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Abstract 

Applied statistics are widely used in pattern 
recognition and other computing applications to find the 
most likely value of a parameter. The use of classical 
empirical statistics is based upon assumption about 
normality of underhing density distribution of data. 
When the data is corrupted by contaminated noise, then 
classical tools are usually not robust enough and the 
estimation of the mode is biased. In this article, we 
propose to estimate the main mode of a distribution by 
means of a rough histogram and we show that this 
estimation is robust to contamination. 

1. Introduction 

Statistics are widely used in different fields of computer 
science: pattern recognition, filtering, clustering, . . . 
Applied statistics deal with the application of probability 
theory to provide conclusions that are inferences based on 
observations. Statistical tools seek to deal with data 
collection and to reduce this great amount of data into few 
parameters. Computation of these descriptive parameters 
is based on the assumption that the probability of an 
event A can be approximated by the ratio of the number of 
outcomes that are favorable to A to the number of trials 
ill .  

The problem addressed here is the estimation of the 
most likely value of a real x knowing n noisy values (xi) 
(i=l . . .n). This most likely value is called the mode of the 
density function of x or mode of x. 

If the underlying distribution of x is unimodal, 
symmetric and not contaminated, then the mode of x 
corresponds to the mean of x that can be estimated by 
averaging. Computation of the average is fast and easy. It 
is widely used in data processing. 

When the data are contaminated, then the average is a 
biased estimate of the mode. Rank statistics (or L- 
estimates) are a more robust way of performing mode 
estimation [ 2 ] .  However, if the underlying distribution is 
not unimodal, then even L-estimates are biased. 

The main mode of the random variable x is the 
maximum of its density function f(x). This density 
function can be estimated by constructing a histogram 
with very small intervals. Then, the main mode is given 

to be in the interval whose associated accumulator is 
maximal. However, the size of the interval is limited by 
the number of data available because of the 
uncertaintylprecision duality. This duality can be set as 
follows: as the size of the intervals decreases, the precision 
of the detection of the mode increases while the reliability 
of the detection also decreases. 

In a previous paper [3] we have shown that distributed 
vote techniques used to build rough histograms are a way 
of coping with this uncertaintylprecision problem. In [4], 
rough histograms have been used to perform rank 
statistics bercentile estimate). 

In this paper, we propose to use approximate 
histograms to perform a precise estimation of the main 
mode of x. This precision can be obtained by 
disassociating granularity of the histogram and 
localization of the mode. The granularity of a histogram 
depends on the histogram quantization, while precision of 
the mode estimation depends on the number of data and 
its precision. 

The present paper is organized as follows. Section 2 
introduces the concept of rough histograms as a 
generalization of classical (crisp) histograms. Estimation 
of the main mode of a distribution is presented in Section 
3. Some illustrating examples are shown in Section 4. 
Finally, we provide a short conclusion and discussion on 
the possible extensions and applications of rough 
histograms . 

2. Rough histograms 

2.1. Definitions. 

Let (xi) i=1 ... N be N real random variables. 
Computing a histogram of these variables on a real 
interval I = [emin,em,,] consists of dividing this interval 
into p sub-intervals (or cells), and to count the number of 
xi that belong to each sub-interval (Fig. 1). The 
granularity A of the histogram, is equal to the cardinality 
of each sub-interval: 

ema -e . 

P 
A =  ' nun 

An accumulator A C C ~  is associated with each cell Hk: 
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N 

ACCk = C X k ( X i )  (2) 

t 
i=1 

where x k(U) is the characteristic hnction of the cell Hk.  

emin 

Fig.1: usual partition in 11 cells 

To build a rough histogram, the interval I is divided 
into (p+l) fuzzy subsets (Fig. 2). These subsets make a 
fuzzy partition of I [5] .  

emin  

Fig.2: fuzzy partition in 11 cells 

Then, the generalization of ( 2 )  is: 
N 

k = c I.1 k (.i) (3) 
i = l  

This formulation distributes the vote of xi on two 
contiguous cells. 

When the data is imprecise, this imprecision can be 
represented by replacing real values xi by fuzzy or usual 
intervals Xi. Then (2) must be reformulated as follows: 

and (3) becomes: 

(4) 

(5) 

S u p ( p ~ , ~ ~ , ( w ) }  is called the possibility of Xi 
WE R 

knowing Hk and is written II(X~;H k )  . 

2.2. Computation. 

When the (xi) are precise values, then computation of a 
rough histogram is very simple as shown here. This 
algorithm uses (p+l) cells Hk (k=O. ..p). 

The core of the cell Hh is mk = emln + 
2.k.A (A, given by formula (I), is the 
spread of the fuzzy set HL). 

The algorithm is: 

FOR EACH i 
+ IF xi < emin THEN Accp &CO+ 1. 
-+ ELSE IF xn > eman Ac$= Acq,+l. 
+ ELSE COMPUTE 6 = (xi - emin)/A, LET k = tmnc(6) 

(trunc() is the truncation function) and 5 = 6 -  k 
ACCk= ACCk+ (1 4) AND ACCk+i= ACCk+i+ 5. 

END FOR. 

Computation of rough histograms is not time- 
consuming and has a computation complexity as low as 
that of usual histograms. 

3. Mode estimation 

The granularity of a histogram depends on the x-space 
quantization. It is defined by A, the cardinality of the cells 
of this histogram ( A =  lHkl). In crisp histograms, the 
granularity limits the precision of the mode localization. 
The estimate of the main mode at granularity A is given 
by the interval H, such that Vk E [O,p] Acc k I Acc, . 
The reliability of this localization is linked to the ratio 

The granularity of a rough histogram limits its ability 
to separate two modes. The precision of the detection 
only depends on the underlying density distribution. 

Finding the main mode of the random distribution (xi) 
at granularity consists of finding an interval whose 
cardinality equals r, such that the number Acc(W) of xi 
belonging to this interval is maximum compared to any 
other interval with cardinality r. 

The idea behind main mode estimation using rough 
histogram is to estimate Acc(W) for any WcI. 

( A c c J N  1. 

3.1. Linear estimation. 

A first approach suggested in [6] consists of using 
plausibility and credibility measurements of the event 
(X€ w>: 

P 
PI( X E w) = m(H,).n(W;H k )  (6) 

Cr(XE w)= zm(Hk).N(W;Hk) (7) 

k =O 
P 

k= 0 

ACC 
N 

with m(Hk) = . 
Plausibility and credibility are respectively upper and 
lower approximations of Pr(xE W), the probability that x 
belongs to W: Pr(x E W) E [Cr(x E W),Pl(x E W)] (8) 

This probability is defined by: 
Acc(W) 

Pr(x E W) = lim - 
N-1- N (9) 

Considering (6),  (7), (8) and (9), Acc(W) is given by: 
P P 

ACCk .N(W;Hk) 5 ACC(W) 5 
k=O k =O 

ACC k.n(W;Hk) (lo) 

Acc(W) can be found to be the solution of a class of 
relatively simple linear programming problems, by using 
Dubois-Prade's theorem [6] .  

Then, finding the maximum consists of building a 
lower and upper estimation of the density function, then of 
finding the maximum using statistical reasoning with 
imprecise probabilities [ 7 ] .  
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However, this procedure is time consuming. We are 
looking for a mode detection method with a complexity 
as low as that of usual maximum detection methods. 

3.2. Pignistic estimation. 

A good estimation of the "most likely" value of 
Acc(W) can be given by the pignistic estimation of 
Pr(xE W) [SI: 

P l W n H k l  
BetP(W) = m ( H k ) .  

k= 0 

Then using (9) and (1 1) Acc(W) can be estimated by: 

2A J@ t 4- 

e nun e max 

Fig.3: Pignistic transformation 

To account for the granularity of the rough histogram, 
W has to be sought as a subset (fuzzy or crisp) whose 
cardinality is greater than A. 
Unfortunately, if W is fuzzy, then the pignistic 

p W n H  
transformation is not regular, i.e. # 1 . Thus, 

k=O lHkl 

this pignistic estimation has to be normalized. Finally, 
(1 2 )  becomes: 

3.3. Computation of the mode. 

In this section, we consider an illustrative example: W 
is a crisp interval, centered on w, whose spread is 2.A: 
W=[w-A, w+A]. Then (13) must be rewritten as: 

P i +2 
ACC(W)= ZACC k .pk = Z ACC k f i k  (14) 

k=O k=i-1 

where i is the first integer such that i I 

Let a= -i (see fig. 3) then: 

A '  
w - e  

A 

a2 p. =- 1 + 2 a - a 2  
4 I+ 2 4 

and pk=O if k E [ i- 1, i+2] 
P i + l  = 

Then, j (16) 
1 a2 (H i-l - Hi - Hi+l + Hi+2)+ 

4 i 2a.P i + l  -Hie1)+(Hi-, + 2 . H i +  H i + l )  
Acc(W)= - 

Formula (16) holds for any set W such that 
w E Ii = [emin +i.A,emin +(i+ l)A]. Then, if there is a 

subset @ such that Acc( Wi) is a local maximum, then, 
derivative of Acc(W) with respect to a must be zero. 

SO is a local maximum if 

a( Acc(W)) 
aa 

and if Acc( $J, )>Acci and Acc( )>Acci+l. 
= [emin +(ai - 1)A,emin +(ai + l)A] 

Thus, finding the main mode consists of finding ai for 
each cell of the rough histogram and select the cell H, 
with Acc(Wm)2Acc(W,) (i#m). X, the estimate of the 
mode of x, is then given by: - 
?= emin +(m+ a m ) A  (21) 

4. Application. 

In this section, we consider a simple illustrative example. 
x is a random real variable obtained by simulation of a 
non symmetric distribution with mode equal to 3.1. This 
distribution is 0.3-contaminated by a normal and a 
uniform distribution (fig. 4). 

Fig. 4: density distribution of x. 

The different parameters are: emin=- 1 5 ,  emax= 1 5 ,  p=20, 
N=200. The interval I=[-15,151 has been divided into 
~ 1 0 0 0  samples. Each sample of I is denoted wi (i=l . . .r). 
An interval Wi (y  =[wi -A,w +A]) is associated with 
every wi. 
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Acc(Wi) has been computed using three different ways: 
1) counting the number of xi that belongs to Wi 

2) computing upper and lower bounds of Acc(W;) 

3) computing pignistic estimation. 
Results of these computations are shown in fig. 5. 

(empiric density function estimate), 

using linear estimation, 

50 r 

f-? 
P .  
*v 1 :t approxunatlon 2 1 

density 

f upper and lower 

Fig. 5: superimposed density function approximation, 
upper and lower bounds and pignistic. N=200. 

As can be observed, the pignistic transformation looks 
like a smoothed estimation of empiric density estimate. 
Both density and pignistic estimations belong to the 
interval defined by upper and lower linear estimations. At 
this point, the main ddference between pignistic 
estimation and empiric density estimation is the 
computation time. Empiric density estimation requires 
r.N elementary instructions while the pignistic estimation 
only requires N+r instructions. 

Fig. 6 shows the same experiment with N=40. It can 
be seen that the overall shape of the pignistic estimation 
doesn’t change with N and looks like a quadratic 
interpolation of the histogram. 

Fig. 6: superimposed density function approximation, 
pignistic approximation and rough histogram N=40. 

Fig. 7 shows the estimation of X, mode of x, using 
averaging, ranking and histograms. Because of 
contamination, the mean and the median provide biased 
estimates, while the histogram estimate is more robust. 

5. Conclusion and discussion. 

In this paper, we have presented a method using rough 
histograms to estimate the main mode of a distribution. 
This estimate seems to be more robust than classical 
methods when the data is corrupted by contaminated 
noise. Future work will deal with extension of this 
method to n-dimensional spaces to perform movement or 
shape detection in video images. In this case, however, a 
pignistic estimation will limit the method. Computation 
of l-dimensional data implies surface calculation, n- 
dimensional data will involve hyper-volume calculation. 
In addition, the precision of the data has to be taken into 
account by associating with each cell of the histogram a 
complementary accumulator based on a conditional 
necessity measure. 

mode ot x ~ 

35 

mode 
estimate 

2 5  

2 
median estimate 

mean estimate O I  
Fig. 7: comparison between mean, median and rough 

histogram’s mode estimates. 
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