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Abstract Reconstructing a signal from its observations

via a sensor device is usually called ‘‘deconvolution’’. Such

reconstruction requires perfect knowledge of the impulse

response of the sensor involved in the signal measurement.

The lower this knowledge, the more biased the recon-

struction. In this paper, we present a novel method for

reconstructing a signal measured by a sensor whose

impulse response is imprecisely known. This technique is

based on modeling the relationship between the measure-

ment and the signal via a concave capacity and extending

the convolution concept to a concave set of impulse

responses. The reconstructed signal is interval-valued, thus

reflecting the poor knowledge of the sensor impulse

response.
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1 Introduction

Deconvolution consists of reconstructing a signal from its

noisy measurements. It has numerous applications in many

scientific and engineering disciplines: recovering earth

structures in seismology (Gerver 1972), reversing optical

distortion in microscopy, deblurring satellite images

(Jalobeanu et al. 2002), tomography (Gilbert 1972;

Shepp and Vardi 1982), etc. Generally, deconvolution

involves finding a solution to a convolution equation of the

form:

mðtÞ ¼ ðh� sÞðtÞ þ bðtÞ; ð1Þ

where sðtÞ is the signal, mðtÞ its measurement, hðtÞ the

sensor impulse response and bðtÞ the measurement

error due to transmission, thermal noise, sampling,

quantification, etc. Note that bðtÞ is often referred to as a

random variable having a known distribution (usually

Gaussian). Roughly speaking, the inversion of Eq. 1 is an

attempt to find a linear deconvolution operator ��1 or an

inverse h�1 of the impulse response:

ŝðtÞ ¼ ðh��1 mÞðtÞ ¼ ðh�1 � mÞðtÞ: ð2Þ

The proposed deconvolution operator usually does not exist

as a bounded linear operator. Therefore, the solution to (1)

is not unique, may not exist and its computation can lead to

very unstable solutions. Moreover, the deconvolution

process tends to interpret noise bðtÞ in a coherent

manner, leading to artifacts added to the reconstructed

signal:

ŝðtÞ ¼ ðh��1 h� sÞðtÞ � ðh��1 bÞðtÞ; ð3Þ

where ðh��1 bÞðtÞ represents these additive artifacts. Even

if bðtÞ is nice white noise, the artifacts are not. This study

will be restricted to positive impulse responses. It should be

further extended to impulse responses having both positive

and negative values.

Instead of trying and find a continuous solution to Eq. 1,

deconvolution is usually performed in the discrete domain

(even if the convolution relation is defined in the
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ERIC Université Claude Bernard Lyon 1,

43 bld du 11 novembre 1918, 69622 Villeurbanne, France

123

Soft Comput (2012) 16:809–820

DOI 10.1007/s00500-011-0771-7



continuous domain). Discrete deconvolution consists of

solving a matrix equation of the form:

M ¼ ASþ B; ð4Þ

where M is the vector of sampled measures, S is the vector

of the sampled signal, B is a noise vector and A is a matrix

depending on the impulse response of the acquisition

system. Deconvolution thus consists of solving the matrix

equation (4) by minimizing a risk function (Kalifa and

Mallat 2003). A very common risk function is the Euclidian

distance: JAðS;MÞ ¼ jjM � ASjj2: Minimizing this risk

function leads to computing the following solution:

Ŝ ¼ AþM; ð5Þ

where Aþ is the pseudo-inverse of matrix A:
When the measurements are noisy, then performing the

deconvolution using Eq. 5 induces reconstruction artifacts.

A solution to minimize these artifacts generally involves

modifying the reconstruction criterion by adding a regu-

larizing term to limit the reconstructed signal dynamics.

Because of the complexity of the regularization or of the

high dimension of A; most reconstruction algorithms are

iterative, i.e. starting from a wrong solution, converge to a

solution that minimizes the proposed criterion. Most

approaches proposed in the relevant literature focus on

noise in the measurement and assume that the blur operator

(h or A) is known (Hudson and Lee 1998). However, since

knowledge on A generally comes from an identification

process, this hypothesis is usually violated. Moreover,

Eq. 4 is usually an approximation of the true relation. A

lack of knowledge on the blur operator is generally con-

sidered as being a measurement error (Rice 1986), leading

to biased reconstructed signals with a systematic error that

is not quantified. A conventional method for dealing with

this problem is to consider matrix A as being interval-

valued (Jaulin et al. 2001). This approach leads to guar-

anteed but not very specific inversion of the interval

extension of Eq. 4. Guaranteed means that, if the interval-

valued matrix contains the real matrix, then the signal is

included in the interval-valued reconstructed signal.

However, this method is very computationally expensive

and the guarantee relies on the ability to predict an

appropriate bound of the reconstruction error. In a previous

paper (Rico and Strauss 2010), we proposed an alternative

method that uses a capacity m to model imprecise knowl-

edge of the impulse response of a sensor. This modeling

entails a generalized convolution operator based on the

Choquet integral leading to modeling the measurement

process by a non-linear equation of the form:

½M;M� ¼ r:AmðSÞ; ð6Þ

where M (rsp. M) is the lower bound (rsp. upper bound) of

any measurement vector that should have been obtained by

using one of the impulse responses modeled by capacity m
and a real coefficient r: Modeling the imprecise knowledge

with a concave capacity has two main advantages. First, it

leads to a very specific estimate of the convex envelope of

all output signals that should have been obtained by con-

voluting the input signal with all impulse responses repre-

sented by this modeling. Second, it leads to an algorithmic

implantation whose computational complexity is as low as

that of a traditional linear convolution operation.

This paper aims at proposing an inversion scheme of

Eq. 6. More precisely, given M the actual measurement

vector, we aim at finding a specific convex set ½S; S� in

agreement with M via Eq. 6, that is find ½S; S� such that:

8S 2 ½S; S�; M 2 r:AmðSÞ: ð7Þ

This article is organized as follows: Sect. 2 presents the

framework and notations. This section is divided into six

subsections to explain how a lack of knowledge on the

impulse response can be modeled by a capacity. Section 3

presents the interval-valued deconvolution as an extension

of the Schultz iterative procedure. Section 4 presents some

illustrative experiments. Section 5 is devoted to our

concluding remarks.

2 Framework and notations

2.1 Filtering seen as an expectation operator

Let S ¼ ðsiÞi2f1;...;Ng 2 R be a real discrete signal composed

of N samples. f1; . . .;Ng will be denoted X: Filtering S

consists of convoluting the set of all sampled values with a

particular discrete function called the impulse response of

the filter h ¼ ðhiÞi2Z: In this paper, we only consider

positive impulse responses. The digital filter output is a

sequence of N sampled values denoted M ¼ ðmkÞk2f1;...;Ng:
The computation of mk; the kth output of the filter, is given

by:

mk ¼
XN

i¼1

sihk�i: ð8Þ

Let r ¼
P

i2Z hi; qi ¼ hi

r ; and q ¼ ðqiÞi2Z: q can be

considered as a discrete probability distribution defining a

probability measure P: Let qk ¼ ðqk
i Þi2Z be the probability

distribution defined by translating q : qk
i ¼ qk�i; hence Eq.

8 can be re-written as follows:

mk ¼ r
XN

i¼1

siq
k
rmi ¼ rEPk

ðSÞ; ð9Þ

where Pk is the probability measure defined by the

translated probability distribution qk and EPk
is the
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expectation operator induced by Pk on sampled values

of X: Thus, filtering a signal with a linear filter whose

impulse response is positive can be seen as an expectation

operation multiplied by a constant real value. This

operation can be presented in matrix form:

M ¼ rAPS; ð10Þ

where M and S, respectively, denote the measurement and

the input signal vector, and with AP defined by:

AP ¼

q0
0 q0

1 . . . q0
N

q1
0 q1

1 . . . q1
N

. . . . . . . . . . . .

qN
0 qN

1 . . . qN
N

2

66664

3

77775

¼

q0 q�1 . . . q�N

q1 q0 . . . q�Nþ1

. . . . . . . . . . . .

qN qN�1 . . . q0

2
66664

3
77775

ð11Þ

2.2 An interval-valued generalization

of the expectation operator

This section proposes an interval-valued generalization of

the conventional expectation operator. It sums up different

results presented in Rico and Strauss (2010). It is based on

replacing the usual probability measure by a more general

confidence measure called a capacity (see e.g. Campos

et al. 1994). The use of a capacity to represent a confidence

measure entails using a more general expectation operator

called the Choquet integral (see Choquet 1953).

This part begins with some necessary definitions and

properties concerning the capacities and the Choquet

integral.

Let X ¼ f1; . . .;Ng be a finite subset of N (which can be

considered here as a set of indices corresponding to the

signal samples), while PðXÞ is the set of all subsets of X
and V is the set all the real functions defined on X: Note

that X 2 V can also be considered as a vector X ¼
ðx1; . . .; xNÞT ; where ð:ÞT is the transposition operator.

Definition 1 A capacity m is a set function m : PðXÞ !
½0; 1� such that mð[Þ ¼ 0; mðXÞ ¼ 1; and 8A � B)
mðAÞ� mðBÞ:

Given a capacity m; its conjuguate1 mc is defined as:

mcðAÞ ¼ 1� mðAcÞ; for any subset A of X; with Ac being the

complementary set of A in X: A capacity m such that

8A;B 2 PðXÞ; mðA [ BÞ þ mðA \ BÞ� mðAÞ þ mðBÞ is said

to be concave. If a capacity is concave, its conjugate is

convex, i.e.

8A;B 2 PðXÞ; mcðA [ BÞ þ mcðA \ BÞ� mcðAÞ þ mcðBÞ:
The core of a capacity2 m; denoted coreðmÞ; is the set

of probability measures P defined on X such that

8A 2 X; mðAÞ�PðAÞ:

Definition 2 Let m be a capacity on PðXÞ; and X 2 V be a

finite positive real function, then the Choquet integral of X

with respect to m is defined by:

CmðXÞ ¼
XN

n¼1

xðnÞðmðAðnÞÞ � mðAðnþ1ÞÞÞ;

where ð:Þ indicates a permutation that sorts the xn in

increasing order: xð1Þ � � � � � xðNÞ; with subsets AðiÞ being

defined by: AðiÞ ¼ fðiÞ; . . .; ðNÞg; and AðNþ1Þ ¼ [:

The standard Choquet integral is defined for positive

functions. Since our approach is dedicated to filtering

signals that can take negative values, we will use the

standard extension of the Choquet integral (Grabisch and

Labreuche 2002).

Let X 2 V be a real function. Let us define the two real

functions Xþ 2 V and X� 2 V by: Xþ ¼ maxðX; 0Þ and

X� ¼ maxð�X; 0Þ; where 0 denotes the function equal to 0

everywhere and maxðX; YÞ denotes the point-wise maxi-

mum of X and Y : By construction, X� and Xþ are positive

real functions and X ¼ Xþ � X�:

Definition 3 Let X 2 V be a real function and m be a

capacity on PðXÞ; then the asymmetric Choquet integral of

X with respect to m is defined by:

�CmðXÞ ¼ CmðXþÞ � CmcðX�Þ:

An important result, proved by Denneberg (1994), will

be used hereafter:

Theorem 1 If m is a concave capacity on PðXÞ; then

for all X 2 V; �CmcðXÞ ¼ infP2coreðmÞ EPðXÞ and �CmðXÞ ¼
supP2coreðmÞ EPðXÞ; where EP is the standard expectation

based on the probability measure P:

Thus, if m is a concave capacity, then 8X 2 V and 8P 2
coreðmÞ we have �CvcðXÞ�EPðXÞ� �CvðXÞ: The interval-

valued extension of the expectation operator we propose is

based on this property.

Definition 4 Let m be a concave capacity defined on PðXÞ
and X 2 V be a real function on X; then the imprecise

expectation of X with respect to m is defined by:

EmðXÞ ¼ ½ �CmcðXÞ; �CmðXÞ�:

1 The conventional �m notation will not be used in this paper so as to

make the equations below more easily understandable.

2 In Schmeidler (1989) the core is defined for a convex capacity. Our

definition coincides with the definition proposed in Denneberg (1994)

considering its conjugate (concave) capacity.
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Based on Theorem 1, this extended expectation operator

satisfies the property: 8P 2 coreðmÞ;EPðXÞ 2 EmðXÞ: It is

an extension since a probability measure is simply an

additive capacity (i.e. a capacity that is concave and con-

vex) and the imprecise valued expectation coincides with

the usual precise valued expectation when the considered

capacity is a probability measure: EP ¼ EP: See Rico and

Strauss (2010) for more details.

We will also need to consider an extension of this

interval-valued operator to interval-valued functions. Let

IV be the set of all interval-valued functions on X: ½X� 2 IV

can be seen as an interval-valued vector defined by: ½X� ¼
½x1; x1�; . . .; ½xN ; xN �
� �T

where 8i; ½xi; xi� is a real interval

denoted ½xi�:
Such an interval valued vector can also be defined by

two real vectors X ¼ x1; . . .; xN

� �T
and X ¼ x1; . . .; xNð ÞT :

We will thus denote an interval-valued vector ½X� by:

½X� ¼ ½X;X�:
The standard precise valued expectation operator can be

easily extended to interval-valued functions (see Dubois

2006), i.e. with P being a probability measure on X and

½X� ¼ ½X;X� 2 IV being an interval-valued function, then

EPð½X�Þ can be defined by: EPð½X�Þ ¼ ½EPðXÞ;EPðXÞ�:
It verifies: 8Y 2 ½X�;EPðYÞ 2 EPð½X�Þ and 8W 2
EPð½X�Þ; 9Y 2 ½X� such that W ¼ EPðYÞ:

The asymmetric Choquet integral is an increasing function,

thus if m is a concave capacity: X�X entails �CmcðXÞ� �CmðXÞ:
The imprecise valued expectation we propose can thus be

easily extended to an interval-valued function by considering

the union of all precise valued expectations: 8½X� 2
IV;Emð½X�Þ ¼

S
P2coreðmÞ EPð½X�Þ: Computation of this inter-

val-valued expectation takes advantage of the fact that the

asymmetric Choquet integral is increasing.

Definition 5 Let m be a concave capacity on PðXÞ and

½X� ¼ ½X;X� 2 IV be an interval-valued function on X; then

the imprecise expectation operator of ½X� with respect to m
can be computed by: Emð X½ �Þ ¼ ½ �CmcðXÞ; �CmðXÞ�:

Proof with m being concave, for all P 2 coreðmÞ; we

have 8½X� 2 IV ;EPð½X�Þ � ½ �CmcðXÞ; �CmðXÞ� which entailsS
P2coreðmÞ EPð½X�Þ � ½ �CmcðXÞ; �CmðXÞ�:

Now let m 2 ½ �CmcðXÞ; �CmðXÞ�; as 8X 2 V ; �CmcðXÞ ¼
infP2coreðmÞ EPðXÞ and �CmðXÞ ¼ supP2coreðmÞ EPðXÞ; there are

two probability measures P0 and P1 2 coreðmÞ such that

EP0
ðXÞ�m�EP1

ðXÞ: Now there are two cases. Either

EP0
ðXÞ�m�EP0

ðXÞ and then ½ �CmcðXÞ; �CmðXÞ� �S
P2coreðmÞ EPð½X�Þ and the property is verified. Otherwise

EP0
ðXÞ\m�EP1

ðXÞ and, due to the continuity, 9P2 2

coreðmÞ such that m ¼ EP2
ðXÞ: In this case, 9P 2 coreðmÞ

such that m 2 EPð½X�Þ which concludes the proof. h

2.3 Interval-valued vector arithmetic

The Minskowski addition is the natural generalization of

the conventional addition of real vectors to real interval-

valued vectors. Let þ be the conventional addition between

vectors, i.e. 8X; Y 2 V; Z ¼ X þ Y means that 8n 2 X;
zn ¼ xn þ yn: Let ½X� ¼ ½X;X� and ½Y� ¼ ½Y; Y � be two

interval-valued vectors, then their Minkowski addition

½Z� ¼ ½X� 	 ½Y� is defined by:

½Z� ¼ ½X� 	 ½Y� ¼ ½X þ Y ;X þ Y�: ð12Þ

A dual extension of the addition of real vectors can be

defined under the name dual Minkowski addition by:

½Z� ¼ ½X�� ½Y�
¼ minðX þ Y;X þ YÞ;maxðX þ Y ;X þ YÞ
� �

; ð13Þ

where the minðA;BÞ operator (resp. maxðA;BÞ) is the

pointwise minimum (resp. maximum) of two vectors A and

B: This dual addition is defined according to the previous

one in the sense that it is the point-wise solution of a set of

two equations involving the Minkowski addition, i.e.:

½X� ¼ ½Z� 	 ½�Y� and ½Y� ¼ ½Z� 	 ½�X�: In fact, when

considering the nth coordinates of these two equations,

only one of the obtained equations ½xn� ¼ ½zn� 	 ½�yn� and

½yn� ¼ ½zn� 	 ½�xn� has a solution and it is given by

½zn� ¼ ½xn�� ½yn�:

2.4 The Schultz iterative procedure

As explained in the introductory part of the paper, the least

squares inversion of Eq. 4 can be obtained by computing

Aþ the pseudo-inverse of the matrix A : Ŝ ¼ AþM: Ŝ is

the standard solution of the regularized equation ðAT AÞS ¼
AT M: In fact, if matrix AT A is well conditioned and

of reasonable size, then Aþ can be computed by Aþ ¼
ðAT AÞ�1AT : Recursive procedures like the Gréville algo-

rithm can also be used. Conversely, if ðAT AÞ is ill-condi-

tioned or if its size is too huge, then the direct estimation of

Ŝ by computing Aþ has to be replaced by other procedures.

One of these methods is the Schultz iterative procedure

(often called the Hotelling iterative procedure, see Herz-

berger and Petkovi (1990)). This method has been exten-

sively used for inverting ill-conditioned problems, e.g. for

tomographic reconstruction (Gordon et al. 1970). Starting

from a wrong solution (e.g. S0 ¼ 0), the Schultz procedure

iteratively corrects this value and converges towards the

least squares solution. The computation of the Schultz

procedure is given by:
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Siþ1 ¼ Si þ RðM � ASiÞ; ð14Þ

where Si is the estimation of S at the ith iteration and R is

an estimate of the pseudo-inverse matrix Aþ: Such an

approximation can be obtained by: R ¼ kDAT ; where D is

the diagonal matrix composed of the inverse elements of

the diagonal elements of ðAT AÞ and k is a positive real.

The convergence of Si towards Ŝ is known to be slow but

is guaranteed for k 2 ð0; 1� (Eggermont and Herman

1981).

In this article, we aim at inverting a non-linear interval-

valued measurement equation of the form of Eq. 6. Our

proposition is to extend the Schultz iterative procedure

to this interval-valued equation. This extension needs a

partial re-interpretation of the Schultz iterative proce-

dure including considering set additive and subtractive

operations.

2.5 Matrix A and the impulse response h: a continuous

to discrete relation

Usually, when considering that the sampling frequency is

very high as compared to the highest frequency of the input

signal, matrix A involved in Eq. 4 can be defined by the

sampled values of the continuous impulse response h: Let

T be the sampling period, then matrix A is defined by:

A ¼ rh:AP ð15Þ

where rh ¼
P1

i¼�1 hðiTÞ; 8i; qi ¼ r�1
h hðiTÞ; then AP is

the matrix defined by (11) and P is the probability measure

associated with ðqiÞi2Z:
However, this situation is not very realistic. Even ana-

log-to-digital converters with a high sampling frequency

have a non-negligible impulse response, since the mea-

surement consists of integrating the signal over a short

period. Thus the relation between the continuous and the

discrete model is better modeled by a sampling kernel j
(Unser 1999). Within this new modeling, the values hðiTÞ
in Eq. 15 have to be replaced by ðh� jiTÞð0Þ; with jiT

being the kernel j translated in iT and defined by: jiTðtÞ ¼
jðiT � tÞ (Loquin and Strauss 2008) and � being the

convolution operator. When the conversion is considered

as being transparent, then we consider h� j instead of h in

the digital signal processing, which can lead to a conse-

quent bias, particularly in iterated signal processing or

inversion.

Finally, matrix D used in the Schultz procedure (Eq. 14)

to define an approximation of matrix Aþ will be simply:

D ¼ 1P1
i¼�1 h2ðiTÞ

:IdN ; which can be approximated by

D ¼ r�2
h :IdN ; with IdN being the N 
 N identity matrix.

Thus, matrix R is given by R ¼ kr�2
h AT :

2.6 Imprecise filtering

As noted in Sect. 2.1, when the impulse response of the filter

is positive, then the filtering procedure can be seen as a linear

aggregation. Let us consider Eq. 9. Let m be the concave

capacity dominating P; i.e. the probability measure induced

by q; thus the capacity mk; which is the capacity m translated

in k; dominates Pk;which is the probability measure induced

by qk: Therefore, by simply substituting EPk
by Emk

in Eq. 9,

we thus define an imprecise filtering process by:

½mk;mk� ¼ rEmk
ðSÞ: ð16Þ

This operator satisfies the following property: mk ¼
rEPk
ðSÞ 2 ½mk;mk�:

Let us now suppose that the impulse function is known

but that the kernel that ensures the continuous to discrete

interplay is unknown. In that case, it is possible to define a

capacity whose core is the set of all discrete kernels that

would have been obtained by convoluting a sampling

kernel with the known continuous impulse response. How

this capacity is built is explained in Rico and Strauss

(2010).

Let us define ½M� the interval valued vector by: ½M� ¼
ð½m1;m1�; . . .; ½mN ;mN �Þ; then all imprecise filtering oper-

ations defining ½M� can be denoted by:

½M� ¼ rAmðSÞ: ð17Þ

As the asymmetric Choquet integral is an increasing

function, this imprecise filtering operator can be easily

extended to interval valued input signals by simply

replacing S (the precise-valued vector) by ½S� (an interval-

valued vector): ½M� ¼ rAmð½S�Þ; which is a condensed

notation for: 8k 2 X; ½mk;mk� ¼ rEmk
ð½S�Þ:

In the same manner, we defined coreðmÞ as a convex set

of probability measures, we define coreðAmÞ as the set of all

linear operators associated with a matrix AP (Eq. 11) where

P; the probability measure induced by q; belongs to coreðmÞ:
We also define mT as being the capacity that dominates qT ;

the probability distribution that induces the probability

measure associated with the matrix AT
P (qT

i ¼ q�i).

3 Interval-valued deconvolution

In this section, we propose to try and invert in a certain

sense the linear equation (17) by extending the Schultz

iterative procedure. The non-linear iterative procedure we

obtain is based on an alternative interpretation of Eq. 14.

This interpretation means that, at the ðiþ 1Þth iteration, the

best estimate of Di; which is the additive update of Si to

obtain an estimate Siþ1 closer to Ŝ than Si; is given by:
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Di ¼ RðM � ASiÞ ¼ Siþ1 � Si: ð18Þ

In other words, Siþ1 is the solution of Eq. 18. By

construction, A ¼ rhAP and R ¼ kr�2
h AT ; thus:

Di ¼ kr�2
h :AT

P:ðM � rhAPSiÞ: ð19Þ

3.1 Definition

Let M be the actual measured vector. In the same way as

the Schultz iterative procedure builds a sequence of esti-

mates Si such that ASiþ1 is closer to M than ASi; we aim at

building a sequence of interval-valued estimates ½Si� such

that rhAmð½Siþ1�Þ is closer to M than rhAmð½Si�Þ: We aim at

obtaining a solution ½S� ¼ ½S; S� ¼ limi!1½Si� that corre-

sponds to the convex hull of all the least squares solutions

of krhAPðSÞ ¼ M with P 2 coreðmÞ:
The principle of the solution we propose is very simple.

Let ½Si� be the estimated interval at the ith iteration. We can

thus compute the interval ½Mi� ¼ ½Mi;M
i� which is a spe-

cific as possible convex hull of all the values rhAPðSÞ with

S 2 ½Si� and P 2 coreðmÞ by: ½Mi� ¼ rh:Amð½Si�Þ:
Let ½Di� ¼ kr�2

h AmT ðM�rhAmð½Si�ÞÞ: By construction,

½Di� ¼ fD¼ kr�2
h :AT

Q:ðM�rhAPSÞ;S2 ½Si�;P;Q2 coreðmÞg:
A first approach to generalize the Schultz procedure

would consist of setting ½Siþ1� ¼ ½Si�	 ½Di�: This solution

is not appropriate since the use of the Minkowski addi-

tion 	 would lead to a sequence of interval-valued

solutions whose length increases with the iterations. The

obtained solution would be completely non-specific, and

therefore uninformative. Based on the interpretation we

gave on the Schultz procedure, we can say that ½Siþ1� is

the set of all solutions of D¼ S�B either for all B2 ½Si�
and at least one D2 ½Di� or for all D2 ½Di� and at least

one B2 ½Si�: Considering each coordinate, this interpre-

tation gives:

8s 2 ½siþ1
k �;

�
8b 2 ½si

k�; 9d 2 ½di
k�Þ or

�
8d 2 ½di

k�; 9b 2 ½si
k�
�

such that d ¼ s� b;

with ½ak� being the kth coordinate of a vector ½A� 2 IV ; that

is ½siþ1
k � is the solution either of ½di

k� ¼ ½siþ1
k � 	 ½�si

k� or of

½si
k� ¼ ½siþ1

k � 	 ½�di
k�: As shown in Sect. 2.3, the solution of

this set of equations is given by ½Siþ1� ¼ ½Si�� ½Di�:
Practically speaking, the convergence of this method

highly depends on the value of the real factor k: Contrary to

the precise-valued case, the convergence does not seem to

be achieved for any value of k in ð0; 1�:
In iterative-inversion procedures, the question often

arises as to when to stop the iterative process (i.e. how to

detect the convergence)? For precise-valued estimations,

one possible criterion is the distance between M and ASi:

When the equation has an exact solution, then jjM � ASijj
can be compared to the computation precision in order to

stop the process. However, when the process is noisy

because the measurements are noisy or because the model

is imprecise then after a convergence period, the estimated

value diverges from the ‘‘true’’ value.

In the interval-valued case we propose, there is another

answer to this question. In fact, if the noise comes only

from the imprecision of the model (i.e. the phenomenon

we model) then a kind of adequacy convergence can

be easily detected by the fact that, for certain iterations

i;M 2 ½Mi;M
i�:

Since we have ½Mi;M
i� ¼ rh:Amð½Si�Þ; according our

construction, ½Mi;M
i� is the union of all the values rhAPS

with S 2 ½Si� and P 2 coreðmÞ: So a simple interpretation of

the adequacy convergence criterion is: there is at least one

P in coreðmÞ and one S in ½Si� such that M ¼ rhAPS:

Stopping the reconstruction when the adequacy conver-

gence is reached means that there is a solution in the

obtained interval-valued reconstructed signal that corre-

sponds to an impulse response in the considered set of

impulse responses.

3.2 Properties

Definition 6 The interval-valued inversion process is said

to be adequacy convergent if there is an index p such that

M 2 ½Mp;M
p�:

Proposition 1 The adequacy convergence defined in

Definition 6 is equivalent to 9p 2 N such that 0 2 ½Dp�;
with 0 being the vector equal to 0 everywhere.

Proof

– If, for an index p;M 2 ½Mp�; thus 9S 2 ½Sp� such that

9P 2 coreðmÞ such that M � rhAPðSÞ ¼ 0: Note now

that AmT ð0Þ ¼ 0 implies 0 2 ½Dp�:
– If, for an index p; 0 2 ½Dp� then, for each coordinate

k; 9P 2 coreðmÞ and 9S 2 ½Sp� such that B ¼ rhAPS and

mk � bk ¼ 0 and thus M 2 ½Mp�:
h

Definition 7 The interval-valued inversion process is said

to be completely adequacy convergent if there is an index p

such that 8i� p;M 2 ½Mi;M
i�:

Proposition 2 The complete adequacy convergence is

equivalent to 9p 2 N such that 8i� p 0 2 ½Di�; with 0 being

the vector equal to 0 everywhere.

Proof For this property, the equivalence proved in

Proposition 1 is satisfied for all indexes i� p: h
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The non-linear inversion process we propose leads to a

sequence of intervals. Convergence of this sequence to its

interval-valued limit is the solution of Eq. 17, and corre-

sponds to what we call the complete convergence of the

process.

Definition 8 The interval-valued inversion process is said

to be completely convergent if there is an index p such that

8i� p; ½Siþ1� ¼ ½Si�:

Note that if p exists such that ½Spþ1� ¼ ½Sp� then for all

i� p we have ½Siþ1� ¼ ½Si�: Complete convergence of the

iterative inversion procedure implies the adequacy con-

vergence and more precisely we have the following result.

Proposition 3 The following assertions are equivalent:

– 9p such that ½Spþ1� ¼ ½Sp�
– ½Dp

k � the k-th coordinate of ½Dp� is either 0 or the

interval centred on 0 with a radius twice the radius of

½Sp
k �:

Proof If 9p such that ½Spþ1� ¼ ½Sp� then ½Sp� is solution of

the equation ½X� ¼ ½X�� ½D�:

For each coordinate k; the previous condition entails

either ½dk� ¼ ½xk� 	 ½�xk� or ½xk� ¼ ½xk� 	 ½dk�:

– If ½dk� ¼ ½xk� 	 ½�xk� ¼ ½xk � xk; xk � xk�; then ½dk� is

an interval centred on 0: Moreover, the radius3 of

interval ½dk� is twice the radius of interval ½xk�:
– If ½xk� ¼ ½xk� 	 ½dk� ¼ ½xk � dk; xk � dk�; then dk ¼

dk ¼ 0:

Reciprocally, if ½Dp
k � is either 0 or the interval centred

on 0 with a radius twice the radius of ½Sp
k � then, using

the equation ½Siþ1� ¼ ½Si�� ½Di�; the first assertion is

satisfied. h

Note that complete convergence entails adequacy com-

plete convergence.

This implication scheme cannot be reversed. In fact, if

for a particular iteration p; 0 2 ½Dp� (i.e. adequacy conver-

gence) due to the dual Minkowski operator, the fact that

0 2 ½Dpþ1� cannot be guaranteed. In the same way, com-

plete adequacy convergence does not lead to complete

convergence, i.e. the fact that there is an iteration p such

that 8i� p 0 2 ½Di� does not imply that the imprecision of

the interval valued reconstructed signal is constant. The

conditions that both signal and capacity have to fulfill to

achieve one of these convergences of the algorithm (ade-

quacy, complete adequacy, complete) require further study.

4 Experimentation

The two experiments we propose aim at illustrating the

different properties we mentioned and highlight a certain

number of other properties. These experiments are based

on simulating a signal acquisition via a sensor whose

discrete impulse response has been identified but with no

information about the sampling kernel ensuring the con-

tinuous to discrete interplay. The discrete impulse response

of the sensor is depicted in Fig. 1. The signal whose

measurement is simulated is made of a weighted sum of 10

sine waves whose frequencies were randomly chosen. The

signal we process is of high dimension (100,000 samples)

to comply with the hypothesis that the pseudo-inverse

cannot be easily computed. The figures we present here

only plot 10% of the signals.

We model the fact that the sampling kernel is unknown

using a capacity constructed with the procedure defined in

Rico and Strauss (2010). In addition, we compute 40 dif-

ferent discrete impulse responses while hypothesizing 40

different sampling kernels. We reconstruct an imprecise

valued estimate of the signal using our interval-valued

iterative procedure and 40 precise-valued estimates of the

signal using the conventional precise valued least squares

iterative procedure. 50 iterations of the reconstructing

processes were performed.

4.1 Experimentation with no random noise

Within the first experiment, the measurement process is

supposed to be free of random variations, i.e. the mea-

surement noise is only due to the fact that the sampling

kernel is unknown. Figure 2 shows the superposition of

the interval-valued reconstructed signal (blue-upper, red-

lower) with the true signal (dotted black) and the 40

precise least squares reconstructions using the 40 different

discrete impulse responses (cyan). In Fig. 2a, all the

reconstructed signals seem identical. Figure 2b plots a

zoomed detail of this superposition. As can be seen in this

last figure, all precise-valued reconstructed signals are

included in the imprecise valued reconstructed signal. This

property is true for any iteration of the reconstruction

process. It is the main motivation for this work, i.e. to be

able to derive an interval-valued reconstruction process

that includes all precise-valued reconstruction processes it

models.

This inclusion has not yet been mathematically proven.

If this property holds whatever the signal, it can be con-

sidered as a kind of robustness of the inversion process

since, if the lack of knowledge on the impulse response of

the sensor is properly modeled by the capacity (i.e. 9P 2
coreðmÞ such that M ¼ rhAPS), then the inclusion of the

signal in its interval-valued estimate seems to be

3 With ½x� ¼ ½x; x� being a real interval, its radius is defined by

radð½x�Þ ¼ 1
2
ðx� xÞ:
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guaranteed. Moreover, within this random-noise free

experiment, the true signal is included in the interval-val-

ued estimate of the signal while none of the 40 precise

estimates of the signal have converged to the true signal.

Inclusion of the true signal in its imprecise estimate is

measured by computing the proportion of signal samples

that are included in its interval valued reconstruction

during the reconstruction process. The value of this pro-

portion for each iteration is plotted in Fig. 3.

The criterion to be minimized is the distance between

the measurement vector M and the modeled measurement

of the interval valued reconstructed signal. As can be seen

in Fig. 4, this imprecise measurement includes the mea-

surement vector and all precise measurements of the 40

precise valued reconstructed signals.

We also compute the proportion of measurement sam-

ples that are included in the imprecise measurement for

each iteration. The value of this proportion versus the

iterations is plotted in Fig. 5. Within this experiment, what

we call complete adequacy convergence is obtained after

less than 10 iterations. The number of iterations that are

necessary to obtain this convergence is not a constant of the

method and varies with the experiments. Note however,

that in a noise-free context, this convergence also corre-

sponds to the total inclusion of the true signal in the

interval-valued reconstructed signal (see Fig. 3).

Finally, Fig. 6 plots variations in the interval valued

estimate mean imprecision (i.e. the mean of the interval

valued estimate length) versus the iterations. It can be

easily seen that this mean imprecision converges (which is

true when the number of iterations tends to infinity).

4.2 Experimentation with random additive noise

The second experiment is performed by adding centered

Gaussian random noise with a standard deviation of 0.8 to

the measurement samples, i.e. the signal-to-noise ratio is

about 50 dB.

When the measurement is noisy, then the reconstruction

cannot be exact. In this case, the Schultz procedure con-

verges towards the least squares solution. Moreover, as

usual, the reconstructed signal diverges from the true sig-

nal, since this procedure is not regularized. In this experi-

ment, the divergence occurs after 20 iterations, as

illustrated in Fig. 7. The measurement samples are also not

included in their interval-valued estimates, as illustrated in

Figs. 8 and 9.

When variations in the measurements are not accounted

for by the capacity-based imprecise representation of the

discrete impulse response, which is the case here, the
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Fig. 2 Interval-valued reconstructed signal (blue upper, red lower)

superimposed with 40 precise-valued reconstructed signals (cyan) and

the original signal (dotted black), without additive random noise

(b detail of the superposition) (color figure online)
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desired inclusion property is no longer ensured. In fact,

after a certain number of iterations, the least squares

solutions obtained when considering impulse responses

that are dominated by the considered capacity are no longer

completely included in the interval-valued reconstruction.

As a matter of fact, the inclusion property seems to be

linked with least squares convergence and divergence, as

illustrated in Figs. 7, 10 and 11. Figure 10 plots the inter-

val-valued reconstructed signals superimposed with 40

precise-valued reconstructed signal after 15 iterations of

the reconstruction process. For 15 iterations, the inclusion

property is verified (but the true signal is not included in

the interval-valued reconstructed signal). Figure 11 plots

same superposition after 2,000 iterations of the recon-

struction process. In that case, every least squares solution

has completely diverged and is far from the true signal.

This divergence is illustrated in Fig. 7: after 18 iterations,

the number of signal samples included in the interval-val-

ued reconstruction decreases when the number of iterations

increases. On the other hand, the 40 precise estimates of the

measures are always included in the imprecise estimate of

the measures whatever the number of iterations (see Figs. 8

and 12).

A way to regularize an iterative reconstruction process is

to stop a non-regularized iterative reconstruction process

when a convergence criterion is verified. However, finding

a robust criterion to achieve this interruption is still an open

problem (Mariano-Goulart et al. 2007). Within our inter-

val-based reconstruction process, a very simple regulari-

zation can be achieved by stopping the reconstruction

process as soon as the inclusion of the measurement in the

interval valued estimate of the measurement is stabilized

(which is obtained here after the 18th iteration—see

Fig. 9). Figure 13 seems to show that the mean length of

the interval-valued estimate is also stabilized after 18
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iterations. This interpretation is wrong. In fact, the mean

length of the interval-valued estimate slowly increases with

the iterations, highlighting the fact that the modeling is not

suitable for this problem (since the least squares process is

not regularized).

Moreover, the fact that the adequacy convergence is

never verified (see Fig. 9) can be considered as a criterion

for detecting poor conditioning of the considered inverse

problem. When continuing the reconstruction process, the

interval-valued estimate of the measurement tends to

include the measurement while its imprecision slowly

increases, as illustrated in Fig. 12. At the same time, the

interval-valued estimate of the signal diverges from the

true signal by adding artifacts (see Fig. 11). Knowledge on

the measurement noise can perhaps be included by con-

sidering the measured samples as being interval valued

(with the interval valuation accounting for a known con-

fidence interval).

As a last remark, it can be experimentally highlighted

that the noise-quantification ability of this kind of method,

as mentioned in Loquin and Strauss (2009), seems to

apply. That is, the imprecision of the interval-valued

estimate is a marker of the impact of the measurement

noise on the estimation. This last interesting property

should be experimentally and mathematically studied in a

future work.

5 Conclusion and discussion

When reconstructing a signal from its measurements using

a deconvolution process, the fact that the impulse response

of the acquisition system is ill-known is barely considered.

Most papers focus on the measurement random noise. In
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Rico and Strauss (2010), we have proposed a very simple

modeling of this ill knowledge by considering a whole

convex set of imprecise responses and replacing the precise

convolution operation by an imprecise convolution opera-

tion. The obtained imprecise output is simply the convex

hull of all outputs that should have been obtained by a

precise convolution operator with different modeled

impulse responses. In this paper, we have proposed an

inversion of this model, which leads to an imprecise esti-

mate of the original signal knowing its measurement and a

set of possible impulse responses of the sensor. A certain

number of properties of this procedure have been proved

while others have just been highlighted via some

experiments.

This pioneer work leads to more questions than answers.

For example:
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superimposed with 40 precise-valued reconstructed signals (cyan) and

the original signal (dotted black), with additive random noise (b detail
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– Is the reconstructed signal the most specific one that

verifies the desired properties?

– Can this approach be extented to impulse responses

having positive and negative values?

– What is the relation between this kind of method and

the usual guaranteed interval-based approach?

– Is it possible to also consider that the gain in the

impulse response is also imprecise?

– Is it possible to consider any concave capacity?

– Is it possible to add a regularization in this procedure

and thus decrease artifacts due to random noise?

– Is it possible to account for knowledge on the random

measurement noise?

It should now be of prime importance to test this kind of

deconvolution in applications, in order to see wether such

an interval base approach leads to improvement in signal

analyses or not.

Moreover, if it appears that solving this kind of problem is

instrumental in signal processing applications, it would be

relevant to envisage other generalizations. In fact, in the

precise valued linear signal processing context, deconvolving

using the Schultz iterative procedure is neither the most

effective nor the fastest solution. Other methods could be

used like a singular value decomposition of matrix AP with

zeroing the smallest eigenvalues, or an expectation-maxi-

mization strategy based on an appropriate cost function. Such

approaches have been successfully used for inverting mea-

surement equations involving interval-valued matrices. Our

modeling of the measurement equation does not come within

this framework, so extending the singular value decomposi-

tion approach would require reinterpretation of the concept of

eigenvalues and/or eigenvectors. Extending the expectation-

maximization approach requires an appropriate cost function

and a generalization of the corresponding iterative algorithm.

Thus, the global problem remains open. What we have

proposed here is just a convenient, effective and simple

solution.
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