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Abstract. Selecting a particular summative (i.e., formally equivalent to a prob-
ability distribution) kernel when filtering a digital signal can be a difficult task.
To circumvent this difficulty, one can work with maxitive (i.e., formally equiva-
lent to a possibility distribution) kernels. These kernels allow to consider at once
sets of summative kernels with upper bounded bandwith. They also allow to per-
form a robustness analysis without additional computational cost. However, one
of the drawbacks of filtering with maxitive kernels is sometimes an overly impre-
cise output, due to the limited expressiveness of summative kernels. We propose
to use a new uncertainty representation, namely cloud, to achieve a compromise
between summative and maxitive kernels, avoiding some of their respective short-
comings. The proposal is then experimented on a simulated signal.

Keywords: Signal treatment, interval-valued fuzzy sets, generalised p-boxes.

1 Introduction

Reconstructing a continuous signal from a set of sampled and possibly corrupted ob-
servations is a common problem in both digital analysis and signal processing [1]. In
this context, kernel-based methods can be used for different purposes: reconstruction,
impulse response modelling, interpolation, (non)-linear transformations, filtering, etc.

Most kernels used in signal processing are linear combination of summative kernels,
which are positive functions with an integral equal to one. A summative kernel can
therefore be associated to a particular probability distribution. Still, how to choose a
particular kernel and its parameters to filter a given signal is often a tricky question.
Using maxitive kernels [2], that is kernels that are formally equivalent to possibility
distributions [3], can overcome this difficulty. This can be done by interpreting maxitive
kernels and associated possibility distributions [3] as sets of summative kernels (or sets
of probability distributions [4]). The output of a maxitive kernel-based filtering is an
interval valued signal that gathers all the outputs of conventional filtering based on the
summative kernels belonging to the considered set. This property allows to perform a
rosbustness or sensitivity analysis of the filtering during the filtering process itself.

The main interests of maxitive kernels are their simplicity of representation and their
computational tractability. The price to pay for such features is a limited expressiveness
and the impossibility to exclude unwanted summative kernels from the set represented
by maxitive kernels in some applications. For instance, this set always includes a Dirac
measure, meaning that the filtered interval-valued signal always includes the original
(noisy) signal itself.
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To overcome this shortcoming of maxitive kernel while keeping their interesting
features, we propose to use another uncertainty representation, called clouds [5], as
a compromise between summative and maxitive kernels. we call the resulting kernels
cloudy kernels. The interest of cloudy kernels is two-fold: they are more expressive
than maxitive kernels, the latter being a special case of the former [6], and their use
only require low computational efforts, an important feature in signal processing.

We first introduce summative and maxitive kernels, before showing how cloudy ker-
nels can act as a compromise between the two (Section 2). The computational aspects
of using cloudy kernels are then discussed, and an efficient algorithm to perform signal
filtering with them is devised (Section 3). Some experiments on a simulated signal are
then performed and their results discussed (Section 4).

2 Between Summative and Maxitive Kernels: Cloudy Kernels

This section recalls the basics of summative and maxitive kernels. It then introduces
cloudy kernels and shows how they can model summative kernels with lower-bounded
bandwidth . For readability purpose, we will restrict ourselves to representations defined
on the real line R and its discretization X .1

2.1 Summative Kernels

A summative kernel κ is formally equivalent to a Lebesgue-measurable probability dis-
tribution κ : R → R

+, and can be interpreted as such. The associated probability mea-
sure Pκ : B → [0,1] defined on the real Borel agebra B is such that, for any measurable
subset A ⊆ R (also called an event), Pκ(A) =

∫
A κ(x)dx.

In this paper, we restrict ourselves to bounded, symmetrical and mono-modal ker-
nels. To shorten notations, we consider that kernels belong to a family of kernels param-
eterized by their bandwidth Δ and defined on a compact interval [−Δ ,Δ ] ⊆ R centred
around zero. Typical kernels belonging to such families are recalled and represented in
Table 1. We denote them by κΔ , and they are such that κΔ (x) = κΔ (−x). To a summative
kernel κΔ can be associated its cumulative distribution function FκΔ : [−Δ ,Δ ] → [0,1]
such that, for any x ∈ [−Δ ,Δ ], FκΔ (x) =

∫ x
−Δ κΔ (x)dx which is such that FκΔ (0) = 1/2

and FκΔ (x)+ FκΔ (−x) = 1.

2.2 Maxitive Kernels

A maxitive kernel π is a normalised function π : R → [0,1] with at least one x ∈ R such
that π(x) = 1. A maxitive kernel can be associated to a possibility distribution [3], hence
inducing two (lower and upper) confidence measures, respectively called necessity and
possibility measures. They are such that, for any event A ⊆ R, we have:

Π(A) = max
x∈A

π(x) N(A) = 1−Π(Ac) = inf
x∈Ac

(1−π(x)), (1)

1 Extension of presented methods to some product space R
p is straightforward.
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Table 1. Some classical summative kernels

Name κ Shape

Triangular κ(x) = (1−| x
Δ |)IΔ

x
0

Uniform κ(x) = 1
2Δ IΔ x

0

with Ac the complement of A. A maxitive kernel π can be associated to a set of sum-
mative kernels Pπ dominated by the possibility measure Π of π , such that Pπ =
{κ ∈ PR|∀A ⊆ R,P(A) ≤ Π(A)}, with PR the set of all summative kernels over R. If a
summative kernel κ is in Pπ , we say, by a small abuse of language, that π includes κ .
This interpretation makes maxitive kernels instrumental tools to filter signal when the
identification of a single summative kernel is difficult.

There are many ways to build a maxitive kernel including a given summative ker-
nel [7]. Here, we consider the so-called Dubois-Prade transformation, since it provides
the most specific solution. Given a summative kernel κΔ , the maxitive kernel πκΔ re-
sulting from the Dubois-Prade transformation is such that

πκΔ (x) =
{

2 ∗FκΔ (x) if x ≤ 0
2 ∗ (1−FκΔ(x)) if x > 0

We will denote by π+
κΔ

,π−
κΔ

the following functions

π−
κΔ

(x) =
{

πκΔ (x) if x ≤ 0
1 if x > 0

π+
κΔ

(x) =
{

1 if x ≤ 0
πκΔ (x) if x > 0.

(2)

The (convex) set PπκΔ
includes, among others, all summative kernels κΔ ′ with Δ ′ ∈

[0,Δ ] [7]. Hence, maxitive kernels allow to consider families of kernels whose band-
width are upper-bounded, but not lower-bounded, which in some situations may be a
shortcoming. For instance, in those cases where it is desirable to smoothen a signal, the
interval-valued signal resulting from an imprecise filtering should not envelope the ini-
tial signal, i.e., the Dirac measure should be excluded from the set of summative kernels
used to filter. It is therefore desirable to dispose of representations allowing to model
sets of summative kernels whose bandwidths are both lower- and upper-bounded. Next
sections show that the uncertainty representation called clouds can meet such a need.

2.3 Cloudy Kernels

Clouds, the uncertainty representation used to model cloudy kernels, have been intro-
duced by Neumaier [5]. On the real line, they are defined as follows:
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Definition 1. A cloud is a pair of mappings [π ,η ] from R to the unit interval [0,1] such
that η ≤ π and there is at least one element x ∈ R such that π(x) = 1 and one element
y ∈ R such that η(y) = 0

A cloud [π ,η ] induces a probability family P[π ,η] such that

P[π ,η] = {κ ∈ PR|Pκ({x|η(x) ≥ α}) ≤ 1−α ≤ Pκ({x|π(x) > α})}. (3)

And P[π ,η] induces lower and upper confidence measures P[π ,η],P[π ,η] such that, for
any event A ⊆R, P[π ,η](A) = infκ∈P[π,η]

Pκ(A) and P[π ,η](A) = supκ∈P[π,η]
Pκ(A). Also

note that, formally, clouds are equivalent to interval-valued fuzzy sets having boundary
conditions (i.e., π(x) = 1 and η(y) = 0 for some (x,y) ∈ R

2). A family of clouds that
will be of particular interest here are the comonotonic clouds [6]. They are defined as
follows:

Definition 2. A cloud is comonotonic if ∀x,y ∈ R, π(x) < π(y) ⇒ η(x) ≤ η(y)

A cloudy kernel is simply a pair of functions [π ,η ] that satisfies Definition 1. As for
maxitive kernels, we can associate P[π ,η] to the corresponding set of summative ker-
nels. In this paper, we will restrict ourselves to cloudy kernels induced by bounded,
symmetric and unimodal comonotonic clouds. Again, to make notations easier, we will
consider that they are defined on the interval [−Δ ,Δ ].

Definition 3. A unimodal symmetric cloudy kernel defined on [−Δ ,Δ ] is such that, for
any x ∈ [−Δ ,Δ ], η(x) = η(−x), π(x) = π(−x) and η ,π are non-decreasing (non-
increasing) in [−Δ ,0] ([0,Δ ])

As for maxitive kernels, given a unimodal symmetric cloudy kernel, we will denote by
η+,η− the functions such that

η−(x) =
{

η(x) if x ≤ 0
1 if x > 0

η+(x) =
{

1 if x ≤ 0
η(x) if x > 0.

(4)

Two particular cases of comonotonic symmetric cloudy kernel are the so-called thin
and fuzzy clouds. A cloudy kernel is said to be thin if ∀x ∈ R, π(x) = η(x), i.e., if the
two mappings coincide. A cloudy kernel is said to be fuzzy if ∀x ∈ R, η(x) = 0, i.e. if
the lower mapping η conveys no information.

A cloudy kernel is pictured in Figure 1. Note that a fuzzy cloudy kernel [π ,η ] induces
the same summative kernel set P[π ,η] as the maxitive kernel π . We now recall some
useful properties of clouds and cloudy kernels.

Proposition 1. A cloudy kernel [π ,η ] is included in another one [π ′,η ′] (in the sense
that P[π ,η] ⊆ P[π ′,η ′]) if and only if, for all x ∈ R, [π(x),η(x)] ⊆ [π ′(x),η ′(x)].

Hence, given a cloudy kernel [π ,η ], any thin cloud [π ′,η ′] such that η ≤ η ′ = π ′ ≤ π
is included in [π ,η ]. Inversely, for any thin cloud [π ′,η ′] not satisfying this condition
(i.e. ∃x such that η ′(x) < η(x) or π ′(x) > π(x)), we have P[π ,η]∩P[π ′,η ′] = /0.

Proposition 2. The convex set P[π ,η] induced by a thin cloud [π ,η ] includes the two
summative kernels having for cumulative distributions F−,F+ such that, for all x ∈ R

F−(x) = η−(x) = π−(x) ; F+(x) = 1−η+(x) = 1−π+(x). (5)

P[π ,η] being a convex set, any convex combination of F−,F+ is also in the thin cloud.
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Fig. 1. Example of cloudy kernel

2.4 Summative Kernel Approximation with Cloudy Kernels

Let us show that cloudy kernels can remediate to the main drawback of maxitive ker-
nels, i.e. they can model sets of summative kernels κΔ where Δ is lower and upper-
bounded. Assume that we want to represent the set of summative kernels κΔ such that
Δ ∈ [Δinf,Δsup]. To satisfy this requirement, we propose to consider the cloudy kernel
[π ,η ][Δinf,Δsup] such that, for any x ∈ R:

πΔsup(x) =
{

2 ∗FΔsup(x) if x ≤ 0
2 ∗ (1−FΔsup(x)) if x ≥ 0

; ηΔinf(x) =
{

2 ∗FΔinf(x) if x ≤ 0
2 ∗ (1−FΔinf(x)) if x ≥ 0

(6)

Let us first show that this cloud contains all the desired summative kernels, starting with
the summative kernels such that Δ = Δinf and Δ = Δsup].

Proposition 3. The cloudy kernel [π ,η ][Δinf,Δsup] includes the two summative kernels
κΔinf and κΔsup having for cumulative distributions FΔinf,FΔsup .

Proof. From the definition of our cloudy kernel, we have that the thin cloudy kernels
having for distributions πΔsup and ηΔinf are included in [π ,η ][Δinf,Δsup] (Proposition 1).

Let us denote F−
π ,F+

π and F−
η ,F+

η the cumulative distributions given by Eq. (5) re-
spectively applied to the thin cloudy kernels πΔsup and ηΔinf . By Proposition 2, they are
included in the cloudy kernel [π ,η ][Δinf,Δsup], and since P[π ,η][Δinf ,Δsup ]

is a convex set,
1/2F−

π + 1/2F+
π and 1/2F−

η + 1/2F+
η are also included in the kernel. These two convex

mixtures being equals to FΔinf,FΔsup , this ends the proof.

Proposition 4. The cloudy kernel [π ,η ][Δinf,Δsup] includes any summative kernel κΔ
having FΔ for cumulative distribution with Δ ∈ [Δinf,Δsup].

Proof. We know, by Proposition 2, that the thin cloudy kernel [π ,η ]FΔ
such that

πΔ (x) =
{

2 ∗FΔ if x ≤ 0
2 ∗ (1−FΔ) if x ≥ 0

includes the cumulative distribution [π ,η ]FΔ
. Also, we have that FΔinf(x) ≤ FΔ (x) ≤

FΔsup(x) for x ≤ 0, and FΔsup(x) ≤ FΔ (x) ≤ FΔinf(x) for x ≥ 0, due to the symmetry of
the retained summative kernels. This means that πΔsup ≤ πΔ ≤ ηΔinf , therefore the thin
cloudy kernel [π ,η ]FΔ

is included in [π ,η ][Δinf,Δsup], and this ends the proof.
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Let us now show that the proposed cloudy kernels exclude summative kernels with a
bandwidth smaller than Δinf, among which is the Dirac measure.

Proposition 5. Any kernel κΔ having FΔ for cumulative distribution with Δ ≤ Δinf or
Δ ≥ Δsup is not included in the cloudy kernel [π ,η ][Δinf,Δsup]

Proof. Similar to the one of Proposition 4, considering that the thin cloud induced by
FΔ when Δ ≤ Δinf is not included in the cloudy kernel [π ,η ][Δinf,Δsup].

These proposition show that cloudy kernels are fitted to our purpose, i.e., representing
sets of summative kernels with lower- and upper-bounded bandwidth. Still, as for max-
itive kernels, other kernels than the summative kernels belonging to the family κΔ are
included in P[π ,η][Δinf ,Δsup ]

.

3 Practical Computations

In practice, imprecise filtering is done by extending the expectation operator to repre-
sentations inducing probability sets, in our case by using Choquet integrals [9]. In this
section, we recall what is a Choquet integral and its links with expectation operators.
We then propose an efficient algorithm to compute this Choquet integral for cloudy
kernels. To shorten notations [π ,η ][Δinf,Δsup],ηΔinf and πΔsup will be denoted by [π ,η ],η
and π . Since computations are achieved on a discretised space, we consider that we are
working on a finite domain X of N elements. In our case, this space corresponds to a
finite sampling of the signal.

3.1 Expectation Operator and Choquet Integral

Consider the domain X = {x1, . . . ,xN} with an arbitrary indexing of elements xi (not
necessarily the usual ordering between real numbers) and a real-valued function f (here,
the sampled values of the signal) on X , together with a discretized summative kernel
κi, i = 1, . . . ,N, where κi = κ(xi). Classical convolution between the kernel κ and the
sampled signal f is equivalent to compute the expectation Eκ( f ) = ∑N

i=1 κi f (xi).
When working with a set P of summative kernels defined on X , the expecta-

tion operator E( f ) becomes inter-valued [E( f ),E( f )], withE( f ) = infκ∈P Eκ ( f ) and
E( f ) = supκ∈P Eκ( f ). These bounds are generally hard to compute, still there are
cases where practical tools exist that make their computation more tractable. First re-
call [10] that lower and upper confidence measures of P on an event A ⊆ X are such
that P(A) = infκ∈P Pκ(A) and P(A) = supκ∈P Pκ(A) and are dual in the sense that
P(A) = 1 − P(Ac). If P satisfy a property of 2-monotonicity, that is if for any pair
{A,B} ⊆ X we have P(A∩ B) + P(A∪B) ≥ P(A) + P(B), then expectation bounds
can be computed by a Choquet Integral.

Consider a positive bounded function2 f on X . If we denote by () a reordering of
elements of X such that f (x(1)) ≤ . . . ≤ f (x(N)), the Choquet Integral giving the lower
expectation reads

2 Positivity is not constraining here, since if c is a constant E( f + c) = E( f )+ c and the same
holds for E.
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CP( f ) = E( f ) =
N

∑
i=1

( f (x(i))− f (x(i−1))P(A(i)), (7)

with f (x(0)) = 0 and A(i) = {x(i), . . . ,x(N)}. Upper expectation can be computed by
replacing the lower measure P by the upper one P. The main difficulty to evaluate
Eq. (7) is then to compute the lower (or upper) confidence measure for the N sets Ai.

3.2 Imprecise Expectation with Cloudy Kernels

Cloudy kernels satisfying Definition 2 induce lower confidence measure that are ∞-
monotone [8,6], hence Choquet integral can be used to compute lower and upper ex-
pectations. Let us now detail how the lower confidence measure value on events can
be computed efficiently (upper confidence measure are obtained by duality). Cloudy
kernels [π ,η ] defined on X induce a complete pre-order ≤[π ,η] between elements of
X , in the sense that x ≤[π ,η] y if and only if η(x) ≤ η(y) and π(x) ≤ π(y). Given a
set A ⊆ X , we denote respectively by xA and by xA its lowest and highest elements
with respect to ≤[π ,η]. We now introduce the concepts of [π ,η ]-connected sets, that are
instrumental in the computation of lower confidence measures.

Definition 4. Given a cloudy kernel [π ,η ] over X , a subset C ⊆X is [π ,η ]-connected
if it contains all elements between xC and by xC, that isC={x ∈ X |xC ≤[π ,η] x ≤[π ,η] xC}
We denote by C the set of all [π ,η ]-connected sets of X . Now, any event A can be
inner approximated by another event A∗ such that A∗ =

⋃
C∈C ,C⊂A .C is the union of all

maximal [π ,η ]-connected sets included in A. Due to an additivity property of the lower
confidence measure on [π ,η ]-connected sets [11], P(A) is then

P(A) = P(A∗) = ∑
C∈C ,C⊂A

P(C) (8)

We consider that elements of X are indexed accordingly to ≤[π ,η], i.e., elements x1, . . . ,
xN are indexed such that i ≤ j if and only if η(xi) ≤ η(x j) or π(xi) ≤ π(x j). Given this
ordering, the lower confidence measure of a [π ,η ]-connected set C = {xi, . . . ,x j} is
given by the simple formula

P(C) = max{0,η(x j+1)−π(xi−1)},
with η(xN+1) = 1 and π(x0) = 0. Note that, as ≤[π ,η] is a pre-order, we have to be
cautious about equalities between some elements. Figure 2 illustrates a cloudy kernel
with 7 (irregularly) sampled values, its associated indexing and order.

Algorithm 1 describes how to compute lower confidence measures and the incre-
mental summation giving the lower expectation. At each step, the [π ,η ]-connected sets
forming A(i) are extracted and the corresponding lower confidence measure is com-
puted. The value of the Choquet integral is then incremented. To simplify the algorithm,
we assume ≤[π ,η] to be an order (i.e., it is asymmetric). Note that two orderings and in-
dexing are used in the algorithm: the one where elements are ordered by values of f ,
denoted by (), and the other where elements are ordered using ≤[π ,η], without paren-
thesis. Except if the function f is increasingly monotonic in R, the indexing following
the natural order of numbers is never used.
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x
x7

1

x6 x5x4 x3x2 x1

η(x6)

π(x6)

x1 ≤[π ,η ] x2 ≤[π ,η ] x3 ≤[π ,η ] x4 ≤[π ,η ] x5 ≤[π ,η ] x6 ≤[π ,η ] x7

Fig. 2. Discretization of cloudy kernels and indexing of elements around x7 (each xi corresponds
to a sampled value)

Algorithm 1. Algorithm for lower expectations: basic ideas
Input: f ,[π,η], N (number of discretized points)
Output: Lower/upper expectations
E = 0 ;
for i = 1, . . . ,N do

Compute f (x(i))− f (x(i−1)) ;
Extract [π,η]-connected sets such that A(i) = C1 ∪ . . .∪CMi ;
With Cj = {xk| j ≤ k ≤ j} ;

Compute P(A(i)) = ∑Mi
j=1 max(0,η(x j+1)−π(x j−1)) ;

E = E+[ f (x(i))− f (x(i−1))]×P(A(i))

4 Experiment: Comparison with Summative and Maxitive Kernels

Let us now illustrate the advantage of using cloudy kernels rather than simple maxitive
kernels when filtering a noisy signal. Figure 3 shows in cyan a (noisy) signal that has
to be filtered by a smoothing kernel. Imprecise kernels (cloudy or maxitive) can be
used if one does not know the exact shape of the impulse response of the filter, but
can assume that this filter is symmetric, centred and has a lower and upper bounded
bandwidth Δ ∈ [Δinf,Δsup]. The signal pictured in 3 has been obtained by summing nine
sine waves with random frequencies and then by adding a normal centered noise with a
standard deviation σ = 5.

Assume that the summative kernels to be considered are the uniform ones bounded
by Δ ∈ [0.018,0.020]. The most specific maxitive kernel dominating this family is the
triangular kernel with a bandwidth equal to 0.02 (see [2]). The bounds obtained by using
such a kernel are displayed on Figure 3 (dotted red and blue lines). As expected, the
inclusion of the Dirac measure in the maxitive kernel gives very large upper and lower
filtered bounds, that encompass the whole signal (i.e. the signal is always in the interval
provided by the maxitive kernel). Given our knowledge about the desired bandwidth, it
is clearly desirable to also take account of the lower bound 0.018.
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Fig. 3. Superposition of the original signal (cyan), the maxitive imprecise filtering (dotted blue -
upper, dotted red - lower) and the cloud based imprecise filtering (blue - upper, red - lower)

Cloudy kernels can model a more specific set of summative kernels, accounting for
the lower bound, by using the cloudy kernel composed of two triangular maxitive ker-
nels, the lower kernel having a bandwidth Δinf = 0.018 and the upper kernel having a
bandwidth Δsup = 0.020, and filtering the signal with Algorithm 1. The result is also pic-
tured in Figure 3 (full red and blue lines). We can see that the lower and upper bounds
are now much tighter, as expected. Hence, we now have bounds to whose are associated
a good confidence and that are more informative.

To illustrate the capacity of maxitive and cloudy kernels to encompass the desired
kernels, we have plotted on 4 ten filtered signals (in cyan) obtained by using differ-
ent symmetric centered summative kernels whose bandwidth belongs to the interval
[Δinf,Δsup]. Every filtered signal belongs to the interval-valued signal obtained by using
the cloudy kernel based approach.
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Fig. 4. Superposition of nine filtered signals (cyan), the maxitive imprecise filtering (dotted blue -
upper, dotted red - lower) and the cloud based imprecise filtering (blue - upper, red - lower)
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5 Conclusion

Both summative and maxitive kernels suffer from some defects when it comes to filter
a given signal. The former asks for too much information and the latter is often too im-
precise to give tight information. In this paper, we have proposed to use cloudy kernels
(using the uncertainty representations called cloud) as a compromis between the two
representations to achieve imprecise linear filtering. We have also proposed a simple
and efficient (but not necessarily the most efficient) algorithm to compute lower and
upper bounds of the filtered signal.

Our experiments show that using cloudy kernels does have the expected properties.
Compared to summative and maxitive kernels, they allow to retrieve reliable and in-
formative envelope for the filtered signal. However, it appears that envelopes resulting
from the filtering using cloudy kernel are still not so smooth. We suspect that this is due
to summative kernels inside the cloudy kernels for which probability masses are con-
centrated around some particular points (i.e. mixtures of Dirac measures). To avoid this,
we could consider the use of technics already proposed [12] to limit the accumulation
of such probability masses.
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