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I ABSTRACT 
This paper presents a terrain-referenced method for 

positioning an underwater vehicle equipped with a 
multibeam sonar. The local bathymetric profiles provided 
by this sensor are matched with'a digital elevation map 
(DEM). The absolute position and heading of the vehicle 
with respect to this reference map are estimated by 
correlating a part of this map with the on line altitude 
measurements. We propose an extended approach to 
the classical matching methods that takes into account 
the non regular sampling of sonar data in the correlation 
space. This technique has been successfully applied to 
real terrain data obtained from the Var underwater 
canyon (France). 

1. INTRODUCTION 
A major problem in autonomous navigation of an 

underwater vehicle 'is to' continually estimate its 
localization with respect to the environment. Different 
methods can be used to reduce the positional uncertainty 
that results from the accumulation of dead-reckoning 
errors. 

For instance, transponders can be installed on the 
seabed (long baseline system) and the vehicle position is 
estimated via a triangulation algorithm. Such a solution 
provides localization only in a limited area. In short base 
line systems, the sensor is fitted to a surface ship, which 
must follow the underwater vehicle in order to remain 
above it. It appears that these positioning methods are 
not intended for long distance navigation purposes. 

Position measurements with respect to natural seamarks 
seem to be a more appropriate solution. 

Stereovision [ I  ,2,3] or dynamic vision based on the 
analysis of monocular video images sequences are a 
very active field of search for applications to ground 
vehicle localization. Different solutions using monocular 
vision for navigation have been studied such as: optical 
flow, template matching, feature correspondence. Such 
vision techniques can be used successfully in underwater 
environments for operations involving short-range 
observations (ROV stabilization for maintenance tasks 
[4], inspection of bottom cables or pipelines, seafloor 
observation). We are interested in terrain-based 
navigation, which involves to observe the seafloor relief 
with altitude values ranging from one hundred to several 
hundred meters. Video cameras are not suited to this 
kind of application because of the lack of visibility in the 
underwater environment. 

Sonars provide sensing capabilities at greater ranges 
than those offered by video means. In the last three 
decades, significant results have been obtained with 
mapping techniques applied to seafloor inspection, 
cartography, object detection and classification [5], . . . 
Some recent works concern terrain-based navigation 
[6,7,8]. In [7,8], the data processing requires a regular 
map of the observed area, i. e. a 2D array of uniformly 
spaced altitude values. Such a local image is built by 
registering consecutive bathymetric profiles, and by 
extrapolating this original data set in order to obtain a 
regular sampling. Generally, solutions involving matching 
or features correspondence require an image 
preprocessing (filtering, segmentation, critical points 
extraction, ...) which is time consuming. The most efficient 
matching algorithms make use of attributes, which are 
invariant under size, orientation and displacement. 

In order to obtain a real time localization system, we 
have developed a matching procedure, which differs from 
previous solutions in several aspects. Firstly, it uses I D  
local measurements, which are simple bathymetric 
profiles, instead of 2D local maps, which require the 
grouping of consecutive profiles. Secondly, rough altitude 
data are correlated with the reference map without any 
preprocessing. In addition, a tracking process based on 
Kalman filtering allows to reduce the search area during 
each new localization step. 

This paper is organized as follows. In section II, the 
sonar images and the notations used for the algorithm 
presentation are briefly described. The theoretical part of 
our work is presented in section Ill. We propose an 
original solution for the matching of I D  non-regular data 
with a 2D reference map where data are uniformly 
sampled. Two approaches are described: a statistical 
approach and a fuzzy approach. In section IV, we give a 
brief a overview of the tracking algorithm used to reduce 
the size of the correlation space. The experimental 
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results presented in section V have been obtained with a 
reference map built with real terrain data from the Var 
undeyater canyon (France). 

11. SONAR IMAGES 

In our algorithm, we consider that the vehicle carrying 
the sonar follows a trajectory with a variable depth P. The 
multibeam imaging and profiling sonar acquires range 
data by successive cross sections. For each 
measurement profile, the sensor emits 59 acoustic 
beams (k  = 1 ,... , 59) separated by 1.5 degree, in a plane 
perpendicular to the track followed by the vehicle. Figure 
1 shows the acquisition geometry and specifies the 
different variables and frames, which will be used in the 
next sections. The altitude Z, of a point P, is a function of 
the range measurement pk, and of the angle of the 
beam k with a vertical axis. 

I Figure 1. Data acquisition. 

(Xo,Yo) are the position parameters of the sensor and Y 
its heading in the frame (Xref, Yref) attached to the 
reference map. 

111. NON REGULAR P A ~ E R N  MATCHING 
A. EXPECTED VALUE OF A MATCHING METRIC 

Let us go back to the definition of expected value of a 
matching metric. Let U and v be two signals to be 
compared and a matching metric. Expected value of 
(u,v) is: 

Min(1.J) 
E(a(u, v,) = c a(u, I v , )  

(1) l = 7  

where ui and 5 are discrete values of U and v, with 
(i=l ... I) and (i=1 ... J). 

With a non-regular sampling of U and U ,  equation (1) 
may be generalized as: 

where pY is the joint probability: 
PY = W U ,  = v , )  

If x and y are identically sampled (for instance, when 
matching two video images with an integer shift), pY is: 

p,,=l  i f  i = j  { p,=O i f  i z j  

which corresponds to the previous equation (1). 

In the context of this paper, data to be matched are 
respectively the depth Z, of each impact k of the sonar 
scan (kl, ..., K) for a given position of the submarine 
and TI the depth of the cells (Xj,y) of the DEM. 

Generalizing equation (2), the expected value of the 
matching metric between TI and Z, becomes: 

where (xKy,) are the estimated coordinates of point Pk 

We can use different criteria to determine the degree 
of resemblance between a bathymetric profile and a 
section of the DEM. When this criteria is a sum of 
absolute differences, (3) becomes: 

The remaining problem addresses computation of the 
joint probability: 

This probability represents the compatibility of the two 
distributions ( x , , ~ , )  on one hand and (xKy,) on the other 
hand. 

Two approaches are proposed to compute this 
probability: 

- a purely statistical approach using Mahalanobis 
distance, 

- a fuzzy approach based on generalization of 
error calculus. 

B. STATISTICAL APPROACH 

Statistical approach considers that each cell (i,]) of the 
(x,y) plane as a uniform probability density with mean 
( x , , ~ , )  and spread (dx,dy) (Figure 2). 

Pyk = pr(x~ = x k J  Y ,  = Yk ) 
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Y 

dx 'i 

Figure 2. Probability density 

The variance/covariance matrix of the vector [x,yj]' is: 

The position vector [Xk&]' of the measured point Pk is a 
function of the sensor location parameters (X, YvP, 9. If 
the errors on this expected location, and on the 
measurement ( p k , o k )  are small enough and not correlated, 
the variancelcovariance matrix of this position vector 
[ X k , Y k ] T  can be approximated by: 

where are the variances associated with 
discretization of the search space. is the variance of 
the measurement error. ae is the variance associated with 
the beam positioning error and the discretization of @ 

Mahalanobis distance between [x,,yJT and [x,y,J' is 
thus given by: 

5 

Then joint probability p ,  can be estimated with the 
Mahalanobis coefficient : 

(9) 

In fuzzy approach, error is considered as a problem of 
precision. Any variable can be considered as a fuzzy 
interval whose shape is most commonly trapezoidal. It is 
also the most neutral one. 

A "fuzzy telling" represents quantization of the DEM. 
Distributions xi and v, are supposed to be non-interactive. 
Thus each cell is associated with a pyramid-shaped fuzzy 
box (Figure 3). A fuzzy box represents the Cartesian 
product of two fuzzy intervals. The support (respectively 
the core) of the pyramid is a rectangle centered at ( x . , ~ )  
with spread (2.dx,2.dy) (respectively (dx,dy) ). 

Figure 3. Fuzzy subset associated with (x,y). 

The fuzzy subset associated with the position (xKy,) 

of the kth impact of the sonar beam is also approximated 
by a pyramid. Advanced error calculus [9] is used to 
provide both support and core. Transitions of belong 
function between support and core are supposed to be 
linear. 

xk 

Figure 4. Fuzzy subsets intersection. 

Then, possibility of interaction between each cell (iJ) 
with the measure (k )  is evaluated by intersecting the 
fuzzy subset associated with the measure and the fuzzy 
box associated with the cell (iJ (Figure 4). Therefore, a 
possibility distribution m k  is obtained : 

r.. = n ( x .  I = x  k J Y j = Y k )  

(1 0) 
rlk 

C. FUZZY APPROACH 
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This possibility distribution is then transformed into a 
probability distribution using the classical method 
described in [lo]. 

IV. TRACKING 
A tracking process based on Kalman filtering is used 

to reduce the search area during each new localization 
step. In the general case, this search area is a 4 
dimensional space (X,, Y,, yP) .  Figure 5 represents this 
area in case of a 3D space, when the depth parameter P 
is assumed to be constant. The search area is discretized 
according to the precision required by the localization 
task. For each cell of the search area we compute a 
similarity criteria between the DEM and the sonar 
measurements, according to equation (4). The most likely 
localization is supposed to be the one that minimizes this 
criterium. 

Variances mo, avo, and required in equation (7) 
are computed as functions of the parameter space 
discretization [l 11 . For example: 

dx dx 
ux=-m-- f i  446  (1 1) 

where dx is the quantization unit (figure 2). 

/-" 
Figure 5. Search area in a 30 space. 

So, the accuracy of the localization depends on the 
discretization of the search space. If the size of the unit 
cell is reduced, the precision increases together with the 
computation time. Consequently, the number of cells of 
the search area must be limited. However, if the search 
area is too small, it would not include the expected value 
of the localization. 

To reduce the influence of the parameter space 
discretization, a Kalman filter [12] is used to predict the 
vehicle localization. It provides a smooth trajectory and it 
allows us to have a better estimate of the center of the 
search area at each step. 

v. EXPERIMENTAL RESULTS 

A real reference map which is a digital elevation 
model (DEM) of the Var underwater canyon covering a 
27km by 27km zone (Figure 6) is used for this 
experimentation. The sampling interval for X and' Y is 
100m. We define a complex trajectory on this map 
(Figure 7) in a plane located at a depth R500m. We 
simulate the data acquisition along this trajectory with the 
sonar model defined in section II. The depth being 
constant, the localization space used for matching is a 3 
dimensional space defined by parameters X, Y and v/' 

The search space is arbitrarily quantized in cells 
whose size is 100m for X and Y and 0.2rad for w. The 
search area includes N,*N,,*N, cells. We arbitrarily 
choose Nx=NY=Ny . 

We present the trajectory estimations obtained with 
the two matching algorithms described in sections 111-8 
and Ill-C. The tracking is achieved with an extended 
Kalman filter, which uses non linear equations to model 
the vehicle motion. 

Figure 6. DEM of the Var underwater canyon 
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Figure 7. Sonar trajectoty 

n 
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A. MAHALANOBE DISTANCE 

Table 1 presents the average time required to 
process a bathymetric profile by using the statistical 
approach. These results have been obtained with a 
Pentium II (333 MHz). They show that the computation 
time increases significantly with the number of cells of 
the search area. 

N, *N,*N, 4*4*4 

Processing 0.2 sec 
time 

5*5*5 6*6*6 

0.39 sec 0,78 sec 

Moreover, we note that when this number is smaller 
than 6*6*6, the tracking process fails (Figures 8,9). The 
reliability of the tracking assigns lower limits to the search 
area dimensions. 
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Tracking in a 4*4*4 search area, with the 
statistical algorithm. 

, . . . . . . . , 

Figure 9. Tracking in a 6*6*6 search area, with the 
statistical algorithm. 

Table 2 gives the maximum error E,,,, and the 
average error E between the estimated and the simulated 
trajectory presented in figure 9 (when the dimension of 

the search space is 6*6*6). The average error is always 
smaller than the sampling interval in each direction about 
80m (with regard to 100m) for X and Y coordinates and 
0,13rad (with regard to 0,2rad) for These results are 
within the specifications of a subsea navigation task. 

Table 2. Accuracy of the estimated trajectory, with the 

Parameter 

statistical algorithm 

0,48 rad 

0,13 rad 

This matching algorithm based on a statistical 
approach provides accurate localization (average errors 
are smaller than the sampling interval) with fast 
computation (time is less than I s  to process a 
bathymetric profile). However this method suffers from a 
lack of robustness with respect to some input parameters 
such as the number and the size of the quantization 
intervals of the search space. This is due to the fact that 
statistic methods provide bad results with small data sets. 

B. FUZZY APPROACH 

We now present the experimental results obtained 
with the fuzzy approach. In order to compare the results 
of both methods, we use the same trajectory (figure 7). 

Table 3. Average processing time with the fuzzy 
algorithm t time 

N,*N *N 4*4*4 5*5*5 

Processing 7,9 sec 14,7 sec 

Table 3 presents the average time required to 
process a bathymetric profile by using the possibility 
theory. Once again this time doubles when one interval is 
added to each axis of the search area. We note that this 
time is greater than with the previous matching algorithm. 
About 8 seconds are necessary to find the best match in 
a (4*4*4) search area (instead of 0,2 sec). 

Table 4 gives the maximum error Emax and the 
average error E between the estimated and the simulated 
trajectory, for a 4*4*4 and a 5*5*5 search space. Once 
again, the average errors are smaller than the sampling 
interval (about 65m (with regard to 100m) for X and Y 
coordinates and 0 , l l  rad (with regard to 0,2rad) for v). 
We also note that whatever the dimension of the search 
area may be, the tracking algorithm never fails. For 
instance, on figure 10, the search area includes only 
4*4*4 cells. 



N,*N,*N,,, Parameter X Y 

4*4*4 Emax 221 m 249m 

E 66m 64m 

5*5*5 Emax 273m 209m 

E 64m 64m 

Km 
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Y 

0,33rad 

0,12rad 

0,32rad 

0.44rad 

Robotics Laboratory (La Seyne sur Mer, France) for 
providing us with real bathymetric data from the Var 
Underwater Canyon, and for their useful discussions 
during this work. 
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