
Computer-Aided Design 45 (2013) 1382–1393
Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

A comprehensive process of reverse engineering from 3D meshes to
CAD models
Roseline Bénière a,c,∗, Gérard Subsol a, Gilles Gesquière b, François Le Breton c,
William Puech a
a LIRMM, University of Montpellier 2, CNRS, 161 rue Ada, 34 095 Montpellier Cedex 5, France
b Aix-Marseille University, LSIS, CNRS, IUT, BP 90178, 13 637 Arles Cedex, France
c C4W, 219 rue le Titien 34 000 Montpellier, France

h i g h l i g h t s

• Primitive extraction: detect primitive which corresponds locally to the 3D mesh.
• Adjacency relation determination: define the relationship between primitives.
• Wire construction: based on the intersection curves between neighboring primitives.
• B-Rep creation: that works even in the case of an outline on a periodic surface.

a r t i c l e i n f o

Article history:
Received 23 December 2011
Accepted 8 June 2013

Keywords:
CAD
Reverse engineering
3D mesh
Boundary representation (B-Rep)
3D curvature
Geometric primitive fitting

a b s t r a c t

In an industrial context, most manufactured objects are designed using CAD (Computer-Aided Design)
software. For visualization, data exchange or manufacturing applications, the geometric model has to be
discretized into a 3Dmesh composed of a finite number of vertices and edges. However, the initial model
may sometimes be lost or unavailable. In other cases, the 3D discrete representationmay bemodified, e.g.
after numerical simulation, and no longer corresponds to the initial model. A retro-engineering method
is then required to reconstruct a 3D continuous representation from the discrete one.

In this paper, we present an automatic and comprehensive retro-engineering process dedicated
mainly to 3D meshes obtained initially by mechanical object discretization. First, several improvements
in automatic detection of geometric primitives from a 3D mesh are presented. Then a new formalism is
introduced to define the topology of the object and compute the intersections between primitives. The
proposed method is validated on 3D industrial meshes.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, manufactured objects are principally designed with
Computer-Aided Design (CAD) software. An object is constructed
by combining geometric primitives like planes, spheres, cylinders,
cones or parametric patches (e.g. Bezier, B-Splines, NURBS) and
their boundaries (using intersections between primitives). This
continuous representation is necessary to redesign or extract the
object parameters. However, many CAD design software programs
do not read or write opened geometric formats like STEP or
IGES, e.g. the basic version of AutoCAD can only store a model
in its proprietary format (DWG). Furthermore, for visualization,

∗ Corresponding author at: LIRMM, University of Montpellier 2, CNRS, 161 rue
Ada, 34 095 Montpellier Cedex 5, France. Tel.: +33 4 67 41 85 65.

E-mail addresses: roseline.beniere@lirmm.fr, roseline.beniere@c4w.com
(R. Bénière), gerard.subsol@lirmm.fr (G. Subsol), gilles.gesquiere@lsis.org
(G. Gesquière), flb@c4w.com (F. Le Breton), william.puech@lirmm.fr (W. Puech).

0010-4485/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cad.2013.06.004
exchange or manufacturing purposes, the continuous parametric
CADmodel must be discretized into a 3D CADmesh composed of a
finite number of vertices and triangles. The initial CAD parametric
data may be unavailable, lost or no longer correspond to the
original CADmodel if the 3Dmesh is deformed by another designer
or after a numerical simulation process. For example, in Fig. 1, a
B-Rep model was discretized into a 3D mesh in order to be
deformed by a stamping simulation tool. But a continuous model
is often required to check the shape parameters or to modify the
design. Reconstruction of a B-Rep model from the modified 3D
CADmesh, which is a particular case of reverse engineering, is thus
needed.

In our industrial context, we work in collaboration with the
C4W1 company. Through the user tests of 3D Translate,2 a software

1 www.c4w.com.
2 www.3dtranslate.com/.

http://dx.doi.org/10.1016/j.cad.2013.06.004
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cad.2013.06.004&domain=pdf
mailto:roseline.beniere@lirmm.fr
mailto:roseline.beniere@c4w.com
mailto:gerard.subsol@lirmm.fr
mailto:gilles.gesquiere@lsis.org
mailto:flb@c4w.com
mailto:william.puech@lirmm.fr
http://www.c4w.com
http://www.3dtranslate.com/
http://dx.doi.org/10.1016/j.cad.2013.06.004


R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393 1383
Fig. 1. The B-Rep model has to be discretized into a 3D CADmesh in order to be processed by ametal press stamping die parts simulation, and no longer correspond with the
final mesh.
allowing interoperability between CAD software translating or
converting many file formats (see Fig. 2), we note considerable
interest in reconstructing continuousmodels from3DCADmeshes.
In fact, around 90% of requests concern obtaining a continuous
representation (IGES, STEP, etc.) from a 3D mesh (STL, OBJ, etc.),
of which 50% are CAD meshes. A specific method, focused on
reconstruction from meshes created by CAD model discretization,
is thus required.

The reverse engineering process has to be adapted to the 3D
mesh structure, which depends on the creation or discretization
process. For example, for a scanned physical object, the 3Dmesh is
generally very dense but composed of points whose coordinates
may be disturbed by acquisition noise. On the other hand, dis-
cretization of a CAD model has accurate points but the mesh can
be sparse because the discretization function does not add useless
points. So, between a scanned mesh which contains many noisy
points and a CAD mesh with few points but with exact positions,
the reconstruction process may differ. The CAD model reconstruc-
tion problem corresponds to the second case and is rarely pre-
sented in the literature. Indeed, most reverse engineering papers
try to reconstruct continuous objects from a scanned mesh. These
methods cannot be used on a sparse mesh and a dedicated algo-
rithm has to be developed.

We can distinguish, as in [1], two kinds of reverse engineer-
ing results: ‘‘simple surfaces’’, such as planes, and general ‘‘free-
form surfaces’’, like B-Splines or NURBS. For the second case, many
methods to fit free-form surfaces on a 3D mesh exist, for exam-
ple [2]. Although they are efficient for obtaining a good-looking re-
construction of a 3D mesh and allow modeling of some features
(see for example [3,4]), they do not reveal the overall information
on the shape that is essential for many CAD applications. In partic-
ular, the identification of the object shape (a sphere or plane?), the
computation of shape parameters (e.g. a radius or an axis of revo-
lution) or the definition of relationships between different parts (a
cylinder linking two tangent planes can be considered as a blend)
are not possible with these methods.

Furthermore, in the CAD model, the primitives are confined
by boundaries defined as parametric 3D curves. So a CAD model
reconstruction process should extract primitives, like planes,
spheres or cylinders, then it has to compute their boundaries and
relations so as to construct a topologically-consistent continuous
CAD model (see Fig. 3).

We decided to use the Boundary Representation (B-Rep) to
store the CADmodel (more details can be found in [5]). This repre-
sentation allows us to study or modify the object after conversion
using C4W software: 3D Shop,3 and it is also easy to stock it in a
common format such as IGES or STEP.

In a B-Rep model (Fig. 3(c)), an object is represented by a set of
faces. Each face corresponds to a geometric primitive defined by its
parameters (e.g. a radius and a center in the case of a sphere) and its
boundaries, or so-calledwires: one exterior for the outer boundary
and eventually one or several interior ones for the hole boundaries.
A wire is made with one or several edges which are defined by a

3 www.c4w.com/dev/?lang=en#customcad.
Fig. 2. 3D Translate software schema.

parametric equation and two limit points. These edges correspond
to parts of intersections between two faces. In particular, if two
faces are neighbors, theirwireswill reference common edges. Then
the B-Rep model construction requires not only recovery of the
primitive set, but also all the adjacency relations between the faces,
in order to create topologically-consistent wires.

In this paper, we present a comprehensive method to recon-
struct a B-Rep model composed of planes, spheres, cylinders and
cones from a 3D mesh whose vertex coordinates are considered
exact. After presentation of the state of the art in Section 2, our
method is detailed in Section 3. The CAD object results are pre-
sented in Section 4. The method is discussed along with its per-
spectives in Section 5.

2. State of the art

In this section, a study of several methods is proposed. The first
part is dedicated to comprehensive procedures for reconstructing
continuous objects but there are few. So in the second part, papers
dealing with only one part of the procedure will be studied. The
method proposed in this paper has three steps, the primitives are
extracted first, then the wires are computed and the B-Rep model
is then constructed. So methods proposing solutions to detect and
reconstruct primitives and to compute the adjacency relations and
the boundaries are analyzed.

2.1. Complete procedure

Many papers deal with part of the B-Rep reconstruction process
but very few describe a complete procedure. A first one was pro-
posed by Benko et al. in [6]. They begin the reconstruction pipeline
by a segmentation step.

For each sub-mesh, the authors do not extract the geometric
primitive type but instead they conduct many approximation tests
to fit a parameterized geometric primitive. This method can con-
fuse the primitive type, and indeed in the example given in the pa-
per, cylinders are not detected as cylinders but rather as parts of

http://www.c4w.com/dev/?lang%3Den#customcad


1384 R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393
Fig. 3. From a 3D mesh to a B-Rep model.
a revolution surface. This confusion does not block the reconstruc-
tion but it does not allow extraction of all of parameters such as the
cylinder radius. Then the topology is computed using a 3D mesh:
two primitives are adjacent if the corresponding sub-meshes share
at least one mesh edge. The wire construction is based on these
common edges and is refined by the exact geometric intersection
computation. In fact, this method depends on the edge accuracy
and gives interesting results only if the 3Dmesh is dense and if the
mesh edges correspond to the continuous boundaries of the real
object. Furthermore, the vertex normals are used to segment the
mesh and to compute certain primitive parameters using a Gaus-
sian sphere, while the computation of accurate normals requires
many points or points without noise. Thus the authors did not di-
rectly use the object of the Hoschek benchmark as an example but
they redesigned and resampled it.

Huang and Menq [7] propose a process to reconstruct a B-Rep
model from a 3D point cloud. The first step consists of triangu-
lating the point cloud. Then the authors propose to segment the
mesh by using border edge detection and compute the primitive
parameters for each sub-mesh with a method based on surface
normal estimation. The topology is deduced from the sub-meshes
as in [6]; the common mesh edges give the adjacency relationship
and allow construction of a first approximation of wires. Huang
and Menq replace all the common edges by the real intersection
curves between the corresponding faces. The resulting quality of
this method is also related to the 3D mesh edge accuracy. Further-
more, it is not possible to construct awire if four ormore primitives
have the same intersection point that limits the reconstructed CAD
model complexity.

Recently, Chang and Chen [8] proposed a review of reverse en-
gineering methods. In particular, they analyze some commercial
software, like Geomagic Studio or Rapidform XOR. They show, as
in [1], that two kinds of results can be found. In the case of free-
form surfaces (generally based on NURBS), commercial software
propose automatic methods that are efficient but some problems
remainwhendealingwith objectswith sharp edges. Although all of
these software packages also include somemethods to reconstruct
a CAD model based on geometric primitives, they do not work au-
tomatically, mostly if the 3D mesh has some sparsely discretized
parts. The user has to interact by clicking along the boundaries or
defining the type of primitive for each mesh part; thus a complex
object reconstruction can take several hours or days. These meth-
ods are thus not available for industrial applications, unlike the
process presented in this paper.
2.2. Detection and reconstruction of primitives

In recent years, many methods have been proposed to extract
only geometric primitives in a reverse engineering process. They
generally involve three steps [1]: point area extraction which de-
fines mesh areas having the same shape features; classification
which associates one primitive type with each point area and the
fitting to compute primitive parameters corresponding to each
point area. Thus, in the method proposed by Benko et al. [9], the
shape features are based on co-planarity between neighbor trian-
gles. They highlight the sharp edges or small blends which sepa-
rate the sub-meshes. Then a plane is fitted to each sub-mesh. If the
plane is close enough to the sub-mesh, it is kept. Otherwise, the
sub-mesh is approximated with more complex geometric primi-
tives such as a sphere, cylinder, etc., until it closely corresponds.
Note that the authors do not formally classify the geometric prim-
itive type but test all possibilities and, as we have already said,
this method can lead to confusion between types. This fitting re-
sultmay be improved by adding some constraints such as tangency
between the geometric primitives. In [10], Bénière et al. propose to
use curvatures to segment the mesh, to define the primitive kind
associated with each sub-mesh and to compute the primitive pa-
rameters.

Many papers deal with just one step. For example, Bohm
et al. [11] and Lavva et al. [12] describe techniques to segment and
classify the sub-mesh by using curvature features. The segmenta-
tion is based on propagation from a seed triangle to triangles with
the same curvature feature. In a second step, using curvature prop-
erties of the geometric primitives, a type is attributed to each
sub-mesh. Sunil and Pande [13] base the segmentation and classi-
fication steps on the CAD mesh characteristics. The dihedral angle
and the size of each triangle are used for segmentation. A first clas-
sification is made with the curvature feature and then, with CAD
a priori knowledge, the sub-meshes can be further classified. For
example, if a cylinder is between two planes, it corresponds to a
blend.

Lukács et al. [14], Shakarji [15] and Schnabel et al. [16] propose
solutions to only fit primitives on a sub-mesh or a point cloud.
Lukács and Shakarji’s methods use two kinds of approximation on
all points to obtain the primitive parameters. In contrast, Schnabel
et al. define one primitive for each point group (e.g. groups of
three points for a plane) and keep the best one. The Chaperon and
Goulette method [17] is more specific and deals only with point
cloud approximation by a cylinder. This approximation is based on
features of the cylinder Gaussian image. The Gaussian image of a



R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393 1385
Fig. 4. Overview of the reverse engineering method: Step 1: primitive extraction, Step 2: wire construction and Step 3: B-Rep creation.
cylinder gives the axis and, in case of cones, this gives the angle
too.

Even though these methods give good results, their adaptation
is not always possible in a complete process. However, some of the
ideas were adopted for our method.

2.3. Adjacency relations and boundaries

Adjacency relations between the geometric primitives which
are extracted from a mesh are important in many domains. Thus,
in [18], Li et al. use these relations to align primitives after a
RANSAC extraction. The authors construct a graph to represent the
relation between primitives, and to extract primitives connected
by the same feature. In this article, the extracted relations are not
adjacency relations but rather relations on primitive parameters,
like the same axis, or the same radius. In contrast, in [19], adjacency
relation extraction allows remeshing improvement. Chappuis
et al. [19] use relations between primitives to construct correct
intersections and to be sure that the edges corresponding to these
intersections are not deleted by this remeshing. After computation
of primitives belonging to the mesh, the adjacency relations are
extracted from the sub-meshes used to compute the primitives
and are stored in an adjacency graph. The intersections between
primitives which guide the remeshing are computed using this
graph defined by a primitive node and an edge if the primitives are
neighbors. Even though this is not a B-Rep reconstruction method,
its definition of the relationship between faces can be used to
extract consistent intersections and reconstruct a B-Rep model.

Computing intersection curves between two geometric prim-
itives is a classical problem and efficient methods exist (see for
example [20]). The difficulty is in combining parts of these inter-
section curves, computed on pairs of geometric primitives, in con-
sistent wires that are continuous and closed curves.

This seems very similar to the so-called ‘‘Boundary Evalua-
tion’’ [21] problem which allows recovery of a B-Rep representa-
tion from a CSG model. For example, Miller [22] first computes
intersections between all solids. Indeed, in the case of a CSG, the
primitives are solid, for example a cylinder is described by a cylin-
drical surface and by the two extreme circular planes. Miller then
gets a set of edges which are labeled as Cross-edge for an edge
resulting from an intersection or Self-edge for an edge already ex-
isting in the CSGmodel. Thewire construction is based on the defi-
nition of a path through the edges; if several paths are possible, the
path using the Cross-edge is chosen. Thus thewires are constructed
for each face with intersections between the volumes. Neverthe-
less, the Boundary Evaluation problem is much easier because it is
based on an exact set of bounded volume primitives, whereas in
our case only infinite surface primitives associated with a discrete
set of points are used.
3. Towards a new B-Rep reconstruction process

3.1. Overview of our method

Our comprehensive process, presented in this section, involves
three steps (see Fig. 4):

• Step 1: Primitive extraction: in this step, the idea is first to detect
the type of geometric primitive (i.e. a plane, sphere, cylinder
or cone) that corresponds locally to the 3D mesh and to then
compute the parameters which give the best fit. The method
is based on differential geometry operators which characterize
the local 3D shape.

• Step 2: Wire construction: this is a key complex problem. It
defines the relationship between all the extracted geometric
primitives, which is subsequently used to compute intersection
curves between two geometric primitives. Then all of these
curves are combined to build a continuous wire in a consistent
way.

• Step 3: B-Rep creation: the B-Rep construction is presented.
It consists of combining the information extracted or recon-
structed during the two previous steps to construct a consistent
model.

3.2. Step 1: primitive extraction

The local shape around point P on a surface S is characterized
by theminimumandmaximumprincipal curvature (kmin and kmax)
and by the two principal directions (dmin and dmax) corresponding
to the tangent vectors for which the principal curvatures are
obtained. Simple geometric primitives, like planes, spheres, cones
and cylinders, have specific curvature characteristics (see Table 1).
Thus, in the case of a plane, the curvature value is equal to 0, which
means kmin = kmax = 0. For a sphere, all the points have the
same curvature whose value is equal to the inverse of the radius
(kmin = kmax =

1
R ). A cone or a cylinder point is characterized

by one principal curvature equal to 0 with the corresponding
principal direction following the cone or cylinder generating line.
Furthermore, the other principal curvature allows us to define a
point on the axis for each point on the cone or cylinder.

The first step of the method (see [10]) extracts primitives from
a 3D mesh using these curvature characteristics. Therefore for the
mesh in Fig. 5(a), the curvature is computed and displayed on the
mesh of Fig. 5(b) with a color code: green for planar, yellow for
spherical, blue for convex and red for concave points.

Many methods have been proposed to compute the curvature
on a discrete 3D mesh as reviewed in the surveys [23,24]. In the
following, a combination of the two methods described in [25,26]
is used. The idea proposed in these papers involves computing,
for each neighbor vertex, a discrete curvature; using a regression
based on the Euler formula, the principal curvatures are obtained.



1386 R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393
Table 1
Curvature features for each primitive type.

kmin kmax dirmin dirmax

Plane = 0 = 0 Not defined Not defined
Sphere =

1
Rayon =

1
Rayon Not defined Not defined

Cone/cylinder = 0 =
1

dist(Point,Axis) = generating line Not used
=

1
dist(Point,Axis) = 0 Not used = generating line
Fig. 5. (a) Original 3D mesh, (b) Curvature parameter computation: planar point (green), spherical point (yellow), convex point (blue) and concave point (red), (c) Point
areas, (d) Extracted geometric primitives. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Then, using the curvature features, point areas are extracted with
a propagation method and labeled (Fig. 5(c)) by one color per
primitive type. To offset the numeric noise or irregularities in the
point area extraction, epsilons, computed according to the input
mesh, are used. The parameters of one primitive are approximated
for each point area, with linear approximation and curvature
verification; the extracted primitives are shown in Fig. 5(d).

3.2.1. Plane and sphere extraction
To find planes and spheres, neighbor vertices having |kmax −

kmin| < ϵSP are grouped in the same point areas. A point area is
initialized by a first point and propagated to the neighbor points
having the same curvature characteristics. Then, for each point
area, a geometric primitive is fitted. If |

kmax+kmin
2 | < ϵPL, the point

area corresponds to a plane. The implicit Eq. (1) is used to extract
coefficients by linear regression.

ax + by + cz + d = 0. (1)

If | kmax+kmin
2 | > ϵPL, the point area corresponds to a sphere. The

implicit Eq. (2) of the sphere is not linear and not easy to fit by the
least-squares method. So, the center and the radius of the sphere
are approximated using Eq. (3) obtained by a variable change [27].
A regression with a least-squares method is also carried out in this
case.

r =


(xc − x)2 + (yc − y)2 + (zc − z)2 (2)

x2 + y2 + z2 + xA1 + yA2 + zA3 + A0 = 0

with :


A0 = x2c + y2c + z2c − r2

A1 = −2xc
A2 = −2yc
A3 = −2zc .

(3)

3.2.2. Cone and cylinder extraction
A cylinder is considered to be a particular case of a cone. These

primitives are characterized by two 3D lines: the rotation axis
and the generating line. The axis is defined by a vector and a
point which is the cone vertex or any axis point for cylinders. The
generating line can be determined by the angle to the rotation axis
in the case of a cone or by the radius for a cylinder. Both geometric
primitives have the same curvature behavior: kmin = 0, dmin
corresponds to the generating line and the point P+n·

1
kmax

belongs
to the rotation axis, with P being a point on the cone and n the
normal in P .
Fig. 6. A key criterion to check if two neighbor points belong to the same cone or
cylinder: α1 = α2.

In the other methods, detection of cones or cylinders using
curvature features is only based on the curvature values: one
equals 0 and one differs from 0. Although the points on cones or
cylinders have this property, some points on other primitives can
have the same property like certain ruled surfaces. Here we define
a new criterion to exclusively detect cone or cylinder points. Thus
to check if twoneighbor points belong to the same cone or cylinder,
the following key criterion is used (see Fig. 6). Let P1′

= P1 + n1 ·
1

Cur1 and P2′
= P2+ n2 ·

1
Cur2 , P1

′ and P2′ define a potential axis A
and (P1, d01) and (P2, d02) define two potential generating lines.
P1 and P2 belonging to the same cone or cylinder must satisfy:
the angles α1 and α2 between axis A and the generating lines are
identical (and close to 0 in the case of a cylinder).

This criterion is used to extract point areas corresponding to
cones or cylinders. If two neighbor vertices have a kmin < ϵCo and
kmax > ϵCo, they belong to a cone. Then the criterion is used, to
ensure that they belong to the same cone. Secondly, to propagate
the point area, the curvature of the neighbors is also studied to
check the criterion with these vertices.

For each point area, a cone or cylinder is approximated by using
the Gaussian image and not only the property of the curvature
as in [10]. In the case of cones or cylinders, the Gaussian image



R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393 1387
Fig. 7. A cylinder and its Gaussian image. All points of the cylinder are projected
onto a circle.

is a circle (see Fig. 7). The normal of the plane which fits this
Gaussian image corresponds to the direction of the axis. It allows
us to obtain the axis and also the angle for the cone. To determine
the cylinder radius, the points of the point area are projected onto
the approximated plan and form a circle which corresponds to a
cylinder circle, i.e. with the same radius and the center equivalent
to an axis point.

3.2.3. Improving computation of the curvature by a pre-segmentation
step

Curvature computation is based on the vertex neighborhood. In
the case of a sparse mesh, the vertices can correspond to several
primitives because only the points on the object edges are used.
For these meshes, if the edges of the object are detected and
used to make a segmentation, a vertex on an edge will belong to
several sub-meshes. Computation of the curvature is thus better
with segmentation; with the neighborhood of each vertex not
being disturbed by vertices of other primitives. In our case, the
dihedral angle (angle between two triangles) is used to obtain this
pre-segmentation by a propagating method. After initialization
with a not yet used triangle, the neighbor triangles are added to
the sub-mesh, if the dihedral angle between its and the neighbor
triangle belonging to the sub-mesh is greater than a threshold
angle. This segmentation improves our primitive extraction. In
Fig. 8, the point areas (Fig. 5(d)) extracted from the segmented
meshes (5(b)) are more extended than the point areas obtained
from the original mesh. In other cases, no primitives are found
without this segmentation, whereas with the segmentation all
primitives are detected and reconstructed.

3.3. Step 2: wire construction

3.3.1. Building an adjacency relationship graph
In order to get a B-Rep representation, each geometric primitive

has to be trimmed, according to its intersections with the other
ones. To find out which intersection is involved to build the
wires, the adjacency relations are determined. An adjacency graph
containing the relationship between the primitives is used for this
purpose. Each primitive corresponds to a node of the graph, and
an edge is added between two nodes if the two corresponding
primitives are neighbors.

The extraction of point areas is based on a propagation method.
A point area is initialized by a vertex with specific curvature
and neighbor vertices with the same curvature characteristics
(according to the primitive type) are added to the area. During
this construction, vertices on the primitive limits cannot be added
in the point area. Indeed, the curvature computation is based on
a neighborhood study for each vertex, so the vertex curvatures
on the primitive limits are disturbed by the vertices of the
neighbor primitive. To obtain point areas containing all vertices
corresponding to the primitive, an extension of these areas is then
carried out. To extend a point area, the distance between adjacent
vertices of the area and the corresponding primitive is computed.
If the distance is lower than a threshold, the vertex is added to
the point area and their neighbors are also studied. Thus, using
the information contained in the primitives and point areas, the
extended areas are obtained, see Fig. 9(a).

Then, the extended areas allow us to define the common points
(Fig. 9(b)). For each pair of primitives, a set of common points is
defined; if a point belongs to several extended areas, it is added
to the common points of the primitive pair corresponding to
the extended areas. An adjacency graph is used to represent the
adjacency relations. It is initialized with a node by primitive. If the
set of common points corresponding to two primitives is not empty,
an edge is added to the graph between the two corresponding
nodes, as shown in Fig. 9(c).

3.3.2. Extracting valid intersection curves for ourwire construction
In the first step, no limit is defined for the geometric primitives,

and they can be infinite as planes, cylinders or cones. To recover
wires representing the geometric primitive boundary, the intersec-
tion curves between the geometric primitives first have to be com-
puted.

For this, the edges of the adjacency graph which define pairs
of intersecting primitives are used. We decided to use the Open
Cascade Library4 to perform this operation which gives inter-
section curves as parametric curves which can be closed (e.g.
sphere/plane) or infinite (e.g. plane/plane). These parametric
curves are defined by an equation according to the type (a B-Spline
curve or a circle, for example) and two limit points.

In Fig. 9(d), the set of all intersection curves between geometric
primitives is presented. However, the problem is not very
straightforward, some intersection curves are not really significant
such as the one between the cylinder Cyl2 and the top of the
sphere Sph1. Then the validity of each intersection curve has to be
checked by comparing itwith the common points shared by the two
corresponding primitives. Then, in Fig. 9(e), the red intersection
curve is rejected whereas the green ones are validated.

3.3.3. Decomposing intersection curves into edges
The geometric primitives do not only intersect two by two. For

instance, in Fig. 9(e), the side cylinder Cyl2 intersects, at the same
location, the superior plane Pl1 and the main cylinder Cyl1. In this
area, the contour of Cyl2 will then be composed of portions of the
two intersection curves with Pl1 (a circle) and Cyl1 (two parallel
lines). More generally, each valid intersection curve has to be
decomposed into parts corresponding to the intersection restricted
only to two primitives. These parts are called edges and are
delimited by junction vertices which correspond to intersections
between three geometric primitives.

The example in Fig. 10 is used to explain the edge construction.
From the mesh in Fig. 10(a), fourteen planes are extracted and the
adjacency graph is deduced, see Fig. 10(b). Intersection curves are
computed for each primitive pair bound in the graph, Fig. 10(c).

First, all potential junctions are extracted by intersecting all
valid intersection curves two by two. Nevertheless, not all the
potential junctions are valid: they have to correspond in the B-Rep
model to a vertex, i.e. to a connection between two edges, so it
binds three primitives as shown in Fig. 10(a). Furthermore, these
three primitives have to be adjacent two by two because they have
a common vertex. This implies that the four geometric primitives
leading to the junction (two per valid intersection curve) are in
fact three (one in common on the two edges) and that they are
connected, forming a cycle in the adjacency graph. As the same
junction can be extracted from several intersection pairs, a fusion
is performed when two junctions correspond to the same vertex.

4 http://www.opencascade.org.

http://www.opencascade.org


1388 R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393
Fig. 8. (a) Original 3Dmesh, (b) Segmentedmeshes, (c) Curvature on segmentedmeshes, (d) Point areas on segmentedmeshes and (e) Extracted primitives from segmented
meshes.
Fig. 9. (a) Extended areas based on Point areas and primitives, (b) Common points, (c) Adjacency graph (one node per primitive and an edge if the two primitives are
adjacent), (d) Intersections between adjacent primitives, (e) Intersections validated (in green) or rejected (in red) with the common points, (f) Edges, (g) wires assembled
using the extended areas and (h) the reconstructed B-Rep model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
After the junction extraction and fusion, the edges are created
by cutting the valid intersection curves. To construct the wires, a
closed path through the edges is constructed; so if an edge has an
extremity which is not connected with an another edge extremity,
this edge cannot belong to a closed path. All of these edges are
removed. Thus a set of valid edges is obtained, as shown in Fig. 11.
3.3.4. Assembling edges to buildwires
To buildwires, one exterior and zero or several interior ones for

each geometric primitive, closed paths have to be computed that
assemble a subset of the valid edges. In fact, there are two cases: a
wire can be created in an uniquewaywith the valid edges or several
paths are possible to create a wire.



R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393 1389
Fig. 10. (a) 3D mesh, (b) Extracted geometric primitives (14 planes in this case) with the overlapped adjacency graph and (c) Valid intersection curves.
Fig. 11. Case 1: one way to assemble edges into a wire. Case 2: several possible paths, allocating weights to the edges and minimizing the total weight of the path; a wire is
built in a non-ambiguous way.
In the first example in Fig. 11, the seven valid edges are available
for the frontal plane of the object. All of these edges are connected
two by two, and there is only oneway tomake a closed path. In this
case, building thewire is straightforward. In the second example in
Fig. 11, several closed paths are possible: one follows the exterior
boundary or a second shortcuts the corner or a third just with the
corner.

To choose between the different paths, a weight is attributed
to each edge. This weight corresponds to the average distance
between the edge and the extended areas. The minimal distance
induces themost probable edge on the object. A sequential method
is used to find a path closer to the optimal path. The wire
construction is initialized with the edge having the lowest weight.
Then the connected edges are studied and the one with the lowest
weight is selected and connected to the current wire. The process
terminates when the wire is closed or if there is no more edge to
connect. Thewire is kept in the first case but rejected in the second.

In Fig. 12, all wires computed from the mesh of Fig. 10 are
presented. This building process ensures that allwires have a valid
topology. They are closed and cannot self-intersect (otherwise
there will be a supplementary junction on the self-intersection).
After the B-Rep creation, the consistency of thewire can be checked
by assessing whether the B-Rep model is closed: all faces are
entirely delimited by the edges.

3.4. Step 3: B-Rep model creation

Once the wires have been constructed, they are combined with
the geometric primitives and the adjacency graph to reconstruct
the B-Rep model (see Fig. 9(h)).

The B-Rep model is composed, for each geometric primitive, of
its type of primitive, its parameters, and the corresponding wires,
i.e. one outer and no or several inner ones for the hole boundaries.
Each edge is stored once and the wires only reference the edges.
This structure ensures that the model is watertight because the
adjacent faces have edges in common, unlike a structure in which
each boundary is defined without links with the others.
Fig. 12. Valid edges are consistently assembled to create wires of the 3D mesh in
Fig. 10.

4. Experimental results

Themethod was implemented in the 3D Shop software package
produced by the C4W 5 company. The program only requires use of
a set of some parameters. These parameters could be defined au-
tomatically according to themesh characteristics (e.g. proportional
to the maximal or mean edge length) and its type (discretized CAD
model or 3D scan). Our process runs entirely automatically and
there is no interaction with the user. In the next section, some val-
idation experiments based on several examples will be proposed.

4.1. Tests on typical meshes

The first tests are performed on CAD meshes, with a low den-
sity of points but with different complexity. For these examples,

5 www.c4w.com.

http://www.c4w.com


1390 R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393
Fig. 13. B-Rep reconstruction for PlanesAndCylinders: (a) 3D mesh: (358 vertices and 736 triangles), (b) Extracted geometric primitives (6 cylinders and 16 planes),
(c) Reconstructed wires and (d) the final B-Rep model.
Fig. 14. Comparison between the recovered parameters and the initial values of the geometric primitives.
Fig. 15. B-Rep reconstruction for Tree: (a) 3Dmesh: (966 vertices and1928 triangles), (b) Extracted geometric primitives (1 cone, 6 cylinders and71planes), (c) Reconstructed
wires and (d) the final B-Rep model.
B-Rep models are created and discretized, to compare the result
parameters with the initial parameters. The first one (see Fig. 13)
contains planes and cylinders, and the 3D discretization is very
sparse, with very few points. In this case (see Fig. 13(b)), all prim-
itives are extracted, using the pre-segmentation step described in
Section 3.2.3. After the computation of wires (see Fig. 13(c)), the
B-Rep model is reconstructed (Fig. 13(d)).

In Fig. 14, a quantitative analysis of the reconstruction is
presented. First, the parameters of the geometric primitives are
compared with those recovered by our algorithm. The values
are extremely close. Then the distance between the initial 3D
mesh and the B-Rep model is computed. For this, the resulting
B-Rep is discretized very densely and the distance between these
points and the studied mesh is computed. For the mesh, the mean
distance is very low. The maximum distance could appear quite
long (0.266 mm) even if it remains very short with respect to
the total length of the object. But the maximal error is located
along the edges and we can conclude that this is mainly due
to the discretization process, which generates minimal errors on
planar parts and maximal error on salient parts, and not from the
reconstruction method itself.

The method is also tested on more complex CAD meshes, with
many intersections between more than two geometric primitives
(e.g. 1 cone and several planes in Fig. 15). This implies that the
wires are constructed with many assembled edges that require
computation of many paths to find the minimal weighted one.
A sparse discretization is also chosen for this test mesh (see
Fig. 15(a)).
The reconstruction process gives very good results. The pre-
segmentation step allows us to recover the 78 geometric primitives
(1 cone, 6 cylinders and 71 planes) with a maximum error of
0.275 mm but corresponding to the discretization error (see
Fig. 16), whereas the mean error is close to 0. Then the wires are
extracted (see Fig. 15(c)) even in complex cases, e.g. with the large
plane linked to 16 other primitives (9 planes, 6 cylinders and 1
cone).

4.2. Tests on real CAD meshes

A second set of tests is performed on two real CAD objects: a
cylindrical adaptor and a plate which are parts of the I4L parallel
robot designed at LIRMM [28] (see Fig. 17). The CAD model was
designed and discretized using Solidworks 2010. Note that the
resulting 3Dmeshes are very sparse and irregular, which is typical
of the discretization of the CAD representation of a manufactured
object. The initial parameters are known and can be compared to
the recovered values to assess the accuracy of the method.

The reconstructionmethod is applied to thesemeshes and gives
the B-Rep models presented in Figs. 18 and 20. In Fig. 19, the very
high accuracy for all the recovered primitives is highlighted. These
two real examples show the importance of the pre-segmentation
step to obtain accurate results for sparse meshes.

4.3. Analysis of the computation time

The method was tested on a standard computer with an Intel
Core 2Duo 2.33 GHz processor and 4Gb RAM. The computation time



R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393 1391
Fig. 16. Comparison between the recovered parameters and the initial values of the geometric primitives.
Fig. 17. Photographs of the cylindrical adaptor and the plate, which are parts of a
parallel robot [28].

Table 2
Computation time (Intel Core 2 Duo 2.33 GHz processor, 4 Gb RAM).

Mesh Nb of triangles Nb of primitives Time

PlanesAndCylinders
(Fig. 13)

736 22 3 s

Tree (Fig. 15) 1928 78 1 m 32 s
Cylinder adaptor (Fig. 18) 540 10 1 s
Plate (Fig. 20) 3220 39 2 s

is presented in Table 2 for the different 3D meshes. The computa-
tion time does not only depend on the number of triangles. Thus,
the reconstruction takes more than 1 min for the Treemesh which
is very small with only 1928 triangles, whereas it lasts only 2 s for
the Platemesh, which consists of 3220 triangles.

In fact, the computation time is related to the number of
geometric primitives (only 39 for Plate and 78 for Tree). However,
it also heavily depends on the wire number and complexity.
For example, reconstruction of the PlanesAndCylinders mesh (736
triangles, 22 geometric primitives) takes much more time than for
the Plate mesh (3220 triangles and 39 geometric primitives). But
in this case a weight has to be computed for each edge and the
best path is then extracted.We conclude that the operationswhich
most influence the computation time are the topology creation and
the wire construction.

The objectives set by our industrial framework are clearly
fulfilled.

5. Conclusion and perspectives

After a user request study in an industrial context,we concluded
that the specific application of reverse engineering 3D CADmeshes
has been studied very little. In this paper, a comprehensive
process for automatic reconstruction of a continuous B-Rep model
from a discretized 3D CAD mesh is proposed. This method
involves three steps: the extraction of geometric primitives, which
works successfully, unlike many existing methods, in the case
of sparse meshes, by using an adapted pre-segmentation step;
wire construction, which computes intersection curves between
primitives in a consistent way by using a new formalism based on
adjacency graph and model creation which combines all results to
build a B-Rep representation.

This method gives good results with CAD meshes, indepen-
dently of the mesh structure, which can be dense or sparse, reg-
ular or not and even if there are many geometric primitives. This
method could then be used in industrial applications, as outlined
in the introduction.

Nevertheless, geometric primitives are currently limited to
planes, spheres, cones and cylinders, which are very commonly
used in CAD. The extraction can be improved by introducing
more primitives such as ruled surfaces [29] or tori [12]. The
process stays the same for these primitives: detection is done
using curvature features and the parameters are computed with
approximation and verified by the curvature. Then the topology
reconstruction does not have to be changed to integrate these new
primitives because the process is not based on the primitive type.
For example, if we want to extend your method to deal with tori,
we can use it to extract point areas, specific curvature features such
as all points share a common principal curvature corresponding
to the minor radius and the second principal curvature can be
used to find the major radius and the center. Then a torus can be
Fig. 18. B-Rep reconstruction for CylindricalAdapter: (a) 3D mesh: (268 vertices and 540 triangles), (b) Extracted geometric primitives (3 cylinders and 7 planes),
(c) Reconstructed wires and (d) the final B-Rep model.



1392 R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393
Fig. 19. Comparison between the recovered parameters and the initial values of the geometric primitives.
Fig. 20. B-Rep reconstruction for Plate: (a) 3D mesh: (1585 vertices and 3220 triangles), (b) Extracted geometric primitives (21 cylinders and 18 planes), (c) Reconstructed
wires and (d) the final B-Rep model.
approximated for each extracted point area and the parameters can
be verified with the curvature features.

Our method can be easily adapted to deal with fillets or blends
thanks to the adjacency graph. Indeed, after an identification step
during primitive extraction, the edge of the adjacency graph can
be labeled to indicate the blend or fillet presence. With this infor-
mation, a blend or a fillet could be added between the two linked
primitives by the labeled edge, during the B-Rep construction.

Another major improvement could be to fit general parametric
surfaces such as B-splines or NURBS on parts which cannot be
represented by geometric primitives. In particular, this will allow
management of the complex shape of blends which are very
common in CAD objects.

References

[1] Várady T, Martin R, Cox J. Reverse engineering of geometric models—an
introduction. Computer-Aided Design 1997;29(4):255–68.

[2] Eck M, Hoppe H. Automatic reconstruction of B-spline surfaces of arbitrary
topological type. In: Proceedings of the 23rd annual conference on computer
graphics and interactive techniques. ACM; 1996. p. 325–34.

[3] Vergeest JSM, Horváth I, Spanjaard S. Parameterization of freeform features.
In: SMI 2001 international conference on Shape modeling and applications.
IEEE; 2001. p. 20–9.

[4] Langerak TR. Local parameterization of freeform shapes using freeform feature
recognition. Computer-Aided Design 2010;42(8):682–92.

[5] Stroud I. Boundary representation modelling techniques. Springer; 2006.
[6] Benkö P, Martin R, Várady T. Algorithms for reverse engineering boundary

representation models. Computer-Aided Design 2001;33(11):839–51.
[7] Huang J, Menq C. Automatic CAD model reconstruction from multiple point

clouds for reverse engineering. Transactions of the ASME 2002;2:160–70.
[8] Chang K, Chen C. 3D shape engineering and design parameterization.
Computer-Aided Design 2011;5(8):681–92.

[9] Benkö P, Kós G, Várady T, Andor L, Ralph RM. Constrained fitting in reverse
engineering. Computer Aided Geometric Design 2002;19(3):173–205.

[10] Bénière R, Subsol G, Gesquière G, Le Breton F, PuechW. Recovering primitives
in 3D CAD meshes. In: SPIE electronic imaging 2011, 3D imaging, interaction
and measurement, Vol. 7864. 2011. 0R-1–9.

[11] Böhm J, Brenner C. Curvature based range image classification for object
recognition. In: PROC SPIE INT SOC OPT ENG, Vol. 4197. 2000. p. 211–20.

[12] Lavva I, Hameiri E, Shimshoni I. Robust methods for geometric primitive
recovery and estimation from range images. IEEE Transactions on Systems,
Man, and Cybernetics 2007;37(3):826–45.

[13] Sunil VB, Pande SS. Automatic recognition of features from freeform surface
CAD models. Computer-Aided Design 2008;40(4):502–17.

[14] Lukács G, Martin R, Marshall D. Faithful least-squares fitting of spheres,
cylinders, cones and tori for reliable segmentation. In: Computer vision—
ECCV’98, Vol. 1406. 1998. p. 671–86.

[15] Shakarji CM. Least-squares fitting algorithms of the NIST algorithmic testing
system. Journal of Research of the National Institute of Standards and
Technology 1998;103:633–40.

[16] Schnabel R,Wahl R, Klein R. Efficient RANSAC for point-cloud shape detection.
Computer Graphics Forum 2007;26(2):214–26.

[17] Chaperon T, Goulette F. Extracting cylinders in full 3D data using a random
sampling method and the Gaussian image. In: Proceedings of the vision
modeling and visualization conference 2001, VMV-01. 2001. p. 35–42.

[18] Li Y, Wu X, Chrysathou Y, Sharf A, Cohen-Or D, Mitra N. Globfit: consistently
fitting primitives by discovering global relations. ACM Transactions on
Graphics (TOG) 2011;30(4):52:1–52:12.

[19] Chappuis C, RassineuxA, Breitkopf P, Villon P. Improving surfacemeshing from
discrete data by feature recognition. Engineering with Computers 2004;20:
202–9.

[20] Patrikalakis N, Maekawa T, Mukundan H. Surface to surface intersections. IEEE
Computer Graphics and Applications 1993;13(1):89–95.

[21] Requicha A, Voelcker H. Boolean operations in solid modeling: boundary
evaluation and merging algorithms. Proceedings of the IEEE 1985;73(1):
30–44.

http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref1
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref2
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref3
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref4
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref5
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref6
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref7
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref8
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref9
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref10
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref12
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref13
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref15
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref16
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref18
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref19
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref20
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref21


R. Bénière et al. / Computer-Aided Design 45 (2013) 1382–1393 1393
[22] Miller JR. Incremental boundary evaluation using inference of edge classifica-
tions. IEEE Computer Graphics and Applications 1993;0272(17):71–8.

[23] Magid E, Soldea O, Rivlin E. A comparison of Gaussian and mean curvature
estimation methods on triangular meshes of range image data. Computer
Vision and Image Understanding 2007;107(3):139–59.

[24] Gatzke T, Grimm C. Estimating curvature on triangular meshes. International
Journal of Shape Modeling 2006;12(1):1–28.

[25] DongC,WangG. Curvatures estimation on triangularmesh. Journal of Zhejiang
University—Science A 2005;6(1):128–36.
[26] Chen X, Schmitt F. Intrinsic surface properties from surface triangulation. In:
ECCV, Vol. 588. 1992. p. 739–43.

[27] Pratt V. Direct least-squares fitting of algebraic surfaces. In: ACM SIGGRAPH
computer graphics, Vol. 21. ACM; 1987. p. 145–52.

[28] Krut S, Company O, Benoit M, Ota H, Pierrot F. I4: a new parallel mechanism
for scara motions. In: Proc. of ICRA 2003: international conference on robotics
and automation. Taipei, Taiwan; 2003. p. 1875–80.

[29] Joumaa W, Harik R, Derigent W, et al. Identification of ruled surfaces in a
model reconstruction step. Computer-Aided Design and Applications 2009;
6(4):461–70.

http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref22
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref23
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref24
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref25
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref27
http://refhub.elsevier.com/S0010-4485(13)00101-2/sbref29

	A comprehensive process of reverse engineering from 3D meshes to CAD models
	Introduction
	State of the art
	Complete procedure
	Detection and reconstruction of primitives
	Adjacency relations and boundaries

	Towards a new B-Rep reconstruction process
	Overview of our method
	Step 1: primitive extraction
	Plane and sphere extraction
	Cone and cylinder extraction
	Improving computation of the curvature by a pre-segmentation step

	Step 2: wire construction
	Building an adjacency relationship graph
	Extracting valid intersection curves for our wire construction
	Decomposing intersection curves into edges
	Assembling edges to build wires

	Step 3: B-Rep model creation

	Experimental results
	Tests on typical meshes
	Tests on real CAD meshes
	Analysis of the computation time

	Conclusion and perspectives
	References


