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Abstract

This article proposes a new interval-valued fuzzy transform. Its construction is
based on a possibilistic interpretation of the partition on which the fuzzy transform
is built. The main advantage of this approach is that it provides specific interval
valued functions whose interpretation is straightforward. This interpretation relates
to a traditional sampling/reconstruction framework where little is known about the
sampling and/or reconstructing kernels. Numerous properties of the proposed ap-
proach are proved that could be useful for function analysis and comparison. In the
experimental section, we illustrate some properties of the proposed transform while
highlighting interesting features of the obtained framework.

Key words: Choquet integral, fuzzy transform, sampling, summative and maxitive
kernels, possibility theory, non-additive confidence measure.

1 Introduction

Nowadays, signal processing is mainly achieved through algorithms on discrete
and quantified representations of real signals. In this domain, transformations
are essential to transpose a signal to another space in order to obtain a more
compact and meaningful representation of the signal. Transformations are ex-
tensively used for analysis, compression, encryption, filtering, inversion, infor-
mation retrieval, etc. Many transformations have been proposed in the relevant
literature. Fourier and Laplace transforms are the most widely used, which as-
sociate a complex decomposition with any real signal in the frequency domain.
The advent of the fast Fourier transform (FFT) enabled real-time computation
of the Fourier transform and thus its wide use in many applications. The dis-
crete cosine transform can be seen as a simplification of FFT that only keeps
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the real part of the Fourier transform, thus associating a real decomposition
with a real signal. It became popular through its use in the jpeg compression
method. The wavelet transform was more recently proposed as a better solu-
tion for analyzing signals having compact support. In image processing, more
dedicated transformations have also been proposed. For example, the Hough
transform places the image in a parametric space, thus facilitating the retrieval
of specific parametrized features (e.g. lines, curves, etc.). Its close relative, the
Radon transform, has been proposed to solve the problem of reconstructing
an image from its projections. Sampling and subsampling can also be seen as
transformations. Sampling consists of associating a bounded set of real val-
ued samples with a continuous signal, while subsampling associates a reduced
number of representative samples with a real high resolution discrete signal.
The idea underlying working with a sampled (or subsampled) signal is to use
an inherent redundancy of the signal, so as to make it possible to work with
the original signal by only manipulating a reduced set of samples. It is used
to solve continuous problems by finite computation or to reduce the computa-
tion complexity of a signal processing algorithm. Other transforms exist like
those of Hilbert, Gabor, Zack, etc. Most of those transformations consist of
convolving the real signal with an appropriate set of kernels, which is the basis
of the transform.

The fuzzy transform (or F-transform) recently proposed by Irina Perfilieva [23]
belongs to this transform family. It consists of associating, with an original
continuous or discrete real signal, a reduced set of real samples by projecting
this signal on a fuzzy partition à la Ruspini [29]. This has drawn a great deal
of attention from the scientific community since it is one of the rare uses of
the fuzzy framework to directly handle real functions without any linguistic
interpretation. It has been used for data analysis [26], compression (see ref-
erences in [23]), segmentation [17], coding [16], solving differential equations,
forecasting [18], scheduling [12], trading [34], etc. A special issue of this journal
was recently dedicated to advances in fuzzy transform theory and applications
[27].

The fuzzy transform involves two operations: a direct fuzzy transform ( F-
transform) which is the decomposition itself and an inverse fuzzy transform
(IF-transform) that goes from the sampled space to the original space. The
word "inverse" may seem somewhat inappropriate since applying the IF-
transform to the F-transform of a signal leads to an estimate that is not
equal to the original signal. However, as shown in [23], an appropriate choice
of fuzzy partition can make the reconstructed signal an approximation of the
original signal with any arbitrary precision.

With most transforms, the question arises as to the existence of an inverse
transform, i.e. is it possible to reconstruct the original signal from its trans-
formation? Except for the wavelet transform, the answers to this question
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given by the authors of most of the aforementioned transforms are highly
debatable when applied to numerical signal processing. More precisely, if a
signal is represented by a reduced number of values, the reconstruction of the
original signal is risky. For example, the discrete Fourier transform has an in-
verse, i.e. it is possible to exactly reconstruct the original sampled signal from
its transformed values. However, manipulations in the transformed space are
often meaningless in the original space since the Fourier transform of a dis-
crete signal is continuous while the FFT associates a discrete representation
with a discrete signal. The Radon transform also has an inverse form in the
continuous domain. However, this inverse form does not exist in the discrete
space and a certain number of dedicated tools, including regularizations and
optimizations, are required to invert a discrete Randon transform.

The inverse transform issue also naturally exists within the F-transform frame-
work. The first proposition of Perfileva was to use the same shape function
as that used to generate the partition to achieve both F- and IF-transforms.
She proved that the obtained reconstruction locally minimizes a L2 distance
between the original and the reconstructed signal. However, as shown first by
Crouzet [2] and then by Patané [21], this local criterion is not very relevant
from a signal processing standpoint. Thus, in this setting, another basis should
be preferred that leads to minimizing a global L2 distance. As shown in [3],
this leads to the least square interpolation procedure conventionally used in
signal processing. However, this approach only applies to discrete functions.

Other techniques have been proposed to enhance the ability of the fuzzy trans-
form framework to work with a simple representation of a signal. For example,
Bede and Rudas [1] question the shape function of the weighting fuzzy num-
bers used to form fuzzy partitions. It appears, from a qualitative comparison,
that the optimality of a particular shape function highly depends on the func-
tion to be represented. The partition can thus be adapted to the signal, as
shown by Sefanini in [32]. The position of the partition nodes can also be
adapted to have a higher concentration of atoms where the signal has more
variations. However, adapting the partition to signals can require the use of
two different partitions for two different signals, thus limiting the ability of
using fuzzy transforms for combining or comparing two signals. For this kind
of application, it is more interesting to use a fixed regular partition with a
known approximation ability.

From a signal processing standpoint, the fuzzy transform framework looks like
a sampling/interpolation process, classically used to solve continuous problems
by discrete computations or to perform computations that are equivalent to
continuous processes [15] [36]. Most results reported in the fuzzy transform
literature are classical signal processing results. Thus, how does this fuzzy
framework apply in the signal processing context? As base functions? As a
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complementary tool?

A very interesting answer to this question was proposed by Perfileva in [23]
whereby new fuzzy transforms based on residuated lattice operations were
constructed. These new transforms lead to interval-valued direct and inverse
fuzzy transforms. In this paper, we try to go further in this interval-valued
direction by reinterpreting the fuzzy transform framework in the light of non-
additive measures theory [6].

The paper is organized as follows. Section 2 presents useful definitions and
notations. Section 3 introduces the ordinary F-transform as proposed in [23]
as well as some new properties. Section 4 is dedicated to our proposition
of an interval-valued non-additive F-transform. We provide some illustative
experimentations in Section 5 and we conclude in Section 6 with remarks on
the limitations of the current approach and propose some avenues for future
study.

2 Preliminary considerations, definitions and notations

2.1 Notations

This study is restricted to a one-dimensional case of continuous and discrete
real functions. Extending this study to more than one dimension is straight-
forward (see Section 5.1).

Let R be the real line and IR the set of all intervals of R. The continuous
functions we consider are defined on an interval Ω = [a, b] ⊂ R. We define
P(Ω) as the set of all Lebesgue measurable subsets of Ω. Let p be a positive
integer, then Θp = {0, . . . , p} ⊂ N denotes the set of (p + 1) positive integers
and ∆p = b−a

p
is the sampling step. The kth sampling location (ωk)k∈Θp

is

defined as: ∀k ∈ Θp, ωk = a + k∆p. We also define P(Θp) as the set of all
subsets of Θp.

2.2 Confidence measures and integrals

A capacity, also called confidence measure, can be defined on both continuous
and discrete reference sets.

Definition 1 A continuous capacity ν is a set function ν : P(Ω) → [0, 1] such
that ν(∅) = 0, ν(Ω) = 1 and ∀A,B ∈ P(Ω), A ⊆ B ⇒ ν(A) ≤ ν(B).
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Given a capacity ν, its conjugate νc, is defined as: νc(A) = 1− ν(Ac), for any
subset A ∈ P(Ω), with Ac being the complementary set of A in Ω. Note that, in
this paper, to avoid confusion with other notations the classical ν̄ notation will
not be used. A capacity ν such that for all A,B in P(Ω), ν(A∪B)+ν(A∩B) ≤
ν(A)+ν(B) is said to be concave (or submodular or 2-alternating). This paper
only considers such capacities. The core of a concave capacity ν, denoted
M(ν), is the set of probability measures P on P(Ω) such that ν(A) ≥ P (A)
for all subsets A ∈ P(Ω).

Remark 2 If ν is a concave capacity, its conjugate capacity νc is convex, i.e.
∀A,B ∈ P(Ω), νc(A∪B)+νc(A∩B) ≥ νc(A)+νc(B). Due to the conjugation
relationship between ν and νc, the core of ν can be rewritten:
M(ν) = {P probability measure on P(Ω), ∀A ∈ P(Ω), νc(A) ≤ P (A) ≤ ν(A)}.

Remark 3 A concave capacity that equals its conjugate is a probability mea-
sure, i.e. an additive capacity.

Definition 4 Let f : Ω → R+ be a L1 bounded positive function and let ν
be a capacity on P(Ω), the Choquet integral of f with respect to ν is the real
value Cν(f) defined by:

Cν(f) =
∫ ∞

0
ν{x ∈ Ω/f(x) ≥ α}dα. (1)

This definition can be easily extended to non-positive functions when consid-
ering the so-called asymmetric Choquet integral [6].

Definition 5 Let f : Ω → R be a L1 bounded function and let ν be a capacity
on P(Ω), let f+ (resp. f−) be the function defined by ∀x ∈ Ω, f+(x) =
max(f(x), 0) (resp. f−(x) = max(−f(x), 0)), the asymmetric Choquet integral
of f with respect to ν is the real value Čν(f) defined by:

Čν(f) = Cν(f
+)− Cν(f

−). (2)

All of those definitions can be easily particularized to the discrete case.

Definition 6 A discrete capacity ν is a set function ν: P(Θp) → [0, 1] such
that ν(∅) = 0, ν(Θp) = 1, and ν(A) ≤ ν(B) for all A ⊆ B ⊆ Θp.

The definitions of conjugate capacity, concavity and core of a concave capacity
exactly match the continuous case.

Definition 7 Let F : Θp → R+ be a L1 bounded positive function and let ν
be a capacity on P(Θp), the Choquet integral of F with respect to ν is the real
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value Cν(F ) defined by:

Cν(F ) =
∑

n∈Θp

Fσ(n)(ν(Aσ(n))− ν(Aσ(n+1))), (3)

where σ is a permutation of Θp such that Fσ(0) ≤ . . . ≤ Fσ(p), and Aσ(n) is the
subset of Θp such that ∀i ∈ Aσ(n), Fi ≥ Fσ(n): Aσ(n) = {σ(n), . . . , σ(p)}. By
convention Aσ(p+1) = ∅.

If F is not positive, then the asymmetric Choquet integral can also be defined
in the discrete case.

Definition 8 Let F : Θp → R be a L1 bounded function and let ν be a
capacity on P(Θp), let F+ (resp. F−) be the function defined by ∀k ∈ Θp,
F+
k = max(Fk, 0) (resp. F−

k = max(−Fk, 0)), the asymmetric Choquet integral
of F with respect to ν is the real value Čν(F ) defined by:

Čν(F ) = Cν(F
+)− Cν(F

−). (4)

2.3 Summative and maxitive kernels

Kernels are used in signal processing to define weighted neighborhoods of real
locations.

A continuous summative kernel [13] is a continuous function κ : Ω −→ R+

such that
∫

Ω κ(x)dx = 1. This function is formally equivalent to the density
of a Lebesgue-measurable probability distribution Pκ defined by: ∀A ∈ P(Ω),
Pκ(A) =

∫

A κ(x)dx. K(Ω) is the set of all summative kernels defined on Ω.

A continuous maxitive kernel [13] is a continuous function π : Ω −→ [0, 1]
such that supx∈Ω π(x) = 1. This function is equivalent to the density of a pos-
sibility distribution, thus defining a possibility measure (Ππ) and a necessity
measure (Nπ) on Ω: Ππ(A) = supx∈A π(x) and Nπ(A) = 1 − supx 6∈A π(x). Ππ

is a concave capacity and Nπ its conjugate (convex) capacity.

Defining a maxitive kernel is equivalent to defining a subset of K(Ω). Let π be
a maxitive kernel, then M(π) = {κ ∈ K(Ω)/∀A ∈ P(Ω), Nπ(A) ≤ Pκ(A) ≤
Ππ(A)} is called the core of π. This definition coincides with that given in
Section 2.2.

Those concepts can easily be extended to a discrete space [13].

A discrete summative kernel [13] is a discrete function η : Θp −→ [0, 1]
such that

∑

k∈Θp
ηk = 1. This function defines a probability measure Pη by:
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∀A ∈ P(Θp), Pη(A) =
∑

k∈A ηk. The set of all discrete summative kernels
defined on Θp is denoted K(Θp).

A discrete maxitive kernel [13] is a discrete function π : Θp −→ [0, 1] such
that supk∈Θp

πk = 1. This function defines two dual confidence measures on
Θp called a possibility measure (Ππ) and a necessity measure (Nπ): Ππ(A) =
supk∈A πk and Nπ(A) = 1− supk 6∈A πk.

Similar to the continuous case, a discrete maxitive kernel defines a convex
subset of discrete summative kernels, denoted M(π) [28].

2.4 Precise and imprecise expectations

Let f : Ω → R be a L1 bounded function and let P be an additive confidence
measure (i.e. a probability). The precise expectation of f with respect to P is
the real value EP (f) defined by:

EP (f) =
∫ ∞

0
fdP, (5)

with P being additive. As P is fully characterized by its density function κ
through the equality: ∀A ∈ P(A), P (A) = Pκ(A) =

∫

A κ(x)dx, Expression (5)
can be rewritten as:

EP (f) = EPκ
(f) =

∫

Ω
f(x)κ(x)dx. (6)

The expectation concept can easily be extended to concave capacities (see
[28]). Let ν be a concave capacity and let f : Ω → R be a L1 bounded
function. The imprecise expectation of f with respect to ν is the real interval
Eν(f) defined by:

Eν(f) =
[

Eν(f),Eν(f)
]

=
[

Čνc(f), Čν(f)
]

.

Two fundamental properties come from the work of Denneberg [6].

Proposition 9 Let f : Ω → R be a L1 bounded function and let ν be a
capacity defined on Ω, ∀P ∈ M(ν), EP (f) ∈ Eν(f) and ∀y ∈ Eν(f), ∃P ∈
M(ν) such that y = EP (f).

Proposition 10 Let f, g : Ω → R be two L1 bounded functions and let ν be
a concave capacity defined on Ω, Eν(f + g) ≤ Eν(f) +Eν(g) and Eν(f + g) ≥
Eν(f) + Eν(g).
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Precise and imprecise expectations coincide when considering a probability
measure, i.e. if P is a probability measure on P(Ω), then EP (f) = EP (f).

In the same way, precise and imprecise expectations can be defined in the
discrete space. Let F : Θp → R be a bounded function. Let Pη be a discrete
probability measure on P(Θp) generated by the discrete summative kernel η.
The precise expectation of F with respect to Pη is the precise value EPη

(F )
defined by:

EPη
(F ) =

∑

k∈Θp

Fkηk. (7)

Let ν be a concave capacity on P(Θp). The imprecise expectation of F with
respect to ν is the real interval Eν(F ) defined by:

Eν(F ) =
[

Eν(F ),Eν(F )
]

=
[

Čνc(F ), Čν(F )
]

.

Properties 9 and 10 are also true in the discrete space [30].

Finally, expectation operators can be easily extended to interval valued func-
tions. Let f : Ω → IR be an interval valued function, i.e. ∀x ∈ Ω, f(x) =

[f(x), f(x)], let P be a probability measure,

EP (f) = [EP (f),EP (f)] = {EP (g)/g ∈ f} [7]. Let ν be a concave capacity,

this extension also applies with the imprecise expectation operator Eν :
Eν(f) = [Eν(f),E(f)] = {EP (g)/g ∈ f and P ∈ M(ν)}. These extensions
also apply with discrete functions (proofs see [33]).

2.5 Kernel: an instrumental tool in discrete signal processing

In signal processing, kernels are instrumental to obtain discrete operations on
discrete signals (or functions) which are equivalent to continuous operations
on continuous signals (or functions) [36]. Computing the derivative of a digital
image is a good example of such a process that requires estimating the gradient
value (which is a continuous concept) at each pixel location of the input image.
The sampling process is modeled by associating a summative kernel κk ∈
K(Ω) with each sampling location ωk ∈ Ω (k ∈ Θp). The Fk value associated
with the kth sampling location is computed by Fk =

∫

Ω f(x)κk(x)dx. In most
applications, each summative kernel κk can be deduced from a generic kernel
κ ∈ K(Ω) by ∀x ∈ Ω, κk(x) = κ(ωk − x) (see Figure (1)). Each sampled value
Fk can thus be seen as an average value of the original signal in a weighted
neighborhood of each sampling location ωk obtained by:

∀k ∈ Θp, Fk =
∫

Ω
f(x)κ(ωk − x)dx. (8)

8



Hereafter, the procedure whereby the value Fk is associated with each sampling
location ωk via Expression (8) will be referred to as sampling f via κ at the
sampling location ωk.

From a signal processing standpoint, the sampling is said to be perfect if
Fk = f(ωk). This situation is true for any signal f if and only if the sampling
kernel is δ, i.e. the fictive function associated with the Dirac distribution.
Generally, Fk can be seen as the perfect sampling of g, a function obtained
by smoothing f with the kernel κ: Fk = g(ωk), with g = f ⊗ κ, ⊗ being the
convolution operation defined by: ∀x ∈ Ω, (f ⊗ κ)(x) =

∫

R
f(u)κ(x− u)du.

......

sampling kernel κ(x-ωk)

Ω

co
nt

in

uo
us function

ωk = a+k∆

Fig. 1. Sampling.

Sampling is done to preserve the main information contained in the continuous
signal in the samples, i.e. the loss of information due to sampling is negligi-
ble. It is thus possible to obtain a reliable reconstruction of f based on these
samples. This reconstruction is conditioned by the Nyquist–Shannon sampling
theorem: no signal whose frequency is higher than 1

2∆p
can be reconstructed

from a sampled signal whose sampling period is ∆p. In that case, theoretically,
the value of signal f , at each x ∈ Ω, can be reconstructed by convoluting Fk

with a kernel whose impulse response is a sine cardinal function centered on
x (see Figure (2)). However, this theoretical reconstruction is usually not pos-
sible since the signal has a bounded support, while the sine cardinal kernel
is adapted to reconstruction of a signal whose support is not bounded. As
suggested by Unser [36], it is often better and more significant to reconstruct
function f by using a band limited reconstruction kernel ηx that, contrary to
the sampling kernel, is not translation invariant, i.e. the shape of the recon-
struction kernel depends on the position of location x where the signal has
to be reconstructed. A fitting condition is used to define the reconstruction
kernel for the reconstructed signal f̂ to be as close as possible to the original
signal f . Some computational complexity arguments for or against a particu-
lar kernel function can also be put forward. This reconstruction step can be
written:

∀x ∈ Ω, f̂(x) =
∑

k∈Θp

Fkη
x
k , (9)

where ηx is the reconstruction kernel defined at position x.

This reconstruction step is usually called interpolation. Interpolation is a spe-
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cial reconstruction case where the reconstructed continuous function has to
coincide with the sampled function at the sampling locations, i.e. ∀k ∈ Θp,

f̂(ωk) = Fk. Therefore, an interpolation kernel has to comply with ∀k ∈ Θp,
ηωk

k = 1. This entails ∀l 6= k ∈ Θp, η
ωk

l = 0. However, interpolating the Fk

leads to reconstructing g = f ⊗ κ and not f since Fk 6= f(ωk). Thus, recon-
structing f usually requires a high-pass filtering step, that can be combined
with the interpolation to generate the reconstruction kernel. In that case, the
obtained reconstruction kernel is not summative since it is non-positive: a
positive kernel can only induce low-pass filtering. It however sums to one.

reconstruction 

weight ηx

Ω

re
co

ns
tru

cted function

sampled 

values

c ar
di

na
l s

in
e 

translated in x

x

ωk f(x)^

k

Fig. 2. Reconstruction

In a pioneer work, Unser [36] proposed B-spline kernels as a tool to represent
both sampling and reconstructing kernels, thus making a convenient bridge
between continuous and discrete domains. The main assets are the computa-
tion simplicity, the reconstruction optimality and the possibility of coupling
the sampling and reconstructing kernels in a perfect fit scheme. The perfect
fit scheme consists of defining a couple of summative kernels (κ, η) which
enables us to define discrete operations based on continuous operations (e.g.
derivation). This couple is such that, when reconstructing a continuous signal
f̂ from a sampled signal F by using η and then sampling f̂ via κ, the ob-
tained sampled signal F̂ is identical to the original sampled signal F . Defining
a perfect fit couple is easy within the B-spline framework. Within this ap-
proach, the real sampling kernel, i.e. the kernel associated with the imager,
is unknown. Note that F-transform and perfect fit approaches have different
purposes. Where the F-transform tries to simplify the processing of a signal
by an appropriate sampling-reconstruction scheme, the perfect fit approach
aims at processing digital signals with operations that have been defined in
the continuous domain.

Regardless of the purpose, a sampling/reconstruction couple is a tool that
should be able to approximate any continuous function f with arbitrary pre-
cision. For any arbitrary value ǫ ∈ R, there is always a triplet (∆p, κ, η) that

makes the distance between f and f̂ lower than ǫ. Within this framework,
summative kernels are mostly used since they have easy interpretations in
terms of weighted neighborhoods.
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However, summative kernels are not the only kernels that can be used to
achieve this continuous to discrete interplay. In fact, the reconstruction kernel
is not positive in the perfect fit approach. It however sums to one. The fact
that the kernels sum to one is usually justified by some energy conservation
arguments.

When the kernels are summative, both sampling and reconstruction can be
rewritten by using precise expectation operators. Indeed, since κk is the kernel
κ translated in ωk, the sample Fk = EP

κk
(f) =

∫

Ω f(x)κ(ωk − x)dx. Similarly,

when considering the summative kernel ηx defined in Section 2.5, f̂ , the esti-
mation of f based on the samples can be written: ∀x ∈ Ω, f̂(x) = EPηx

(F ).

3 Fuzzy transform

The fuzzy transform (or F-transform) was proposed and extensively studied
by Irina Perfilieva [23]. This transform can be viewed as the decomposition
of a continuous (or discrete) function on a fuzzy partition of its domain. We
present some nice properties of this approach.

3.1 Direct F-transform

Let f : Ω → R be a function. Let {Ck}k∈Θp
be the (p + 1) atoms of a fuzzy

partition à la Ruspini of Ω [23], [29], i.e. a set of unimodal symmetrical fuzzy
intervals complying with ∀x ∈ Ω :

•
∑

k∈Θp
Ck(x) = 1,

• ∃!k ∈ Θp, Ck(x) > 0, Ck+1(x) ≥ 0,
• ∀k ∈ Θp , Ck is continuous.

The (integral) fuzzy transform of f with respect to the fuzzy partition {Ck}k∈Θp

is the (p+1)-tuple {Fk}k∈Θp
obtained by decomposing (averaging) f on each

atom of the partition by:

∀k ∈ Θp, Fk =

∫

Ω f(x)Ck(x)dx
∫

Ω Ck(x)dx
. (10)

In many applications, the partition upon which the F-transform is built is
uniform [23]. A straightforward way to build such a uniform partition consists
of defining a generic unimodal symmetrical fuzzy subset E of Ω having a
bounded support [−∆p,∆p], with ∆p = b−a

p
. Each atom Ck of the partition

is then deduced from the membership function of E by ∀x ∈ Ω, Ck(x) =
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E(x−ωk), with ωk = a+k∆p. For the {Ck}k∈Θp
to be a regular fuzzy partition,

the fuzzy subset E should comply with ∀x ∈ [0, ∆p

2
], E(x) = 1−E(∆p − x).

The granularity of the partition [13] is a way to characterize how the trans-
formation approximates the original function. It is a measure of the non-
specificity of the fuzzy subset E and therefore the roughness of the partition.
The granularity γ(E) of a fuzzy subset E is defined by: γ(E) =

∫

R
E(x)dx.

Proposition 11 If E is the generic unimodal symmetrical fuzzy subset defin-
ing a partition à la Ruspini with a sampling step ∆p then γ(E) = ∆p.

Proof: Due to the symmetry of the membership function of E,
∫

R
E(x)dx =

∫∆p

−∆p
E(x)dx = 2

∫∆p

0 E(x)dx. Though
∫∆p

0 E(x)dx =
∫

∆p

2

0 E(x)dx+
∫∆p

∆p

2

E(x)dx =

∫

∆p

2

0 1−E(∆p − x)dx+
∫∆p

∆p

2

E(x)dx =
∫∆p

∆p

2

1−E(x)dx+
∫∆p

∆p

2

E(x)dx = ∆p

2
�

Thus, when considering a uniform partition [23], Expression (10) is simplified
in:

∀k ∈ Θp, Fk =
1

∆p

∫

Ω
f(x)Ck(x)dx. (11)

Note that when considering the support of function f as being unbounded
on Ω, F0 and Fp are rather obtained by: F0 = 2

∆p

∫

Ω f(x)C0(x)dx and Fp =
2
∆p

∫

Ω f(x)Cp(x)dx.

With the partition being fixed, the F-transform of a function can be consid-
ered as a rough representation of this function. As noted in [25], the compo-
nents of an F-transform are average values of the original function. Moreover,
any sequence {Fk}k∈Θp

could be considered as being the F-transform of an
unknown function f [23]. In fact, there are very close similarities between
Equation (11) and Equation (8). From a signal processing standpoint, an F-
transform is simply p samples of a signal (function) based on the sampling

kernel κE defined by ∀x ∈ [−∆p,∆p], κE(x) = E(−x)/
∫∆p

−∆p
E(x)dx = E(x)

∆p
,

since γ(E) =
∫∆p

−∆p
E(x)dx = ∆p. By construction κE is a summative continu-

ous kernel since ∀x ∈ R, κE(x) ≥ 0 and
∫

R
κE(x)dx = 1 [24]. Thus Expression

(11) can be rewritten via an expectation operation:

∀k ∈ Θp, Fk = EP k
E
(f), (12)

where P k
E is the probability measure induced by the summative kernel κωk

E

defined by: ∀x ∈ Ω, κωk

E (x) = κE(x− ωk).

12



3.2 Inverse F-transform

The inverse F-transform (IF-transform) aims to reconstruct the original func-
tion f from (p+1) components of its F-transform. The exact reconstruction is
possible with few very smooth functions since the F-transform, like any sub-
sampling method, loses some information. Thus, the IF-transform should be
perceived as a method that provides an estimate f̂ of the original function f
by using the (p+ 1) components of F by:

∀x ∈ Ω, f̂(x) =
∑

k∈Θp

FkCk(x). (13)

This reconstruction can be viewed as an interpolation by simply replacing
Ck(x) in Expression (13) by ηxk in Expression (9). By construction, ηx is a
discrete summative kernel. Moreover, when considering the fuzzy partition
defined in Section 3.1, Expression (13) can be easily rewritten as a linear
interpolation, for each x ∈ Ω: let k(x) ∈ N be the integer value such that
x−∆p < k(x)∆p + a ≤ x, thus:

∀x ∈ Ω, f̂(x) = αxFk(x) + (1− αx)Fk(x)+1, (14)

with αx = Ck(x)(x). This interpolation involves the summative kernel ηx com-
pletely defined by the value αx, by ηxk(x) = αx, η

x
k(x)+1 = 1−αx, and ηxk = 0 for

any k ∈ N/{k(x), k(x)+1}. It is linear in the discrete space Θp, but its linear-
ity in the continuous space Ω depends on the linearity of the base membership
function E.

Expression (14) can be rewritten as an expectation operation involving the
above defined summative kernel ηx:

∀x ∈ Ω, f̂(x) = EPηx
(F ). (15)

As proved in [23] (Theorem 2), the F-transform and IF-transform combina-
tion is able to approximate the original continuous function f with arbitrary
precision: ∀ǫ > 0, then we have Θp ⊂ N and a fuzzy partition {Ck}k∈Θp

of Ω

that leads to a decomposition {Fk}k∈Θp
such that ||f − f̂ || ≤ ǫ, with f̂ being

the IF-transform of {Fk}k∈Θp
given by Expression (13).

Proposition 12 Let E be a fuzzy subset generating a fuzzy partition {Ck}k∈Θp

(see Section 3.1). Let F be the decomposition of f : Ω → R obtained through
Expression (10), then reconstructing f̂ through Expression (13) can be ex-
pressed as convoluting f with the continuous summative kernel ϕx defined on
each x ∈ Ω by: ∀u ∈ R, ϕx(u) = 1

∆p

∑

k∈Θp
Ck(x)Ck(u).

13



Proof: The ϕx formula comes directly from the composition of Expressions
(10) and (13): ∀x ∈ Ω, f̂(x) =

∑

k∈Θp
FkCk(x), yet Fk = 1

∆p

∫

Ω f(u)Ck(u)du,

thus f̂(x) =
∫

Ω f(u)
(

1
∆p

∑

k∈Θp
Ck(x)Ck(u)

)

du =
∫

Ω f(u)ϕx(u)du. The kernel

ϕx is positive by construction. Now
∫

Ω ϕx(u)du =
∫

Ω

(

1
∆p

∑

k∈Θp
Ck(x)Ck(u)

)

du

= 1
∆p

∑

k∈Θp
Ck(x) (

∫

ΩCk(u)du). Though,
∫

Ω Ck(u)du =
∫

Ω E(u)du = ∆p. Thus
∫

Ω ϕx(u)du =
∑

k∈Θp
Ck(x)

1
∆p

∆p = 1. ϕx is a summative kernel. �

The approximation of f by f̂ completely depends on the properties of the
summative kernel ϕx whose specificity depends directly on ∆p, the granularity
of the partition. Note that ϕx is not translation invariant. There is, however,
a kind of stepwise translation invariance in the sense that ∀u ∈ Ω, ϕx(u) =
ϕx+∆p(u+∆p).

As shown by Perfilieva, the IF-transform provided by Expression (13) is the
best local least square approximation (see [23] pages 1002-1004). Other recon-
structions have been proposed by Crouzet [2] and then Patané [21], leading to
a global least square approximation. Although this reconstruction also leads
to an interpolation-like scheme, the interpolation kernel defined in each x ∈ Ω
is not summative because it is not positive.

3.3 Discrete F-transform

Since this article is mainly focused on discrete signals, we should mention
the discrete F-transform. This discrete transform applies when the function
to be transformed is only known at some discrete locations x1 . . . xn. Most
digital signals (including images) are regularly sampled. However, particularly
in agricultural applications [20], the case when the sampling is not uniform
should be considered. The proposition of Perfilieva in [23] is to simply replace
the integral in Expression (10) by a discrete sum. This definition is a rough
approximation of a classical discrete-to-continuous approach.

Let f : Ω → R be a function. Let {Ck}k∈Θp
be the considered fuzzy partition of

Ω. Let x1 . . . xn be n locations where function f is known. By using the discrete-
to-continuous approach presented in Section 2.5, it is possible to reconstruct
a continuous function f̃ with an appropriate interpolation kernel ρx defined
at each location x where the function has to be reconstructed:

∀x ∈ Ω, f̃(x) =
n
∑

i=1

ρxi f(xi). (16)

Moreover, each kernel ρx can be defined by a generic kernel ρ by ∀u ∈ Ω,
ρx(u) = ρ(u− x). Thus, Expression (10) can be rewritten as:

14



∀k ∈ Θp, Fk = βk.
∫

Ω
f̃(x)Ck(x)dx = βk.

n
∑

i=1

ηki f(xi), (17)

with ηki =
∫

Ω ρ(xi − x)Ck(x)dx, and βk being a normalization factor ensuring
the energy conservation, i.e. if ∀x ∈ Ω, f(x) = 1 then ∀k ∈ Θp, Fk = 1.

In the discrete F-transform proposed by [23], the Dirac impulse is used as an
interpolation kernel. But this solution is not unique, and any discrete kernel
of the form ∀k, i ∈ Θp, η

k
i =

∫

Ω ρ(xi −x)Ck(x) can be used. This approach can
be convenient when the translation invariant kernel ρ aims at representing the
uncertainty (or imprecision) due to the sensor.

A dual approach can be used that consists of defining a weighted neighborhood
around each sample xi. It aims to account for the sampling. According to the
F-transform framework, these weighted neighborhoods can be defined by using
a non-regular fuzzy partition, i.e. a set of n continuous fuzzy subsets Xi such
that ∀x ∈ Ω,

∑n
i=1Xi(x) = 1. In that case, Expression (17) becomes:

∀k ∈ Θp, Fk =
n
∑

i=1

ηki f(xi), (18)

with ηki = 1
∆p

∫

Ω Xi(x)Ck(x)dx.

ηk is a summative kernel since it is positive by construction and
∑n

i=1 η
k
i =

1
∆p

∑n
i=1

∫

Ω Xi(x)Ck(x)dx = 1
∆p

∫

Ω

(

∑n
i=1Xi(x)

)

Ck(x)dx = 1
∆p

∫

Ω Ck(x)dx =
1.

3.4 Discussion

As noted by numerous authors (see e.g. [1,18,25,26,32]), the F-transform can
be considered as a transform since it allows us to work with a simplified rep-
resentation of a function through a reduced number of samples. Moreover,
many operations achieved in the transformed space have a relevant mean-
ing in the original space due to the linearity of the F-transform. Therefore,
the F-transform framework enables some complex combinations or analysis of
functions with low computational cost due to its linearity: let F and G be
the F-transforms of two functions f and g, then ∀(α, β) ∈ R2, αF + βG is
the F-transform of (αf + βg). In addition, a distance between F and G can
be considered as a distance between smoothed versions of f and g. However,
with this property, the functions have to be decomposed on the same parti-
tion, which prohibits the use of any method for adapting the partitioning to
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only one function. Moreover, if the partition is adapted to f and g, nothing
can be guaranteed about its adaption to (αf + βg).

However, the word transform can be somewhat misleading, and the compari-
son with other transforms like Laplace, Fourier, Radon or wavelet may seem
irrelevant. In fact, within the Laplace, Fourier, Radon or wavelet transforms,
the inverse transform is really the inverse form of the direct transform in the
sense that, if F is the direct transform of f , then f is the inverse transform
of F . Moreover, the aforementioned transforms are not downsampled, i.e. the
number of elements of the transformed signal is usually equal (or close) to
the number of elements of the original signal. Thus the F-transform is not a
transform like the Laplace, Fourier, Radon or wavelet transforms: the direct
transform is rather a sampling-like process, and therefore some information
about the original function is lost. Working with the F-transform is equivalent
to working with a smooth downsampled version of the original function. At
best, it is possible to ensure that the distance between the original function f
and its reconstruction f̂ is bounded by controlling the number, shape and po-
sition of the atoms of the partition. But a partition ensuring a certain bounded
error for a function cannot ensure the same bound for another function.

From a signal processing standpoint, the F-transform/IF-transform couple is
equivalent to defining a couple of sampling and interpolating kernels based on
the same fuzzy subset E. This seems to be the only obvious difference between
the F-transform framework and classical kernel-based continuous-to-discrete
interplay framework. The F-transform approach does not fulfill the best fit
conditions of Unser (see Section 2.5), except for the linear (and crisp) member-
ship function, in the sense that there is no orthogonality between the obtained
sampling and the interpolating kernels at the sampling locations. All the nice
properties of the Unser approach are thus generally lost. Meanwhile, because
of the definition of the fuzzy partition, by construction there is complete iden-
tity between Fk, the kth component of the F-transform, and f̂(ωk), the value
of the reconstructed function at the kth sampling location. Moreover, defining
the reconstruction step as an interpolation process leads to a systematic bias
at the sampling locations since, by construction, f̂(ωk) = Fk 6= f(ωk). In the
sampling-interpolation framework, the sampling kernel has to be as specific as
possible, while within the F-transform framework the specificity of the kernel
is fixed by the granularity of the generic subset E. In fact, the ideal Dirac-
sampling does not belong to the F-transform framework. Moreover, Property
(12) shows that the reconstructed function is simply a smoothed version of
the original function. The distance between f and f̂ is thus completely de-
fined by the shape of the membership function of subset E which ensures the
interpolation between two sampling locations. Adapting the partition to the
function to be projected reduces the possibility of combining or comparing
two functions in the transformed space.
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Thus a question arises: What is the advantage of defining both sampling and in-
terpolation kernels with a single fuzzy subset? More precisely, what does fuzzy
subset theory offer in this framework other than constraining the specificity
of the kernel involved in both sampling and interpolation processes?

In this article, we propose another view of the F-transform framework that
justifies the reference to the fuzzy subset theory. We construct a new interval
valued F-transform based on a possibilistic interpretation of the involved fuzzy
subsets.

4 Non-additive F-transform

The non-additive F-transform (NF-transform) framework we propose is based
on the extension of the convolution operation proposed in [11]. Within this
framework, the fuzzy subset E that generates the fuzzy partition {Ck}k∈Θp

is
considered as a maxitive kernel [13]. Constructing the NF-transform requires
some preliminary properties.

4.1 Preliminary properties

Let us consider some very constructive properties of a partition à la Ruspini.

Proposition 13 Let {Ck}k∈Θp
be a regular fuzzy partition of Ω, as defined

in Section 3.1. Let κ ∈ K(Ω) and κx be the kernel κ translated on x ∈ Ω:
∀u ∈ Ω, κx(u) = κ(x−u). The function ηx defined on each x ∈ Ω by ∀k ∈ Θp,
ηxk =

∫

Ω κx(u)Ck(u)du is a discrete summative kernel.

Proof: Since ∀u ∈ Ω, Ck(u) ≥ 0 and κ(u) ≥ 0 is positive, then ηx is positive.
Thus it is enough to prove that

∑

k∈Θp
ηxk = 1.

∑

k∈Θp
ηxk =

∑

k∈Θp

∫

Ω κx(u)Ck(u)du =
∫

Ω κx(u)(
∑

k∈Θp
Ck(u))du =

∫

Ω κx(u)du = 1. �

Proposition 14 Let {Ck}k∈Θp
be a regular fuzzy partition of Ω, as defined in

Section 3.1. Let κ and κ′ be two summative kernels of Ω defining two recon-
struction kernels ηx and η′x as defined in Proposition 13. ∀x ∈ Ω, ηx = η′x is
equivalent to κ = κ′.

Proof: It is sufficient to note that ∀x ∈ Ω, ηx = η′x is equivalent to writing
∀k ∈ Θp,

∫

Ω(κ(u−x)−κ′(u−x))Ck(u)du = 0, i.e. ∀x ∈ Ω,
∫

Ω(κ(u)−κ′(u))E(u+
x)du = (h ⊗ g)(x) = 0, with ∀u ∈ Ω, h(u) = κ(u) − κ′(u) and g(u) = E(u).
By construction, functions h and g have a bounded support and g is positive.
Let F be the Fourier transform. The preceding condition can be rewritten ∀s,
F{h}(s)F{g}(s) = 0 (with s being the frequency). Since g is bounded and
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positive, F{g} is null for only sparse values of s. Thus, F{h} can be non-null
only at these sparse frequency values. Therefore, h cannot have a bounded
support, which is a contradiction. Then h is null and thus κ = κ′.
The reverse implication is straightforward. �

The summative discrete interpolation kernel used in the ordinary IF-transform
is a particular case of the proposed construction. In that case, the involved
summative kernel is the Dirac impulse δ. Thus ∀x ∈ Ω, ∀k ∈ Θp, ηxk =
∫

Ω δx(u)Ck(u)du = Ck(x).

Proposition 15 A discrete summative reconstruction kernel obtained by con-
voluting a partition à la Ruspini with a continuous summative kernel is ∆p

translation invariant, i.e. ∀x ∈ Ω, ∀k ∈ Θp η
x+∆p

k+1 = ηxk .

Proof: This property is straightforward since η
x+∆p

k+1 =
∫

Ω κx+∆p(u)Ck+1(u)du =
∫

Ω κ(u − x − ∆p)E(u − ωk+1)du =
∫

Ω κ(u − x − ∆p)E(u − ωk − ∆p)du =
∫

Ω κ(u− x)E(u− ωk)du = ηxk . �

Such kernels can be expressed with the expectation operator defined in Sec-
tion 2.4. Indeed, ηxk =

∫

Ω κx(u)Ck(u)du = EPκx
(Ck), which coincides with

the extension proposed in [37] for defining a probability measure of a fuzzy
subset: ηxk = Pκx(Ck). This summative kernel induces a probability measure
Pηx defined by ∀A ⊆ Θp, Pηx(A) =

∑

k∈A ηxk =
∑

k∈A

∫

Ω κx(u)Ck(u)du =
∫

Ω κx(u)
∑

k∈ACk(u)du = Pκx(
⋃

k∈ACk), with the union being defined using
the Łukasievicz T-conorm. Therefore, the reconstruction of the continuous
function within the precise reconstruction approach can be seen as an addi-
tive aggregation of values associated with each atom of the partition, with the
weights being defined by the probability of each atom to belong to the neigh-
borhood defined by the summative kernel κx around each location x ∈ Ω.

4.2 Direct non-additive F-transform

Let E be a symmetrical fuzzy subset used to generate a fuzzy partition as
defined in Section 3.1: Ck(x) = E(x−ωk). The direct non-additive F-transform
(NF-transform) is defined by:

F k =
[

F k, F k

]

= EΠ
πk
(f) =

[

EΠ
πk
(f),EΠ

πk
(f)

]

=
[

ČN
πk
(f), ČΠ

πk
(f)

]

, (19)

with ∀u ∈ Ω, π(u) = E(u), πk(u) = Ck(u) and Ππk (rsp. Nπk) is the possibility
(rsp. necessity) measure based on the possibility distribution πk .

Proposition 16 Let f : Ω → R be a continuous function, and F its NF-
transform (Equation (19)), then ∀κ ∈ M(π), the discrete function F obtained
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by sampling f via κ (Equation (8)) is included in F , and ∀k ∈ Θp, ∀y ∈ F k,
∃κ ∈ M(π) such that y = Fk, with F being obtained by sampling f via κ.

Proof: It is sufficient to note that, since κ is a summative kernel, then sam-
pling f via κ at the sampling location ωk can be written Fk = EP

κk
(f), with

κk being the summative kernel κ translated in ωk and Pκk being the proba-
bility measure induced by the summative kernel κk. Due to Property 9, then
∀κ ∈ M(π), EP

κk
(f) ∈ EΠ

πk
(f) and ∀y ∈ EΠ

πk
(f), ∃κ ∈ M(π) such that

y = EP
κk
(f). �

Proposition 17 Let π be a maxitive kernel, let f, g : Ω → R be two continu-
ous functions, and F and G be the two interval-valued functions obtained by
the NF-transform of f and g based on the maxitive kernel π (Equation (19)),
then the Minkowski addition of F and G contains the NF-transform of f + g
based on the maxitive kernel π.

This property can be seen as a kind of extension, to the NF-transform, of the
linearity of the F-transform.

Proof: Proving Proposition 17 is straightforward. In fact, ∀k ∈ Θp, the
Minkowski addition ⊕ is defined by: F k ⊕ Gk = [F k + Gk, F k + Gk]. Due to
Proposition 10, F k +Gk = EΠ

πk
(f) + EΠ

πk
(g) ≤ EΠ

πk
(f + g) and F k +Gk =

EΠ
πk
(f) + EΠ

πk
(g) ≥ EΠ

πk
(f + g). �

Remark 18 It has been shown in [13,8] that the triangular maxitive kernel
defined on [−∆p,∆p] is the most specific maxitive kernel whose core contains
every symmetric unimodal summative kernel whose support is [−d, d] with
d ≤ ∆p. This property combined with Proposition 16 implies that a direct NF-
transform of a function f : Ω → R on the fuzzy partition of Ω generated by a
triangular fuzzy subset whose support is [−∆p,∆p] at each sampling location
ωk (k ∈ Θp) contains all discrete functions obtained by sampling f on each
sampling position ωk (k ∈ Θp) with a symmetric sampling kernel whose support
is [−d, d] with d ≤ ∆p. In addition, note that the triangular maxitive kernel
is also the only non-crisp kernel for which the Unser approach coincides with
the FT approach.

Remark 19 A direct consequence of Remark 18 is that any direct F-transform
obtained by using Equation (12) and a basic kernel E having [−∆p,∆p] for
support is included in the direct NF-transform obtained by using Equation
(19) and a triangular maxitive kernel.
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4.3 Inverse non-additive F-transform

Ideally, this inverse non-additive F-transform (INF-transform) should comply
with one of these three possible definitions:

(1) an interval-valued inverse transform that provides a convex set of all
continuous functions whose precise F-transform belongs to the interval
valued NF-transform, F .

(2) an interval-valued inverse transform that provides a convex set of all
continuous functions whose precise F-transform is F (knowing the fuzzy
partition),

(3) an interval-valued inverse transform that provides a convex set of all
continuous functions whose sampling is F (without knowing the sampling
kernel).

Unfortunately, finding an inverse form with a non-additive based approach
is not easier than finding an inverse form with an additive based approach.
Moreover, finding an INF-transform complying with definition (2) is quite im-
possible since high frequency information is lost in the precise sampling process
that cannot be retrieved from the sampled signal. Our current proposition is
to build an INF-transform that reconstructs an interval valued continuous
function that contains a set of precise valued continuous functions obtained
by reconstructing the discrete function with an appropriate set of kernels.

Let us first introduce, for any subset A ⊆ Θp, the shortcut notation ΥA =
⋃

k∈ACk, with the union being defined using the Łukasievicz T-conorm: ∀u ∈
Ω, ΥA(u) = min(1,

∑

k∈ACk(u)) =
∑

k∈A Ck(u) (since {Ck}k∈Θp
makes a par-

tition à la Ruspini). The following proposition is required to build this INF-
transform.

Proposition 20 Let {Ck}k∈Θp
be a regular fuzzy partition of Ω and ν be a con-

cave continuous capacity dominating a probability measure P , then the discrete
capacity υ defined by: ∀A ⊆ Θp, υ(A) = Eν(ΥA) is concave and dominates the
discrete probability Q measure defined by: ∀A ⊆ Θp, Q(A) = EP (ΥA).

Proof: The dominance part of the proposition is easy to prove using the
domination Property 9. In fact, since P is dominated by ν, regardless of the
real function f , then EP (f) ≤ Eν(f). Now, let A,B be two subsets of Θp.
With {Ck}k∈Θp

being a fuzzy partition à la Ruspini, then ∀u ∈ Ω, ΥA∪B(u) =
ΥA(u)+ΥB(u)−ΥA∩B(u). Due to Property 10, Eν(ΥA∪B) ≤ Eν(ΥA)+Eν(ΥB)−
Eν(ΥA∩B), with ∩ being the Łukasievicz T-norm. Thus, υ(A∪B)+υ(A∩B) ≤
υ(A) + υ(B). �

A straightforward consequence of Proposition 20 is that any discrete summa-
tive reconstruction kernel constructed by convoluting atoms of the partition
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{Ck}k∈Θp
with a continuous summative kernel (see Proposition 13) belong-

ing to M(ν), belongs to M(υ). Moreover, due to Proposition 9, any discrete
summative reconstruction kernel belonging to M(υ) can be obtained by con-
voluting a continuous summative kernel belonging to M(ν) with the atoms of
the partition {Ck}k∈Θp

.

The INF-transform we propose is based on Proposition 20.

Let F : Θp → R be a discrete bounded function. Let {Ck}k∈Θp
be a regular

fuzzy partition of Ω, as defined in Section 3.1. Let πx be a maxitive continuous
kernel defined in each x ∈ Ω. Let υx be the discrete capacity defined by:

∀A ⊆ Θp, υ
x(A) = EΠπx (ΥA). (20)

The INF-transform is defined by:

∀x ∈ Ω, f(x) = Eυx(F ) =
[

Č(υx)c(F ), Čυx(F )
]

. (21)

Proposition 21 Let F : Θp → R be a discrete bounded function. Let {Ck}k∈Θp

be a regular fuzzy partition of Ω, as defined in Section 3.1. Let πx be a max-
itive continuous kernel defined in each x ∈ Ω and υx be the discrete capacity
defined by Expression (20). Let f be the interval-valued function reconstructed
according to Equation (21). Reconstructing F with a summative discrete ker-
nel ηx ∈ M(υx) by Equation (13) leads to a reconstructed value f̂(x) ∈ f(x).

In the same way, ∀y ∈ f(x), ∃ηx ∈ M(υx) such that y = f̂(x), with f̂(x)
being obtained by reconstructing F with ηx according to Expression (13).

Proof: Proving Proposition 21 is straightforward. It is sufficient to note that
f̂(x) = Eηx(F ) and f(x) = Eυx(F ) and to use Property 9. �

The INF-transform can be easily extended to an interval-valued function F .
The INF-transform of F is defined by:

∀x ∈ Ω, f(x) = Eυx(F ) =
[

Č(υx)c(F ), Čυx(F )
]

. (22)

Proposition 21 also holds with this last extension for the same reasons. In
fact, Eυx(F ) is the set of all values that can be reconstructed at location
x ∈ Ω from a discrete function G ∈ F with a discrete kernel ηx ∈ M(υx):

Eυx(F ) =
{

y = Eηx(G)/G ∈ F , ηx ∈ M(υx)
}

.

The non-additive version of the inverse F-transform is thus instrumental in
applications involving guaranteed calculus [10] since it allows reconstruction
of a continuous signal with its samples when the appropriate reconstruction
kernel is imprecisely known. To ensure this, it is sufficient to use a maxitive
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kernel that defines an appropriate family of reconstruction kernels. The domi-
nation guarantees the inclusion of the desired function into the interval-valued
reconstructed function. Note that Proposition 17 can be easily extended to to
the INF-transform, which can be useful when linear operations are involved.
Once again, the triangular maxitive kernel should play a particular role in this
reconstruction scheme.

The usual IF-transform is a special case of the proposed INF-transform when
πx is a Krœnecker impulse translated in x, i.e. πx(x) = 1 and ∀u ∈ Ω, u 6= x,
πx(u) = 0.

4.4 Discrete non-additive F-transform

As in Section 3.3, it is possible to account for the fact that the function to
be transformed is only known at some discrete locations x1 . . . xn. Instead of
constructing a function f̃ by interpolating the discrete valued function, this
framework allows us to account for the fact that the appropriate interpolation
function is unknown, and thus leads to an interval-valued F-transform that
also accounts for this ill-knowledge.

Let f : Ω → R be a function. Let {Ck}k∈Θp
be the considered fuzzy partition

of Ω. Let Φ = {1, . . . , n}. Let X1 . . .Xn be n be the ill known (fuzzy) locations
where function f is known such that

∑

i∈Φ Xi(u) ≥ 1, then the interval-valued
discrete F-transform is defined by:

∀k ∈ Θp, F k = Eυk(f) =
[

Č(υk)c(f), Čυk(f)
]

, (23)

with ∀A ⊆ Φ, υk(A) = EΠ
πk
(ΥA), ΥA =

⋃

i∈A Xi (∪ being the Łukasievicz

union) and ∀u ∈ Ω, πk(u) = Ck(u).

Proposition 22 ∀k ∈ Θp, the function υk defined by ∀A ∈ Φ, υk(A) =
EΠ

πk
(ΥA), ΥA =

⋃

i∈A Xi and ∀u ∈ Ω, πk(u) = Ck(u), is a concave capacity.

Proof: The proof is very close to the proof of Property 20.
υk(Φ) = EΠ

πk
(ΥΦ) = EΠ

πk
(11Ω) = 1.

υk(∅) = EΠ
πk
(∅) = 0. ∀u ∈ Ω, ∀A,B ⊆ Φ,

min(
∑

i∈A∪B Xi(u), 1) ≤ min(
∑

i∈A Xi(u), 1)+min(
∑

i∈B Xi(u), 1)−min(
∑

i∈A∩B Xi(u), 1).
Thus, ΥA∪B(u) ≤ ΥA(u) + ΥB(u)−ΥA∩B(u). Due to Property 10,
EΠ

πk
(ΥA∪B) ≤ EΠ

πk
(ΥA) + EΠ

πk
(ΥB) − EΠ

πk
(ΥA∩B) and thus υk(A ∪ B) +

υk(A ∩ B) ≤ υk(A) + υk(B). �

Proposition 23 Let ρ ∈ K(Ω) be a continuous summative kernel used for
interpolating a continuous function f̃ , as presented in Expression (16). Let
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{Ck}k∈Θp
be a fuzzy partition of Ω. Let F be the discrete F-transform computed

by using Expression (17). Let π be a continuous maxitive kernel on Ω defining,
at each discrete location xi, a fuzzy subset Xi by ∀u ∈ Ω, Xi(u) = π(xi − u).
Let F be the discrete NF-transform computed by using Expression (23). If
ρ ∈ M(π), then F ∈ F .

This property is easy to prove by using, once again, the domination Property
9. There are two interesting particular cases. First, if ρ is the Dirac impulse,
then Expression (17) coincides with Expression (21) of [23]. In this first case,
any possibility function can be used to ensure Property 14. Second, if ρ = π

Γ(π)

(Γ(π) =
∫

Ω π(u)du) then, by construction, ρ ∈ M(π) (see [4]).

Finally, it is also easy to include the fact that the discrete values of f are
quantified in this representation. The simplest strategy is to account for this
quantification by replacing the precise values f(xi) in Equation (23) by im-
precise values.

4.5 Convergence of the non-additive F-transform

As pointed out by Perfilieva and most of the authors [23,21,3,1,32], a func-
tion cannot be reconstructed by using its F-transform, since transforming
consists of sampling, and sampling leads to information loss. However, the
reconstructed function can approximate its original continuous function with
an arbitrary precision. The proof of this convergence is based on the ordinary
proof of convergence of a band limited sampling-reconstruction scheme.

Proposition 24 Let f : Ω → R be a uniformly continuous bounded function.
Let E be a symmetric normalized fuzzy subset on Ω such that ∀x /∈ [−1, 1],
E(x) = 0 and ∀x ∈ [0, 1

2
], E(x) = 1− E(1

2
− x). For any p ∈ N, let F

p
be the

NF-transform of f (Expression (19)), with ∀x ∈ Ω, πk(x) = Ck(x) = E(x−ωk

∆p
),

∆p =
b−a
p

and ∀k ∈ Θp, ωk = a+ k∆p.

Let µ be a symmetric maxitive kernel on Ω such that ∀u /∈ [−1, 1], µ(u) = 0
and µx be the maxitive kernel defined for any x ∈ Ω by : ∀u ∈ Ω, µx(u) =
µ(u−x

∆p
). Let υx be the discrete concave capacity defined by : ∀A ⊆ Θp, υ

x(A) =

EΠµx
(ΥA). Let f

p
be the INF-transform of F p (Expression (22)). Then for any

ǫ > 0, there is pǫ such that: max
(

|f
pǫ
(x)− f(x)|, |fpǫ(x)− f(x)|

)

< ǫ.

Proof: First, let us define the operator τ by: ∀p ∈ N, ∀i ∈ Z, τ(i, p) =
max(0,min(i, p)). Now, let us note that, due to its construction, the dis-
crete capacity υx dominates any discrete summative kernel obtained by con-
voluting the partition {Ck}k∈Θp

with any continuous kernel κ belonging to
M(πx). Since the support of πx is bounded, any summative kernel domi-
nated by υx is bounded: we have n such that ∀η ∈ M(υx), ∀x ∈ Ω, ∀i /∈
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[τ(k(x)− n, p), τ(k(x) + n, p)], ηi = 0.

Note also that, since E is a normalized fuzzy subset, its membership func-
tion can be interpreted as a possibility distribution πE inducing a possibility
measure on Ω.

Since f is uniformly continuous on Ω, then for any ǫ > 0, there is δ > 0
such that ∀u, v ∈ Ω, |u − v| < δ implies |f(u) − f(v)| < ǫ. Let us choose
a value of p inducing regularly spaced values (ωk)k∈Θp

such that ∀k ∈ Θp,
∀u, v ∈ [ωτ(k−n,p), ωτ(k+n,p)], |f(u)− f(v)| < ǫ.

Thus, ∀x ∈ Ω, ∀i ∈ {τ(k(x)− n, p), . . . , τ(k(x) + n, p)}, ∀κ ∈ M(πE)
|f(x)−F p

i | = |f(x)−
∫

Ω
1
∆p

f(ω)κ(ω−ωi

∆p
)dω| ≤

∫

Ω
1
∆p

|f(x)−f(ω)|κ(ω−ωi

∆p
)dω ≤ ǫ.

Due to Propositions 9 and 10, ∃κ1, κ2 ∈ M(πE) such that F p
i =

∫

Ω
1
∆p

f(ω)κ1(
ω−ωi

∆p
)dω

and F
p

i =
∫

Ω
1
∆p

f(ω)κ2(
ω−ωi

∆p
)dω. Therefore |f(x)−F p

i | < ǫ and |f(x)−F
p

i | < ǫ

Now, ∀x ∈ Ω, due to Propositions 9 and 10, ∃η ∈ M(υx) such that f
p
(x) =

∑i=p
i=0 F

p

i ηi,
thus |f

p
(x)− f(x)| = |

∑p
i=0 F

p

kηi −
∑p

i=0 f(x)ηi| ≤
∑p

i=0|F
p

i − f(x)|ηi.
Since ηi = 0 if i /∈ [τ(k(x)− n, p), τ(k(x) + n, p)],

|f
p
(x)− f(x)| ≤

∑τ(k(x)+n,p)
i=τ(k(x)−n,p)|F

p

i − f(x)|ηi ≤ ǫ
∑τ(k(x)+n,p)

i=τ(k(x)−n,p) ηi = ǫ. The same
scheme can be used to prove that |f(x)− f(x)| ≤ ǫ. �

4.6 A simple example with crisp partitioning

A very easy way to understand the proposed interval-valued transform is
to consider a crisp partition, i.e. a partition generated by the crisp subset
E = [−∆p

2
, ∆p

2
]. In that case, Equation (19) simply leads to computing the

upper and lower values of f within the crisp subset Ck: F k =
[

F k, F k

]

=
[

infu∈Ck
f(u), supu∈Ck

f(u)
]

. Note that the F-transform based on the resid-
uated lattice proposed by Perfilieva gives exactly the same interval in that
binary case. When using a smoother maxitive kernel, the interval-valued F-
transform is more specific in both cases.

Such a decomposition on a crisp partition can also be seen as a granulation
process, related to the Pawlak rough set framework [22] where the sets of
the partition create an equivalence relation on Ω. Thus, replacing the crisp
partition by a fuzzy partition leads to considering a weighted granulation as
proposed in [5]. Each atom of the partition can be thought of as a granule on
which the value of function f is imprecisely known.

In the same way, Equation (21) leads to computing, at each x ∈ Ω, the upper
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and lower values of F in a discrete neighborhood equal to {k(x), k(x) + 1},
where k(x) ∈ N is the integer value such that x−∆p < k(x)∆p+a ≤ x. There-
fore, in that case, since ∀x ∈ Ω, f(x) ∈ F n(x) (with n(x) being the integer value
such that x ∈ Cn(x)), f(x) also belongs to [infk∈{k(x),k(x)+1}, supk∈{k(x),k(x)+1}]
since either n(x) = k(x) or n(x) = k(x) + 1. Naturally, the inverse transform
would have been more precise if the interval {k(x), k(x) + 1} had been re-
placed by the singleton n(x). This situation corresponds to using a possibility
density πx as the Krœnecker impulse translated in x, i.e. using, as an inverse
transform, the usual inverse F-transform. When using a smoother maxitive
kernel, the interval-valued F-transform is smoother within the NF-transform
framework.

5 Experiments

This experimental section aims to illustrate some properties of the NF-transform
and show what this approach brings to the classical approach. The experiments
are carried out on digital images, i.e. bidimensional discrete signals. We thus
need to define how to extend both the F-transform and NF-transform in two
dimensions.

5.1 Bidimensional extension

Extending the F-transform in two dimensions is rather straightforward. In fact,
since F-transforming a unidimensional signal consists of convoluting this sig-
nal with a unidimensional summative kernel, F-transforming a bidimensional
signal consists of convoluting this signal with a bidimensional summative ker-
nel.

Let Ω = [a, b] × [c, d] be a box of R2. Let I : (x, y) ∈ Ω → I(x, y) ∈ R be
an image on Ω. Let px, py ∈ N be two positive intergers. Let ∆x = b−a

px
and

∆y =
d−c
py

. Let E be a fuzzy subset of Ω complying with ∀x, y ∈ [0, ∆x

2
]×[0, ∆y

2
],

E(x, y) = 1 − E(∆x − x,∆y − y), and 0 elsewhere. Let Θ = [0, px] × [0, py]
be be a box of N2. Let {Ckx,ky}(kx,ky)∈Θ be (px + 1).(py + 1) fuzzy subsets of
Ω defined by ∀(x, y) ∈ Ω, Ckx,ky(x, y) = E(x− a− kx.∆x, y − c − ky.∆y). By
construction, the {Ckx,ky}(kx,ky)∈Θ form a partition à la Ruspini of Ω.

Then, Expression (10) becomes:

∀(kx, ky) ∈ Θ, Fkx,ky =

∫

Ω I(x, y)Ckx,ky(x, y)dxdy
∫

Ω Ckx,ky(x, y)dxdy
. (24)
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In the same way, Expression (13) becomes:

∀(x, y) ∈ Ω, Î(x, y) =
∑

(kx,ky)∈Θ

Fkx,kyCkx,ky(x, y). (25)

Extending the NF-transform in two dimensions is as straightforward as ex-
tending the F-transform in two dimensions. It follows the same process and
involves bidimensional maxitive kernels.

Expression (19) becomes:

∀(kx, ky) ∈ Θ, F kx,ky = EΠ
π
kx,ky

(f) =
[

EΠ
π
kx,ky

(f),EΠ
π
kx,ky

(f)
]

(26)

with ∀(x, y) ∈ Ω, π(x, y) = E(x, y), πkx,ky(x, y) = Ckx,ky(x, y) and Ππkx,ky

(rsp. Nπkx,ky ) is the possibility (rsp. necessity) measure based on the possibility
distribution πkx,ky .

In the same way, Expression (21) becomes:

∀(x, y) ∈ Ω, I(x, y) = Eυx,y(F ) =
[

Č(υx,y)c(F ), Čυx,y(F )
]

, (27)

υx,y being the discrete capacity defined by: ∀A ⊆ Θ, υx,y(A) = EΠπx,y (ΥA),
with ΥA being the continuous fuzzy subset defined by ∀(x, y) ∈ Ω, ΥA(x, y) =
∑

(kx,ky)∈A Ckx,ky(x, y).

Extending the discrete transforms proceeds in the same way. The granularity
of the partition can be seen either as the couple (∆x,∆y) or as the value
∆x ∗∆y =

∫

Ω E(x, y)dxdy.

Image processing generally considers separable kernels. Expressions (24), (25),
(26) and (27) can be highly simplified by considering E as separable. E is
said to be separable if ∀(x, y) ∈ Ω, E(x, y) = Ex(x).Ey(y). In that case,
computing a bidimensional transform turns into computing two consecutive
unidimensional transforms. The same applies for inverse transforms.

In the rest of the experimental section, we consider centered linear symmetric
kernels (i.e. triangular kernels).

5.2 Illustrating the dominations

In this section, we propose to illustrate different behaviors and properties of
the NF-transform, e.g. Properties 16 and 21. This illustration is based on the
high resolution discrete image depicted in Figure (3). The experiment consists
of downsampling then upsampling this image with a linear (pyramidal) fuzzy
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partition (see Remark 18) whose granularity equals ∆ = 16 (4 × 4) and with
different sampling and reconstruction kernels complying with the domination
property (i.e. sampling (reconstruction) kernels belonging to the core of the
sampling (reconstruction) capacity generated by the partition).

Fig. 3. 1560 × 2435 image of the painting Nascita di Venere by Sandro Botticelli.

Figure (4) shows the lower (a) and upper (b) downsampled image obtained
using the NF-transform. Figure (5-a) shows the downsampled image obtained
using the F-transform while Figure (5-b) shows the median of the interval-
valued image obtained using the NF-transform. Figure (6-a) shows the im-
age obtained by reconstructing the downsampled image (5-a) using the IF-
transform while Figure (6-b) shows the median of the interval-valued down-
sampled image whose median is drawn in Figure (5-b) reconstructed using the
INF-transform.

a) b)

Fig. 4. Lower (a) and upper (a) images obtained by downsampling the original image
using the NF-transform.

As a first remark, the image sampled using the F-transform (Figure (5-a))
and the median of the image sampled using the NF-transform (Figure (5-b))
seem to be very close. The same applies for the reconstructed images (Figures
(6-a) and (6-b)). In fact, the L2 distance between the image reconstructed
using the F-transform approach (Figure (6-a)) and the original image equals
0.15 while the L2 distance between the median image reconstructed using the
NF-transform approach (Figure (6-b)) and the original image equals 0.17.
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a) b)

Fig. 5. Downsampled image obtained using the F-transform (a) and median of the
interval-valued downsampled image obtained using the NF-transform (b).

a) b)

Fig. 6. Reconstruction of image (5-a) using the IF-transform (a) and median of the
interval-valued reconstruction of the interval-valued image whose median is plotted
in Figure (5-b) using the INF-transform (b).

Naturally, as proved by Perfilieva [23], if a signal has been downsampled using
the F-transform on a partition whose granularity is ∆, the best ∆ bounded
reconstructing kernel (in L2 distance) is the sampling kernel itself. Thus the
median reconstructed image has no reason to be L2-closer to the original im-
age. This result was confirmed by Unser concerning the crisp partition (spline
0) and the triangular partition (spline 1). The question of how close the re-
constructed images are to the original image will be discussed in the next
section.

From an image processing standpoint, the lower and upper images presented
in Figure (4) look like eroded and dilated images. In fact, maxitive-based
image processing is a kind of intermediate approach between conventional
linear image processing and mathematical morphology [11].

In this experiment, 95% of the original image is included in the imprecise
valued reconstructed image. This percentage is quite representative of what
happens generally (see next section). Using a crisp partition would have en-
sured complete inclusion (see Section 4.6). However, the quality of the image
obtained with a crisp partition is very poor compared to using a fuzzy par-
tition, as illustrated by the detailed images in Figure (11). The L2 distance
between the original image and the median of the obtained reconstructed im-
age is 0.25. This highlights the advantage of using a fuzzy partition instead of
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a crisp partition in this framework.

The last part of this experiment aims at illustrating Properties 16 and 21. We
considered 1000 different randomly selected sampling kernels and 1000 differ-
ent randomly selected reconstruction kernels. Every sampled image is included
in the NF-transformed image. Every reconstructed image is included in the
INF-transformed image. Figure (7) plots the 32nd line of the sampled images
while Figure (9) plots the 128th line of the reconstructed images, superimposed
with the 128th line of the original image.

The kernels were chosen in the class of symmetric centered kernels that comply
with the domination property, i.e. each sampling (reconstruction) kernel is
included in the core of the sampling (reconstruction) capacity induced by the
fuzzy partition. As can be seen in Figures (8) and (10), the precise sampled and
reconstructed images are not uniformly spread in the interval-valued image.
This is the main reason why the median cannot be considered as the best
representative image. Figure (10) illustrates the fact that the original image
is not completely included in the interval-valued reconstructed image. Note,
however, that in some regions where the original signal goes out of the bounds
of the imprecise valued reconstructed image, images reconstructed using the
traditional approach are very far from the original signal.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

detailed view

Fig. 7. Lower (in red) and upper (in blue) 32
nd line of the NF-transformed image

superimposed with the 32
nd line of 1000 sampled images (in cyan).

5.3 Statistical properties

As shown in [14], one interesting property of a maxitive kernel-based approach
is its ability to quantify the variability in the processed signal. In this exper-
iment, we will show that the imprecision of an image reconstructed by an
INF-transform is a marker of the roughness of the obtained reconstruction.
To carry out this experiment, we consider the set of 10, 000 images derived
from the BOWS2-Original image processing database [9].
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Fig. 8. Detailed part of Figure (7).

0 500 1000 1500 2000 2500
0

50

100

150
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250

detailed view

Fig. 9. Lower (in red) and upper (in blue) 128
th line of the interval valued recon-

structed image superimposed with the 128
th line of 1000 reconstructed images (in

cyan) and the 128
th line of the original image (black dotted line).

Fig. 10. Detailed part of Figure (9).

For each image I, we compute its F-transform F and NF-transform F . We then
reconstruct Î, a precise estimate of the original image, by IF-transforming F
and I = [I, I], an imprecise estimate of the original image, by INF-transforming
F . We compute △I = 1

2
(I − I), the imprecision of I and Ĩ = 1

2
(I + I) its me-

dian. We finally compute 2I = |I − Ĩ|. The median is chosen as an objective
representative of the interval-valued image since it is the image that is the
closest, in L1 distance, to the set of images included in the interval-valued
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a) b)

c) d)

Fig. 11. Details of the original image (a), the image reconstructed with the F-trans-
form approach (with a triangular kernel) (b), median of the image reconstructed
with the NF-transform approach with a triangular kernel (c) and with a rectangular
(crisp) kernel (d).

image.

Figure (12) plots the signal-to-noise ratio (SNR) of each reconstructed im-

age. This SNR is computed as 10.log10(
Σ2(I)
Σ2(2I)

) for the interval-valued INF-

transformed image and as 10.log10(
Σ2(I)

Σ2(I−Î)
) for the F-transformed image, where

Σ2(I) is the sum of the squared values of the image I. The higher the SNR,
the closer the reconstructed image is to the original image. As expected, the
SNR is always better for the precise image than for the median of the im-
precise image. However, as illustrated in Figure (12), the SNR are very close.
Moreover, Properties 16 and 21 ensure that the "best" image obtained using
the F-transform and the IF-transform is included in the interval-valued recon-
structed image obtained using the NF-transform and the INF-transform (see
also Remark 19).

Generating an image that is closer to the original image is not the main pur-
pose of the NF-transform approach. In fact, as shown by Unser [35], the ap-
propriate kernel to reconstruct an image that has been sampled by a bounded
positive kernel is not positive (and often not bounded). This idea corresponds
to the least square reconstruction approach [2]. What makes the NF-transform
approach new and interesting is that the imprecision of the obtained interval-
valued reconstructed image encodes the loss of information induced by the
sampling/reconstruction process. To illustrate this property, in Figure (13),
we have plotted the cloud of the mean of 2I versus the mean of △I. The
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correlation between those two values is obvious. The Pearson correlation co-
efficient is 0.983.

As we mentioned previously, even if the inclusion of the original image in the
interval-valued reconstructed image cannot be guaranteed, the inclusion rate is
generally higher than 90%. This property is illustrated in Figure (14). To fur-
ther illustrate this, we artificially constructed, for each precise reconstructed
image (using the F-transform), an interval valued image having a constant im-
precision equal to the mean imprecision of the corresponding interval valued
reconstructed image (NF-transform). Figure (14) plots the inclusion rate of
the original image within each interval-valued image. It can be seen that, even
when using the best reconstructed image as the median image, the inclusion
rate is much higher in the non-additive than in the additive approach. This
confirms that the imprecision really quantifies the roughness of the approxima-
tion induced by both direct and inverse transformations. This quantification
property can also be seen in Figure (10).

The distance between those interval-valued reconstructions and the original
image can also be questioned. We thus compute the Hausdorff generalization
of the L1 distance ([19]) defined by:

L1([a, b], c) =



























(a− c) , if c < a

(c− b) , if c > b

0 , else

Figure(15) plots this distance for the two interval-valued images. The distance
is much lower for the non-additive than for the additive approach.

6 Concluding remarks

In this article, we have proposed a new F-transform based on a possibilis-
tic interpretation of the fuzzy subsets involved in the partition. One of the
main original features of this framework is that it provides interval-valued
transformed signals instead of precise-valued signals. We have defined direct
and inverse transforms that are easy interpreted within the signal processing
framework: NF-transforming a signal provides the interval of all sampled sig-
nals that would have been obtained by using a conventional approach with
a kernel belonging to a convenient convex set of kernels. Transforming a dis-
crete signal with an INF-transform provides the interval of all reconstructed
signals that would have been obtained by using a conventional approach with
a kernel belonging to a relevant convex set of kernels. Numerous properties of
this new transform have been mathematically proved that can be useful for
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Fig. 12. The SNR of the F-transform-based method versus the SNR of the median
of the NF-transform-based method
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Fig. 13. Correlation of the mean error and the imprecision of the NF-transform-based
reconstruction.

guaranteed analysis or comparison of functions. For example, this framework
can be used to decide whether or not a digital signal can be considered as a
sampled version of a continuous (or a high resolution) original signal. It can
also be used to compare two digital signals that are not sampled at the same
sampling locations, with the same sampling step, or with the same sensor –
with the point spread function being ill-known. It can also be helpful to ob-
tain a guaranteed calculus on sub-sampled signals when the complete signal
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Fig. 14. Inclusion of the original image in the interval-valued images based on the
F-transform and on the NF-transform.
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Fig. 15. L1 distance between the original image and the F-transform and median of
the NF-transform-based reconstructions.

cannot be processed for computational complexity or limited memory reasons.
Within this kind of application, interval-valued downsampling keeps track of
the roughness of the approximation throughout the processing.

The ideal NF-transform/INF-transform couple should provide a convex en-
velope that contains the original signal. Within the actual framework, this
guarantee cannot be ensured. However, the inclusion of an original signal in
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the reconstructed interval-valued signal generally exceeds 90%. Moreover, as
shown in the experimental part of this article, the imprecision of the recon-
structed signal can be seen as a local marker of the roughness of the approx-
imation. The convergence of sampling and reconstructing with the current
NF-transform/INF-transform couple has been proved.

A convenient framework should comply with at least one of the properties
listed in Section 4.3. One possibility is to define a capacity-based set of non-
positive kernels. Another possibility is to enlarge the proposed approach to
mimic the least square reconstruction proposed by Crouzet and Patané.

As a future work, we also plan to more thoroughly analyze analogies between
the F-transform framework and the best fit approach to see if we could define
a coupling between the kernel used in the partition and the reconstruction
kernel (since the triangular kernel is a B-spline). Perhaps the F-transform or
NF-transform framework could be instrumental for defining continuous-based
discrete operators.

Some other partitions should also be envisaged, e.g. partitions such that
∀u ∈ Ω, supk Ck(u) = 1. It would also be relevant to try and bridge the gap
between the non-additive F-transform approach and the F-transform based
on residuated lattices. This could lead to a better reconstruction of the trans-
formed function.
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