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Abstract process. For example, in medical images produced by a

gamma camera, the noise is rather described by a Poisson

In this paper, we propose a novel approach for quanti- . : .
fying thz r?oise Ievzl aﬁ each IocationpoF:‘ a digital sqignal. process (i.e. the noise level depends on the signal level).

This method is based on replacing the conventional kernelin early approaches (see e.g [25]), noise estimation con-
based approach extensively used in signal filtering by arsisted in assuming stationarity of the random variations of
approach involving another kind of kernel: a possibility the signal. The computation of the standard deviation of
distribution. Such an approach leads to interval-valued re the noise were performed by analyzing the signal obtained
sulting methods instead of point-valued ones. We showpy high-passfiltering of the original signal. The main chal-
on real and artificial data sets, that the length of the ob-lenge in these estimations is to be able to tell whether a
tained interval and the local noise level are highly corre-signal variation is due to the noise or to the signal itself,
lated. This method is non-parametric and advantageousvhich can involve significant variations.

over other methods since no assumption about the natur

of the noise has to be made, except its local ergodicity. In more recent papers, some authors propose to abandon

either stationarity or additivity of the noise. Rangayyan
Keywords. Signal processing, kernel methods, possibility €t al- [28] consider an adaptive neighbourhood approach
distribution, noise quantization, Choquet integral. that is able to account for an additive non-stationary noise
Corner et al. show that analyzing the Laplacian of the
signal allows to deal with both additive and multiplicative

1 Introduction noise [5].

The reliability of a great number of signal processing Unfortunately, neither additive nor multiplicative ramdo
methods inherently relies on the possibility of adjusting noise are good models for real signal contamination, even
their parameters to account for noise level over the inputfor instance, for conventional CCD sensor [18]. There-
signal. Examples of such procedures are image restorgfore, many approaches [18, 16, 23] propose to model the
tion, edge detection [18], motion estimation [1], denajsin acquisition noise as being Poisson distributed.

[26, 27], sgper-resolutlon [14], shape-frqm-shadmg [34] In these model-based approaches, the noise is assumed to
sensor fusion [3, 29] and feature extraction or Segmentafollow a hypothetically known distribution and noise level
tion [22]. estimation consists in estimating the different paranseter
Noise in a signal is usually referred to random variations ofon which the variance of the assumed distribution depends.
the measured signal. These variations can be produced byloreover, any model-based method assumes the type of
several factors including thermal effect, saturation, sam the acquisition machine to be known.

plingz qL_Jantization a_nd transmission. Since repee_lting thqf nothing can be assumed about the nature of the noise,
acquisition process is usually not pgssmle_, the noisd leveexcept its local ergodicity, only a very local approach has
has to be estimated by means of a single signal OCCUITENCE, he considered to estimate the noise level for each lo-
Noise is generally considered as being independent frongation or, at least, for each user-selected homogeneous
the signal level and added to it. One of the most widely region of the signal. Moreover, since signal processing
encountered model assumes this random noise as beingainly consists of extracting or estimating some physi-
centered and normally distributed. However, phenomenaally meaningful characteristics from intensity values of
like film grain, speckle, impulse noise, sampling effect, the signal, it should be important to understand how
quantization or saturation induce a fluctuation of signal'sthe uncertainty due to random perturbation propagates
value that cannot be modelled by a Gaussian zero meathrough any algorithm step.



A wide range of those signal processing methods relie2 A possibilistic extension of convolution

on a kernel-based approach [20] for direct or iterative, kernel-based linear filtering

linear or non-linear algorithms and for filtering (stochas-

tic, band pass, anti-aliasing, ...), geometrical trams®r 2.1 Convolution kernel-based signal filtering

tions (rescaling, rotations, homographies, anamorphosis

...), sampling rate conversion, fusion, for enhancing orLet S = (5;);=1,....n be a digital signal defined ofv
removing details, etc. The kernels usually encounteredocations{ws, ...,wy} of an underlying infinite domaif2.
are probability distributions: they are positive funcon Note that the location&w;, ..., wy } can be identified with
whose total weight (their integral in the infinite domain their indices{1, ..., N}. Processing by a filter, defined
and their sum in the finite domain) sums to 1. The mainby its impulse response, mathematically corresponds to
difficulty in these kernel-based methods is that the naturethe discrete convolution &f by «. This is whyx can also
of both signal and perturbation can change during the combe called a convolution kernel. The valfg of the filtered
plete analysis, from step to step. signal at thex?” location of{1, ..., N'} is thus obtained by:

By switching from probability theory to possibility the- N

ory, we propose new methods that take into account a lack S, = Z Sikn—_i-
of knowledge on the proper kernel to be used [21]. In- i=1

deed, a possibility distribution represents a convex hull . . :
of probability distributions and hence of kernels. In this "7~ = (“"_—i)izlvmvN is the convolution kernet shifted |
adaptation of the usual kernel methods, the conventionaﬁ0 th_e Iocat|o_rn of {1, .., Ni' we Bmpose to ge_note this
Lebesgue integral operator is replaced by a pair of Chopartl_cular shﬁted kemel by" = (£)i=1,...v- Sn is thus
guet integrals according to the possibility measure and thé)btamed by: N

necessity measure associated with the chosen possibility g = Z Sik™. 1)
distribution. The resulting interval (and more precisédy i P !

length) reflects the lack of knowledge of the modeller on

the most adequate kernel to use. In many applications like low-pass filtering, the used con-

As an example, the use of the interval-valued gradient esti-VOIUtlon kernels are positive and have a unitary gain, i.e.

mation of an image, proposed in [17], leads to a threshold- N
free robust edge detector. This robustness is due to the fact Z ki = 1.
that the length of the interval-valued estimation is highly i=1

correlated with the input image random noise. The infor- .
mation (about the noise) contained in the resulting inferva In that case, the convolution "e”‘.e' can be seen asa proba-
bility distribution that induces a discrete probability aae

is properly taken into account in the edge detector, thus S .
h AR “ ” sureP,,, computed in this way:
enabling an automatic rejection of the “false” edges due to

NOISE. VACO, P(A) = i

In this paper, we propose to study the link between the icA

length of the interval-valued result of a possibilisticeik

ing on a signal and the input signal random noise. Actu-For each locatiom, its associated shifted convolution ker-
ally, we discuss the fact that this approach is, to our opin-nel <™ is still a probability distribution. Thus, expression
ion, in its spirit, better founded than the usual noise level(1) is equivalent to computing the expected valjg of
estimators. Furthermore, we propose to highlight the emthe signalS at the locatiom, considering the probability
pirical correlation between the length of the output of the measure’,» on{1,..., N},i.e..

interval-valued filtering and the input signal random noise .

on repeated acquisitions of real and synthetic images. Sn = Epa (9). @)

The paper is organized as follows. In section 2, we presentn that case, the filtered value of the signal can be inter-
how the digital filtering is performed by means of convolu- preted as the expected value of the signal, knowing that the
tion kernels with unitary gains. We present the possibility uncertainty concerning the location is modelled By. .
distribution-based filtering, which is theoretically jifigtd This interpretation is not very relevant because the aim of
by Theorem 1. In section 3, we describe our method forthe filtering is not to try to evaluate the real value of a sig-
estimating the noise level at each sample location of a sighal under uncertainty. The aim of the filtering is to modify
nal. In section 4, we compare our method to three otheithe input signal according to the practitioner’s needs. The
usual noise level estimates on synthetic and real noisy imonly reason why we propose to rewrite the linear filtering
ages, before concluding in section 5. with the expectation operator is that it enables us to deal
with a family of convolution kernels by switching from the
usual probability theory to imprecise probability theory.



2.2 Extension of signal filtering to possibility theory 2.2.2 The possibilistic extension of the linear filtering

By writing the linear filtering with a unitary gain filter Since a possibility measure is non-additive, the conven-
as an expectation according to a probability measure, wdional expectation operator cannot be used for filtering.
open new perspectives to this approach by repositioninglhe expectation operator must be replaced by its general-
it in the field of new uncertainty theories. Instead of us- ization, called the Choquet integral [6]. Using a Choquet
ing an additive measure for each neighbourhood of a samintegral and a possibility distribution leads to an intérva
ple location, i.e. a probability measure, we propose to usevalued expectation, instead of a single value, whose upper
the simple non-additive confidence measure called a posand lower bounds are given by:

sibility measure [9]. We propose to use this theory among _

others because of its computational simplicity. First, the Sn = Cm,. (5), (4)
possibility distribution is a tool that can be simply mod- S, =Cn_.(9). (5)
elled by just a set oV weights on the locationfdl, ..., N },

whereas most of the other imprecise probability theorlesThe Choquetintegral can be considered as a generalization

[33] require more assessments. Besides, we propose t8f the conventional expectation operator since, when the

use the Choquet integral, that extends the usual linear X sed confidence measure is a probability measure, expres-

pectathn.(.)perator, by e>.<tend|ng the convo'IL.Jt|0n Operatorsions (4) and (5) coincide and are equal to the conventional
to possibility measures in place of probability measures. .
. : . expectation operator (2).
This tool is well know and very simply computed.
The key point of this approach is that the interval-valued

T:‘O'z:ﬁ ngge%r%ienfssi%?li ;ntﬂggifrézlsaggwcmetg% i?lf[)égxpectation obtained by means of a possibility distributio
prals t,hat enablespa i na)I/ o be filtered b mecj':ms of és the set of all the single-valued expectations obtained by
?amilg/ of convolution ker%els y using all the convolution kernels encoded by the consid-

ered possibility distribution.

2.2.1 A possibility distribution is a family of filters As a preliminary to the theorem (and its proof) justify-
ing this assertion, some notations are necessary. Let us

A possibility measure is non-additive and possesses a dugfenote by£({1,..., N}) the set of bounded sequences

confidence measure, called a necessity measure, denotegl weights on{1,..., N}, ie. VI = (L)i—1...N €

by N and computed in this way: L({1,..,N}), max;—y__n|L| < oo. In [32], this
4 c set is called the set of bounded gambles{an..., N'}.
VA CO, N(4) =1—1TI(A%). 3) Denote B({1, ..., N}), the set of binary (i.e. {0,1}-

The two measures] and N, encode a family of probabil-  valued) sequences of weights ¢, ..., N'}. Obviously,

ity measures, denoted by (IT), and defined by: B({1,...,N}) ¢ L({1,..,N}). B({1,..,N}) can be
seen as the set of eventsfh ..., N'}.

M) ={P[VAC ©,N(4) < P(4) < 1I(4)}. Theorem 1. Let 7™ be a possibility distribution.¥S €

This encoding property is due to the sensitivity analysisﬁ({la -y N}), Ve € M(7"),

interpretation [32] of possibility theory. Cr..(8) < Ep...(S) < Cri. (5) ®)
N,,r'n — Pmn = Hwn .

A possibility measure can be defined from a possibility
distribution=”. Such a distribution is normalized in the Moreover, the bounds are reachedS € £({1,...,N}),
sense that 3k}, kG € M(n™), such that
maxm, = 1.
<o Cn,n (5) =Ep,. (5),
Its associated possibility measure is obtained by: !
Cm, . (S)=Ep_(S5).

r2

VACO, II;n(A) = ma}wf.
1€

Proof. The natural extension principle [32] is required to
Thus a unique possibility distribution™ can encode a Prove Theorem 1. Note that the natural extension of a
whole family of convolution kernels™ with unitary gain, ~ Probability measureP, defined for all the eventsi of
denoted byM (=) and defined by: B({1,...,N}), is the expectation according 1, defined

forall S of £L({1,..., N}). Similarly, the natural extension
M(7™) = {k" |VA C O, Npn(A) < Pen(A) < (A)}. of a possibility measurs, defined for all the eventd of

_ _ _ _ _ B({1,...,N}), is the Choquet integral with respectith
This family of convolution kernels being defined, the eX- yafined for alls of £({1,..., N}

tension of the convolution (or expectation) operator has to
be studied. 1This remark is true for the more general belief functions




The natural extension, as defined by Walley, is conservaFirst, we propose to use the triangular possibility distri-
tive concerning the imprecision of a possibility measure. bution since it encodes (among others) all the symmetric
The family of natural extensions of the probability mea- convolution kernels with the same support [13]. Indeed,
sures of the familyM (™), notedE(M(7™)), is the same  many algorithms (for example low-pass filtering) exten-
as the family of expectations dominated by the Choquet in-sively use symmetric convolution kernels.

tegral according tor™, noted M(Cry_,.). This property

of the natural extension can be found in Walley's book
[32] for an upper previsior? and its associated set of
linear previsionsM(P). It is enough to conclude that
VS e L({1,....N}), V™ € M(x™),

Second, probability/possibility transformations stubiy
Dubois et al. [13] can be used, when the practitioner has a
vague idea of the convolution kernel to be used. The possi-
bility distributions obtained by these transformationsio
families of convolution kernels including the kernel to ap-

o on n proximate [10, 8]. The objective transformation results in
Copn () = mindEp,. (5) : & ne M n)}’ the smallest family containing the original kernel and the
Cri, (5) = max{Ep,, () : " € M(7")}. subjective transformation [11, 12] results in a larger fgmi

of convolution kernels. The latter transformation should
be preferred in case of little confidence in the choice of
the original convolution kernel.

This theorem is also valid for infinite domains. The proof

is derived from domination theorems proved by Den-3 Noise estimation

neberg [7], proposition0.3 and Schmeidler [30], propo-
sition 3.

O

3.1 Nuggets effect and local estimation by

This propagation of the imprecision in the choice of the neighbourhood
possibility distribution representing a family of kernébs
the result of this new possibilistic filtering operation is
very interesting. Using a possibility distribution allotie
modelling of a lack of knowledge on the proper convolu-
tion kernel to be used. Using the generalized expectatio
operator (4) and (5) directly impacts this ill-knowledge on
the output.

Geostatistic is the branch of applied statistics that conce
trates on the description of spatial patterns [4, 24, 15¢ Th
central tool of geostatistic is the random function which
rgescribes the uncertainty of a given spatial characteristi
over a domain. The structural assumption underlying most
of the geostatistical methods is based on the intuitive idea
that, the closer are the regions of interest, the more simila
Note that in the case of a positive sigrfawhich is the are their associated characteristic values.
case of the images that will be processed in section 4), the o . .
Choquet integrals, forming the upper and lower expecta-HOW_ever' this intuitive |d(_aa 'S NO More so O.bV'OUS when
tions, can be explicitely computed by : Ipoklng at the closest pairs of sample Iocauops of a spa-
tial data set. Indeed, in general, when plotting the em-
N pirical increment of a particular observed property, func-
Sn=Cn,.(S) = ZH”" (A(i))(Su) — Si-1)), (7)  tion of the distance, between different sample locations,
; this incremerftdoes not seem to vanish when the distance

=1
N tends to 0. This discontinuity, which is supposedly due to
S,=Cn_.(S) = Z Nan(A@))(Su — Si—1y)- (8)  geostatical noise, is called the “nuggets effect”. This de-
i=1 nomination comes from the fact that in gold deposits, gold

) _ o ) commonly occurs as nuggets of pure gold that are much
The index notatior(.) indicates a permutation that sorts gmaller than the size of a sample.

the sample locations such théit;) < Sy < ... < S() ) _ o )

and A, is a set of samples locations whose value is When translating this concept from geostatistics to signal

greater thars;), i.e. Ay = {j € {1,..., N}[S; > Sii)}. processing, the nuggets effect can be illustrated as fellow

By convention,S(g) = 0. the variability of a subsetl of the signal domain is sup-
posed to reflect the co-occurrence of the intrinsic local

variability of the supposed continuous signal underlying

the samples and a measurement error. This measurement

The use of a possibility distribution as a family of linear €rror sums up the systematic error due to the impulse re-
filters is new in signal processing. This approach doessponse of the sensor, the imprecision due to sampling and
not offer clues (especially to possibility theory novicts) quantization of the signal and a random variability due to
choosing the possibility distribution that matches thecpra  Noise. Typically, the variability due to signal increases
titioner's knowledge on the proper convolution kernel to With the radiusA of the subsetd. On the contrary, the

be used. Two hints for helping him to choose a possibility  2Generally, the curve of the haive squared increments itegloThis
distribution are explored and provided in this paragraph. curve is called the sample variogram [4]

2.2.3 How to choose the possibilistic filter?




The local variability computation leads to a weighted sum
due to the additivity of the probability measure. Estima-

V(AL ) .
. tions of the nuggets effect are given by:

N

U = [ D (Sk = Sn)2E, (10)

k=1

if variability is measured by the standard deviation. And:

v

N
vn =[Sk — S|k}, (11)
Figure 1: Qualitative example of variogram. k=1

if variability is measured by the mean error.

variability due to the measurement error is usually SUp-\ost of the kernels used to perform this estimation are
posed not to depend ah. This assumption is reasonable nimodal, centered and symmetric around the sample lo-
when the sampling is regular and the random noise is SUPgations.

posed to be locally stationary. Thus, 4fx is a neigh-
bourhood of radiug\ of then'" locationw,,, V(A% ), the

variability of A™ is such that : 3.2 Noise quantization via possibilistic filtering

lim V(AR) = v, (9) Our.a.pproach is also bgsed on the assum'ptio_n of local er-
A—0 godicity. On top of that, it exploits the domination proper-

with v, being the variability due to measurement error at €S Presented in section 2, i.e. of the fact that a possibili
locationn. This limit is known as the nuggets effect in distribution can be seen as a family of convolution kernels.

the geostatistic field [15]. However, due to sampling,  Suppose you want to low-pass filter a signal with two dif-
cannot be computed because the local variability cannot bgerent filters having the same cutoff frequenty Such a
estimated for a scale smaller than the sampling distance filter eliminates from the input signal its component with

A standard technique for catching this variability is totplo 2 frequency higher than the cutoff frequeniey(this is the

a variogram, i.e. to plot the variability of all the sampling €XPlanation for the origin of the denomination *low-pass

locations ofn € {1,..., N}, V(A%), as a function ofA. f|!ter )._Suppose that the maximal frequency_of the |n_put

A manual fitting is generally performed to provide an es- Signal is lower thary.. Then the two output signals will -

timation of the nuggets effect, which is the value of the P& @pproximately equal. Now, suppose that we apply this

regression equation for a radins= 0. This estimationis ~ S2Me filtering procedure to an input signal having frequen-
denoted by. cies beyond'.. Then, generally, the output signals will be

different, depending on the shape of the convolution ker-
However, this method presupposes that the error is stationpgl.

ary all over the signal. Moreover, the choice to be made for . ) .

a particular variogram equation is not generally justified | NOW: consider the same procedure with a family of low-
signal processing. The expert's knowledge is generally noP2Ss filters (instead of just two). The previous remark still
available in this scientific domain to evaluate local depen-N°lds. Moreover, the dispersion in the outputs of this fam-

dencies, whereas in geostatistic, the expert, according t8Y ©f low-pass filters is a direct consequence of the high

the physical nature of the studied area, can provide sucf€duency level of the input signal. If we now suppose
information. that the high frequencies of the input signal are only due

to noisé, then the dispersion in the outputs of this fam-
A more pointwise estimation of these measurement er4ly of low-pass filters can be considered as a marker of the
rors can be obtained by means of a small neighbourhoogariability of the input signal.
around each sampled location. This approach is based on . .
assuming local ergodicity. Local ergodicity states that th AS mentioned before, the impulse responses of the usual
local variability of the signal in a small neighbourhood of linear !ow-pass filters are COWO'”“Q”_ !(ern_els.(un.lform,
a sampling point reflects the statistical variations of the Gaussian filters...). - Since a possibility distribution is
signal at this location, due to measurement errors. Thefduivalentto a family of convolution kernels, we propose
neighbourhood commonly used is a probability distribu- to replace the usual low-pass filtering based on a convo-

tion defined over the set of pixels by = (k7);_1... - Igtion kernel by a possibility distribution-based low-pas
filtering procedure.

3Sometimes, automatic fitting procedures (which are notmeco
manded by geostatisticians), as regression analysiseéi@med 4This is the hypothesis underlying the low-pass filters




The imprecision or the dispersion in the result of a pos-
sibility distribution-based filtering is quantified by the
length of the intervals,,, S,.], as defined by expressions
(8) and (7).

Therefore, under the assumption of local ergodicity, we
propose to estimate the noise level by :

An = gn - §n (12)

] ) Figure 2: images of Lena with simulated Gaussian noise
As the most usual low-pass filters have impulse responsesyith standard deviations of 30 and60.

which are unimodal and symmetric convolution kernels
aroundn, the triangular possibility distribution plays a
central role in possibility-distribution-based filteringn-
deed, as already mentionned, the triangular possibil#y di
tribution is the most specific possibility distribution tha
dominates the class of all unimodal symmetric convolu-
tion kernels with the same mode and support.

60 estimates

501

In the case of image processing, i.e. with a 2D signal, the
used triangular neighbourhood of each pixel can be simply
represented by the possibilisick 3 matrix:

0.25 0.5 0.25
T3x3 — 0.5 1 0.5 (13)
0.25 0.5 0.25

Standard deviation
of the smulated noise
0 10 20 30 40 50 60

In the case of 1D signal processing, the used triangula

neighbourhood of each sample location can be simply rep-_. ] o .
resented by the vector: Figure 3: Usual and possibilistic local estimates of the

noise level.

0.5
Ty = 1 (14)

0.5 noisy images, we can directly compare the noise level es-

timates presented in this paper (10), (11) and (12) with the

. . - imul noise.
In order to weaken the influence of the signal varlatlonsS ulated added noise

on the noise level estimator that we propose, we have tarhis experiment attempts to show the ability of the pos-

choose the smallest possible neighbourhood. Under a sibility distribution based approach, presented in subsec

or awsxs possibilistic neighbourhood, is only the Kro- tion 3.2, to quantify the noise level on an image when the

necker possibility distribution that is equaltoon the es-  noise is supposed to be locally ergodic. The noise level
timation’s location that would have led to a canonical es-is known and represented by the standard deviation of the
timation of S,, on the locatiom. This is why we propose added Gaussian noise.

to user Or ;5 10 estimate the noise level. The average over all the pixels of the noisy images of the

We conjecture that the length of the interval-valued esti-noise level estimates (10), (11) and (12) is plotted on Fig-
mate[S,,, S,,] obtained withrs3 or with 73 is an esti-  ure 3 versus the level of the simulated added noise. The
mate of the noise level at the locatian This conjecture  highest curve corresponds to the standard deviation esti-
is illustrated by the experiments in section 4. mate, i.e. expression (10) with3ax 3 convolution ker-

nel, the curve in the middle, corresponds to the mean error
estimate, i.e. expression (11) with3ax 3 convolution

kernel and the lowest curve corresponds to the possibil-

, i , ity distribution-based noise level estimate, i.e. exgoss
4.1 Simulated noise experiment (12).

4 Experiments

For this first experiment, we synthesized a set of noisy im-As can be seen on Figure 3, all these estimators are good
ages from the benchmark image Lena. A Gaussian noisenarkers of the noise level, since the three plotted curves
is simulated for standard deviations ranging froro 60 are linear functions of the noise level. The part of the
and added to the original Lena image. With this set of curves with small simulated noise levels (i.e. with stan-



This experiment attempts to show that the possibility
distribution-based noise level estimator (12) is more cor-
related to the statistical variations of the image than the
standard deviation noise estimation approach.

The randomness of the radioactive decay being statisti-
cally described by the Poisson probability, it cannot seall
be assumed to be stationary all over the image. Since the
signal to noise ratio is very low, the local variation of the
activity level, in the neighbourhood of each pixel, is still
highly correlated with the statistical variations due te ac
quisition noise.

On the one hand, the statistical variation of the activity of
thent” pixel can be estimated by its standard deviatign

all over its different realizations:

Figure 4: six images of the 1000 HBP direct acquisitions. 1000

1
n — “an In - n27 1
o 999; » =) (15)

dard deviation lower thah) is not fully in agreement with
this remark. This is due to the fact that for low noise levels, with ,,,, the weighted mean of the image at #/é pixel:
the signal to noise ratio is high and the observed variations

of the noisy image are mainly due to the image, and not to 1 7
the noise. Mn = 7000 < np-

1000
(16)

From t.h's experiment, we can n_ot_pretend tha_t our E’St"On the other hand, the local variation of the measurement
mator is better than the other existing local estimators to.

tify th ise level since the th in the neighbourhood of the!" pixel within thept” im-
quantify the noise level, since the three curves are Veryage can be estimated by computing the standard deviation

similar. However, put in a more general context, our aP-yia the expression (10) with a highly specific kernel (the

proach looks more appropriate to handle the noise in fur'same experiment made with expression (11) led to similar

_ther processing. In any usual _met_hod, an addlthnal SteF}esults). In this experiment, we propose two estimates of
is necessary to handle the noise in the processing. Th is standard deviationy, , is computed by using &x 3

adva?_tagt_e Of. the DtOSfS;EI'IStIC appr_oach 'S{hth?t n0|stehle}/_ie niform neighbourhood, and, , is computed by using a
quantization is part of the processing (in that case the "Gaussian kernel with a standard deviation equaldoi.e.

tering) of the data without any additional computation. a kernel whose bandwidth has been adapted to equal the

bandwidth of the uniform kernel [20, 31].
4.2 Real noise experiment ) ) )
In the meantime, we compute, for each image, an interval

A Hoffman 2D brain phantom (Data Spectrum Cor- valued activity[Z,, ,,, I, ;] by using the possibility distri-
poration) was filled with a99m technetium solution bution based method described in subsection 3.2. The lo-
(148M Bq/L) and placed in front of one of the detec- cal variation in the neighbourhood of the" pixel within

tors of a dual-head gamma camera using a low-energghe p’" image is estimated by the length ,, of each in-
high-resolution parallel-hole collimator (INFINIA, Gen- terval: B

eral Electric Healthcare). A dynamic study was performed Anp = Inp — L, a7)

to provide 1000 planar acquisitions (acquisition time: 1 e aim at testing whether the distribution of the estimated
second; average count per imalgé kcounts,128 x 128 standard deviatiom,, is correlated or not withy,, ,, 6, ,
images to satisfy the Shannon condition), representingandy,, . To provide a clear illustration, we compute, for
t1)000 measures of a randof) image supposedly ruled  gachy, the mean of the distributions of the deviation mea-
Wz 1000 N 1000

y a Poisson process. sures:, = . S0 s O = . S 6, and
The acquisition time being very short, the images are very\,, = 5 3 %0 A .
noisy, 1.e. the signal _to nolse rgtlo IS very low. More pre- Figure 5 plotsy,, versuss,,, as well as the straight line of
cisely, the average pixel value in the brain corresponds to . S <

. e . . equations,, = 4, figure 6 plots),, versuss,,, as well as

a coefficient of variation of the Poisson noiseéf. I, ,, - . : : N
. . B L o the straight line of equation, = ¢,, and figure 7 plots\,,
is the measured activity of the” pixel within thep!" ac- versusr. - as well as the straight line of equation — X
quired image. Note that Figure 4 only shows t#lex 35 " 9 q n= An.
central parts of the images that contains the HBP projec-These figures clearly show that all these estimations are,
tion. on average, correlated with,. The choice of the value



Figure 5: local variation measured by usingpa3 uniform  Figure 7: local variation measured by the length of the
kernel versus the statistical variation. interval provided by the possibility distribution based
method versus the statistical variation.

>
@

Tn,p ’;/n 517, D 5n )\n P )\n
Pearson || 0.70]| 0.93| 0.64| 0.90| 0.71| 0.96

Spearmar)| 0.64 | 0.92| 0.63| 0.90| 0.67| 0.95
Kendall || 0.47|0.77| 0.47|0.75| 0.51| 0.81

Table 1: Correlation coefficients between the statistical
standard deviation and the different measures of disper-
sion.

0.8

0.6

0.4

man and Kendall. As can be seen in Table 1, the three
i ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ averaged variability measurés, ¢,, and A,, are highly
L correlated witho,,. The correlations between, and the
variability measures, ,, d, , and, , are lower but are
Figure 6: local variation measured by using a Gaussiarsufficient to show a dependency between these measures

kernel with al.6 standard deviation versus the statistical and the statistical variations of the set of images. We can
variation. notice that),, , is always more correlated with,, than

the other variability measureg, ;, andé,, ,. The same re-
mark is also true fof,,, 4,, and\,,. We can conclude that,
1.6 for the Gaussian kernel is appropriate since the estiin this experiment, the possibilistic approach that we pro-
mated local standard deviations are in the same range pose seems to better quantify the noise level than the usual
as the statistical standard deviatiens Indeed, the points local approach.

(on,d,) are close to the straight line, = J4,,. Actu- .
Lo As we conjecture thak,, , could be regarded as a spread
ally for values smaller tham.6, nothing is caught by the : ’ .
factor measuring the local noise level, we expect that two

Gaussian neighbourhood for this estimation, whereas foﬁntervals[ln’pjw,] and [ln,an,q] intersect for most of

greater values, the estimation depends more on the S|gnalairs (p,q) Of images. We propose to complete this ex-

than on the variability. The same remarks can be madeperimentation by computing, for each pixel the ratio
about the choice of the size of the uniform kernel thatp » OY puting, P

. : . .. Of the intervals that intersect versus the total number of
seems to be appropriate. When comparing Figure 7 Wm‘iested intervals. We compute the same ratio using
both Figure 5 and 6, it can be seen that the range,dé | X

slightly higher than the range 6f, ands,,. This is due to andd,, , con5|_dgred f'als spread factors measuring s.tatlstlcal
o2 : standard deviations: we then test each couple of intervals
the fact that the measupg, is just correlated to the noise

level and is not an estimation of the standard deviation. n» ~ 3Vnps Inp & 3%n.p] @NA[L =300, I p +30n].
Since the3o interval is usually assumed to be the%

To objectively compare those three dispersion measures;onfidence interval, one can expect a high rate of overlap-
we compute three correlation coefficients: Pearson, Speaping. Table 2 presents the average ratio for all the pixels

0.2




with all pixelg only with pixels [3] I. Bloch and H. Maitre, Fusion in image processing,
such thatl,, >3 In: Information Fusion in Signal and Image Process-
Uniform kernel 0.11 0.88 ing, I. Bloch (Ed.), Wiley2008.
gaussian kernel 0.13 0.89
possibility distribution 0.98 0.92 [4] J.P. Chiles et P. Delfiner, Geostatistics (Modeling-Spa

tial Uncertainty) Wiley, New-York, U.S.A1999.

Table 2: Ratio of intersecting confidence intervals. [5] B.R. Corner, R.M. Narayanan, and S.E. Reichenbach,

Noise estimation in remote sensing imagery using data

of the image and for only the pixels with a value greater ~ Masking, International Journal of Remote Sensing
than three. vol. 24, 2003, pp. 689-702.

As can be seen easily on Table 2, the possibility distri-[6] G. de Cooman, Integration and conditioning in numer-
bution based confidence interval fulfil98% intersecting ical possibility theoryAnnals of Mathematics and Ar-
intervals while the usual probabilistic based confidenee in tificial Intelligence vol. 32, 2001, pp. 87-123.

tervals are far from thi®9% ratio. The bad ratio of the

other methods is mainly due to the fact that the spread facf7] D. Denneberg, Non-Additive Measure and Integral,
tor is underestimated by these methods for low values (as  Kluwer Academic Publisherd994.

it can be easily seen on Figures 5 to 7). In fact, select-

ing only the pixels whose level always exceeds a certairl8] D. Dubois, Possibility theory and statistical reas@pin
level over the different realizations increases the score o~ Computational Statistics and Data Analysi®l. 51,
the probabilistic based methods. In fact, by assuming that 2006, pp. 47-69.

the measured values are Poisson distributed, a local Gaus-

sian approximation can be valid except for small values of 9] D. Dubois and H. Pr.ade, P053|b|I_|ty theory: an ap-
the illumination signal. proach to computerized processing of uncertainty,

Plenum Press1988.

5 Conclusion [10] D. Dubois, H. Prade, and S. Sandri, On possibil-
ity/probability transformations?roceedings of Fourth

In this article, we have presented a method for quantifying ~ IFSA Conference, Kluwer Academic Puhb93, pp.

the noise level at each sample location of a signal. This 103-112.

method is based on replacing the conventional probabilis- )

tic by a possibilistic filtering approach. One of the main [11] D. Dubois, H. Prade, and P. Smets, New seman-

advantage of this method is the fact that nothing has to be ~ tics for quantitative possibility theorySIPTA01, 2nd

assumed on the nature of the noise except its local ergod-  Ntérnational Symposium on Imprecise Probabilities

icity. Moreover, when a possibilistic approach is used in ~ @nd Their Applications, Ithaca, New York, USA, June

signal processing, the noise estimation is propagated all 2001.

along the different steps of the algorithm by the model it- . I

self, which is an advantage compared to usual kernel base@‘z] D. ngo.'s’ H. P.ra}c.ie, and P Smets, A definition
of subjective possibilitylnternational Journal of Ap-

approachgs, where the noise estimation requires a parallel proximate Reasoningol. 48, 2008, pp. 352-364.
computation.
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