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Abstract - In this paper, we present a new 
segmentation method for range images consisting of a set of 
planar cross-sectional contours. Our approach is novel in that 
it uses fuzzy criteria for grouping primitives and identifying 
homogeneous regions. We have tried our method with images 
provided by a structured light sensor. In this case, the image 
sequence corresponds to the scene profiles obtained with the 
successive positions of a rotating plane of laser light. We 
assume that the object surfaces can be modelled by a set of 
quadratic patches. The primitives used for region 
segmentation result from the approximation of the light 
profile by second order curves. An efficient tracking of these 
noisy curves is achieved by using a fuzzy decision-making 
algorithm. Region growing is then performed by our method 
by matching 2D curves from the image sequence. 

We present results obtained with real scenes consisting 
of multiple objects of arbitrary shapes. They show that an 
efficient surface segmentation may be obtained with few- 
constrained environments including planar or curved shapes. 

1 - INTRODUCTION 

With many 3D sensing systems, the surface of the 
viewed scene is defined by a set of planar cross-sectional 
contours. In manufacturing applications, active sensing 
techniques using, for example, a scanning process provide 
raw data which are displayed on a regular array. For instance: - With time of flight measurement systems (lasers, 

ultrasound sensors, ...), the scanning axes are 
generally two perpendicular rotation axes. 

- In the case of structured light sensors, the illumination 
pattem has a simple and regular geometry. It consists 
of a stripe, a multi-stripe, or a grid of points or of 
lines, etc. 
The purpose of the present work can be folmulated as 

follows: let us consider a scene of 3D objects intersected by a 
set of neighbouring planes obtained by successive rotations 
or translations. The 3D points measured on the objects 
belong to the intersections of their surfaces with the planes. 
The problem that we want to solve is: how to analyze the 
consecutive scene profiles in order to segment the shape 
image into homogeneous regions? 
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Classical segmentation methods which are applied to 
range images can be divided into two groups: region based 
methods and boundary based methods. Region b e d  methods 
look for topological [l] or geometrical 121 similarities to 
group 3D points or elementary patches into surface regions. 
For instance, normals to a surface may be considered as a 
common local feature. Partitioning them involves 
thresholding using a histogram analysis [3]. Boundary based 
methods try to find significant changes that separate regions 
by isolating discontinuities in both depth and surface 
orientation. Differential geometry is often used to fmd region 
boundaries [4]. All these segmentation techniques use dense 
3D data and don't take advantage of the data spatial 
organization which is encountered in cross-sectional images. 

In this work 3D sensing is performed via structured 
light images. However, we show that an efficient 3D shape 
segmentation can be done without computing any 3D surface 
points. Our method is based OR the direct analysis of the 
parameters of the projected stripes in the image frame and of 
their connectivity relations. We show how it is possible to 
track stripe parts in the consecutive images and to match 
them in order to create regions. 

Our method solves the surface identification problem 
by using a very general constraint that holds in environments 
consisting of a jumble of manufactured objects. We suppose 
that surfaces are "regular" enough and that they can be locally 
approximated by second order patches. We make the 
assumption that these patches are larger than the stripe 
spacing given by the scanning system. 

This p a p  includes three major sections. In section 2, 
we present the problem we want to solve and we briefly 
describe our application and the algorithms developed for the 
preliminary data processing. Section 3 shows how to achieve 
the tracking of profile parts in order to segment the 
topographic image by using a fuzzy aggregation of criteria. 
Section 4 presents our conclusion as well as experimental 
results. 
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2 - PROBLEM STATEMENT measurement of variance. In the example shown on Fig. 2b, 
four stripe parts have been identified. 

-Fig. 1 : The sensor- 

2.1 - THE SENSOR 

Our vision sensor consists of a CCCl camera and an 
optical projection system that generates a plane of red light 
from a HeNe laser (Fig. 1). The projected light is scanned 
across the scene by means of a rotating mirror controlled by a 
galvanometric device. At each scanning step, we obtain a 
grey-level image showing points on the scene which are 
illuminated by the light plane (Fig. 2a). 

In most of applications, the variable: range between 
sensor and objects causes &focussed images for the projected 
stripe. The first processing step consists of extracting the 
scene profile, i. e. the skeleton of the projectcd pattern which 
represents the intersection of a perfect plane with the 3D 
objects (Fig. 2b). The method we use is based on statistical 
properties of the signal we wish to find. The reader is directed 
to [5] and [6] for a detailed explanation of the algorithms 
developed for the skeleton extraction. 

At the end of this process, a set of one pixel wide 
continuous segments is obtained on the image. 
Localizationof any point of each segment is subject to a 

2.2 - PROFILE SEGMENTATION 

Our aim is to approximate object surfaces by quadratic 
models. It can be proven that the intersection of a quadric by 
a plane is a conical curve [7] whose homographic projection 
is also conic. Consequently, we have developed a 
segmentation method that allows us to approximate the laser 
stripe by a set of adjacent second order curves [5]. We present 
here a brief description of this algorithm which locates the 
skeleton discontinuities such as breaking, angular, 
retrogression or bending points. A detailed presentation of the 
method has been published in a previous paper [8]. 

Let x = a y )  be the noisy curve resulting from the 
previous processing (Fig. 2b). Discontinuities on this curve 
correspond to maxima or zero crossing of the second 
derivative of L(y). Classical differential operators being 
sensitive to noise, we compute L", which is a good estimate 
of L", the second derivative, by using a symmetric 
exponential filter [lo] which preserves the accuracy of the 
discontinuities location [9]. This derivative includes a residual 
noise which is evaluated. 

The analysis of the smoothed L" signal consists of 
locating both sign changes and local maxima, in order to 
subdivide L(y) into segments that may be approximated by 
second-rder curves. Nevertheless, the stripe segmentation 
must take into account the estimated noise for each analyzed 
point. For instance, let us consider the examples of second 
derivatives obtained with a vertical and an oblique stripe 
(Fig.3). We can see that many non significant zero crossings 
and extrema can be found. 

- Fig. 2a : The original image of a laser stripe - - Fig. 2b : The laser stripe skeleton - 
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f 
Fig. 3 : Second derivatives for a vertical stripe (a) 

and for an oblique stripe (b) 
Consequently, for identifying singularities, we consider 

that: 
- a bending point is a point for which L" is small, 

compared to those of the set of its neighbouring 
points; 

- a breaking point is a point for which L" is large, 
compared to those of the set of its neighbouring 
points. 
In order to locate the singularities, taking the noise 

into consideration, we associate a fuzzy measure of 
straightness to each point. The straightness at a point y is 
considered as the degree of belonging, 4y). of this point to 
the fuzzy set a of the points which have a small second 
derivative. This fact of having a small second derivative is 
referred to a measurement of variance evaluated at each point 
by a specific mess. More detail can be found in [a. 
fuzzy straightness at (x,y) is written as: 

Let Q !+ (y) be the variance of L"(y) at x = L(y), the 

Moreover, the global fuzzy straightness of a segment 
S is defined as being the generalized relative Hamming 
distance [13] between a et S. At the ith iteration, we have: 

m e n  s is not consistent with dat a specific point, 
the system searches for a singularity: 

- A maximum of L" if x0.5 and h . 5 ,  
- A minimum of L" if M . 5  and k 0 . 5 .  
At the end of this process, the skeleton of the laser 

stripe consists of a set of 2D primitives called fragments 
which can be approximated ' bysecondordercurves. 

3 - TRACKING WITH LIKENESS 

This section is an attempt to show that there is an 
alternative for token tracking in an image sequence. Instead of 
either logical matching or statistical inference, a fuzzy 
relation can be evduated. This relation is known as likeness. 

Why use a new theory for tracking? Statistical 
approaches to feature tracking in a dynamic image sequence 
have been widely adopted by many authors [10][11]. 
Presently, most of these methods aim at tracking straight line 
segments extracted from the &tected edges. %se segments 
are represented by their geometric and dynamic parameters 
which are updated by a Kalman filter, before matching with 
the observed tokens. However, these algorithms are not 
adapted for tracking any kind of noisy curves, and they cannot 
take into consideration a possible deformation of the curve 
from one image to the next. 

In classical algorithms, matching and tracking are 
based on similitude properties. We propose the use of a more 
general concept: the likeness. These two concepts differ in the 
fact that similitude is a transitive property, while likeness is 
not. Likeness can be described by a fuzzy variable. 

Our matching process uses a set of redundant criteria 
to estimate the Iikeness between each fragment F1 of the pre- 
vious image I1 and each frirgment F2 of the current image 12. 

Indeed, using classical tracking methods will presume 
that the observed features satisfy some statistical assumptions 
such as probability distributions. For &formable and noisy 
curves, one could hardly expect the distribution of the 
pttems to correspond precisely to the presumed distribution. 
For these reasons, in a general case, feature tracking must be 
considered essentially fuzzy. Fuzzy set concepts proposed by 
Zadeh [ 121 have already been applii to pattem recognition. 

However, since vision systems provide noisy and 
incomplete information, we have chosen to use information 
redundancy and to match tokens with different kinds of 
criteria. According to the pperries of this information, these 
criteria may be logical, statistical, heuristic, or fuzzy. 
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For a logical decision, one must associate a logical 
variable to any criterion involved in the decision ; the same 
statement holds for a probabilist decision and a probabilist 
variable. This association variable/criterion is clone via a test, 
by a specific function called a predicate. 

Similar assertions and definitions can lw used in the 
case of fuzzy logic: a fuzzy variable must be asrmiated to any 
criterion. This association is done by a fuzzy predicate, which 
acts upon a test. If this test is fuzzy or logical, the predicate 
is nothing but an identity function. Therefon:, we are only 
interested in statistical or heuristic tests. 

We now present the method we use for evaluating the 
likeness of two geometric primitives. 

Kaufmann [13] presented likeness, as a fuzzy 
symmetric and reflexive relationship. Likeness may also be 
seen as a weak similitude which worsens as the tokens are 
matched. More precisely, likeness between two geometric 
features is an aggregation of several criteria, leading to 
satisfaction of a common aim [141. 

A likeness evaluation between two features is 
performed in four steps: 

1) Modeling the feature, 
2) Determining the criteria, 
3) Using what we called fuzzy predicates to join a fuzzy 

value with each criterion, 
4) Linking those fuzzy values by means of a fuzzy logic 

algorithm. 

3.1 - MODELING 

The problem is to choose an appropriats representation 
which is characteristic of the geometric properties of the 
curve fragments (which approximate the laser stripe), since 
their tracking will be based on this representation. For that 
purpose, five vectors of static parameters and a measurement 
of displacement are used. 

Each primitive can be approximated by a second order 
function. Moreover, due U, the sensor geometry, the curve 
has only one intersection point with each image line. 
Consequently, we have shown that a simple ]parabolic model 
is sufficient to describe this curve. This model can be written: 

x = a y 2  + b y  + c 

The identification of the a, b and c: parameters is 
performed by a least square algorithm weighted by mean of 
the location variance at each point. This method allow us to 
estimate the variance/covariance matrix of the parameter 

vector b by back propagation of measurement errors [lSI. 111 
The others static parameters are given by the 

- the angular position of the laser plane: which has been 
used for acquiring this image, 

preprocessing: 

a list of points with their coordinates and their 
location uncertainty, 
the two end-points with their coordinates (x,y) 
characterized by &x,y), the local straightness. In fact, 
for a singular point, ~$x,y) is near o if it is an angular 
point and near 1 if it is a bending point. 
The global straightness S(F) of a given fragment F ; 
s(F) is near 1 for a regular straight fragment, 
otherwise it is near 0. 
In order to improve the fragment matching, an 

evaluation of D, the average spacing between two fragments 
belonging to the same surface patch as well as an estimation 
of the variance of D are added. D and the variance are updated 
by mean of Kalman filter. 

3.2 - CRITERIA 

In this section we describe the criteria that are used to 
evaluate the likeness between two fragments. Each of the* 
criteria expresses the homology of a specific geometric 
property. They have to be robust enough globally to palliate 
three major problems: 
- Data issued from the preprocessing are noisy (due to 

the image sampling and to the skeleton extraction). 
- We can assign only an approximate model to each 

primitive. 
- The shape of the viewed surfaces being not regular 

enough, some small deformations of the curves. may 
appear during the tracking. 
Our tracking approach is based on the assumption % 

&fined as follows: 
!7f the angular deflection is sufficiently small in order to 

allow us to presume that the surface patches are regular 
between two positions of the light plane. 

Let F1 and F2 be two fragments and 2P(Fi,F2) the 
likeness we want to evaluate. Let Fi be the fragment F1 
displaced by D. Within the terms of the previous assumption 
311 the following criteria are considered: 
- The Bhattacharyya distance 1161 between the parabolic 

approximations of Fi and F2, 
- The Mahalanobis distance which characterizes the 

belonging of some points of Fi to the parabolic 
approximation of F2 and vice versa, 

- the fuzzy distance between the straightness and the 
fuzzy disparity of the two end point types, 

- the heuristic overlapping of the projection of Fi and 
F2 on the vertical axis. 
We take into account the initialization step by using a 

logical criterion. It allows us to inhibit the effect of some 
other criteria, such as that of Battacharyya distance during the 
initialization. 
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3.3 - PREDICATES 

A logic predicate is an association between a logic 
value and any other value (real, symbolic, etc ). Similarly, a 
fuzzy predicate is a function associating a criterion to a fuzzy 
variable. Fuzzy predicate is an evaluation of the agreement of 
a specific criterion to a given matching. 

In this case, only the statistic (statistic distance) and 
heuristic criteria (overlapping) need to use such functions. 

Notation: 6 = %) is the fuzzy value associated with 

B by the predicate 2 

Similar predicates are associated to the Mahalanobis 
distances. Afm all, a second evaluation of the straightness is 
obtained by comparing between the coefficient of the highest 
power term of the parabolic approximation and its variance. 
This comparison is done via a fuzzy predicate acting on a 
Student test [6]. 

3.3.2 - PREDICATES ON HEURISTIC 
CFUTERIA 

This criterion concern the overlapping of the two 
projections of F1 and F2 on the x axis, with respect to the 
predicted displacement D (see Fig. 6). 

A 
3.3.1 - PREDICATES ON STATISTICAL 

CFUTERIA 
Bhattacharyya distance, as Mahalanobis distance, may 

follow a x2 law [17]. The use of a x2 test is the same as 
finding a real segment [Bi.Bd corresponding to the limits of 
the 99% confidence interval of matching hypothesis 
acceptance. bgic predicate indicates the belonging of B, the 
Bhattacharyya distance, to this segment. In order to evaluate a 
fuzzy predicate, this segment is considered as the u-cut at 0.5 
[13] of the fuzzy set which corresponds to the matching 
hypothesis acceptance (see Fig. 4). 

I I 
I I 
I I 
I 

Bi B2 
-Fig. 4: First predicate on Bhattacharyya distance - 

In order not to reject exact coincidence (most unlikely 
but desirable) a second predicate is added that correspond to a 
great likeness. 'Ihe maximum limit B3 of this new segment 
corresponds to the maximum limit of the 50% confidence 
interval (see Fig. 5). 

P Bi B3 B2 
-Fig5 Second predicate on Bhattacharyya disrance - 

Fig. 6-Fragments overlapping 

Two redundant predicates, q and e, are established 
for this criterion. They can be respectively assimilated to a 
majority vote and to a proportional vote: 

SlnS 
02-= MrN(S1,2sZ) 

3.3.3 - PREDICATES ON LOGICAL AND 
FuzzYcRrrERIA 

Fa these criteaia, the predicate is the identity function. 
We take into account the initialization step by using a 

logical criterion. It allows us to inhibit the effect of some 
fuzzy variables in the decision process (such as Battacharyya 
distance). 

We also use the fuzzy criteria which are included in the 
primitives model: the end points type d a n d  the fuzzy 
straightness S of the primitives (see section 2.2). 

3.4 - AGGREGATION OF THE 
CRITERIA 

In order to obtain the fuzzy likeness relation, classical 
fuzzy logic laws are used. Three sets of laws are characterized 
which are objective, subjective and equivocal laws. 
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Laws that use MIN and MAX operators are called 
objective laws. They are used to associate one ‘criterion to 
another, or more precisely, to associate the predicnes of these 
criteria, of which no a priori correlation is known. For 
example, the fact that the end points of two frag,ments may 
be of the Same type may not seem a priori related to the fact 
that their parabolic approximation be close. 

The subjective laws are fuzzy functions which behave 
as boolean functions when given boolean arguments. These 
laws may be divided into so called optimistic and pessimistic 
laws. Given two arguments, a pessimistic law is one that 
give a result that is worse than the equivalent objective 
association of these arguments (for example a.b <I MIN(a,b)). 
It expresses an a priori conjunction of the coxresponding 
criteria. On the other hand, an optimistic law gives a result 
that is better than the equivalent objective association (for 
example a h  = a + b - a.b 2 MAX(a,b)). It expresses an a 
priori disjunction of the two events. Thus the association of 
these two fuzzy variables measuring the straightness of a 
fragment is of a pessimistic type, since one has more 
confidence in the straightness of a fragment if both 
measurement are true. 

Equivocal laws show an intermediate behaviour which 
may not be linked to a classical logic law. The best example 
of such a law is the mean function, which allows among 
other things to express a fuzzy “if-then4se” statement. If c 
then a else b is written as: c.a + (1-c).b. 

We present here an example of fuzzy logic rule which 
is used for obtaining the likeness of two fragments. 

The Battacharyya distance is not a reliable data when 
the assumption of a curve line is made while two straight 
lines are compared. This is due to numerical reasons. That is 
the reason for which a second distance is estimated with 
assertion of two straight lines (in the presence of ambiguity). 
The computation of the predicate 6 on this distance is 
achieved by the rule: 4 f F l  and F2 are straight lines, then 
the question is “is the distance ‘B between F I  and F2 small, 
assuming they are straight?” , else same question assuming 
rhey are cwvedw. 

Let the smallness of B be 66 assuming we compare 
straight lines and 6, without this assumption. Let d; be the 
straightness of F1. 62 the straightness of F2. then the 
likeness 6 will be: 

6= (drl~dr2).66+ (1--(&1~&~).6~. 
where A is the objective AND. 

4 - EXPERIMENTAL RESULTS 

The algorithms we propose have been implemented on 
a PC computer and tested on indoor scenes including planar 
and curved objects. Here, we report some results obtained 
with manufactured objects, where the striped images are 
superimposed on the images obtained with the ambient 
lighting. On Fig. 7a, all the stripes obtained with 50 angular 
positions of the light plane are shown. Fig. 7b and 7c present 
extraction of planar surfaces. On Fig. 7d and 7e, the cylinders 
are clear. It highlights the ability of the fragmentation 
process to detect retrogression points. Finally, the last figures 
show the robustness and the adaptability of the algorithm in 
case of inclined curve surface (Fig 7f) and irregular planes 
inclined (Fig.7g) or not (Fig. 7h). 

- Fig. 7a - 
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- Fig. 7d - - Fig. 7c - 

- Fin. 7f - - Fig. 7e - 

- Fig. 7h - - Fig. 7g - 

Some Examples 
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One of the major limitations of our algorithm is the 
computation time needed by the image preprocessing 
(skeleton extraction) which is about two thirds of the 
computation time. Presently, all of our programs are 
developed in C language, on a PC computer (30 286). 
Because of the lack of memory which involves many data 
exchanges with the disk storage unit, this program takes very 
long to run on such machine. The execution time depends on 
the number of the analyzed stripes in the image. For one 
stripe, it increases with the size and the number of shadow 
zones along this stripe, and with the number of extracted 
primitives. For instance, we have estimated that the pro- 
cessing of one stripe on our Pc takes between 40 s and 1 
mn. 

We are currently studying the possibility of using a 
dedicated hardware to realize the skeletonizing. The first 
estimation of the computation time is about 80 ms to obtain 
the skeleton of a 512x512 image whatever its complexity is. 
The same skeletonizing algorithm has been implemented on a 
SUN station (SPARC II). We have obtained computation 
times varying between 0.6 and 0.8 s depending upon images 
complexity. 

These first results are promising because then the total 
processing times for a depth image composed of 50 stripes 
will not exceed 20 s. This mean a reduction of the 
computation time in a ratio of 150 to 1. 

5 - CONCLUSION 

We have presented algorithms for solving the 
segmentation problem of cross-sectional images obtained 
with a smctured light sensor. The approach is new, since: 
- The data which are used are not 3D points, but only 

the 2D points extracted from the image of the cross- 
sectionalmtours. - The method takes advantage of the spatia1 organidon 
of the data which is encountered in cross-sectional 
images. Indeed, it uses primitives which are curves 
extracted from the stripe profile. 

- The macking of the primitives used for region growing 
is achieved by a fuzzy &cision-making algorithm 
which leads to reliable and accurate results. 
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