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Abstract - Manufacturing processes involving object
inspection or manipulation often require 3D shape acquisition
and modeling. Active sensing offers a practical solution to such
problems. In this paper, we present a new solution to extract 3D
shapes from structured light images. The 2D striped image is
segmented into regions corresponding to quadratic surfaces. For
that purpose, a fuzzy analysis of the stripe properties is used to
locate discontinuities and to caracterise stripe parts. These parts
are tracked in consecutive images and matched in order to create
regions. We present segmentation results obtained with real
scenes consisting of multiple objects of arbitrary shapes.

1. INTRODUCTION

Sensing of 3D shapes is one of the primary capabilities
necessary for autonomous robots able to manipulate objects ,
or to move in more or less structured environments. 3D
measurements can be exploited in a number of different
applications such as : inspection, bin-picking, assembly or
vehicle motion. Many 3D sensing methods are currently
under investigation. R.A. Jarvis presents a general overview
of these solutions [1]. It appears that visual sensing can be
done passively or actively .

- Passive range finding techniques using a single intensity
image to deduce shape from shading, from texture, or from
extracted edges exhibits ambiguitics because of the
complexity of the reflectance and illumination model.

- Stereovision and dynamic vision use at least two images
of the same scene taken by two fixed (or one moving)
camera. Presently, these methods furnish a polyhedral
approximation of the scene, which is sufficient for tasks
which only need a rough approximation of objects.

- Active sensing techniques which imply the use of an
artificial lighting source can be classified according to the fact
that they furnish direct or undirect range measurement :

i) Time of flight methods consist in measuring the light
propagation time between the emissive source (ultrasonics,
lasers,...) and a coaxial detector. Ultrasonics are a simple and
cheap solution ; but it cannot be used for accurate sensing,
for several reasons : a poor resolution, the existence of
confusing multiple reflections, ... Laser range finders are
expensive when they require high performance optoelectronic
hardware to build up an accurate range map with a reasonable

speed .

ii) Active triangulation methods, so-called structured light
methods, consist in projecting on the scene a visible light
from a source with a known pattern geometry [2]. The scene
is viewed with an imaging sensor looking off the emission
axis. Knowing the position of an image point on the
detector, as well as the lateral distance between the projector
and the camera, and the projection angle of the light source,
the 3D point location can be computed.

When the light source is a spot, the acquisition time is
essentially depending on the scanning time. This is reduced
when the source produces a plane of light. Here, the range
information manifests itself in the apparent deformation of
the projected stripe.

Scanning devices may be avoided by using multistripe
structured light (a set of parallel stripes or a rectangular grid).
However, stripes does not appear in the image plane in the
same sequence as that projected. The first problem to solve is
the grid line identification. Different methods are investigated.
Boyer and Kak have tested successively a binary-encoded and
a color-encoded structured light with parallel stripes [3],[4].
The system which employs color may be restricted to
environments in which the color content of the scene is
predominently neutral. Le Moigne and Waxman have choosen
a grid of horizontal and vertical lines where additional dots are
used as landmarks to initiate the labelling process [S]. They
address several interesting issues like operating in ambient
lighting, grid pattern selection, albedo normalisation and grid
extraction. In [6], G. Hu and G. Stockman solve the "grid
line identification" like a correspondence problem by using
geometric and topological constraints. .

Several researchers have attempted to integrate active and
passive techniques in order to increase the redundancy of
informations for a more reliable world modeling (71, (8], [9).

Our work deals with the development of an inexpensive and
accurate structured light vision system which could be used
for fine localization and recognition of manufactured objects
[10]. We have choosen a stripe scanning technique for
several major reasons:

- the system can operate in ambient lighting and does not
suffer limitations of passive vision methods;

- presently, dense range images may be built in a few
seconds, if individual light stripe images are analyzed at
video rates [11]. Acquisition time may be considerably
decreased if only sparse light stripes are needed, for instance
when measuring planar faces, or when assuming that partial
information is a priori known;
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- highly accurate range measurements can be expected if the
system is correctly calibrated;

- an active 3D imaging system can produce a dense range
map which is necessary for recovering curved and complex
S 3
- the 2D light sfripe image brings interesting geometrical
information which can be used to solve efficiently the
segmentation problem without computation of 3D surface
points.

2. OVERVIEW

Different from existing solutions, our method solves the
surface identification problem by using a very general
constraint that holds in environments consisting of a jumble
of manufactured objects. We suppose that surfaces are
"regular” enough and that they can be localy approximated by
second order patches, We make the assumption that these
patches are larger than the stripe spacing given by the
scanning system.

Our approach consists of three steps (fig. 1) :

1) Image preprocessing for extracting the stripe skeleton
and locating its breaking points and curvature discontinuities
which shall correspond to patches boundaries. So, each stripe
is segmented into several fragments.

2) Tracking process for grouping 2D stripe parts that
present enough common features.

3) Shape recovery via triangulation for computing 3D
points and least square minimisation for identifying quadratic
patches. 3D construction and refinement the segmented faces
are then performed.
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Fig. 1. Processing diagram.

This paper deals only with the algorithms we have
developed to solve the two first steps. In the next section, we
briefly. describe our sensor system and the triangulation
principle used to interpret the data in a world coordinate
system. Then, we present the data acquisition and the

. algorithms developed for a preliminary processing of the light

stripe image. In section 5, we propose a new approach to the
problem of the topographic image segmentation. This 2D
image is divided into regions which correspond to surface
primitives which do not contain discontinuities in depth or in
surface orientation. Section 6 exhibits some experimental
results obtained with real scenes including multiple objects of
various shapes.

3. RANGE FROM STRIPE SCANNING
3.1 Sensor system

Our experimental setup (fig.2) includes a solid camera which
provides an image digitization and display module with a
standard video signal. Images up to 512*512*8 bits deep are
supported in all operations. This camera is equipped with a
filter which selects the red light projected on to the scene by a
HeNe laser. A cylindrical lens induces a magnification of this
light source in one dimension. A galvanometric scanner can
address and hold arbitrary angular positions of a rotating
mirror which reflects the planar source of light.

3.2 Sensor model

The range at illuminated light stripe image points can be
calculated by simple triangulation. Therefore, the sensor must
be precisely calibrated in order to obtain the parameters of the
geometrical transformation between pixel coordinates, and 3D
world coordinates.We assume that the camera optical system
performs a conical plane projection on a retina whose axis are
not necessarily perpendicular. The coordinates (x,y) in mm
of a point (u,v) in a pseudo image plane located at a unit
distance (Zc =1) from the center Oc may be expressed by :

x=l+mu+nv
y=p+qv
where 1,m,n,p,q are the intrinsic parameters of the camera.
We define a unit vector K normal to the light plane such as:

K=[cos® 0 -sin6]T

and a fixed frame R] such as:
. Y] is attached to the rotation axis,
. Z belongs to the laser plane for the position 6 =0,
. O; belongs to the plane( Xc, Yc ).

A point M (Xc¢,Yc,Zc) of the laser stripe obeys the equation:
K L] [Xc YceZc 1T =0
where [L] is the identified homogeneous transformation

matrix between R¢ and Rp.Let Lij be the (i,j) element of the
[L] matrix. It can be shown that :
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Fig. 2. Light stripe range sensor.

Zo= s6 L34-cO L14
(c6 L11-s0 L31)x+(c6 L12-s6 L32)y+(c6 L13-s8 L33)

with :
and that :

sO = sin 0 and cO=cosH,
Xc =xZc¢, Yc =y Zc.

Then, we apply the identified transformation between R
and Rg in order to compute the 3D coordinates of the point
in the reference frame

4. STRIPE IMAGE PREPROCESSING

By increasing the angle through which the mirror rotates,
the light is scanned across the scene. At each scanning step,
we obtain a grey-level image showing the scene points
illuminated by the light plane. In robotics applications, the
variable range between sensor and objects causes defocussed
images for the projected stripe. Roughness and reflectivity
variations produce large variation in peak intensities of this
stripe [2]. Moreover, ambient illumination and surface state
of the objects cause lightened pixels on the background.

In order to apply the triangulation method, we must extract
the skeleton of the projected pattern which represents the
intersection between a perfect plane and the 3D scene. A
simple thresholding of the video data cannot be used to
isolate the line. We have developed a more accurate solution
which uses a statistical analysis of the intensity arrangement
in the image. Simultaneously, breaking points which
correspond to occluding boundaries between faces are detected
and the stripe is divided into several parts. In a second step, a
more complete analysis allows us to subdivide stripe parts
including angular points and other curvature discontinuities
like bending points.

4.1 Extracting the stripe skeleton

Sensor's geometry causes the light stripe to be oriented
along the Y. axis of the camera frame (fig. 2). So, a

monodimensional processing can be used to select one pixel
on each image line.

Firstly, in order to eliminate the background noise, we
determine a minimum intensity threshold by applying a
statistical method to a set of randomly chosen image points.

On each line of the image, the intensity can be modeled by
a discrete function I(x), and the most representative pixel is
the one which receives the maximum of energy. In order to
identify and to locate accurately this unique maximum, we
convolute the I(x) function with a symmetric exponential
filter F [12] (see Appendix). Then a statistical computation
is used to reduce a possible bias on the maxima location and
to estimate the standard deviation of the signal I(x).

4.2 Locating stripe curvature discontinuities

Our aim is to approximate object faces by quadratic
models. It can be proved that the intersection of a quadric by a
plane is a conical curve whose homographic projection is
also a conic [13]. Consequently, we propose a segmentation
method that allows us to approximate the laser stripe by a set
of adjacent second order curves. To do that, it is necessary to
locate the stripe discontinuities such as :

- breaking points (zero order discontinuities) which have
been detected during the skeleton extraction,

- angular points (first order discontinuities) which result
from the junction of two planar faces,

- retrogression points (second order discontinuities) located
at the edge between two curved faces,

- bending points which correspond to zero crossings of the
curve second derivative.

We present briefly our analysis method which leads to a
reliable location of these discontinuities. Let x = £(y) be
the curve resulting from the previous processing (fig. 3a).
Noise on this curve is issued from :

- the image sampling,

- the errors involved by the skeleton extraction.

a) Computing the second derivative of L (y):

Discontinuities correspond to maxima or zero crossing of
the second derivative of L(y) . Classical differential operators
being sensitive to noise, a preliminary smoothing is
necessary. However, the smoothing filter must preserve the
accuracy of the discontinuities location . In order to satisfy
this constraint, we apply again the symmetric exponential
filter described in the appendix. This low-pass filter reduces
the truncature noise and provides a good estimate L"(y) of the
second derivative (fig.3b). We have choosen the filtering
parameters in order to preserve a 6 pixels long motif, i.e. a
period of about 4%t for L(y) .

b) Estimating the L" residual noise :

The estimated second derivative L" includes a residual noise
whose mean must be evaluated. This step is necessary to
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. Fig. 3. Laser stripe processing :
3a) Stripe profile L(y) - 3b) L"(y). computed by the symmetric
filter - 3c) L"(y) after smoothing, and its confidence interval -
3d) Discontinuity points on £(y) -

determine accurately the number of smoothing which must be
applied to L" in order to locate exactly the discontinuity
points. We thought of applying a Kalman filter to estimate a
reference for the zero crossing detection. However, the
classical use of this filtering method assumes a better
knowledge on the noise than on the signal itself. So, we have
defined and applied a qualitative method which controls the
filter. This controler uses the Student test results for updating
the predicted errors variance. With such a control, the
Kalman filter furnishes a good estimate of the noise (fig.
3c).The results obtained show that the estimated confidence
interval will be a good criterium for the segmentation.
Moreover, the computed mean error is consistent with the
noise amplitude.

) Analyzing the L" discontinuities :

The analysis of the smoothed L" signal will consist in
locating its zero crossing and its sign change, in order to
subdivide £(y) into second order approximable curves (fig.
. 3d). We have to establish a decision-making function using
fuzzy information such as :

- the smallness of L"(y)

- the straightness of a set of adjacent points of £(y).

Such information cannot be comrectly analyzed by a boolean
process. Fuzzy algebra seems suitable to make a good
decision in the sense that it preserves the analysis acuteness .
So, our curve analysis uses a fuzzy logical operation based on
the comparison between the current value of L" and those of
the previous points. This method is specially efficient on
noisy curve areas . Experiment shows that it then produces a
more complete segmentation than the one given by a simple
boolean decision.

5. STRIPED IMAGE SEGMENTATION
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5.1. The segmentation problem

Segmentation of a scene image into regions corresponding
to single shapes is one of the hardest problem in 3D vision.
Classical methods which are applied to range images can be

" divided into two groups: region based methods and boundary

based methods. Region based methods look for similarities to
group 3D points or elementary patches into surface regions.
For instance, surface normals may be considered as a
common local feature. Partitioning them involves
thresholding using a histogram analysis [14]. Boundary based
methods try to find significant changes that separate regions
by isolating discontinuities in both depth and surface
orientation. Differential geometry is often used to find region
boundaries [15]. All these segmentation techniques use dense
3D sensed data and generally need a large computation time.

We are also doing 3D sensing via structured light images.
However, we show that an efficient 3D shape segmentation
can be done without computing any 3D surface point. Our
method is based on the direct analysis of the parameters of the
projected stripes in the image frame and of their connectivity
relations. We show how it is possible to track stripe parts in
the consecutive images and to match them in order to create
regions.

5.2 Stripe parts model

Grouping similar stripe parts in homogeneous 2D regions
involve modeling these curves, and defining matching
rules.We identify each part with a simple parabolic model
which can be written :

x=ay2 + by +c

So, a curve fragment is described by the parameters a,b,c,
and their variance/covariance. Moreover, we preserve a
complete description of its two end points, i.e.:

- their image coordinates,

- a fuzzy value attached to their type (breaking, bending,
retrogression or angular point),
We also consider another fuzzy value which caracterizes the
straightness of the curve.

5.3 Matching and fusion process

The problem we address here is to "track” each curve
fragment in the sequence of images acquired when scanning
the 3D scene. Presently, we assume that the curve motion D
can be modelled by a translation and a very small rotation in
the image plane. This small rotation is first order
approximated, which allows us to keep the consistency of the
parabolic model. For each fragment of a new image, we find
which fragment might correspond to it by calculating the
distance between each parameter of this fragment, and the
corresponding parameters of the set of fragments which have
not been matched. We use the so called Battacharyya distance
[16] which takes into account the variance/covariance Aj of
the parameters. In practice, we have defined an extended



distance B between two parabolic fragments F1 and F2 which
are supposed to be locally linear :

-1 A
5=L (1122w 1. PoD) ) + L Log 1ALHA2]

with :
—— At
(20 020
oP;j oPj (i=12)
V= Ay + Ag
a; dx
Ci o
al
42 ~ T+agb)
f(P1P2,D) = - bi+ag
b2 — by + 2adx.a1 + 1+apb;

c3—c1 - (ady)2.a] + adyb] - ady

The translation components ody and ady, and the rotation
angle a.¢ represent the motion from F1 to F2 in the image
plane.

Other criteria are considered in this matching process , such
as:

- the overlapping of the fragment projections on the Y
axis which allows us to avoid the matching of similar curves
belonging to different regions, ,

- the likeness between the corresponding fragment end
points which is generally stronger in case of curves issued
from the same object face.

The decision process is controlled by a fuzzy logical
operation on the fuzzy values that we have associated to these
distances and criteria.

6. EXPERIMENTAL RESULTS

The algorithms proposed in this study have been
implemented on a PC computer and tested on indoor scenes
including planar and curved objects. Figure 4a show the
striped image of a scene superimposed on the corresponding
grey-level image. Figures 4b,...4d present some regions
extracted with the segmentation process. We have choosen
examples where the stripes exhibit many connected curve
parts in order to demonstrate the performances of our
algorithms for analyzing complex scenes. Figure 4d shows an
example where an efficient tracking can be achieved on a
cylindrical face by taking into account a rotation component
for describing the fragment motion.

W la1.47]
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Fig. 4. Segmentation results



One of the major limitation of our method is the
computation time needed by the stripe preprocessing (40 sec).
However, we think that this time can be significantly
decreased by using a dedicated hardware.

7. CONCLUSION

In this paper we have presented algorithms for solving the
segmentation problem when sensing 3D scenes with
structured light vision. The proposed method has been
successfully tested in few constrained environments, with
fixed sensors.

Presently, we are improving our shape recovery method
which uses an analytic representation. A recursive least square
identification is applied to sparse 3D measurements issued
from the matched stripes, in order to obtain a quadratic model
for each created patch [10]. We are also developping
algorithms for modeling the face boundaries.

Future extensions of this work are directed at :

- the implementation of hardware solutions for reducing
the stripe preprocessing computation time (skeleton
extraction),

- the study of cases where sensors are able to move in the
scene, in order to avoid shadow effects and to obtain a more
complete modeling. Then, the estimation of sensors motion,
and the interpretation of measurements in the same reference
frame involve using multi-sensory fusion methods for
reducing incertainty, and ensuring a coherent global model of
the world.

. APPENDIX : The symmetric exponential filter

This low-pass filter has been proposed by S. Castan and al.
{12] for an optimal edge detection in 2D images. It allows to
reduce the truncature noise and to obtain an accurate
estimation of the second derivative of a function.

Such a filter can be written :

f.(x) = C ag (1-ag) X!
=f1(x) * f2(x)
= C (fy(x)+f2(x)-aq 8(x))
where ;

* means the convolution
1

=§:§5
ag=e
ag (1-ag)* ,x20
fix) =
0 ,x<0
0 , x>0

fa(x) = —x
ag (1-ag) " ,x<0
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The first and second derivatives of f[ (x) are computed by
using the correspondent derivatives of f and f5.
For instance, an estimated second derivative of L (x) is given
by :

L"(x)=C" Lix)+l2kx)-2 L (x))
where: L1=L*f] and Lp=L*f
A recursive method is used to compute the symmetric
functions L1 and L2,
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