxitive kernels [7]. Moreover, the construction of this interval-valued probability
makes it the convex hull of all probabilities of W that should have been obtained by interpolating the histogram by a
set of kernel smoothing methods. If the partition is crisp, the interval-valued probability remains imprecise.

The third one, called imprecise pignistic transfer, leads to an interval-valued probability which is more specific than
the previous one. Within this method, the interaction between a cell Ck and interval W is defined by two dual particular
capacities derived from the interaction measure used in pignistic transfer. The idea underlying this method is as follows.
Due to fuzzy partitioning, interpretation of counts associated with each cell becomes ambiguous. In fact, a count value
of 6 associated with a cell can denote six observations fully belonging to the cell but also 20 observations belonging to
the cell at a level of 0.3. This method aims at transferring the counting imprecision due to fuzzy partitioning estimation

1 When doing this replacement, the number of cells is increased to (p+1).
2 The measure |A| when A is a fuzzy set will be defined in the next section.
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Fig. 1. Fuzzy partition of �.

of the probability of interval W. In fact, if the partition is crisp, then the count values are no longer ambiguous and thus
the imprecise pignistic-based estimate is precise. Numerous examples show that an imprecise pignistic-based estimate
always includes a pignistic-based estimate. This property has thus been conjectured [13, Conjecture 2].

This paper aims at proving this conjecture. The framework and notations are presented in Section 2. Section 3 is
dedicated to the proof itself.

2. Framework and notations

Let � be a reference interval of the real line. We can, without any loss of generality, assume that � = [0, xmax ].
Let (Ck)

k=0.. .p
be a strong 3 uniform 4 fuzzy partition of � [9] generated by a generic, symmetric, unimodal, centered

and bounded fuzzy subset E whose membership function is �E (see e.g. [6]). That is, there are (p+1) values mk of �
such that ∀k ∈ {0 . . . p}, ∀x ∈ �, �Ck

(x) = �E (x − mk) (see Fig. 1). The (p + 1) values (mk)
k=0.. .p

are called modes

of the partition. Let |A| denote the granularity [7] of a fuzzy subset A ⊂ � defined by |A| = ∫
� �A, with

∫
being

the Lebesgue integral. Let � be the granularity of E: � = |E | = ∫
� �E . We consider, as usual, partitions such that

∀x ∈ �, there are at most two consecutive cells, Ck and Ck+1, such that �Ck
(x) > 0 and �Ck+1

(x) > 0. Let ∩ denote the
intersection of fuzzy sets based on the minimum t-norm and ∪ denote the union of fuzzy sets based on the maximum
t-conorm.

The symmetry of E coupled with the proposed definition of the partition induces two particular properties on E.
First, the length of the support of E (i.e. its 0-level cut) equals twice its granularity. Second, ∀x ∈ [0, �/2], �E (x) =
1 − �E (� − x).

Let (xi )i=1.. .n be n observations belonging to �. Building a histogram of these observations consists of associating
a value ak (called an accumulator) with each (fuzzy) cell Ck defined by ak = ∑n

i=1 �Ck
(xi ). If the cell Ck is crisp, then

the value Pk = (ak/n) can be seen as an empirical estimate of its probability based on the set of observations. When
the cell Ck is fuzzy, then this value Pk = (ak/n) is the Zadeh extension of its empirical probability [16].

Let W = [x, x] ⊂ � be an interval of �. In [13], it is proposed to estimate the probability of W by a kind of
interpolation based on transferring the (Pk)

k=0.. .p
to W by

P̂(W ) =
p∑

k=0

Pk .�W (k), (1)

for the precise pignistic transfer, with

�W (k) = |Ck ∩ W |
|W | = 1

|W |
∫

W
�Ck

,

and by

P(W ) =
p∑

k=0

P(k)(�W (A(k)) − �W (A(k+1))), (2)

P(W ) =
p∑

k=0

P(k)(�
c
W (A(k)) − �c

W (A(k+1))), (3)

3 Strong means that ∀x ∈ �,
∑p

k=0 �Ck
(x) = 1.

4 Uniform means that every cell of the partition can be obtained by translating a single fuzzy subset.
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for the imprecise pignistic transfer, where (·) indicates a permutation such that P(0) ≤ · · · ≤ P(p), and {A(k)}k=0.. .p

are subsets of � = {0 . . . p} such that A(k) = {(k), . . . , (p)}, and A(p+1) = ∅. �W is a capacity defined by

∀A ⊆ �, �W (A) = |(⋃k∈A Ck) ∩ W |
|(⋃k∈� Ck) ∩ W | =

∫
W supk∈A �Ck∫
W supk∈� �Ck

, (4)

and �c
W its dual capacity defined by ∀A ⊆ �, �c

W (A) = 1 − �W (Ac), with Ac being the complementary set of A in �.
Eqs. (2) and (3) are simply discrete Choquet integrals of {Pk}k=0.. .p

with respect to the capacities �W and �c
W .

Eq. (1) can also be considered as a Choquet integral by considering the capacity 	W defined by ∀A ⊆ �, 	W (A) =∑
k∈A �W (k).
In [13], the following conjecture has been proposed:

Conjecture. The precise-valued probability P̂(W ) defined by Eq. (1) always belongs to the interval-valued probability
[P(W ), P(W )] defined by Eqs. (2) and (3).

The proof of this conjecture will follow. It is based on proving that ∀A ⊆ �, �W (A) ≥ 	W (A). This domination
property is sufficient to prove the conjecture (see e.g. [2]).

3. Proof of the conjecture

We show the inequality ∀A ⊆ �, �W (A) ≥ 	W (A) = ∑
k∈A �W (k) by a constructive process: starting from the

empty set of �, we will incrementally construct the set A by adding intermediate subsets of A and prove that the
inequality is not modified during this constructive process.

Let us first denote 
� = supk∈� �Ck
, 
A = supk∈A �Ck

and �A = ∑
k∈A �Ck

(see Figs. 2–4). The conjecture can
be written as follows:

|W |
∫

W

A ≥

∫
W


�

∫
W

�A. (5)

Note that |W | = ∫
W �� = ∫

W 1. Inequality (5) is obvious if A = ∅.
For an easier development of the proof, we will also use another expression of the inequality (5):∫

W
(1 − 
�)

∫
W


A −
∫

W

�

∫
W

(�A − 
A) ≥ 0. (6)

To build the subset A, we will consider two kinds of elements of A: isolated elements, i.e. values k ∈ A such that
(k + 1) /∈ A and (k − 1) /∈ A – which are associated with isolated cells of {Ck}k∈A – and those which are not isolated,

xmax0
Ω

ωΘ(x)

Wx x

............

Fig. 2. Function 
� and interval W.

xmax0
Ω

ωA(x)

W

Fig. 3. Function 
A , with A being composed of three elements of �.
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xmax0
Ω

ηA(x)

W

Fig. 4. Function �A , with A being composed of three elements of �.
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Fig. 5. Values x1, x2, � and Wext .

i.e. values k ∈ A such that (k + 1) ∈ A or (k − 1) ∈ A – which are associated with overlapping cells of {Ck}k∈A. A
group of consecutive non-isolated values of A will be called a connected block. Of course, we are only considering
elements in A having a non-empty intersection with W, since the integral of other elements with respect to W will equal
zero. For simplicity, we will now consider A as a subset of � or as the group of cells {Ck}k∈A, i.e. as a collection of
fuzzy subsets of �.

We first need to define Wext as the smallest interval [mi , m j ](i, j)∈�,i≤ j that includes W (see Fig. 5). Its length is
|Wext | = n� = |W | + x1 + x2, where x1, x2 ∈ [0, �[ 5 (see Fig. 5), and n = j − i . We also define a parameter � by
considering the fuzzy subset obtained by intersecting two consecutive cells of the partition. Clearly, the granularity of
this intersection depends on both the shape of the generic subset E and its granularity �. Let �� be the granularity of
this intersection (see Fig. 5). Due to the symmetry of the generic function �E , 0 ≤ � ≤ 1

2 (0 if E is crisp and 1
4 if E is a

triangular fuzzy number).
The first step of the construction of A consists of making subset A′ of all isolated elements of A. Since the cells

composing {Ck}k∈A′ are isolated, by construction
∫

W 
A′ = ∫
W �A′ . Now, considering the fact that ∀x ∈ �, 
�(x) ≤ 1,

thus
∫

W 
� ≤ ∫
W 1 = |W |, and therefore |W | ∫W 
A′ ≥ ∫

W 
�
∫

W �A′ . Thus A′ verifies the property (5).
The second step of the construction of A, and therefore of the proof of the conjecture, consists of adding each block

of overlapping cells of A one by one. We will prove that, when adding a block, property (5) is kept. Two cases will be
considered depending on whether the considered block intersects interval W or not. Let B be this block (B ⊂ A) and k
its cardinality. Let A′ ⊂ A be a subset of A such that A′ ∩ B = ∅. We will prove that if A′ verifies the inequality (5),
then A′′ = A′ ∪ B also verifies this inequality.

In inequality (6), the two integrals
∫

W 
� and
∫

W (1−
�) depend neither on the position nor on the size of B. Those
two integrals are given by

∫
W


� =
∫ n�

0

� −

∫ x1

0

� −

∫ x2

0

� = n(1 − �)� −

(∫ x1

0

� +

∫ x2

0

�

)
,

∫
W

(1 − 
�) = n�� −
(∫ x1

0
(1 − 
�) +

∫ x2

0
(1 − 
�)

)
.

We now have to consider two cases.
First case: B is included in W.

5 [·, ·[ denotes a left-closed and right-open interval.
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In that case, adding B to A′ will increase
∫

W �A′ of the quantity k� (due to the symmetry of the generic function �E )
and increase

∫
W 
A′ of the quantity k� − (k − 1)�� = k(1 − �)� + ��. Thus, the inequality (6) will be preserved if

and only if we show that(
n�� −

(∫ x1

0
(1 − 
�) +

∫ x2

0
(1 − 
�)

))
(k(1 − �)� + ��)

−
(

n(1 − �)� −
(∫ x1

0

� +

∫ x2

0

�

))
(k�� − ��) ≥ 0

which can be simplified to

n�� + k

[{
−
∫ x1

0
(1 − 
�) + �x1

}
+
{
−
∫ x2

0
(1 − 
�) + �x2

}]
− �(x1 + x2) ≥ 0.

Let us first suppose that n ≤ k + 1. This implies, by construction, that n = k + 1 and thus x1 = x2 = 0. This is a
trivial case: the inequality is preserved. Now let us suppose n ≥ k +2. By replacing n by k +2 in the previous equation,
we obtain a new sufficient condition that can be written as follows:

k

[{
−
∫ x1

0
(1 − 
�) + �x1 + �

�

2

}
+
{
−
∫ x2

0
(1 − 
�) + �x2 + �

�

2

}]
+ �(2� − (x1 + x2)) ≥ 0.

Consider (x) := − ∫ x
0 (1 − 
�) + �x + ��/2, for x ∈ [0, �[. As

∫ �/2
0 (1 − 
�) = ∫ �

�/2(1 − 
�) = ��/2, we get
∀x ∈ [0, �/2[, (x) ≥ −�(�/2) + �x + �(�/2) = �x ≥ 0, and ∀x ∈ [�/2, �[, (x) ≥ −�� + �x + �(�/2) =
�(x − �/2) ≥ 0. Thus, as the sufficient condition is verified, subset A′′ = A′ ∪ B verifies the inequality.

Second case: B is not included in W.
In this second part of the proof, we will first suppose that n ≥ k + 2, i.e. block B only intersects one side of W (x or

x) (the case n ≤ k + 1 will be treated at the end of this second part). We can, without any loss of generality, suppose
that B intersects the left part of W. The proof is based on computing how the different quantities involved in inequality
(6) are modified for Wext , then correcting those values with a quantity that will, in this case, depend only on x1.

In the following, we differentiate two cases corresponding to the manner in which B intersects the left side of W:
(a) Block B is included in Wext : This case is fully illustrated by Fig. 5.
It can be easily established that adding B to A′ will increase

∫
W �A′ of the quantity k� − ∫ x

x−x1
�B and increase∫

W 
A′ of the quantity k(1 − �)� + �� − ∫ x
x−x1


B . Thus, inequality (6) will be preserved if and only if we show that(
n�� −

{∫ x1

0
(1 − 
�) +

∫ x2

0
(1 − 
�)

})(
k(1 − �)� + �� −

∫ x

x−x1


B

)

−
(

n(1 − �)� −
{∫ x1

0

� +

∫ x2

0

�

})(
k�� − �� −

∫ x

x−x1

(�B − 
B)

)
≥ 0,

that can be rewritten as follows:

n�

[
�� − �

∫ x

x−x1


B + (1 − �)
∫ x

x−x1

(�B − 
B)

]

−k�

[{
−
∫ x1

0
(1 − 
�) + �x1

}
+
{
−
∫ x2

0
(1 − 
�) + �x2

}]

+
{∫ x1

0
(1 − 
�) +

∫ x2

0
(1 − 
�)

}∫ x

x−x1


B

−
{∫ x1

0

� +

∫ x2

0

�

}∫ x

x−x1

(�B − 
B) − ��(x1 + x2) ≥ 0.

Since n ≥ k + 2 and k ≥ 2, by definition, a sufficient condition is, after computation:

(k − 2)�� + R ≥ 0,
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where

� = (x1) + (x2) − �
∫ x

x−x1


B + (1 − �)
∫ x

x−x1

(�B − 
B)

and

R = 2�((x1) + (x2)) +
{∫ x1

0
(1 − 
�) +

∫ x2

0
(1 − 
�) − 4��

}∫ x

x−x1


B

+
{

4(1 − �)� −
(∫ x1

0

� +

∫ x2

0

�

)}∫ x

x−x1

(�B − 
B) + ��(2� − (x1 + x2))

(still with (x) := − ∫ x
0 (1 − 
�) + �x + �(�/2) ≥ 0).

Two sub-cases that change the encountered integral increments have to be distinguished: x1 ∈ [0, �/2[ and
x1 ∈ [�/2, �[.

(i) x1 ∈ [0, �/2[: As
∫ x

x−x1

B = ∫ x1

0 
B(x − x1 + t) dt = ∫ x1
0 (1 − 
�) we derive � = (x1) + (x2) − �

∫ x1
0

(1 − 
�) ≥ −(1 + �)
∫ x1

0 (1 − 
�) + �x1 + �(�/2) := f (x1). A quick study of f shows that it increases from the value
�(�/2) to its maximum, and then decreases to the value (1 − �)�(�/2) ≥ 0, such that � ≥ 0.

We have R ≥ 2�(x2) + {∫ x2
0 (1 − 
�) − 4��} ∫ x1

0 (1 − 
�) + ��(2� − (x1 + x2)) := g(x1). Recalling that∫ �
0 (1 − 
�) = ��, we get

g′(x1) = (1 − 
�(x1))

{∫ x2

0
(1 − 
�) − 4��

}
− �� < 0,

and have to prove that g(�/2) ≥ 0. We thus compute

g

(
�

2

)
= �

�

2

{∫ x2

0
(1 − 
�) − 2x2 + 3� − 4��

}
+ 2�(x2) := h(x2).

For x2 ∈ [0, �/2[, g(�/2) ≥ ��2(1 − 2�) ≥ 0 (since � < 1
2 ). For x2 ∈ [�/2, �[, we get after computation:

g(�/2) ≥ ��(x2 + �/2 − 7
4��) ≥ 1

8��2 ≥ 0. This completes point (i).
(ii) x1 ∈ [�/2, �[: As

∫ x
x−x1

�B = ∫ x
x−x1


B = ∫ x1
0 
B(x − x1 + t) dt = ∫ x1

0 
� = �(�/2) + ∫ x1
�/2 
� we get

� ≥ (x1)−�2(�/2)−�
∫ x1
�/2 
� := f (x1). As f ′(x1) = (1−�)(
�−1) ≤ 0 and f (�) = �(�/2)(1−�−(1−�)) = 0,

we have � ≥ 0.
Now R ≥ 2�((x1) +(x2)) +{�(�/2) + ∫ x1

�/2 
�}{�(�/2) + ∫ x2
0 (1 −
�) − 4��}+��(2�− (x1 + x2)) := g(x1).

We compute

g′(x1) = 
�(x1)

{∫ x2

0
(1 − 
�) + 2� − 7

2
��

}
− 2� + �� ≤

∫ x2

0
(1 − 
�) − 5

2
�� < 0

and

g(�) = �

{
−3

2

∫ x2

0
(1 − 
�) + �x2 + 5

4
��

}
.

For x2 ∈ [0, �/2[, g(�) ≥ �(x2 + �/2) ≥ 0.
For x2 ∈ [�/2, �[, g(�) ≥ �(x2 − �/4) ≥ 0.
This completes point (ii).
(b) Block B is not included in Wext .
This case is fully illustrated by Fig. 6.
It can now be established that adding B to A′ will increase

∫
W �A′ of the quantity k�− (�/2+∫ x

x−x1
�B) and increase∫

W 
A′ of the quantity k(1 − �)� + �� − (�/2 + ∫ x
x−x1


B).

As ∀t ∈ [x − x1, x], �B(t) = 1 and 
B(t) = 
�, we now get
∫ x

x−x1

B = ∫ x1

0 
� and
∫ x

x−x1
(�B − 
B) =∫ x1

0 (1 − 
�).
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xmax0
ΩW

x1 x2

Wextx_ x
_

-x1 +x2

block B

Fig. 6. Block B is not included in Wext .

Following the same reasoning as in case (a), a sufficient condition is also

(k − 2)�� + R ≥ 0.

Still considering (x) := − ∫ x
0 (1−
�)+�x +�(�/2) ≥ 0, the computation yields � = (x1)+(x2)−�

∫ x1
0 
�+

(1 − �)
∫ x1

0 (1 − 
�) − �(�/2) = (x2) + �(�/2) − �(�/2) = (x2) ≥ 0.
Let us now conclude the proof in the case n ≥ k + 2 by showing that R ≥ 0 for all values of x1 and x2.
The expression of R is as follows:

R = 2�

(
−
∫ x2

0
(1 − 
�) + �x2 + �

�

2

)
+ 2�

(∫ x1

0
(1 − 
�) − �x1 + �

�

2

)

+
∫ x2

0
(1 − 
�)

(
�

2
+
∫ x1

0

�

)∫ x1

0
(1 − 
�)

(
�

2
−
∫ x2

0

�

)
− ��(x1 + x2).

Let us denote R := g(x2). After simplification, we get the derivative g′(x2) = (1 − 
�(x2))(
∫ x1

0 
� − 3
2�) −


�(x2)
∫ x1

0 (1−
�)−�� ≤ 0. It therefore now must be shown that g(�) ≥ 0. The calculus yields the following value,
g(�) = �(

∫ x1
0 (1 − 
�) − 2�x1 + 3

2��). For x1 ∈ [0, �/2[ this quantity is obviously positive, and for x1 ∈ [�/2, �[,
we have g(�) ≥ �( 1

2�� − 2�x1 + 3
2��) = 2��(� − x1) ≥ 0. This concludes this point.

This also concludes the proof in the case n ≥ k + 2.
Let us now check the case where n ≤ k + 1. In that case, the only possibility is that A is only composed of one block

(B = A) and thus n ∈ {k − 1, k, k + 1}. The iterative scheme we built in the previous case (n ≥ k + 2) therefore does
not apply here. Our proof will consist of showing that such a set A verifies inequality (6).

Firstly, the case n = k −1 implies a configuration where the block intersects both the upper and lower values of Wext .
The same applies for W. Thus 
A(x) = 
�(x) and �A(x)−
A(x) = 1−
�(x), ∀x ∈ W . Then

∫
W (1−
�)

∫
W 
A =∫

W 
�
∫

W (�A − 
A) and (6) are clearly verified, and therefore Eq. (5).
Secondly, the case n = k implies that the block intersects only one of the lower and upper values of Wext . Let us

suppose, without any loss of generality, that the block intersects the upper value of Wext . If x1 ∈ [�/2, �[, the proof
of the previous case applies.

If x1 ∈ [0, �/2[, we have
∫ x

x−x1
�A = ∫ x

x−x1

A = ∫ x1

0 (1 − 
�) and we get:
∫ x+x2

x 
A = ∫ x2
0 
� and

∫ x+x2
x (�A −


A) = ∫ x2
0 (1 − 
�), since ∀t ∈ [x, x + x2], �A(t) = 1. Then, the computation shows that condition (6) is equivalent

to (
k�� −

{∫ x1

0
(1 − 
�) +

∫ x2

0
(1 − 
�)

})∫ x1

0

� +

(
�� −

∫ x1

0
(1 − 
�)

)
(k� − (x1 + x2)) ≥ 0,

which is obvious, since k ≥ 2.
Thirdly, the case n = k + 1 implies that the block is included in Wext . If x1 ∈ [�/2, �[ and x2 ∈ [�/2, �[, the proof

of the previous case applies.
If x1 ∈ [0, �/2[ and x2 ∈ [�/2, �[, we have

∫ x
x−x1

�A = ∫ x
x−x1


A = ∫ x1
0 (1 − 
�) and

∫ x+x2
x �A = ∫ x+x2

x 
A =∫ x2
0 
�. Then, after simplification, (6) is equivalent to

��2(k + 1) + x2

∫ x1

0
(1 − 
�) +

∫ x1

0
(1 − 
�)

∫ x2

0
(1 − 
�)

+(x1 + x2)(k − 1)�� + ((k + 1)� − x1)
∫ x2

0
(1 − 
�) ≥ 0,
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which is clearly verified.
If x1 ∈ [0, �/2[ and x2 ∈ [0, �/2[, we have

∫ x
x−x1

�A = ∫ x
x−x1


A = ∫ x1
0 (1 − 
�) and

∫ x+x2
x �A = ∫ x+x2

x 
A =∫ x2
0 (1 − 
�). Then, after simplification, (6) is equivalent to

��2(k + 1) +
∫ x1

0
(1 − 
�)

(∫ x2

0
(1 − 
�) − k� − (k + 1)��

)

+
∫ x2

0
(1 − 
�)

(∫ x1

0
(1 − 
�) − k� − (k + 1)��

)
+ (x1 + x2)(k − 1)�� ≥ 0.

A study of this function in the same manner as in (a)(i) and (ii) proves that this inequality is verified. Since the proof
is identically conducted, for simplicity it is not included in the paper.

This concludes the proof. �

4. Conclusion and discussion

The imprecise pignistic transfer method we use to transfer the counts of each cell of the histogram to any interval
of the considered reference interval � aims at measuring the effect of granulation on the reconstructed probability.
This method is based on the capacity defined by expression (4). Such a transfer method can be used in numerous
other applications to achieve interpolations of sampled data (e.g. digital signal processing [14], fuzzy transform [8]) or
using granulated-valued histograms to compute continuous indices [4]. The measure of the granulation impact on the
reconstructed (interpolated) continuous data it provides via the imprecision of the reconstructed value can be highly
helpful for avoiding wrong data interpretations due to granulation in automatic decision processes. The current version
of the transfer method only concerns intervals of �. It can be seen as a limitation and thus extending the proof to other
subsets of � is a very important follow-up of this work. However, since most statistical tools based on histograms use
punctual or at most interval estimations of the probability distribution underlying a set of observations, this proof is
sufficient to justify several future extensions of these tools.
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