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ABSTRACT 

Most papers dealing with data fusion try to use a 
single tool to provide the "best" estimation. But, as 
pointed out by Prade and Dubois [DUB 881, most tools 
dealing with imperfect information aim at different 
purposes. In a previous paper [STR 961, the Guess filter 
has been presented. This filter aims at using three 
different error theories together to obtain an estimation 
that combines robustness, accuracy, reliability and easy 
setup. Possibility theory handles precision, statistical 
theory is used to reduce uncertainty, and rough sets 
theory allows a robust and easy computation of the 
resulting filter. In the Guess filter, data are represented as 
a possibility distribution. Because of this representation, 
data issued from different sensors can be combined at 
both high and low level. Fusion at a low-level takes 
advantage of redundancy to reduce the overall uncertainty 
and thus to increase accuracy. Fusion at a high-level 
reduces the influence of inadequacy in data modeling. 
This method has been implemented on a submarine 
robot. Experimental results are presented. 

I. INTRODUCTION 

Even if a great amount of papers has been written on 
multi-sensor fusion, the problem still seems to be open. 
Actually, the proliferation of inexpensive sensors and the 
increasing complexity of the tasks to be executed by the 
robots lead to the need for an accurate and reliable 
information provided by perception systems. 

The so-called data fusion process is a suitable way of 
improving both accuracy and reliability of sensor 
information. It consists of combining several 
measurements provided by different sensors (or by  the 
same sensor at different instants) into a unique 
assessment. This process leads to the reduction of the 
intrinsic limitation of each sensor. Therefore, a key- 
point of every data fusion process is error handling. 

What is error? According to signal processing, it is 
something that is not the information to be recovered. In 
fact, error in measurement can be divided into three basic 
categories: uncertainty, inaccuracy and inconsistency. 

If a measurement is corrupted by uncertainty, it 
means that there is a lack of certainty for this measure to 
be in accordance with the information to be recovered. 
As an example, if the measurements provided by an 
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accelerometer vary although the sensor is not moving, 
then these measurements are uncertain. 

On the contrary, an inaccurate measurement is in 
perfect accordance with the information under 
consideration. The lack of precision is due to sensor 
limitations. For instance, the precision of a 
measurement provided by a LASER range-finder is limited 
by the fact that electronic processes are used to measure 
light speed information. 

Finally, inconsistency refers to the usefulness of a 
sensor to get an information due to its environment or to 
its own limitation. For example, an inclinometer cannot 
give an information related to its inclination when this 
inclination exceeds its measurement range. It is also 
unable to give a proper measurement when the robot 
undergoes an acceleration. 

Data fusion seems to be able to cope with most of 
those problems. In fact, a consensus between several 
sensors can reduce uncertainty. Precision can be increased 
by combining the domain of several measurements. 
Moreover, limitation of a sensor can be palliated by the 
aptitude of another sensor. 

Several mathematical tools are available to handle 
errors in measurements. During the last ten years, 
probabilistic theory has been widely used to perform data 
fusion. The core of those techniques is to use the past 
knowledge about the occurreince of an event to infer the 
chance of occurrence of a similar event in the future. As 
voting procedures, they are rather concerned by 
uncertainty. Conversely, set-based techniques deal with 
(un)precision. In this framework, measurements are 
considered as sets containing the information. Handling 
measurements consists of set operations like union, 
intersection or volume approximation. Union provides 
the most reliable set while intersection provides the 
most accurate set that is supposed to include all or part 
of the information to be recovered. 

Demster-Shaffer belief theory provides a formalism 
able to deal with both sets and confidence measurement. 
As a drawback, using this technique does not allow to 
handle properly situations where severe conflict occur. 
Moreover, knowledge on data has to be available in 
numerical values. 

Fuzzy sets seem to be a miore general framework to 
deal with precision and certainty. Indeed, a fuzzy sub-set 
can represent a precision domain while possibility 

0-7803-3796-4/97/$10.0001997IEEE 1593 

mailto:Olivier.Strauss@lirmm.lir".fr


FUZZ- I EEE'97 

theory, that ensue from fuzzy sub-set theory, deals with 
uncertainty. Moreover, fuzzy logic links semantic space 
to numerical space. 

Fuzzy sub-sets have rather been used for high-level 
process [AB1 911 while statistics continue to dominate 
much of the work on low-level sensing processes. The 
main reason is that, in a statistical framework, data are 
fairly represented by a mean vector and a covariance 
matrix, that are easily manipulated through matrix 
computation. The problem that arises is the difficulty to 
infer high- and low-level processes. 

The present paper proposes a solution to combine 
both high- and low-level processes by using a filter 
based on possibility theory. This new filtering process 
has been experimented to estimate the heading of an 
underwater robot by fusing compass and gyrometer data. 

11. FILTERING WITH POSSIBILITY 

Let o( t )  be a time varying signal to be estimated. 
Let S be a sensor that provides an uncertain, inaccurate 
and discrete measurement mk=m(kT) (kE N). Because of 
both inaccuracy and sampling, mk has to be considered 
as a subset Mk (generally an interval) of the set L2 of the 
possible values of o. 

Filtering with possibility consists of finding a 
possibility distribution nk(w) on fi, i.e., a fuzzy subset 
Ok of the possible values of 0) at time k. 

First, let us suppose that w(t) is stationary: o(t)=C. 
Estimating C consists of finding a subset @k such that 
CE @k. From a set-theoretic point of view, there are two 
extreme modes of combination depending on the 
reliability of the sensor. 

If the sensor is fulIy reliable, then 'dk, CE Mk. 
Therefore, CEOk=. n Mi, O k  is the most accurate 

estimation of C (the smallest subset). Conversely, if the 
sensor is not reliable, @k=. U Mi. is the most reliable 

estimation of C. The confidence increases with k. The 
disjunctive mode of combination increases reliability 
while precision decreases. The dual effect is obtained by 
conjunctive mode. 

Now, if the a priori given model for the evolution of 
o ( t )  is not reliable or varies with time, pure set 
operation can no longer be used and must be replaced by 
a statistical estimation. The influence of the information 
given by the measurement Mk-n for estimating @k has 
to weaken when n increases. 

So, filtering the measurements consists of a 
dissymmetric combination process. The new 
measurement Mk+l has to be used to modify the a-priori 

1=1 ... k 

1=l ... k 

knowledge on @k i.e. to revise pek(o) = q ( o )  in the 
light of ~ M ~ + , ( o ) .  

In [DUB 921, several symmetric and dissymmetric 
aggregation rules are proposed. The core of those 
techniques is to find a way of changing gradually the 
combination mode from conjunction to disjunction 
according to a measure of the conflict between the 
measurements. According to possibility theory, this 
conflict can be measured by the conditional possibility 
and conditional necessity: 

In [DEV 931, an application of the more elaborate 
symmetric aggregation rule has been implemented for 
filtering. Its performance has been qualitatively compared 
with that of a Kalman filter. If the signal is fairly 
corrupted by contaminated noise, the conflicts seem to 
be ill-handled and this filter is rather unstable. This is 
due to the use of a symmetrical rule to perform a 
dissymmetric problem: the same weight cannot be given 
to the a priori knowledge and the new measurement. 

To overcome these problems, we propose to 
combine a voting process with a non voting process and 
to avoid normalization of the possibility distribution. 
The voting part of the process is performed by a first 
order statistical process. This new process allows the 
representation of confidence and uncertainty knowledge, 
at two different levels. It is performed in two steps. 

First, a symmetrical combination rule is applied to 
provide a deduced set Dk+l: 

(4) 

where 

conflict between the prediction and the measurement. 

distribution: 
Then, Dk+l is used to update @k to give the final 

pQk+,(e)=a.l-lO, (@)+(1-a).pDkll(@) ( 5 )  
with a~ [0,1]. 

This last update is performed by a first order 
exponential statistical filter on the possibility 
distribution instead of being applied on the value itself. 
a can be fixed a priori if the noise has beep clearly 
identified or be updated by a fuzzy rule or Baye's rules 
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depending on the a priori knowledge available on the 
process. 

A problem still remains: computation of such rules 
leads to the need for an appropriate data structure. 

111. COMPUTING WITH ROUGH SETS 

Two classical ways are mainly available to perform 
the computation of this filter. First of all, the fuzzy set 
can be considered as a union of fuzzy intervals. The 
second possibility consist of sampling the membership 
function on 0. Let us see the advantages and the 
drawbacks of each method. 

Assuming that the measurements are fuzzy intervals, 
the union-like and intersection-like operations performed 
in the filtering process also provide fuzzy intervals. The 
advantage of such a representation is accuracy. The 
drawback is that the computation time highly depends on 
the number of elements of the list. This limitation is 
not acceptable if the filter is to be implemented on a real 
process. Moreover, non-consistent intervals have to be 
removed in order to avoid an exponential memory 
request. If such rules are used, then the benefit of 
accuracy of this representation vanishes. Otherwise, the 
memory can explode. 

Hence, a sampled representation is generally 
preferred. It consists of assuming that the fuzzy 
membership can be represented by membership function 
on sparse elements of Q. In fact, this representation is 
an incomplete and imprecise representation of this 
membership function. Moreover, the data structure does 
not take into account this coarsening. 

In order to deal with this rough representation and 
handle computation in a proper manner, we propose to 
use the recent theory of fuzzy rough sets proposed by 
Dubois and Prade in [DUB 901. This will be performed 
by decomposing the possibility distribution on a fuzzy 
partition of Q. 

First of all, let us have a brief overview of fuzzy 
rough sets. Fuzzy sets and rough sets both deal with 
imprecision. But while the poor definition of boundaries 
of sub-classes are properly modeled by fuzzy sets, rough 
sets are more concerned with the objects in a set being 
indiscernible. The key idea of using rough 
decomposition is to make the intrinsic indiscernibility of 
sampled computation part of the computation itself. 

A fuzzy partition of Q is a family (ai) of N fuzzy 
sub-sets of R. Some properties are requested for a 
partitioning: 

i) The (ai) are supposed to cover !2 enough : 

iii) The (ai) provide a uniform partition: 

i=l.. .N 
&La; (0) = 1 V0EIQ. 

Then. a rough decomposition of the fuzzy subset 0 
on the fuzzy partition (ai) is given by the mean of N 
pairs (IIi,Ni) with: 

ni(C3) = n(O1ai) = Sup pO(0),paI (€I))} (6) 
0GR 

Ni(O)=N(@lai)= Inf {max(p0(0),1-pai (0))} (7) 
8€R 

I7i can be seen as the degree of possible membership 
of (ai) in 0, while Ni is a degree of certain membership. 
Fig.1 illustrates such a concept on a triangular 
decomposition. 

"I 

NI 
e 

Fig.1: decomposition of a fiuzzy set on a fuzzy partition. 

Triangular decomposil.ion is the most commonly 
used for different reasons. It is easy to compute. It 
satisfies all the expected properties (i,ii,iii), and it is the 
most neutral way of representing a sparse knowledge. A 
triangular set is a fuzzy number [DUB 811 with a linear 
form function. A triangular fuzzy number can be 
represented by two parameters: spread and mean. 

Finally, a desirable property can be added: 

that limits the loss of infomiation due to decomposition. 

Some properties still hold on rough decomposition 
on a triangular fuzzy partition: 

n((P n Q)lai) = min( Il(Plai ), n(Q1 ai))  

N( (P u Q)I ai) = ma,( N( PI ai ), N( Q I  ai )) 

But other properties don't: 

n ( (P  u Q)lai) I ma,( IT( Plai ). n(QI ai )) 

N((P A Q)lai) 2 min(N(Plai ), N(Qla; )) 

Because we aim at computing the upper and lower 
bounds of the distributions, i F no equality is available we 
take the upper bound for possibility and the lower bound 
for necessity. 

Then, the formulation of the filter becomes: ii) The (ai) are discernible: 
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IV. FUSING WITH GUESS FILTER 

Usually, fusion of data or information from multiple 
sensors over time can take place at different levels of 
representation [EUO 921. At signal level, statistical (or 
other) estimation processes are used to increase 
confidence or precision of the fused information. Most of 
these methods make very strong assumptions concerning 
to what degree the data are in registration. The fusion is 
therefore not robust because depending on how adequate 
the sensor model is. On the contrary, fusion at symbolic 
level works at the highest level of abstraction and is 
hence more robust to sensor modeling errors. 

Consider now our experiment. The robot is equipped 
with two sensors, a compass and a gyrometer, with 
common measurement axes. The compass gives a 
measurement of the yaw angle while the gyrometer gives 
a measurement of its derivative. The compass gives an 
unbiased but very noisy measurement of the heading. 
Moreover, the data it provides become very unstable 
when the yaw angle varies. On the contrary, noise on 
gyrometer data does not depend on heading variations. 
However, it gives a highly biased estimation of the 
derivative because of its intrinsic thermal drift [BAR 931. 
This drift is very difficult to model. 

Using only compass data to estimate the heading 
will provide a delayed estimation when the vehicle 
moves. This is due to the fact that it is somewhat 
difficult for a Guess filter to distinguish between noise 
and a real variation, if this variation is smaller than the 
expected precision. Conversely, the short term 
estimation of the heading variation obtained by 
integration of the gyrometer data will be only slightly 
biased. However, a long term estimation would be 
subject to drift with time because of gyrometer drift and 
integration process. Therefore, there are two classical 
ways of improving estimation by fusion. The first 
solution acts at a low level, and consists of using a filter 
such as Kalman filter to obtain a weighted combination 
of gyrometer and compass estimations. The second 
solution acts at a high level and takes advantage of each 
estimation by selecting the most likely estimation by 
mean of a decisional process. 

Guess filter provides a good framework to fuse 
information at both signal and symbolic level. Fusion 
using Guess filter is performed in three stages. First, a 
prediction of the expected possibility distribution is 
obtained by fuzzy addition. Then, some confidence 
parameter are computed quantifying symbolical concepts 
like coherence between derivative and evolution of the 
heading, a posteriori possibility and necessity, . . . These 
confidence parameters are used to deduce two possibility 
distributions associated with two hypotheses which are 
here “the robot moves” and “the robot doesn’t move”. 
Then, the a posteriori distribution is computed by using 
a compromising fuzzy logical operator. Finally, this a 
posteriori distribution is used to update the a priori 
distribution. Only @k is addressed here by this new 
inference procedure: a@k is updated using the method 
given in 111. 

IV. 1. PREDICTION 

@ k  (rsp. 30 , )  is the a posteriori possibility 
distribution of the heading (rsp. its derivative) at time k. 
Two hypotheses hold for the evolution model of the 
heading. If there is no motion. then &+l=@k : eke  
&+l=@k+l=@k+a@k, 4, is the prediction in case of 
motion. 

Ok is decomposed on a family (ai) while d@k is 
decomposed on (bi). Computation of the prediction for 
the second hypothesis has to be achieved by fuzzy 
addition [ D U B  811. Fuzzy addition on fuzzy 
decomposition gives: 
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IV.3. COMPROMISE 

n(am+bn) has to be computed by advance and stored in a 
look up table in order to make the algorithm faster. 

IV.2. INFERENCE 

Let Mk be the measurement provided by the compass 
at time k. Possibility and necessity of inference of @k 
and @k with Mk+l are computed using method given in 
part 111. Fuzzy tests are then used to estimate 1, that 
express the coherence between Mk+i, @k and d@k. 
Mk+l is said to be coherent with the predicted values Ok 
and JOk if \b(a@klo) implies \b( (Mk+12@k) implies 

implies (@kSMk+l) ). 
(@k>Mk+l) ) and \b(a@k>o) implies \b( (Mk+ls@k) 

Then Godel’s implication (denoted 4) is used to 
compute A. 

n(@k 2 0) j (“(Mk-cl @ k )  --f “(@k 2 Mk+l)),  (14) { n ( @ k  2 0 )  + ( n ( M k + l  5 @ k )  + n ( @ k  < Mk+l) )  1 h=min 

h is  used to reduce the reliability of the 
observation. Mk+l is replaced by M’k+l = Mk+lnQh. 
(SZx is the fuzzy subset of SZ such that V U E  SZ, 
p ~ , ( u ) = h ) .  We obtain two possible intersections and 
unions : 

Now a compromise has to be found to update a priori 
possibility distribution Ok. This compromise uses the a 
priori reliability of each source of information at time k. 
In  our experiments, reliability of the compass is linked 
to the fact that the robot doesn’t move. Derivative 
estimation is used when the robot moves. The number cs 
represents the possibility of the robot to be moving. 0 = 
Pn(a&=o) = min(n(d@klo),n(a@k20)). 

&+I, the deduction is obtained as follow: 

D k + l  = [Ik+l U (I’k+l nR1-o )] 
@ [ U k i l  ‘U (u’k+l nnl-rs)] 

where 0 is the set operation such that 

pAOB(u) = dn((pA(u)+pB(u)), 1) 

Finally, @k+l is computed using formula (5). 

V. DEFUZZIFICATION. 

The use of such a filter in a real process implies the 
ability to provide one real crisp value for the obtained 
distribution. Such a transformation is also needed to 
allow some comparisons between this filter and other 
filters. This process is known in fuzzy control as 
“defuzzification“ . 

For monomodal statistical processes, like Kalman 
filter, this transformation is trivial because the best 
estimate is part of the dislribution representation. For 
multi-modal processes, even if those are statistical 
processes, this transformation is not problem-free. 

The literature provides several ways of performing a 
defuzzification. Because the possibility distribution can 
be seen as a sparse knowledge, the main problem 
addressed here is to find a clompromise between all these 
pieces of information. In general, the so-called barycenter 
method is used. This method consists of calculating the 
barycenter of the obtained fuzzy sets. However some 
problems arise. As a matter of fact, if the fuzzy set is 
made of the union of two disjoint intervals (e.g. 
[21,25] U [29,31]), this approach will provide a value 
(here 25.625) which does not belong to any fuzzy set 
(i.e. is not possible according to the knowledge). 
Conversely, the maximum method consists of finding 
the peak in the fuzzy subset. In case there is more than 
one peak. a mean value is provided or a selection rule is 
applied. This method has a flaw: it provides a highly 
biased value. 

In order to avoid most of the drawbacks of each 
method, we use the method proposed in [DUB 881 
consisting of associating a l~robability distribution with 
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the given possibility distribution. This process is 
performed in three steps: 

1) two weights are associated with each cell taking 
into account the shape of the cell. wni (rsp. wNi ) is 
computed by using the conditional possibility (rsp 
necessity) of the cell. Then the weight is computed 
using a mean operation. 

Fig. 2: weight associated with each cell 

2) the weights are sorted in order: 

wi l w i + l  and = O  

3) the probability distribution is then obtained by: 

3 2 

Pi = -(w. -wi+J 
k 1  k=i 

Then the probability is used to weight each cell to 
provide the estimate. This method can be improved by 
using robust statistics [HUB 8 11. 

Finally, three measurements are available to qualify 
the fuzzy estimation: a confidence is given with the 
possibility and the necessity, and the fuzzy cardinal gives 
a measurement of the precision. 

Because it works on hypothesis verifications at 
different levels, we called this filter: “Guess filter”. 

VI. EXPERIMENTAL RESULTS 

This algorithm has been tested on simulated and real 
data. The examples below are real signals provided by a 
compass and a gyrometer mounted on the submarine 
vehicle OTTER’. Comparison result between Guess 
filter and Kalman filter have already been given in 
previous papers [DEV 931, [STR 961. 

This example allows a qualitative comparison 
between Guess filtering using only compass signal and 
Guess filtering using fusion of compass’ and 
gyrometer’s signals. During the experiment, the robot is 
floating on the water in the tank. At time t=0.6s, the 
robot is pushed suddenly on the right. This perturbation 
induces a great perturbation on the compass data. This 
perturbation cannot be rejected by guess filter without 
fusion. Using fusion, the guess filter is able to reject 
movement on the left and accept movement on the right 
because of the semantic link between derivative and 
position estimations. 

‘OTTER is a semi autonomous submarine vehicle developed by the 
Monterey Bay Aquarium Research Institute (California, USA). 
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VI. CONCLUSION 

In this paper, we proposed to use Guess filtering to 
estimate the heading of a submarine robot by fusing 
compass and gyrometer data. Guess filtering is a new 
way of performing signal processing that uses three 
theories of error together: possibility-, statistical- and 
rough-sets theory. Possibility theory is a general enough 
framework to allow the representation of both 
uncertainty and imprecision in a quite simple manner. 
Rough sets deal with approximation due to computation 
and sampling. Using rough decomposition on fuzzy 
partition makes the error in computation part of the 
computation itself. 

Using the Guess filter to perform sensor data fusion 
allows to combine data at both high and low level. 
Signal level fusion can be performed by using fuzzy 
addition. Semantic level fusion is used to select the most 
appropriate sensor using criteria and rules. In our 
experiment, only one rule has been implemented for 
sensor selection depending on how fast the robot moves. 
If the robot doesn’t move or moves slowly, semantic 
inference prefers the compass estimation because it is 
less sensitive to bias. When the robot moves fast, the 
signal level process modifies possibility distribution of 
the heading, while semantic level process discards non- 
coherent compass data. 
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Several questions remain open. The first one is 
related to the defuzzification process. As a matter of fact, 
the weighting process we use try and find the “global 
movement”. It consider that outliers can be discarded by 
probability assessment. We are currently working on a 
wavelet-based process searching for the “best” pike in the 
possibility distribution. This new process would be able 
to give more than one “most possible value” of the 
parameter to be estimated. Those values can be taken 
into account by a last high-level process dealing with 
security and risk to select the best value to be given to 
the control process. The second question concerns 
optimization of the computation of the filter. 
Particularly fuzzy addition is very time consuming. 
Finally, we aim to perform a fully estimation of the 
attitude of the robot by using more than six redundant 
sensors. 
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