
Medical Image Analysis 6 (2002) 163–179
www.elsevier.com/ locate /media

A utomatic detection and segmentation of evolving processes in 3D
medical images: Application to multiple sclerosis

a , b a a* ´ ´David Rey , Gerard Subsol , Herve Delingette , Nicholas Ayache
aProjet Epidaure, INRIA, 2004 rte des Lucioles, BP93, 06902 Sophia Antipolis Cedex, France

b `LIA-CERI, 339 ch. des Meinajaries, BP1228, 84911 Avignon Cedex 9, France

Received 2 November 2000; received in revised form 1 July 2001; accepted 26 September 2001

Abstract

The study of temporal series of medical images can be helpful for physicians to perform pertinent diagnoses and to help them in the
follow-up of a patient: in some diseases, lesions, tumors or anatomical structures vary over time in size, position, composition, etc., either
because of a natural pathological process or under the effect of a drug or a therapy. It is a laborious and subjective task to visually and
manually analyze such images. Thus the objective of this work was to automatically detect regions with apparent local volume variation
with a vector field operator applied to the local displacement field obtained after a non-rigid registration between two successive temporal
images. On the other hand, quantitative measurements, such as the volume variation of lesions or segmentation of evolving lesions, are
important. By studying the information of apparent shrinking areas in the direct and reverse displacement fields between images, we are
able to segment evolving lesions. Then we propose a method to segment lesions in a whole temporal series of images. In this article we
apply this approach to automatically detect and segment multiple sclerosis lesions that evolve in time series of MRI scans of the brain. At
this stage, we have only applied the approach to a few experimental cases to demonstrate its potential. A clinical validation remains to be
done, which will require important additional work.  2002 Elsevier Science B.V. All rights reserved.
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1 . Introduction density images show lesions but do not differentiate
edema, demyelinization, sclerosis and eventually necrosis;

1 .1. Multiple sclerosis data T1-weighted images show necrosis, and T1 images with
gadolinium injections show active demyelinizing areas.

Multiple sclerosis is a progressive disease with lesions Moreover, Guttmann et al. (1999) showed that MRI scans
evolving over time. Lesions appear in the central nervous also make it possible to follow-up a patient with multiple
system: encephalon, especially the white matter, spinal sclerosis. In this case a time series of 3D images of a
cord and optic nerves. Usually lesions are due to a patient is usually acquired from the same modality and
demyelinization with a replacement of cerebro-spinal fluid with a specific protocol to have similar properties: similar
instead of myelin. There is a natural process of healing: a histogram, field of view, voxel size, image size, etc. In this
typical lesion expands to a maximum and then shrinks paper we use two sets of multiple sclerosis time series: a
thanks to remyelinization. Unfortunately, this healing proton density and a T2-weighted set of MRI scans. These
process is limited and rarefies over time. MRI scans make two time series come from the Brigham and Women’s

1 2it possible to confirm the diagnosis at the beginning of Hospital and from the BIOMORPH European project .
multiple sclerosis: hypersignals in T2-weighted or proton The data from the Brigham and Women’s Hospital consist
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correlate them with clinical signs. On the other hand,
quantitative information such as total volume of lesions or
volume variation of lesions (global or local) is important,
for instance to determine if a drug has been efficient for
this patient. A segmentation of lesions or evolving lesions
gives both qualitative and quantitative information. Be-
cause there is a huge amount of data, processing by
rater-supervised methods (for instance, manual segmenta-
tion) is not very reliable and is too time-consuming, thus
precise, reliable and automated methods are needed.
Between two examinations, a patient does not have the
same position in the acquisition device. Therefore, images

Fig. 1. A 3D image with visualization using InrView freeware. at different times are not directly comparable (cf. Fig. 2(a)
and (b)). We have to apply a transformation to each image

of 2563256354 PD images, with a voxel size of 0.93753 of a series to compensate for the difference in position
0.937533.0 mm. There are 24 time points over 1 year with (translation) and orientation (rotation). This problem of
a temporal interval between two images of the series which rigid registration is well known and there are many
varies from 1 to 6 weeks with an average of 2 weeks. The algorithms that give good results in the case of intra-
data from the BIOMORPH project consist of T2-weighted patient and mono-modal alignment (Brown, 1992; Thirion,
2563256324 images with a voxel size of 0.8984383 1996; Roche et al., 2000; Maes et al., 1997). However, in
0.89843835.5 mm. There are 16 time points over 3 years our case, significant inaccuracy in the alignment can occur:
with a temporal interval between two images of the series • an MRI acquisition is usually subject to inhomogen-
of 1 month during the first year, then an examination each eities, and thus an MR scan is generally spatially
4 months during the second year, and a final examination biased;
at the end of the third year. • there is no absolute intensity scale in MRI, thus images

In this paper we show 3D images with the same views are temporally biased;
3as with our InrView freeware (Fig. 1). • there is a partial volume effect in MRI;

• successive slices may be misaligned in MRI due to a
1 .2. Detection and segmentation of evolving lesions motion artifact between interleaved acquisitions;

• there are evolving lesions in our images.
In the case of multiple sclerosis, both qualitative and Even with pre-processing of images, the above perturba-

quantitative information is helpful for diagnosis or follow- tions can still disturb registration algorithms and in this
up. Typical qualitative information is the positions of case there is an inaccuracy in the alignment. After align-
lesions (or only evolving lesions) either to confirm the ment we can compare images, and apply automatic com-
pathology (lesions often appear near ventricles) or to puterized tools to detect and quantify evolving processes

Fig. 2. Two images of a patient at different times are not directly comparable ((a) and (b)), but with a rigid 3D alignment voxels having the same
coordinates are comparable ((a) and (c)). We have to apply a transformation to each image of a series to compensate for this difference in position
(translation) and orientation (rotation).

3http: / /www-sop.inria.fr /epidaure /Softs / InrView/InrView.html.
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Fig. 3. Comparison between two subtractions with respect to the rigid registration. Left: correct rigid registration: it is easy to detect lesions that evolve
(e.g. black hole for a shrinking lesion). Right: approximative rigid registration (this example exaggerates the inaccuracy we obtain with current algorithms):
all the anatomical structures appear (e.g. the ventricles, the edges of the brain) and it becomes very hard to distinguish lesions.

(cf. Fig. 2(a) and (c)). There are several automatic methods appear (cortex, ventricles, etc.) and give the same local
to study multiple sclerosis lesions in time series: apparent information as the lesions. Thus it is not trivial
• With a single image, it is possible to threshold or to to distinguish global rigid changes from local rigid and

study the image intensity to segment lesions indepen- non-rigid changes. Secondly, the subtraction only char-
dently at each time point (Zijdenbos et al., 1998). acterizes the difference of intensity between two im-
Unfortunately, thresholding does not always make it ages: there is an intensity difference (a voxel does not
possible to distinguish the lesions from the white have the same intensity in the two images) and a
matter. geometrical difference (the same anatomical structures

• It is possible to subtract two successive images to find or lesions have different size and/or shape, but the
intensity changes. There are two major difficulties when same intensity). The intensities in the subtraction image
applying such a method. First, the subtraction is depen- are not related to the volume/shape evolution of the
dent on the accuracy of the rigid registration (Hajnal et lesions, but only to the difference between the inten-
al., 1995; Lemieux et al., 1998). As explained above, sities of lesions and background: we show a synthetic
even if the rigid registration process is quite well example of this limitation in Fig. 4. If we threshold the
known, there are difficult cases where alignment is still subtraction image to automatically extract evolving
inaccurate. We show in Fig. 3 an evolving lesion areas, only some parts of the evolving structures are
appearing in the subtraction image as a dark hole. But if detected. Moreover, the threshold value is not related to
the images are not perfectly aligned (this example is the amplitude of the evolutions, as can be seen in Fig. 4
excessive for emphasis), it is hard to distinguish evolv- where a series of threshold values is applied.
ing lesions: the edges of the anatomical structures • With n images, it is possible to follow the intensity of

Fig. 4. Different threshold values applied to a subtraction image. For each value, only some parts of the evolving structures are detected. Moreover, the
threshold value is not related to the amplitude of the evolutions (volume/shape evolutions).
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Fig. 5. Method of detection and segmentation of evolving processes using an apparent displacement field computed with a non-rigid registration algorithm.

each voxel over time (Gerig et al., 2000). Although the crest lines of the images (Thirion, 1996). There are
very nice results are obtained with perfectly rigidly several intensity changes between images (especially le-
aligned images, such an approach remains sensitive to sions that evolve), but no global shape differences (intra-
the accuracy of the rigid registration (note that it can be patient study); therefore, we preferred a geometrical
a problem in a very few cases as explained above), and approach over an intensity-based method to be more
does not take into account the spatial correlation robust. Feature points called ‘extremal’ points are auto-
between neighboring voxels. Recently, Welti et al. matically extracted from the 3D image. They are defined as
(2001) proposed the application of a post-treatment to the loci of curvature extrema along the ‘crest lines’ of the
take into account the spatial coherence. isosurface corresponding to the zero-crossing of the Lapla-

cian of the image. Based on these stable points, a two-step
1 .3. A new method based on the displacement field registration algorithm computes a rigid transformation. The

first step, called ‘prediction’, looks for triplets of points
Our idea is to avoid a voxel-by-voxel comparison using from the two sets which can be put into correspondence

the ‘apparent’ motion between two images. Roughly we with respect to their invariant attributes. The second step,
want to find a vector at each voxel that expresses its visual called ‘verification’, checks whether the 3D rigid trans-
motion from one image to another by using a kind of optic formation computed from the two corresponding triplets is
flow algorithm (see Section 2.2). Fig. 5 shows the different valid for all the other points. A study of the accuracy of
stages of the automatic process and gives an overview of this algorithm, especially for aligning MS data, can be
this paper. First, images are aligned by a rigid registration. found in (Pennec and Thirion, 1997).
Then we compute the displacement field to recover the
‘apparent’ motion between images with a non-rigid regis- 2 .2. Non-rigid registration
tration algorithm. We focus on the detection of the regions
of interest thanks to vector field operators, and use them to We compute a 3D displacement field with a non-rigid
segment evolving lesions. algorithm based on local diffusion (Thirion, 1998; Cachier

This work is a natural continuation of the previous et al., 1999). This algorithm is a kind of optical flow
research work of Thirion and Calmon (1999). method that diffuses image 2 into image 1. Image 2 is

iteratively deformed. At each iteration, each point of image
1 ‘attracts’ or ‘repels’ the point that has the same coordi-

2 . Computation of the displacement field nates in image 2 according to their intensity difference. All
these forces are regularized and used to apply an additional

2 .1. Rigid registration deformation to image 2. The process is iterated based on a
multi-resolution scheme. Roughly, this algorithm matches

First we compute a rigid registration with an algorithm the intensities of two images with a stage of vector field
which matches ‘extremal’ points defined as the maxima of smoothing to avoid large discontinuities and topological
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Fig. 6. An example of the computation of the ‘apparent’ displacement field thanks to a non-rigid registration algorithm. Notice how it emphasizes a
shrinking lesion.

problems. If a structure (for instance, a lesion) does not we will see in Section 4.1. Fig. 6 shows the vector field
change in shape but changes in intensity (because of the from 1 to 2 around a lesion, emphasizing a radial shrink-
disease or because of the temporal bias) this algorithm ing.
interprets such a change as a movement in the center of the In the next section we introduce a vector field operator
given structure. However, contour lines are still well in order to transform the 3D vector field into a simpler 3D
matched because a strong intensity change (step edge) scalar image. Our objective is to obtain a scalar image
between two structures provides enough contrast for non- enhancing time evolutions. Moreover, we wish to intro-
linear matching, even if intensities are not equivalent. duce operators that yield scalar values with a physical
Thanks to the regularization stage at each iteration of this meaning for a better interpretation of the results.
algorithm, the final resulting vector field does not usually
match level sets, but a smooth apparent displacement field
is found. Thus the apparent motion in the center of a lesion 3 . The Jacobian operator
is influenced by the vectors in the boundary, resulting in a
movement towards the center in the case of a shrinking 3 .1. Mathematical expression and physical meaning
lesion, even if its center intensity changes over time.
However, it is possible to avoid this problem by using We introduce the Jacobian of the deformation function
other algorithms where local intensity differences do not at point P, as inspired from (Davatzikos et al., 1996):
disturb the computation of the apparent displacement f(f (P),f (P),f (P)). This operator is widely used in1 2 3

vector field as described in (Cachier and Pennec, 2000). In continuum mechanics (Bro-Nielsen, 1997; Weiss et al.,
our case we use four multi-resolution levels with four 1997). The Jacobian of f at point P is defined as
iterations at the highest resolution level and the sigma for

≠f ≠f ≠f1 1 1the Gaussian smoothing of the vector field is s 5 1.0. ] ] ]
T u u≠x ≠y ≠zAt the end, each 3D point P(x,y,z) of image 1 has a

≠f ≠f ≠f2 2 2vector u(u (P),u (P),u (P)) that gives its apparent dis-1 2 3 ] ] ]Jac(f) 5 det(= f) 5 .p u u≠x ≠y ≠zplacement (cf. Fig. 6). This apparent displacement field
≠f ≠f ≠finforms us where each voxel seems to go visually in image 3 3 3
] ] ]u u2. We can also define the deformation, which is a function ≠x ≠y ≠z

T
f(f (P),f (P),f (P)) that transforms the point P(x,y,z)1 2 3

T It can also be written with the vector displacement fieldinto the point P9(x9,y9,z9) . We thus have
u(u ,u ,u ) at P,1 2 3

x9 5 x 1 u (x,y,z) 5 f (x,y,z),1 1 det(= f) 5 det(Id 1 = u)p p
y9 5 y 1 u (x,y,z) 5 f (x,y,z),2 2 ≠u ≠u ≠u1 1 15

] ] ]1 1z9 5 z 1 u (x,y,z) 5 f (x,y,z).3 3 u u≠x ≠y ≠z
≠u ≠u ≠u2 2 2This apparent displacement field u gives an idea of the ] ] ]1 15 .u u≠x ≠y ≠ztemporal evolution between two images. We can compute
≠u ≠u ≠u3 3 3the two fields: from image 1 to image 2, and from image 2 ] ] ]1 1u u≠x ≠y ≠zto image 1, which contain complementary information, as
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Fig. 7. u(P) is the apparent displacement of P at time 1. P9 5 P 1 u(P) is the apparent location of P at time 2. The Jacobian of the apparent deformation
measures the local volume variation dV 9 /dV (see text).

It is useful to recall a physical interpretation of the local shrinking at point P. The transformation locally
Jacobian operator in terms of local volume variation. With preserves the volume when Jac (f) 5 1.p

the notation of Fig. 7, u(P) is the apparent displacement of
P at time 1. P9 5 P 1 u(P) is the apparent location of P at 3 .2. Robustness of the Jacobian with respect to
time 2. The volume dV of the elementary tetrahedron misalignment
defined by (P,P 1 dx,P 1 dy,P 1 dz) is given by the deter-
minant of the three vectors from P (triple product), Fig. 8 shows what happens when two images are not

perfectly aligned: the deformation function c, which isx 1 dx x x1
measured, is different from the ideal one f. The mis-y y 1 dy y]dV5 .U U6 registration is given by a residual rotation R and translationz z z 1 dz
t. We have c 5 R + f 1 t. Then we have

So,
Jac(c) 5 det(=c) 5 det(=(R + f 1 t)) 5 det(R ?=f).

dx 0 01
0 dy 0]dV5 . Thus,U U6
0 0 dz

Jac(c) 5 det(R)det(=f) 5 det(=f) 5 Jac(f).
And, finally,

This shows that the Jacobian is invariant with respect to1
]dV5 dxdydz.6 imperfect rigid registration of the images. Of course, it

requires that, even in the case of an approximate alignmentAs we assume that dx is small, a first-order approximation
of images, the non-rigid registration algorithm still com-of the deformation f in P is given by
putes a correct displacement field. This is actually the case

≠f 2 as long as the original rigid alignment remains close to the]f(P 1 dx) 5 f(P) 1 dx 1 o(dx ).
≠x ideal one: for the demons algorithm, a multiscale approach

implementation makes it possible to recover additionalWe have the same approximation in the y and z directions.
displacement typically up to five voxels. It is thereforeThus the volume dV 9 of the deformed elementary tetra-
much less constrained than when employing the subtrac-hedron is
tion method where a precision of the initial rigid alignment

≠f ≠f ≠f1 1 1 typically better than one voxel is required.] ] ]dx dy dzu u≠x ≠y ≠z
≠f ≠f ≠f1 12 2 2

] ]] ] ]dV 9 . 5 Jac (f)dxdydz.dx dy dz pu u6 6≠x ≠y ≠z
≠f ≠f ≠f3 3 3
] ] ]dx dy dzu u≠x ≠y ≠z

Therefore,

dV 9 . Jac (f) ? dV.p

Thus, the local variation dV 9 /dV of an elementary volume
is given (as a first-order approximation) by the Jacobian of Fig. 8. f is the deformation function for a perfect rigid registration, and
the deformation function f. When Jac (f) . 1 there is a c is the deformation function when there is a misregistration (R,t). Wep

have c 5 R + f 1 t.local expansion at point P, and when Jac (f) , 1 there is ap
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3 .3. Computation and application of the Jacobian Jac (f) 5 det(Id 1 = (u))p p

. det(Id 1 = ((A 2 Id) ? P 1 t)pWe have seen that the computation of the Jacobian of
5 det(Id 1 (A 2 Id)).the deformation f can be performed directly with the

displacement field u. We need to compute the first nine
And, finally, at each point P(x,y,z),derivatives of the displacement field u,

Jac(f) . det(A).≠u ≠u ≠u ≠ux x x z
]]] ], , , . . . , .
≠x ≠y ≠z ≠z It is thus possible to compute a good approximation of the

Jacobian at each point by calculating the determinant ofFor a faster computation we use recursive filtering which
the linear part of the approximative local affine transforma-gives an image for each derivative. Then, we need to store
tion. This method gives results very similar to that usingin memory the 9 derivatives to compute the Jacobian and
recursive filters, and can be faster (about 4 times) whenfor an image of 25632563180; this requires about 425
using a very small neighborhood (typically the 6-neigh-Mbytes of memory. So, to avoid overfilling the memory
borhood of each voxel) to calculate the nearest affinespace, we compute the Jacobian on sub-images and then
transform with a least-square estimation.we fuse the different sub-results which include an overlap-

The Jacobian gives a contrasted image related to theping border to avoid side effects. We have also im-
volume variation of each evolving lesion. The mostplemented another method to compute the Jacobian: at
contrasted areas correspond to the most shrinking or mosteach point we calculate an approximation of the vector
expanding lesions. In Fig. 9 we show the result of thefield by an affine transformation thanks to an affine least
Jacobian operator on a synthetic vector field: this syntheticsquare method described in (Pennec, 1996). We have a
field deforms a ball to half its size with a linear decrease of333 matrix A which corresponds to the linear part of the
the vectors along the radius. In this case, the Jacobian hasnearest (in a least-square sense) affine transform and a
a constant value smaller than 1 which expresses a shrink-331 translation vector t at each point P(x,y,z) such that
ing in the middle of the ball; the Jacobian value equals 1

P9(x9,y9,z9) . A ? P(x,y,z) 1 t outside the ball where nothing happens; and there is an
area with a value greater than 1 because, on the boundaries

and
of the ball, the vectors suddenly pass from 0 to their
maximum value, which appears locally as an expansion (inu 5 P9(x9,y9,z9) 2 P(x,y,z) . A ? P 1 t 2 P
a real case, the field is smoothed and continuous, but, on5 (A 2 Id) ? P 1 t.
the boundaries of the lesions, the effect is the same: the

So, vectors outside the lesion are smaller than those just

Fig. 9. The synthetic field deforms a ball to half its size with a linear decrease of the vectors along the radius. In this case, the Jacobian has a constant
value smaller than 1 which expresses a shrinking in the middle of the ball; the Jacobian value equals 1 outside the ball where nothing happens; and there is
an area with a value greater than 1 because the vectors suddenly pass from 0 to their maximum value on the boundaries of the ball: it appears locally as an
expansion (in a real case, the field is smoothed and continuous, but on the boundaries of lesions the effect is the same: the vectors outside lesions are
smaller than those just inside).



170 D. Rey et al. / Medical Image Analysis 6 (2002) 163 –179

Fig. 10. Application of the Jacobian to a real case: we can see a lesion that shrinks between image 1 and image 2. On the Jacobian from image 1 to image
2 we can see a black hole corresponding to a shrinking area (Jacobian smaller than 1). The subtraction image also shows an evolving voxel, but with a
value which is not related to the volume variation.

inside). In Fig. 10 we see that an important shrinking of a V 2V V2 1 2
]] ]lesion between two images gives a dark region in the 5 2 1 . Jac 2 1.V V1 1Jacobian image. In other areas, the value is almost constant

and very close to 1, which indicates no apparent variation Fig. 11 shows the application of these three operators on
of volume. Zooming in around a lesion shows that darker the same displacement field. In particular, we notice how
areas correspond to shrinking lesions. the Jacobian and the discrete computation of the relative

variation of volume are similar. The advantage of our
approach is that it provides a continuous framework for a

3 .4. Other operators computation of the Jacobian at any scale.
In (Rey et al., 1999) we present other vector field

Thirion and Calmon (1999) have developed another operators based on continuum mechanics, one that gives
vector field operator based on the divergence and the norm the deformation energy and another that gives a value of
of the displacement field u, shearing at each voxel. These operators are less convenient

than the Jacobian because they do not have a simple
norm ? div(P) 5 iu(P)idiv u(P) reference value, and they do not make it possible to

≠u ≠u ≠u distinguish between expansion and shrinking.1 2 3
] ] ]5 iu(P)i 1 1 .S D≠x ≠y ≠z

This operator has no simple physical meaning even if the 4 . Results
sign of the operator gives information about shrinking
(negative values) or expansion (positive values). As we 4 .1. Thresholding and segmentation
have no physical interpretation of the value, it is difficult to
automatically threshold the image to extract the regions of We can extract the areas that correspond to a significant
interest. temporal evolution. It is possible to find a uniform

Prima et al. (1998) proposed another operator which threshold over the whole Jacobian image relying on its
gives the local variation of volume. A cell of voxels of physical interpretation in terms of local variation of
volume V is deformed to a complex polyhedron, the volume. We chose an empirical threshold of 0.3 to indicate1

volume V of which is computed. Then (V 2V ) /V is significant shrinking. The example in Fig. 12 shows that it2 2 1 1

calculated. Note that another algorithm to compute V is gives a good segmentation of a shrinking lesion. In fact,2

given in (Calmon et al., 1998). This operator is directly we are going to focus only on the shrinking areas. We can
related to the Jacobian, see in Fig. 13 that a better description is provided with the



D. Rey et al. / Medical Image Analysis 6 (2002) 163 –179 171

Fig. 11. Comparison between different existing operators: (a) iuidiv u; (b) discrete computation of (V 2V ) /V | (Jac(f) 2 1); (c) Jacobian.2 1 1

shrinking field. If there is an expansion locally between segmentations s in the first image, and s in the1→2 2→1

images 1 and 2, in most cases we would need a one-to- second image. Then we have to combine these two sources
many mapping due to the limited resolution of the image. of information: the whole segmentations in images 1 and 2
Moreover, the smoothing step during the non-rigid regis- are given by
tration creates asymmetry between the direct and reverse

S (t1) 5 [s ] < [u (s )]12 1→2 2→1 2→1field because expanding areas are smaller than corre-
sponding shrinking areas and thus are more influence by and
the spatial smoothing. To avoid this, we consider only S (t2) 5 [s ] < [u (s )].12 2→1 1→2 1→2shrinking regions from 1 to 2, and then shrinking regions
from 2 to 1. By thresholding shrinking areas we obtain the Figs. 14–16 show automatic segmentation results obtained

Fig. 12. The threshold det(=f) , 0.3 makes it possible to segment shrinking lesions. This example is for a region of interest around a lesion but we show it
in the complete image to locate the lesion.
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evolving artificial 3D lesions into the same 3D T2-weight-
ed image of a brain without lesions. The artificial lesions
are represented by spheres of radius 10 and 4 mm for I ,1

and 6 and 8 mm for I (Fig. 19(a)). Even if the model is2

extremely simple, with this example we aim to show the
feasibility of the method and its limitations. Because the
global rigid registration of I and I is the identity in this1 2

case, we have only applied the non-rigid registration
algorithm to compute the direct and reverse local displace-
ment field everywhere. We then applied our method to
extract the boundary of the evolving regions, with
Jac(f) , 0.3. The results in Figs. 18 and 19(c) show that
the evolving regions are correctly detected. The accuracy
of the delimitation of the boundary is qualitatively correct,
but we observed a difference of between 5 and 20%Fig. 13. The information is richer when we look at the shrinking field.
between the correct diameter of the lesions and theLeft: If there is a large expansion, the direct displacement field cannot

express that one voxel should deform to several voxels. We would need a measured diameter.
one-to-many mapping due to the limited resolution of the image. Right:
Thanks to the reverse field, a better description of the phenomenon is
possible. Moreover, the smoothing step during the non-rigid registration 4 .3. Refinement of the segmentation
creates asymmetry between the direct and reverse field because expanding
areas are smaller than the corresponding shrinking areas and thus are We have demonstrated that the method makes it possible
more influenced by the spatial smoothing.

to accurately detect the evolving areas and that the
segmentation is approximate, even for a synthetic example.

at two time points. We have recently developed a simpler
We used a method based on deformable models (Montag-

method that uses a quasi-symmetrical vector field compu-
nat and Delingette, 1998) to refine the segmentation of the

tation to have a symmetrical value to directly threshold
evolving lesions. This deformable model has the advantage

expanding and shrinking areas with only one vector field
of combining both geometric and image information to

(Cachier and Rey, 2000).
perform image segmentation. Indeed, a deformable model

With the fields between images 1 and 2 and between
evolves under the influence of internal and external forces:

images 2 and 3, we can compute segmentations S in12 internal forces enforce the geometric regularity of the
images 1 and 2 and S in images 2 and 3. Then we23 surface model, whereas external forces push the surface
propagate the segmentations S and S , respectively, to12 23 towards the lesion boundary through the use of the image
times t3 and t1, thanks to the vector fields u and u .21 23 gradient information. This method gives a better segmenta-
Then, by addition, we obtain a segmentation of the lesions

tion of the evolving lesions and makes it possible to
in all the images of a series (Rey et al., 1998). In Fig. 17,

perform quantitative measurements of the evolving areas
we can see the results of the method for three time points

(volume variation, etc.) (cf. Fig. 20).
of the BIOMORPH data set.

4 .2. Study of a synthetic example 4 .4. Validation

We have created two images, I and I , by including two Studying a synthetic example does not consist of a1 2

Fig. 14. Segmentation of evolving lesions. Left: Brigham & Women’s Hospital data. Right: BIOMORPH data.
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Fig. 15. Segmentation of evolving lesions between two time points of the BIOMORPH data set. On each line we show the result on a different slice. First
column: image at time 1. Second column: image at time 1 with segmentation. Third column: image at time 2. Fourth column: image at time 2 with
segmentation.

clinical validation; it just shows that our algorithm works our method, which detects and segments evolving lesions,
properly. A real validation is much more complicated to with the clinical aspects of multiple sclerosis. This valida-
achieve. We have begun to work in collaboration with the tion will require a long period of time (about 2 years) and
Departments of Neurology (Pr. Chatel and Dr. Lebrun- the results will be published in a forthcoming paper. Some

´Frenay) and Radiology (Dr. Chanalet) of the CHU (Hospi- preliminary results have been presented in (Rey et al.,
´tal and University Center), Nice, to correlate the results of 2000; Lebrun-Frenay et al., 2000).
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Fig. 16. 3D views of the segmentation of evolving lesions between two time points. Top: A shrinking and an expanding lesion (red corresponds to the
lesions at the first time point and green at the second time point). Bottom: Whole brain in 3D with segmented evolving lesions (blue corresponds to the first
time point, red to the second time point).

Fig. 17. Thanks to the segmentation of the evolutions between times 1 and 2, and between times 2 and 3, it is possible to visualize lesion evolution
between the 3 successive acquisitions.
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Fig. 18. Results for several 2D slices: each row corresponds to a different slice; the first column represents image 1 without segmentation, the second
column shows image 1 with automatic segmentation, the third column represents image 2 without segmentation, and finally the fourth column shows image
2 with segmentation.
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Fig. 19. (a) Two synthetic temporal images I and I . (b) The Jacobian image of the field from I to I and I to I . (c) Automatic segmentation of evolving1 2 1 2 2 1

9 9lesions in I and I using Jac(f) , 0.3. (d) I 2 I on the left. On the right I 2 I , where I is a translated version of I . (e) Comparison between the1 2 2 1 2 1 2 2

9Jacobian from I to I and the Jacobian from I to I ; evolving areas clearly appear in the two images. (f) Automatic segmentation of evolving lesions in I1 2 1 2 1

9 9and I using the Jacobian from I to I , which shows robustness to imperfect rigid registration of images.2 1 2

4 .5. Robustness with respect to imperfect rigid by translating I by 3 voxels in one direction. As expected,2

registration our method provides similar results when applied to I and1

9I (Fig. 19(e)), while a simple difference yields very noisy2

9From the previous example, we also created an image I results (Fig. 19(d)).2

Fig. 20. Refinement of the initial segmentation. Left: Three projections of the segmentation of a 3D evolving lesion. Right: The same lesion with its
segmentation refined by deformable models.
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9Fig. 21. Segmentation of evolving lesions in Im thanks to a study between Im and Im of Fig. 10 (perfectly rigidly registered) and between Im and Im ,1 1 2 1 2

9where Im is a misregistered version of Im . This study shows the robustness with respect to imperfect rigid registration. (a) Im 2 Im . (b) Automatic2 2 2 1

9 9segmentation in Im thanks to a study between Im and Im . (c) Automatic segmentation in Im thanks to a study between Im and Im . (d) Im 2 Im . (e)1 1 2 1 1 2 2 1

Jacobian from Im to Im . (f) Subtraction between (g) and (e); the maximum difference value is about 25% of the Jacobian maximum value, and the mean1 2

difference value is about 6% of the mean Jacobian value. (g) Jacobian from Im to Im .1 2

We also considered the application of our method believe that our approach will be useful to detect evolving
between two real T2-weighted MR images, Im and Im regions corresponding to local apparent expansion or1 2

(same 3D images as presented in Fig. 6). When Im and shrinking. At this stage, we have only applied the approach1

Im are perfectly rigidly registered, our method produces to a few experimental cases to demonstrate its potential:2

the segmentation of an evolving lesion in cross-section the method gives satisfying results for the detection of
(Fig. 21(b)), which can be compared to a simple difference evolving areas and especially evolving lesions (and has the
analysis between the registered images (Fig. 21(a)). We advantage of not being very dependent on the initial

9also created an image Im by adding a misalignment to I alignment given by a rigid registration stage), but still2 2

corresponding to a rotation of 18 around an axis orthogonal gives poor results for segmentation. Thus we plan to use it
to this cross-section and passing through its center, plus a in combination with other segmentation algorithms, for
translation of one voxel in the two directions of the plane example with deformable models algorithms, in order to
of this cross-section. We observe that the results provided delineate more precisely the boundary of the lesions in
by our method (Fig. 21(c)) remain similar to the results of temporal sequences. At the moment our algorithm has not
Fig. 21(b), whereas a simple difference now produces very been specified for multiple sclerosis, but specific process-
noisy results (Fig. 21(d)). ing can be added to the method: shape analysis or even the

mean or parametric model of an evolving lesion, or a white
matter mask to eliminate false-positives (Warfield et al.,

5 . Conclusion 1995). Clinical validation remains to be done, which will
require additional work. Then we will compare our results

In this article we have proposed a new method to study with manual and other automatic segmentation results
multiple sclerosis lesion evolution over time based on the (Bello and Colchester, 1998). Finally, we plan to apply our
apparent displacement field between two images. We approach to study the ‘mass effect’ by quantifying the
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