
Integrating Quality Requirements in Engineering Web

Service Orchestrations

Tarek Zernadjia, Chouki Tibermacineb, Foudil Cherifc, Amina Zouiouechea

aComputer Science Department University of Biskra, Algeria
bLIRMM, CNRS and Montpellier University, France

cLESIA Laboratory University of Biskra, Algeria

Abstract

Today’s Web services are considered as one of the leading technologies
for implementing components of service-oriented software architectures for
desktop, Web or mobile applications. When designing workflows of activities
that involve the invocation of these Web Services, we build either orchestra-
tions or choreographies. The engineering of such applications is an emerging
research topic with many challenges. Among them, we can stress out the
crucial question of how to answer quality requirements in such engineering
processes. This paper, presents a method which aims at assisting software
architects of Web Service orchestrations in integrating quality requirements
in their artifacts. In order to satisfy a quality requirement, this method sug-
gests a list of service-oriented patterns. We base our work on the postulate
stating that quality can be implemented through patterns, which can be spec-
ified with checkable/processable languages. This method helps architects to
reach concrete architecture changes that can be automatically performed on
the orchestration in order to apply a pattern, and thus integrate its associated
quality. We experimented our method on a set of real-world orchestrations
(BPEL processes) to measure the overhead of using it in engineering such
service-oriented applications. The obtained results showed that our method
brings a significant gain of time.

Keywords: SOA Pattern, Quality attribute, BPEL

Email addresses: zernadji@yahoo.fr (Tarek Zernadji), tibermacin@lirmm.fr
(Chouki Tibermacine), foud_cherif@yahoo.fr (Foudil Cherif), zou.amina@gmail.com
(Amina Zouioueche)

Preprint submitted to Journal of Systems and Software November 7, 2015

1. Introduction

In the last two decades, (Restful or SOAP-based) Web services have con-
firmed their status of one of the leading technologies for implementing com-
ponents of service-oriented software architectures for desktop, Web and even
mobile applications. The growing need for choosing such technology is related
to: i) the integrability and portability (independence from programming lan-
guages, middleware or operating systems) provided by the published services,
ii) the ease of use and efficiency of HTTP as a communication protocol with
these services, iii) the security brought by the SSL/TLS layer included in
HTTPS, among many other “ilities”.

When modeling applications that involve the invocation of Web services,
we can build two kinds of compositions of Web services: orchestrations or
choreographies. Orchestrations include a central workflow process that im-
plements the main business logic of the modelled application, which invokes
operations of “partner” Web services. One of the leading languages used for
modeling (and even executing) orchestrations is the OASIS standard WS-
BPEL or BPEL (Business Process Execution Languauge [1]). In choreogra-
phies, Web services are considered as peers that collaborate in order to im-
plement the application’s business logic. One possible language that can be
used for modeling choreographies is the OMG’s standard BPMN (Business
Process Model and Notation [2]).

The emergence of such technology and languages is recent. So, the en-
gineering of these service-oriented applications is not yet mature and raises
many challenging questions. Among these questions, we can mention the cru-
cial issue of how to satisfy quality requirements in this kind of engineering
processes. In this paper, we present a method named “SAQIM” (Service-
oriented Architecture Quality Integration Method) which aims at providing to
software architects of Web service orchestrations1 an on-demand assistance
in integrating quality requirements in their artifacts. This method has been
designed as a multi-step process. It introduces a template for enabling archi-
tects to describe quality integration “intents”. It then analyzes these intents
and helps the architect in satisfying them by suggesting some service-oriented
patterns. We base our work on the postulate stating that quality can be im-
plemented through the application of patterns [3, 4], which are specified with

1We focus in this paper on such Web service compositions and do not deal with chore-
ographies.

2

processable languages. After that, the method that we propose simulates the
application of different alternative patterns that satisfy the targeted quality
requirement, and notifies the architect with its consequences on the other im-
plemented qualities. In this way, it helps her/him to choose the best available
pattern that meets her/his needs. It automatically handles some steps in this
method in order to reach at the end concrete architecture changes, which are
specified using a scripting language called “WS-BScript” (for Web Service-
BPEL Scripting). It is a lightweight DSL that allows specifying primitive
changes making possible the reconfiguration of Web service orchestrations.
These changes can be automatically processed on the orchestration in or-
der to apply the chosen pattern, and consequently integrate its associated
quality. We experimented our method on several real-world orchestrations
(BPEL processes) and we measured the overhead of using this method in
engineering such service-oriented applications. The obtained results showed
that our method brings a significant assistance to architects.

The remainder of this paper is laid out as follows. In Section 2, we
illustrate the problems tackled in our work through some examples. These
examples are used in the remaining sections to illustrate our proposals. In
Section 3, we detail all the steps of the proposed process. In Section 4, we
present an experimentation of our method, and discuss the obtained results.
Before concluding and presenting some perspectives to our work, we make in
Section 5 an overview of the related work.

2. Illustrative Example

The Web service orchestration, implemented by a BPEL process, that we
use as an illustrative and running example here represents a Travel Reser-
vation Service (TRS) of a travel agency. The TRS Service2 is an example
of real-life service for travel organization. This system enables the users to
plan and book trips in the Web. For this end, the service interacts with four
service partners namely a flight reservation service, hotel reservation service,
train reservation service, and a car rental service.

As in any software development the design of the TRS business process is
based on requirements which consist of functional requirements (FR), non-
functional requirements (NFR), and technical requirements3. The functional

2Released with NetBeans from Oracle Website.
3We are not interested in our work in this last kind of requirements.

3

requirements include the main functionality in a travel agency reservation
system which are in our example the four service partners.

In addition to the functional requirements, the TRS system has initially
the following non-functional requirements:

• NFR1: Service consumers are granted access only if they are authen-
ticated, and no direct access to the backend resources of the service is
allowed. The transmitted data must not be intercepted by unautho-
rized service consumers.

• NFR2: The TRS system must not deliver any sensitive data that may
be used by malicious users which could compromise the integrity of the
overall service.

• NFR3: The TRS system must ensure that the flight reservation service
should be available during the reservation time (8:00 AM-6:00 PM) in
the working days. If the service does not respond within 60 seconds
the TRS system should notify the system administrator.

The three NFRs are integrated into the orchestration at design time. Af-
ter the NFRs specification analysis the architect identified the first quality
attribute she/he wants to implement in the web service orchestration from
NFR1, which is the “access security” (QA1). The second and the third qual-
ity attributes, “data security” (QA2) and “reliability” (QA3) are identified
respectively from NFR2 and NFR3.

At the beginning, the architect designing this orchestration starts by look-
ing (and/or developing) for candidate service description interfaces that offer
the needed functionality of the aforementioned services of the TRS system.
After getting the identified service description interfaces, she/he integrates
them into the web service orchestration and invokes them in the desired logic.

We will see now some evolution scenarios which target quality require-
ments of this service-oriented system, in which two additional NFRs emerged
after a certain period of time in the system’s lifetime.

After a period of time, the architects realized that the service needs to
access additional databases (of different airline companies) having different
formats, which resulted in a portability (labelled QA4) quality evolution.

A long time after creating the system, the company providing these ser-
vices has expanded significantly, and therefore more users requested the TRS
system. Consequently, the architect observed that the performance (QA5)

4

of the overall service (TRS Service) has decreased due to a subsequent in-
creasing number of user requests, which imposed managing a large amount
of data. As the amount of concurrent usage increases, so does the amount
of the generated responses, leading to increased resource consumption of the
entire service.

The two new additional NFRs are:

• NFR4: The TRS system should be able to support new data formats
required by the service partners and therefore, compensates their be-
havior modifications so that the consumers are not impacted.

• NFR5: The TRS system processes and validates a large amount of
data. To increase performance, the transmission of unnecessary data
to the consumers should be avoided.

In order to satisfy the previous NFRs, several SOA patterns have been
applied by the architect in the TRS business process. Figure 1 shows the
distribution of patterns in this business process. Its design involved the use
of five patterns that are introduced incrementally into the orchestration4.
Table 1 enumerates each of the embodied patterns and its achieved quality
attribute.

A given quality attribute can be implemented using several patterns inside
a software architecture. For example, the portability quality attribute can
be concretized by three different design decisions: the choice of the Facade
service pattern, the choice of the MVC pattern and the use of abstract APIs.
Since the quality attributes that we have to deal with in a service-based sys-
tem can be listed in an exhaustive way (many quality models exist), their
corresponding implementation solutions (SOA patterns) can also be exhaus-
tively listed to some extent (by considering catalogs, such as [5], [6], or [7]
which is more specific to SOA). These quality implementations represent re-
current solutions and seem generic enough to be “formally” specified then
processed in a semi-automatic way to be used in different quality integration
scenarios.

Even if these implementations could be reused, finding a solution (the
well suited to be implemented) among several ones for a given NFR is not a
trivial task for the architect. There is about eighty-five patterns for service-

4We presented four (4) of the patterns in Figure 1 for space limitation.

5

Figure 1: An excerpt of the TRS Business process showing the distribution of the embodied
patterns 6

Table 1: Embodied Patterns and their achieved Quality attributes

Pattern

Trusted
Sub-
system
(1)

Exception
Shielding
(2)

Replication
(3)

Service Fa-
cade (4)

Brokered
Authen-
tication
(5)

Quality
At-
tribute

Access
Security
(QA1)

Data
Security
(QA2)

Reliability
(QA3)

Portability
(QA4)

Access
Security
(QA1)

based systems that have been described in [7] and the SOA Patterns website5,
about thirty of them [8], each having several variants, can be applied at an
architectural level. This makes difficult the decision making for the architect.
The reason for that is related to the way each solution concretizes a quality
attribute, and what impact it could have on the software architecture. This is
especially true, when the architect (a novice one) does not know the existing
patterns for a targeted quality attribute or she/he is newly assigned to the
software project. For example, the reliability quality attribute can be con-
cretized by the “Replication pattern” in different possible ways with different
variants namely, “Naive Replication”, “Smart Replication”, and the “Pas-
sive Replication”. What is the best possible choice between the three offered
solutions? Each of them is suitable for the reliability but one is better than
the other depending on the context in which the pattern will be applied. For
QA4 and QA2, the architect may not be able to figure out the application of
the “Facade Pattern” for the portability quality attribute, or the use of the
“Exception Shielding Pattern” to secure her/his orchestration. Besides, even
if the architect is assisted by a collection of reusable patterns, it is difficult
for her/him to know the way each of the patterns has to be applied on the
software architecture. For example, for satisfying QA1 an architect may not
know how to exactly apply the “Trusted Subsystem Pattern” in her/his Web
service orchestration.

The process we propose in the following section aims to address the afore-
mentioned problems and helps the architects to: i) find one or several SOA
patterns to answer an integration of a quality attribute in their orchestration,
ii) choose among several ones the most suitable one, and iii) apply a pattern
in their architecture (or cancel an existing pattern if the integration consists

5http://www.soapatterns.org

7

Figure 2: A process for integrating quality requirements in engineering Web service busi-
ness processes

in weakening or removing an existing quality attribute).

3. SAQIM: a Quality Attributes Integration Method for Service
Oriented Architecture

Figure 2 shows the multi-step process that we propose in our work to
deal with quality requirements integration. During the process execution, its
steps are handled automatically or in a semi-automatic fashion and thus need
the architect’s involvement. The process steps are detailed in the following
subsections.

3.1. Quality Attribute Integration Intent Specification

The architect begins the design usually with functional requirements. We
believe that at the design phase some quality attributes are correlated with
functional requirements, hence, they have to be processed at the same time
with them. For example, in order to integrate the reliability quality attribute,
the architect may replicate some service partners. Thus, she/he should look
for similar service partners that satisfy the same functional requirement.
Consequently, those service partners together allow to achieve the reliability
quality attribute.

The architect should first gather the needed information that may help
her/him to take decisions correctly while going through the different steps of
the process. This information is specified according to a template described in
Table 2. The architect provides in this template the quality attribute targeted
by this integration activity from the quality requirements specification (i.e.
the architect wants to implement in the service orchestration). We adopt at

8

Table 2: Template for Quality Integration Intent Description

Element Scope Description
Quality Attribute In-
tegration

What?
State the quality attribute tar-
geted by the integration activity.

Integration Kind How?

State if the integration targets to
add a new quality attribute, en-
hance, weaken or withdraw the
quality attribute.

Related Quality At-
tribute

Ultimately
what?

If the integration kind is with-
drawing or weakening the qual-
ity attribute, state here the qual-
ity attribute which will be ulti-
mately enhanced or added (left
empty otherwise).

Architectural Area Where?
Indicate where in the orchestra-
tion changes will occur.

the top level of our specification the ISO 91266 quality model to represent
quality attributes as quality characteristics and sub-characteristics.

We consider in our work the ISO 9126 quality characteristics mainly as
“abstract” quality attributes and sub-characteristics as “concrete” quality
attributes which are specializations of the first ones. Some ISO 9126 quality
sub-characteristics like “security” are however still considered as “abstract”
quality attributes for service-based systems. These sub-characteristics may
have several specializations as “concrete” attributes like “Data security” and
“Access security”. Additionally, the architect should specify where in the
orchestration the changes have to be made. Hence, she/he should identify
the architectural area that shows the scope of the change. It represents the
architectural elements (or sets of these elements) in the BPEL process con-
cerned by the changes. She/he does not specify an exhaustive list of all these
elements, but only the main ones. For example, the architect can identify the
Assign activities in the BPEL process after which Invoke activities should
be added to integrate Authentication. Besides this, the architect has to
indicate in her/his intent specification the integration kind by indicating if
she/he wants to add (a new), enhance (an existing), weaken, or withdraw (an

6Software engineering – Product quality – Part 1: Quality
model. The International Organization for Standardization Web-
site:http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=22749

9

Table 3: Intent Specification for QII2

Integration Quality Attribute Security/Data security
Integration Kind Add
Related Quality Attribute

Architectural Area
add pattern before ReserveVehicle, Re-
serveTrain, ReserveHotel Invoke activ-
ities

existing) quality attribute. This will determine the assistance type to provide
in the following process steps. Additional information should be specified if
the architect wants to withdraw or reduce a quality attribute. This is stated
in the “Related Quality Attribute” section. Indeed, we argue that each time
the architect wants to remove or weaken an existing quality attribute, she/he
wants in fine to enhance or add another attribute, which is considered here
as the “related quality attribute”. For example, when the architect tries to
remove “Authentication” for affecting (weakening or removing) “Security”,
there is a final goal of enhancing “Performance”. In the other integration
kinds (add or enhance), this section is left empty.

Table 3 depicts the specification of a quality integration intent. It shows
that the quality integration targets the “Data Security” quality attribute
(QA2) which will be potentially added to the orchestration. The archi-
tect specified the BPEL elements being involved in the change which is
shown in the “Architectural Area” section. This shows that the change
will occur before “Invoke” BPEL activities in the TRS system which are
ReserveVehicle, ReserveTrain, and ReserveHotel.

The integration intent specification is analyzed, and depending on the in-
tegration kind two cases are distinguished. These are detailed in the following
subsections.

3.1.1. Quality Integration by Adding or Replacing a Pattern

In this case, the architect wants to enhance (replace the existing pattern
implementing the quality attribute by applying one or several other patterns)
or add a new quality attribute (apply a new pattern) to the orchestration.
Therefore, a collection of patterns is suggested to the architect.

3.1.2. Quality Integration by Removing a Pattern

In other situations the architect may have to remove a quality attribute.
For example, she/he may weaken or remove the security quality attribute

10

(authentication). There are no proposed patterns from the catalog here since
there is no pattern to apply to the architecture. Rather, a cancellation of the
pattern implementing the quality attribute is performed. This cancellation
is automatically obtained from the scripts for a pattern application. The
pattern application and cancellation will be detailed in sections 3.3 and 3.6.

3.2. Pattern Selection

We consider in this work the existence of an “SOA Pattern Catalog”,
whose structure is detailed later. This pattern catalog is automatically ana-
lyzed using the “WS-BScript” toolset and this may result with a collection
of patterns related to the targeted quality7 which are proposed to the ar-
chitect. The suggested patterns are then applied (Pattern Application step)
on the orchestration by the architect in a semi-automatic way by configur-
ing then executing their scripts (using WS-BScript toolset), to evaluate then
automatically their impact on the existing qualities (using the WS-BScript
toolset). The analysis may also result with no patterns. In this case, the
architect is invited to define a new pattern (New Pattern Definition step).
The proposed process is based on an “SOA Pattern Catalog”, where each
pattern is specified according to the model shown in Figure 3.

The pattern’s specification includes a “name” with a textual description
of its role. It includes also the “quality attribute” (The ISO 9126 quality
characteristic or sub-characteristic considered as concrete quality attribute)
that the pattern implements. Additionally, the pattern contains in its specifi-
cation an “architectural script” which describes the way it should be applied
in the orchestration. This script is composed of basic architecture changes
which are a set of parameterized actions that aim to reconfigure the struc-
ture of the Web service orchestration. Actions are specified using a scripting
language for Web service orchestration reconfiguration called “WS-BScript”.
The last section in the description of a pattern contains the “architectural
constraints”, which are a formal specification of the structural conditions
imposed by the pattern and allow the checking of its presence or absence in
the orchestration.

Existing SOA patterns are usually presented in the literature following a
functional organization (patterns for reliable messaging, patterns for atomic

7As stated previously, a quality attribute may be implemented by applying several
patterns in different ways.

11

Figure 3: Pattern Specification

distributed service transactions, etc.). This does not answer our needs in
this work where we would like to propose a pattern that concretizes a given
quality attribute. Consequently, we organize the patterns catalog based on
the qualities they implement.

The “SOA Pattern Catalog” is an important artifact in SAQIM. It is
partially built before any use of SAQIM. It is then enriched, according to
the model presented previously, each time a new pattern is used in the en-
gineering of a given service orchestration using SAQIM. There are two roles
associated to this catalog: i) a catalog administrator, whose responsibility
is to feed the catalog with new pattern specifications (scripts, constraints,
...), and ii) a catalog user (an architect of a given orchestration), who will
not directly manage the catalog, but will just see SAQIM suggesting the
application of patterns retrieved from the catalog (or executing cancellation
scripts processed from the catalog). As indicated previously, in some cases,
the architect has the possibility to feed the catalog with new pattern spec-
ifications. In this case, the architect will play temporarily the role of an
administrator. It is true that the responsibility of the architect is to design
the system, but the fact that she/he is able to enrich the catalog will enable
future instantiations of the same pattern, either in the same orchestration or
in other orchestrations by benefiting from the automated support provided
by SAQIM.

3.3. Pattern Application

This is an important step in the process where the selected SOA patterns
are applied on a targeted Web service orchestration by means of some scripts,
which specify simple architectural changes expressed with a Web service or-
chestration scripting language. To the best of our knowledge, there is no
scripting language which allows the specification of set of actions that recon-
figure WS-BPEL web service orchestrations. Therefore, we have developed a

12

voluntarily simplified language called “WS-BScript” (for Web Service-BPEL
Scripting). WS-BScript is a lightweight DSL that enables the architect to
specify primitive changes making possible the reconfiguration of Web service
orchestrations. The idea behind WS-BScript is to formalize some SOA pat-
terns in order to apply them as much automatically as possible in the form
of reusable design decisions. This language allows the definition of parame-
terized “scripts”. A script is composed of a set of actions like add, wire, and
remove, among others. The basic structure of a script is the following:

script apply<PatternName> (<listOfParameters>)
{ <setOfActions> }

A script declares a set of parameters, which represent the scope of the ar-
chitectural actions. This set identifies BPEL orchestration elements involved
in the changes brought by the elementary actions when applying a pattern.
They form a super-set for the elements indicated in the architectural area of
the quality integration intents, because generally more elements are needed
to apply a pattern (these are requested from the architect). These actions
are simple statements. We enumerate them in the following listing:

(01) add (BpelElement element, BpelElement AttachedParentelement,

int elementPosition)

(02) add (PartnerLinkElement element, String wsdlFileName)

(03) getPosition (String BpelElementName)

(04) create (BpelElement.Kind)

(05) remove (BpelElement element)

(06) wire (BpelElement element,PartnerLinkElement

element,String PartnerLinkOperationName)

(07) unwire (BpelElement element,String PartnerLinkElement,

String PartnerLinkOperationName)

(08) ask (String message)

(09) let variableName

(10) variableName = <expression>

(11) for(variableName : OrderedListVar) <actions>

(12) if (<condition>) <action1 or blocOfActions1>

[else <action2 or blocOfActions2>]

(13) query (String OCLExpression)

(14) scriptCall (String scriptName([parameters])

(15) return (BpelElement element)

For instance, the first action adds a BPEL element to an orchestration,
namely, Invoke, Assign, Receive, and other BPEL process elements (except
PartnerLink BPEL element which does not require a position in an orches-
tration). An element is added in a specific position inside a parent element

13

(AttachedParentelement argument) in the orchestration. The second action
adds specifically a BPEL PartnerLink (PartnerLinkElement argument)
and links it with a given Web service specified by the wsdlFileName pa-
rameter. The “getPosition” action (Line 03) returns the position of a BPEL
element in the orchestration specified by the BpelElementName parameter.
It is used to identify precisely at what level we should apply a change in the
orchestration. The architect may provide the name of the BPEL element, or
a qualified name which indicates the path to the element if there are several
elements with the same name in the orchestration. Line 04 indicates the
“create” action which creates a BPEL element instance with some kind (the
BPEL element that should be added to an orchestration like, Invoke, Assign,
Sequence, Flow, Scope, etc. as defined in the BPEL specification). Line 05
shows the “remove” action which eliminates a BPEL process element (except
in this case a PartnerLink) from an orchestration such as, a Sequence, an As-
sign or an Invoke, among others. The “wire” action binds a BPEL element
to an operation PartnerLinkOperationName in a PartnerLink element. The
opposite action of “wire” is “unwire” (Line 07). The “ask” action (Line
08) interrupts the execution of the script and waits for some customization
values from the architect. It is commonly used in case of complex patterns
application, which needs additional parameters that are not fully specified in
the quality integration intent. Declaring variables is possible using the “let”
action (Line 09). A variable can be initialized with an expression (Line
10). This expression can be a simple variable, a returned action’s value like
“getPosition” action, or even a value obtained after evaluation of an arith-
metic expression. Variables can be of type integer, string, BPELElement, or
Collection type. The “for” loop executes repeatedly a given block of actions
(Line 11) which should be enclosed between braces. In addition to the “for”
loop, it is possible to specify “if-else” statements (Line12). A condition in
an if-else statement is a simple, or a composed boolean expression where we
can use conjunction (&&), disjunction (||) and negation (!). The “query”
action (Line 13) allows to navigate the BPEL meta-model through parame-
terized OCL [9] expressions and returns the expected result (BPEL elements
usually). OCL has been chosen because of its simplicity [10] and the exis-
tence of a good tool support (OCL Toolkit [11], Eclipse MDT/OCL [12]).
OCL is used as a navigation language in a complementary way with WS-
BScript actions to get BPEL elements but without making any change to
the orchestration. Composing patterns is possible through the “scriptCall”
action (Line 14). It allows calling another pattern script by providing, as an

14

argument, the name of the pattern script we want to call and its arguments.
The last action (Line 15) can be used inside a script if the architect wants to
return a given BPEL element that can be used by the caller script. Calling
the return action terminates the script execution.

In this step of the process, the architect will apply one or several prede-
fined8 scripts (issued from the catalog of patterns) on her/his orchestration.
For this end, the architect has to configure the scripts she/he wants to apply
by initializing their parameters first and then by customizing them on the
fly (through ask actions).

In the current implementation, the selected patterns are instantiated
(from the pattern catalog which contains the description of patterns) and
then applied on the Web service orchestration. It produces at last a new Web
service orchestration. The architect is informed about the script application
progress by displaying information on the embodied elements composing a
pattern instance.

A registry of patterns is created in this step which references all the in-
stances9 used to build a service orchestration, each of which has a unique
identifier. The registry exists during the quality integration assistance pro-
cess; it is destroyed at the end of the process. Compared to the architecture
documentation, it contains all the patterns that have been proposed to the ar-
chitect for selection while the documentation contains only those chosen and
applied on the service orchestration. At evolution time, where future changes
may occur on the service orchestration, the registry could be restored from
the architecture documentation to assist architects.

Listing 1 below shows a script example of the Trusted Subsystem Pat-
tern [7] which implements the “Access Security” quality attribute. It pre-
vents from unauthorized access to the resources of the TRS service by ma-
licious attackers. It adds an authentication service on top of the invocation
sequence in the orchestration to secure the service from direct access to the
databases.

Before executing the script the architect is asked first to indicate its argu-
ments. She/he has to give first the WSDL file (the wsdlFileName parameter)
which represents the service. Second, she/he should indicate a specific op-

8The patterns scripts are already specified in the patterns catalog, the architect has
just to apply them.

9Several instances of the same pattern may exist in an orchestration.

15

eration (the partnerLinkOperationName parameter) in the WSDL file rep-
resenting the service. Then, she/he should state an operation name in the
BPEL process (the ProcessOperationName) to which a reply is prerformed
in case of an authentication failure. Finally, the BpelElementName parame-
ter representing the BPEL activity after which a call to the authentication
service has to be made is provided by the architect.

1 s c r i p t applyTrustedSubsystemPattern (String BpelElementName ,
2 String wsdlFileName , String partnerLinkOperationName ,
3 String ProcessOperationName) {
4 l e t p o s i t i o n = ge tPo s i t i on (BpelElementName) ;
5 l e t o c l = ” s e l f −>c l o s u r e (eContents () . oclAsType (EObject))−>s e l e c t (a |
6 a . oc l I sKindOf (model : : BpelType) and a . oclAsType (model : : BpelType) . name=
7 ’ BpelElementName ’)−>c o l l e c t (a : EObject | a . eContainer ())−>asSet () ” ;
8 l e t elem = query (o c l) ;
9 l e t aAssign = c r ea t e (BpelElement . Assign) ;

10 add (aAssign , elem , p o s i t i o n+1) ;
11 l e t aSequence = c r ea t e (BpelElement .Sequence) ;
12 add (aSequence , elem , po s i t i o n+2) ;
13 l e t aPartnerLink = c r ea t e (BpelElement . PartnerLink) ;
14 add (aPartnerLink , wsdlFileName) ;
15 l e t aInvoke = c r ea t e (BpelElement . Invoke) ;
16 add (aInvoke , aSequence , 0) ;
17 wire (aInvoke , aPartnerLink , partnerLinkOperationName) ;
18 l e t a I f = c r ea t e (BpelElement . I f) ;
19 add (a I f , aSequence , −1) ;
20 l e t aCondit ion = c r ea t e (BpelElement . Condit ion) ;
21 add (aCondition , a I f , 0) ;
22 ask (aCondit ion) ;
23 l e t aAssign1 = c r ea t e (BpelElement . Assign) ;
24 add (aAssign1 , a I f , 0) ;
25 l e t aElse = c r ea t e (BpelElement . El se) ;
26 add (aElse , a I f , −1) ;
27 l e t aSequence1 = c r ea t e (BpelElement .Sequence) ;
28 add (aSequence1 , aElse , 0) ;
29 l e t aAssign2 = c r ea t e (BpelElement . Assign) ;
30 add (aAssign2 , aSequence1 , 0) ;
31 l e t aReply = c r ea t e (BpelElement . Reply) ;
32 add (aReply , aSequence1 , −1) ;
33 wire (aReply , ProcesspartnerLink , ProcessOperationName) ;
34 }

Listing 1: Trusted Subsystem Pattern application script

The script starts first by looking through the “getPosition” action (Line
04) for the position of the BPEL activity (BpelElementName parameter)
representing the architectural area after which the architect would like to
apply the change. The “getPosition” action returns the position relatively to
a BPEL activity’s container. This is why we have to get the container BPEL
activity of the BpelElementName activity so it could be possible to insert a
BPEL activity just after it. To do so, in Lines 05-07 through a parameterized
OCL expression with a generic format the script gets the container element of

16

the BpelElementName activity. The OCL expression accepts two parameters,
the name of the BpelElementName activity and the type (BpelType) of the
activity (namely, Receive, Reply, Invoke, Assign, Sequence, etc. as defined in
the BPEL specification). This latter is automatically deduced by the “WS-
BScript” toolset and injected in the OCL expression. The OCL expression
format given in the script example navigates in an Ecore implemetation of
the BPEL meta-model (see Figure 4).

The OCL expression is executed in Line 08 through the “query” action
and the result is saved. Then, the script adds in Lines 09 and 10 an Assign

activity for variables setting before adding a Sequence activity (Lines 11
and 12) inside which the remaining BPEL activities composing the pattern
will be inserted. We should note that in the “add” action, the “0” value
means an insertion at the beginning of the container activity and the “-1”
value means an insertion at the end, otherwise the architect has to specify
the exact position. After that, the script adds a partnerLink BPEL activ-
ity to the targeted orchestration (Lines 13 and 14). Just after, an Invoke

activity is added to the orchestration (Lines 15 and 16), having as attribute
the partnerLinkOperationName parameter which indicates the operation to
invoke in the previously inserted PartnerLink. Line 17 binds the Invoke

activity to the PartnerLink. The script adds If-Else BPEL elements (Lines
18-21, 25 and 26) to specify the case of success, or failure of the authenti-
cation for which a Reply is intended (Lines 31-33) to answer the consumer
a non-granted access. The script interrupts the execution through the “ask”
action, asks on the fly for additional customization parameters and assists
the architect to set the condition of the If element (Line 22). This script
is executed on the BPEL description of the Web service orchestration which
results in a new Web service orchestration implementing the security quality
characteristic.

3.4. Quality Impact Analysis

There are two key elements that are used in the Quality Impact Analysis
step of the process: i) the use of a quality-oriented assistance service that
helps in diagnosing the consequences of any applied pattern on the other
implemented qualities, and ii) the use of a Multi-Criteria Decision Making
(MCDM) method, named “WSM” [13] (Weighted Sum Model), to evaluate
a number of SOA pattern alternatives and to help the architect to select the
most satisfactory pattern in a quality requirement integration step.

17

Figure 4: An excerpt of the BPEL/WSDL metamodel

The algorithm 1 shows the behavior of this step. It is composed of several
functions. The algorithm is launched after the selected patterns are applied
on the service orchestration in the “Pattern Application” step. Each pattern
is applied on an instance of the targeted service orchestration.

During the quality integration process, the information encapsulated in
the architecture documentation (See section 3.7) is exploited by the assis-
tance algorithm in order to assist architects. The main purpose is to drive
software architecture change to a situation where the quality integration in-
tent is satisfied and the existing quality is minimally affected. This is done
in three main steps: i) constraint evaluation and data collection; ii) pattern
ranking, and iii) result reporting. The algorithm starts first by looking for the
architecture documentation associated to the service orchestration which has
been changed. Then, in the first step the algorithm checks each constraint
(Line 20) in the documentation (by calling a function which is detailed in
section3.4.1) and collects a part of the necessary data to partially configure
the ranking system (WSM). In the second step, the ranking system collects
first the remaining data required to complete its configuration then computes
and returns the ranking scores of all the patterns (ADs) in a descending or-
der (Lines 21- 26). It is obvious that there is no need for the ranking system
if there is only one selected pattern. In the last step, the results are re-
ported (Line 27) to the architects to allow her/him to choose a pattern from
the selected ones. After that, the developer is asked to pinpoint the archi-
tecture decision and the quality attribute associated to the changes, if any
(Lines 28- 31). At last, if the changes generate a new architecture decision

18

Algorithm 1: Quality Integration Assistance

1 begin
2 let AE := Architectural Element;
3 // a service orchestration;
4 and AD := Architectural Decision;
5 and AC := Architectural Constraint;
6 and QA := Quality Attribute;
7 and AT := Architecture Tactic;
8 // a couple composed of a QA and an AD;
9 and Doc:= architecture documentation associated to changed AE;

10 and let wsmParams:= { };
11 // an empty list of WSM system parameters (Aij, Wj);
12 and let rankedPatterns:= { } ;
13 // an empty list of pairs (AD, score);
14 Function main(){
15 begin
16 after Pattern Application {
17 foreach (AT in Doc) do
18 QA := QA in AT ;
19 AD := AD in AT ;
20 checkArchitecturalConstraint(AD);
21 let A2j= ask for the context-suitability decision criterion

value;
22 wsmParams := wsmParams + (A2j,W2);
23 let score := runWsmSystem();
24 rankedPatterns := rankedPatterns + (AD,score);

25 end
26 sort(rankedPatterns);
27 displayResults();
28 let newAD := ask for AD associated to the new architecture, if

any ;
29 if newAD 6= null then
30 let newQA := ask for the QA associated to newAD ;

31 end
32 addNewArchitecturalTactic(newAD, newQA);
33 }
34 end
35 }
36 end

19

Figure 5: Links between Architecture Decisions and Quality Attributes

(the choice of a pattern), the algorithm adds (addNewArchitecturalTactic
(..) function) to the documentation the couple composed of this new deci-
sion associated to its quality attribute, which is called an architectural tactic
(Line 32).

We note here that the patterns (as design decisions) are previously doc-
umented by the architect according to the model proposed in [14]. This
model introduces some fine-grained information (see Figure 5) namely, the
criticality degree (C1) of a quality attribute which represents its importance
in the architecture, the formalization degree, which represents the extent to
which some checkable constraints (present in the documentation) formalize
the pattern, and the satisfaction degree, which represents the degree to which
a design pattern contributes to satisfy a quality attribute. The documenta-
tion is enriched with a context-suitability degree (C2), which is specified and
documented at quality integration time because it depends on the pattern’s
suitability to a given situation and to the orchestration. This degree cannot
be reused in different service orchestrations. It can however be reused in the
future evolutions of the same service orchestration.

20

3.4.1. Quality-Oriented Assistance Service

The first element of the quality-related impact analysis step is an as-
sistance service which aims to notify the architect of the consequences of
the applied pattern on the other qualities. It indicates what are the related
qualities that may be altered when applying the pattern which implements
the new quality attribute. This assistance is mainly based on the evaluation
of some OCL constraints that we used to specify SOA patterns parame-
terized architectural constraints [15] for Web service orchestrations. These
constraints are defined using OCL and navigate in a metamodel of BPEL.

The function checkArchitecturalConstraint(..) detailed in the algo-
rithm 2, checks the constraints associated to a given architecture decision re-
ceived as an argument. It starts by checking the constraint expressions asso-
ciated to the decision. If the checking does not succeed for a given constraint,
a set of warnings are displayed to the architect by the AffectedQAsNotifier
(..) function (Line 5). The displayed information includes the architecture
decision, the exact architectural element impacted by the change, the degree
of formalization of the decision, the quality attribute, its degree of satisficing
and its criticality degree10. In addition, it shows to the developer the list of
quality attributes which are eventually impacted by the change. For doing so,
it uses the recorded information in the architecture documentation namely,
the “related-quality” attribute (See section 3.7 for un example). It notifies
also the developer (Lines 6 and 7) when adding a quality attribute to the
service orchestration, about the quality attributes which are indirectly im-
pacted (i.e. the quality attribute that its constraint still hold and is related
to the added quality attribute). For example, when adding the portability
quality attribute, the change may not invalidate the constraints formalizing
the performance quality attribute implemented in the service orchestration
but, this latter could be in a conflicting conceptual relationship with the
portability.

Finally, the checkArchitecturalConstraint(..) function collects from
the architecture documentation for each applied pattern a part of the neces-
sary data for the ranking system (WSM) configuration (Line 8). This data is
the criticality degree value (C1) of the directly impacted quality attributes11.

10For more details about the displayed information see [14]
11The change produced by the application of an architecture decision (a SOA pattern)

may impact several quality attributes

21

Algorithm 2: Architectural constraints checking

1 Function checkArchitecturalConstraint(AD)

2 begin
3 let result := check AC ;
4 if result == false then
5 AffectedQAsNotifier(AD);
6 warn ”Other QAs may be in conflict with ”+QA+”: ”;
7 + QA Relationships (QA,”collidesWith”,”both”);
8 wsmParams := wsmParams + (A1j,W1);

9 end

10 end

3.4.2. Weighted Sum Model for Pattern ranking

The “WSM” method is the second key element of the quality impact
analysis step and is used only when the “Pattern Selection” step results in
a collection of patterns for a targeted quality attribute. Its goal is to give a
ranking on the selected patterns to choose the best alternative (having the
highest WSM score).

Concerning this element, the MCDM problem we want to solve can be
expressed as following: “what is the pattern that impacts the less the most
important quality attributes, and is the most suitable to the architect prefer-
ences (context suitability, e.g., price, applicability related conditions, etc.)?”
We have formulated the MCDM problem as follows:

• Alternatives are some selected patterns we want to classify;

• Decision criteria are defined as follows:

1. Criticality of the impacted quality attribute (C1);

2. Context-Suitability of the pattern (C2).

The “WSM” is considered as one of the most widely used methods for
its simplicity [16]. If there are M alternatives and N criteria, then the best
alternative (pattern) is the one that satisfies (in the maximization case) the
following formula [13]:

Awsm
i = maxi

N∑
j=1

aijwj, for i = 1, 2, 3, ...,M. (1)

22

∑N
j=1 wj = 1 and wj > 0, j = 1, ..., N
aij is the value of an alternative “i” (pattern) in terms of a decision

criterion “j”. Weights represent the importance of each criterion according
to the architect’s preferences in the quality integration process.

In our approach, we choose the “Pairwise Comparison” method intro-
duced in the “AHP” (Analytic hierarchy Process) method [17] to derive the
data. AHP is highly mature, has a shallow learning curve (simple to learn
within a reasonable length of time), uses quantitative measures and has clear-
cut steps [18]. “Pairwise comparison” is known to have a good theoretical
foundation and is easy for decision makers to understand [16]. In this ap-
proach the decision maker has to express her/his opinion about the value
of one single pairwise comparison at a time by using the scale proposed by
Saaty [17] depicted in Table 4. Pairwise comparisons are represented in a
decision matrix. In our MCDM problem the data consist in the criteria
weights (Wj) as well as the criteria values themselves (C1 and C2). This data
constitute the parameters for the WSM ranking system. Weights should be
derived in advance by the patterns catalog administrator, that means before
using the proposed method. The criticality degree values (C1) of the quality
attributes defined in the adopted quality model12 are derived by developers
when expressing their preferences over quality attributes. The data (C1) cre-
ation is done in the context of a service orchestration which may make a
quality attribute more desirable than another (for example, security may be
more advantaged than portability). Additionally, the criticality degree val-
ues should be also prepared beforehand and should be available to be used in
the proposed method. They are automatically extracted after executing the
scripts of the patterns being evaluated, because it depends on the critical-
ity degree of the impacted quality attributes. If there is only one impacted
quality attribute we take its criticality degree, if there are many, we take the
sum of the criticality degrees of the impacted quality attributes.

Figure 6 shows an example of a decision matrix which represents the
architect’s preferences for the quality attributes defined in a service-oriented
system project quality plan. An entry in the matrix, labeled aij, indicates
how much the criticality for quality “i” is higher (or lower) than that for
quality “j”. Each quality has a value of “1” when compared to itself. Figure 7

12A company may define its quality attributes based on the developers experience.

23

Table 4: Scale of relative importance

Intensity of impor-
tance

Definition

1 Equal importance.
3 Weak importance of one over another.
5 Essential or strong importance.
7 Demonstrated importance.
9 Absolute importance.

2, 4, 6, 8
Intermediate values between the two adja-
cent judgments.

Reciprocals of above
nonzero

If activity i has one of the above nonzero
numbers assigned to it when compared with
activity j, then j has the reciprocal value
when compared with i.

shows the derived values for C1
13.

In AHP, the pairwise comparisons in a decision matrix are considered
to be consistent if the corresponding “consistency ratio (CR)” is less than
10% [17]. The CR derived for the values in the below decision matrix is
5.4%. Finally, the context-suitability values (C2) are derived when patterns
are selected to be applied on the service orchestration. The data is specified
before executing the pattern script because it is not documented yet since it
is a context-dependent value and should be specified at design time.

• An example of the weights vector: W1= 0.750, W2= 0.250 respectively
for C1 and C2 (prioritizing criteria weights show that the architects give
more importance to C1).

• The criticality degree weights vector (Figure 7) for the five quality
attributes defined in the project quality plan: C1Q1= 0.348, C1Q2=
0.246, C1Q3= 0.224, C1Q4= 0.058, C1Q5= 0.124 respectively for QA1,
QA2, QA3, QA4 and QA5.

Hereinafter, an example in the selection process when dealing with the
reliability quality attribute (QA3). The proposed solution (Pattern Selection
step) for ensuring Reliability (QA3) was the “Replication Pattern” with its
three different variants namely, the “Naive Replication (RP1)”, the “Smart

13We used an online AHP priority calculator to calculate weights based on pairwise
comparisons: http://bpmsg.com/academic/ahp_calc.php

24

http://bpmsg.com/academic/ahp_calc.php

Figure 6: Decision Matrix. Figure 7: Weights for C1.

Replication (RP2)”, and the “Passive Replication (RP3)”. The Replication
pattern considers multiple implementations (as backups) of a service actively
used, thus representing a point of failure in the system architecture. The
architect decides to design a rescue system by the use of a backup service for
the Airline service, which is used sequentially. A call to the second service is
planned only if the first does not answer. The architect prefers the last variant
of the pattern since its design solution organizes the service invocations in
a hierarchical way, while the first two variants plan parallel invocations (the
first waits for the first answer then continues, the second waits for all answers
then picks the best one). Therefore, she/he gives a score (Pattern Application
step) for the Context-Suitability Degree which is more important than the
other patterns. Another advantage of the last criterion (context-suitability)
is to distinguish between pattern variants suitability for a specific situation
and a specific orchestration. Even if the same pattern variant is applied again
on the same orchestration it would not have the same impact because the
context is frequently not the same. The architect could have a preference for
the “Smart Replication” if it is a matter of price of the delivered service. The
architects proceed by configuring the WSM system with Context-Suitability
criterion values (C2) of each pattern based on its preferences. Figures 8 and 9
show the derived values for C2. For example, in Figure 9, in the row 1 column
2 of the matrix the architect slightly favors the “Naive Replication” over the
“Smart Replication”, hence she/he puts her/his judgment value “2”. In the
row 1 column 3 of the matrix, when comparing the “Naive Replication” with
the “Passive Replication” the architect strongly advantages the latter, hence
she/he puts the reciprocal value of “5” (0.20). The architect has just to fill
(in case of manually doing the calculation) one half of the matrix (the upper
half). The other half represents the reciprocal values.

When the WSM method is applied on the previous data, the scores of

25

Figure 8: Weights of C2 for the replication pattern. Figure 9: Decision Matrix.

the three alternatives are:

• PNaive (WSM score)= 0* (0.750) + 0.179* (0.250) = 0,04475

• PSmart (WSM score)= 0* (0.750) + 0.113* (0.250) = 0,02825

• PPasive (WSM score)= 0* (0.750)+ 0.709* (0.250) = 0,17725

The notification report shows a higher score of the “Passive Replication
(RP3)” with no impacted related qualities (those directly impacted and their
related quality attributes in the orchestration), followed by RP1 then RP2.
The results that yield the application of the WSM method are considered
as the satisfaction degrees of each applied pattern for a quality attribute.
Note that values between parentheses are weights. All variants have had
no impact on any implemented quality attribute in the orchestration, which
explains the “0” values for the first criterion (C1).

3.4.3. SOA Patterns Architecture Constraint Specifications

After applying a pattern on a service orchestration we have to be sure
that its structure is respected when making future changes, by imposing some
architectural constraints. These latter are part of the pattern specification
(see Figure 3) and serve to verify if an architecture conforms to the pattern
or not. Since the pattern implements a quality attribute in the service or-
chestration, the non-conformance of its structure to the specified constraints
implies an altered quality attribute.

To make these architectural constraints reusable artifacts, we build the
SOA pattern catalog with parameterized constraints that can be configured
then checked when applying a pattern into a service orchestration.

We give now an architectural constraint of the “Passive Replication Pat-
tern” brought from our implemented catalog of SOA patterns. It is worth
noting that constraints have been tested14 on an “Ecore” implementation of

14Tests were held on an enriched version of the NetBeans travel agency application.

26

WS-BPEL meta-model, and that is why “Ecore” related details was removed
for clarity.

Listing 2 shows the architectural constraints of the “Passive Replication
Pattern” which is one of the three variants of the “Replication Pattern” that
we have specified in the SOA patterns catalog. This pattern serves the “Reli-
ability” quality attribute. Its design solution organizes the service invocations
in a hierarchical way, a call to another replicated service is planned only if
the first does not answer. The identified structural conditions characterizing
this pattern are listed below:

i) The service to be replicated should be wrapped in a Scope BPEL
activity. This guarantees to isolate the service that could eventually fail and
allows to handle (through a faultHandlers BPEL activity) its failing in a
Catch BPEL activity. This latter is defined inside a faultHandlers BPEL
activity.

ii) In all the Catch activities attached to the Scope it should exist only
one Reply BPEL activity. This latter represents the fault response case of
all the replicated services and should be in the last Catch.

iii) The number of Invoke BPEL activities (representing the calls to the
replicated services) where each one is contained in a Catch, equals the one
of Catch activities minus one. The last Catch intercepts the failure case of
the last replicated service.

iv) The service invocations are organized in a hierarchical way.

1 Context TRS: Process inv :
2 l e t scp : Set (Ac t i v i ty)=
3 s e l f −>c l o s u r e (oclAsType (Act i v i t y))−>s e l e c t (a : Ac t i v i t y | a . oclAsType (Scope) .

name=’ aScope ’) in
4 −−The s e r v i c e to be r e p l i c a t e d should be wrapped in a ’ Scope ’ a c t i v i t y
5 scp . oclAsType (Scope) . a c t i v i t y−>e x i s t s (b : Ac t i v i t y | b . oclAsType (Invoke) .

name=’ se rv i c eTobeRep l i ca ted ’)
6 and
7 l e t cth : OrderedSet (Ac t i v i t y)=
8 scp−>c l o s u r e (oclAsType (Act i v i t y))−>s e l e c t (c : Ac t i v i ty | c . oc l I sKindOf (Catch)

)−>asOrderedSet () in
9 l e t rep : Set (Ac t i v i ty)=

10 cth−>c l o s u r e (oclAsType (Act i v i t y))−>s e l e c t (c : Ac t i v i ty | c . oc l I sKindOf (Reply)
) in

11 −−In a l l the ’Catch ’ e lements attached to the ’ Scope ’ i t should e x i s t only
one ’ Reply ’ . This l a t t e r r ep r e s en t s the f a u l t r e sponse case (i f any)

o f a l l the r e p l i c a t e d s e r v i c e s and should be in the l a s t ’ Catch ’
element

12 rep . oclAsType (Reply)−>s i z e ()=1 and cth−>l a s t ()−>e x i s t s (c : Ac t i v i t y | c .
oc l I sKindOf (Reply))

13 and
14 l e t ink : Set (Ac t i v i ty)=

27

15 cth−>c l o s u r e (oclAsType (Act i v i t y))−>s e l e c t (c : Ac t i v i ty | c . oc l I sKindOf (Invoke
)) in

16 −−The number o f ’ Invoke ’ a c t i v i t i e s equa l s the one o f ’ Catch ’ a c t i v i t i e s
minus one . The l a s t ’ Catch ’ i n t e r c e p t s the f a i l u r e case o f the l a s t
r e p l i c a t e d s e r v i c e i f any .

17 ink . oclAsType (Invoke)−>s i z e ()>=1 and ink . oclAsType (Invoke)−>s i z e ()= cth .
oclAsType (Catch)−>s i z e ()−1

18 and
19 l e t f hand l e r s : OrderedSet (Ac t i v i t y)=
20 scp−>c l o s u r e (oclAsType (Act i v i t y))−>s e l e c t (c : Ac t i v i ty | c . oc l I sKindOf (

FaultHandler))−>asOrderedSet () in
21 −−The s e r v i c e i nvoca t i on s are organ ized in a h i e r a r c h i c a l way
22 i f fhand l e r s−>s i z e () > 1 then
23 fhand l e r s−>exc lud ing (fhand l e r s−>l a s t ())−>f o rA l l (aa , bb : Ac t i v i t y | aa .

oc l I sKindOf (FaultHandler) and
24 aa−>e x i s t s (bb . oc l I sKindOf (FaultHandler))) else f a l s e endif

Listing 2: Passive Replication Pattern Architectural constraint

Firstly, this constraint checks that the service invocation to be replicated
should be wrapped in a Scope which the name is given as a parameter in the
constraint (aScope in Line 3). This allows to establish a recovery after failure
system by attaching to the Scope, a faultHandlers element offering the pos-
sibility to handle the failure of the service (serviceTobeReplicated in Line 5)
in a Catch element. In the second part of the constraint (Line 12), we check
that there is only one Reply that should be placed at the end of the Catch

element hierarchy. The third part of the constraint (see Line 17) ensures that
there is a Catch element which does not encompass a service invocation. Ad-
ditionally, it ensures the existence of at least one invocation to a replicated
service. Finally, the last part checks that the invocations to the replicated
services are hierarchically structured since each faultHandlers element en-
compasses another one and, each one encompasses a Catch (Lines 22- 24).
The fact that Invoke activities are encompassed by Catch activities ensures
that a service is called only if its predecessor has failed. The failing of a
service throws an exception which is intercepted by a Catch; this way we
ensure passively the execution of one service at a time.

3.5. New Patterns Definition

The choice of a specific pattern or its rejection is the responsibility of the
architect. If the architect is not satisfied with any of the proposed patterns,
then she/he can define (as a pattern catalog administrator) new patterns,
which she/he is asked to document according to the proposed specification
(Figure 3). They will be considered as new reusable architecture design
decisions that could potentially be applied on some architecture descriptions
in the future.

28

After that, the architect is redirected to the “Pattern Application” step
to simulate the effect of the new catalogued pattern. This is an important
transition backward in the process, especially if the architect who catalogued
the pattern is not the one who chose the patterns that are implemented in the
architecture, and therefore, potentially did not know them. Consequently,
she/he does not know the impact of the new pattern application on the
other implemented qualities in the architecture. Hence, returning back to
the “Pattern Application” step is necessary to assist the architect.

3.6. Pattern Cancellation

As we have mentioned in Section 3.1.2, the architect may want to remove
or weaken a given quality attribute. In this case, the process execution
takes another path, as illustrated in Figure 2. The process goes through
the pattern cancellation step where an elimination of the concerned pattern
is performed. This is done by deducing the opposite effect of the pattern’s
architectural actions, hence avoiding to the architect the burden of doing it
manually or specifying the cancellation script. The generated cancellation
script is then executed on the Web service orchestration. The generation of
a cancellation script is handled automatically (by the “WS-BScript” toolset)
following a bottom-up approach starting by the last action in the script
and going up to the first one, by respecting some specific rules which are
enumerated hereinafter: 1) keep the script parameters specified in the original
script; 2) maintain the loops and if-else statements as they are; 3) ignore the
“ask”, “return”, “create”, “query” actions; 4) replace the “add” action by the
“remove” action, and the “wire” action by the “unwire” action; 5) replace a
script call by its corresponding cancellation script; and 6) replace the remove
(BpelElement element) action by two primitives:

i) let element= create(BpelElement.Kind), and

ii) add (BpelElement element, BpelElement AttachedParentelement,

int elementPosition)

In the following listing 3 we show the cancellation script of the “Trusted
Subsystem” pattern, whose application script is given in Section 3.3:

1 s c r i p t cancelTrustedSubsystemPattern (String BpelElementName ,
2 String wsdlFileName , String partnerLinkOperationName ,
3 String processOperationName) {
4 unwire (aReply , ProcesspartnerLink , processOperationName) ;
5 remove (aReply) ;
6 remove (aAssign2) ;

29

7 remove (aSequence1) ;
8 remove (aElse) ;
9 remove (aAssign1) ;

10 remove (aCondit ion) ;
11 remove (a I f) ;
12 unwire (aInvoke , aPartnerLink , partnerLinkOperationName) ;
13 remove (aInvoke) ;
14 remove (aPartnerLink) ;
15 remove (aSequence) ;
16 remove (aAssign) ;
17 }

Listing 3: Trusted Subsystem pattern cancellation script

The script presented above cancels the application of the “Trusted Subsys-
tem” pattern by reversing its actions from the last one to the first one. Line
04 unbinds the “Reply” activity from the “PartnerLink” before removing it
(Line 05). Similarly, the other BPEL elements are removed in the opposite
order they were added (Rule 4 stated above). The script parameters remain
unchanged (rule 1).

The cancellation of a pattern from a service orchestration involves the
following steps: i) looking for all the pattern instances the architect wants
to remove from the pattern registry, and listing them to the architect; ii) the
architect should choose manually the pattern instance to cancel; iii) if the
pattern cancellation script has been already generated, apply the script, oth-
erwise, generate the script and add it to the registry then apply it, and finally
iv) manage pattern intersections (handled automatically by“WS-Bscript”
toolset) by showing to the architect the BPEL elements pertaining to other
pattern(s) that could be eventually removed when applying the script. If it
is the case, it is up to the architect to validate the corresponding actions or
not.

The consequences of removing the pattern instance implementing a qual-
ity attribute are reported to the architect by the quality impact analysis
using the quality-oriented assistance service (architectural constraint check-
ing), and it is the architect’s responsibility to validate the change and hence
documenting the new architecture, or repeat again the different steps of the
process for a new architecture decision.

3.7. Documentation of the New Architecture

In this step, the chosen pattern is applied to the orchestration and added
in the architecture decision documentation as a new design decision. This
documentation contains all design decisions (SOA pattern choices) that was
made to build the architecture. In addition, the architect has to complete a

30

part of this documentation, namely the formalization degree of the pattern,
and also the related qualities of the quality attribute. The criticality degree
of the quality attribute the pattern implements, and the satisfaction degree
of the pattern for the quality attribute are automatically added to the docu-
mentation by the “WS-BScript toolset”. This information is necessary for the
futur quality integrations especially in the patterns selection process (qual-
ity impact analysis step). We show below an excerpt of the TRS system’s
architecture documentation. Its architecture documentation is presented in
a synthetic way (in order to not be too verbose with its original XML-based
description) in the listing below:

Architecture-Documentation :

1. Architecture-Tactic :

This tactic ensures the Access Security quality requirement by using

a Trusted subsystem pattern

- Quality-Attribute name="Access Security" degreeOfCriticality="34,8"

- Related-Quality name="Availability" relationship="Enhances"

relationType="weak" influence="negative"

- Architecture-Decision name="Trusted subsystem pattern"

degreeOfSatisficing="18,15"

degreeOfContext-suitability="72,6"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="90"

2. Architecture-Tactic :

This tactic ensures the Data Security quality requirement by using

a Exception Shielding pattern

- Quality-Attribute name="Data Security" degreeOfCriticality="24,6"

- Related-Quality name="Portability" relationship="Enhances"

relationType="weak" influence="negative"

- Architecture-Decision name="Exception Shielding pattern"

degreeOfSatisficing="75"

degreeOfContext-suitability="80"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="90"

3. Architecture-Tactic :

This tactic guarantees the Portability quality requirement by using

a Service facade pattern

- Quality-Attribute name="Portability" degreeOfCriticality="5,8"

- Related-Quality name="Performance" relationship="CollidesWith"

relationType="tight"

- Architecture-Decision name="Service facade pattern"

degreeOfSatisficing="90"

degreeOfContext-suitability="95"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="80"

31

The architecture documentation contains three architectural tactics. They
document the links between architectural decisions (SOA pattern choices)
and their corresponding quality attributes (QA1, QA2, QA4). In this doc-
umentation we can see among others the different relations between quality
attributes (Related-Quality element in the listing above). For example, in
the third tactic, the Related-Quality element shows that the portability
and performance quality attributes are colliding and are tightly coupled.

4. Experimentation

We can distinguish two main roles of SAQIM. First, it is a system that
provides an automated support for the integration (application and analysis)
of SOA patterns into service orchestrations. Second, it is a recommendation
system of SOA patterns satisfying quality attributes for service orchestra-
tions. Due to the actual size of the pattern catalog which includes eleven
patterns, we will focus on the evaluation of the first role. Indeed, it is not
pertinent for example, to calculate the “precision” and “recall” as metrics to
measure the efficiency and thus evaluate the research and selection aspects
in SAQIM with the actual size of the catalog. Thereby, we addressed in
particular the following research question:
“Compared to a manual quality integration, does the automated support
provided by SAQIM give substantial help to architects?”.
To answer the research question, we pursued the steps detailed in the follow-
ing subsections.

4.1. Methodology

We compared some measures (presented later) obtained by using SAQIM
with those obtained “without using” it15. To do so, we simulated quality in-
tegration (with and without SAQIM) by using a collection of 16 patterns:
eleven of them are real patterns, and the remaining five are “imaginary”16.
These latter, are unreal patterns in which we have varied randomly the num-
ber of BPEL elements (for scripts time specification), and the number of to-
kens (for OCL constraints time specification) to estimate their specification
time by following a specific protocol (explained in the following subsection).

15We mean by “without using SAQIM” that the architect has to choose him(/her)self
the patterns and uses the NetBeans BPEL designer to apply them manually.

16We used approximately the half of the real patterns total number.

32

Table 5: OCL constraints specification results

Pattern
Tocl
(min)

Var CD
1-
CD

Tocl*(1-
CD)

Uocl
Uocl-
Umec

NbTokens

Facade(1) 40,25 1,79 0,046 0,975 39,24 0,072 0,062 154
Trusted Sub-
System(2)

78,5 0,16 0,032 0,954 74,89 0,058 0,048 366

Passive Repli-
cation(3)

65,5 4,04 0,268 0,968 63,40 0,055 0,045 333

Smart Repli-
cation(4)

115,5 5,54 0,103 0,732 84,55 0,049 0,039 497

Naive Repli-
cation(5)

68 0,66 0,015 0,897 61 0,044 0,034 394

Exception
Shielding(6)

36 1,16 0,025 0,985 35,46 0,044 0,034 239

Message
Screening(7)

63,5 2,79 0,081 0,919 58,36 0,043 0,033 365

Brokered
Authentica-
tion(8)

56 1,54 0,058 0,942 52,75 0,041 0,031 363

Test-based
Partial state
Deferral(9)

62,25 1,62 0,149 0,851 52,97 0,036 0,026 459

Event-based
Partial state
Deferral(10)

75,5 2,16 0,206 0,794 59,95 0,036 0,026 461

Partial Vali-
dation(11)

30 1,29 0,018 0,982 29,46 0,034 0,024 213

Imaginary patterns are introduced in the experimentation to represent a rel-
atively acceptable number of SOA patterns that we can find and use in a real
development process. From the other hand, they allow to run simulations
with a configurable number of patterns in the catalog so that we can evaluate
our method in a reliable way. The experiment was conducted following the
next steps:

4.2. Data Collection

33

We have invloved in our experiment three Ph.D students in software en-
gineering and programming languages. They have had the task of applying
the patterns using NetBeans BPEL designer then measuring and recording
the approximative time spent for each pattern. They were also asked to
record the time spent in understanding each pattern after reading a textual
documentation (retrieved from the literature). In addition, they were taught
examples about the WS-BScript language. In addition to the first task,
they were asked to specify patterns by writing OCL constraints and scripts
for the eleven real patterns. These Ph.D students have basic OCL skills, a
good knowledge of frameworks, styles and basic patterns of software design.
The students were separated and were not told about the final goal of the
experiment. Additionally, they were not told about their recorded results
to ensure confidentiality. Moreover, students were selected with a relatively
similar level of knowledge and background.

Figure 10: Weights for OCL constraints. Figure 11: Decision Matrix.
Because the level of the Ph.D students skills is close one to another, we

notice an insignificant variance (see Column 3 in Table 5 and Table 6) in the
measured times across students for each pattern. Therefore, the recorded
times were “homogeneous” and this is why we took the average time. Now,
to estimate the specification time for both OCL constraints and scripts for
a number of imaginary patterns in a reliable way, we followed a specific
protocol. The aim is to estimate the pattern catalog specification overhead
from the one hand, and to simulate quality integration with a configurable

34

Figure 12: Inverse power regression on Uocl values

number of patterns from the other hand.
OCL constraints: The obtained values for the 11 real patterns are

depicted in Table 5. We first normalized these estimated time values. Indeed,
the Ph.D students have naturally acquired experience when specifying each
time a new constraint. This experience can bias our experiment. We have
thus decided to dismiss it, in order to get the most possible objective values.
We have measured an approximative coefficient of difficulty (CD) for each
constraint. CD represents the architect’s opinion on the perceived difficulty
when specifying a constraint. We applied here AHP pairwise comparisons for
prioritizing OCL constraints difficulty (Figures 10 and 11) in the same way
as for C1 values (Figures 6 and 7). The developer expresses her/his opinion
(measured on the scale of Table 4) like: “constraint i has an absolutely
higher difficulty than j” has a value of “9”. Then, we multiplied the previous
specification time values by 1− CD.

The next step was to calculate the specification time for a lexical unit
(token) in a constraint “Uocl”. Values were obtained as follows:

Uocl =
Tocl ∗ (1− CD)

NbTokens
(2)

Now, having time unit values for each pattern constraint we can apply a
regression f(x) model to extrapolate values for the other imaginary patterns.
We can notice that “Uocl” values (in Table 5) have a decreasing trend, but
actually they do not converge to zero. Instead, they converge to a minimal
value corresponding to specifying a constraint as a “mechanical task”, i.e.

35

Figure 13: Inverse power regression on Uscript values

without having to think about complex parts in it. Therefore, we calculated
“Umec” and we obtained 0.039 minute/token. So, the function of our regres-
sion should be defined as : f(x)+Umec . After that, we subtracted “Umec”
from “Uocl” values then we applied an inverse power regression on the new
values (Uocl-Umec in Table 5). We found that the inverse power model is
the one that best fits our data. The result is illustrated in Figure 12. At the
end, we used the following inverse power regression function to extrapolate
time unit values for OCL constraints: f(x) = 0, 244x−0,303 + 0, 039. Finally,
using Formula 2 we obtained the specification time Tspec ocl :

Tspec ocl =
(Uocl − Umec) ∗NbTokens

(1− CD)
(3)

Scripts: We followed the same steps as for OCL constraints to deter-
mine the specification time for pattern scripts, except for the “coefficient of
difficulty” (CD) estimation. We started first by listing the different script
actions17 used in the scripts, then using pairwise comparisons we calculated
the weight of each action according to its difficulty of use (Figures 15 and 16).
The next step was to calculate the occurrences of each action in each script
to get its global weight. Figure 14 shows an example of the way “CD” values
have been estimated. Column 3 in Figure 14 shows the individual CD values
obtained for each action (from Figure 15). The overall value of the different

17To distinguish between adding a BPEL “activity” and adding a “PartnerLink” BPEL
element we suffixed “add” by the terms “Activity” and “PartnerLink” (Lines 1 and 2 in
Figure 14).

36

Figure 14: Scripts CD values estimation

weights constitute the pattern’s script CD value (5.537 for the script of the
Trusted Subsystem Pattern, see Figure 14). This corresponds to 9.05% of
the overall value for all the pattern scripts which represents 0.0905 (See Ta-
ble 6). We defined the time for adding a single BPEL element by a script as
the time unit “Uscpt”:

Uscpt =
Tscpt ∗ (1− CD)

NbBpelElem
(4)

Figure 13 shows the result of applying an inverse power regression model:
f(x) = 5, 6973x−0,493 + 1, 89

Tspec script =
(Uscpt− Umec) ∗NbBpelElem

(1− CD)
(5)

Tspec pattern = Tspec ocl + Tspec script (6)

Using the formulas 2, 3, 4 and 5 we were able to estimate the specification
time (formula 6) for the 5 “imaginary” patterns.

4.3. Simulation

The aim of the simulation is to evaluate SAQIM’s cost effectiveness. Ta-
ble 7 shows the measures for the real patterns used in our simulation process.
We calculated the necessary time for integrating a quality attribute without
using and with using SAQIM (Columns 2 and 3). Column 3 includes the pat-
tern script configuration and automatic application time (Column (a)), the

37

Table 6: Scripts specification results

Pattern Tscpt Var CD 1-CD
Tscpt*(1-
CD)

Uscpt
Uscpt-
Umec

NbBpel
Elem

(1) 39 1,54 0,0378 0,9622 37,52 7,50 5,615 5
(2) 75 2,54 0,0905 0,9095 68,21 6,20 4,311 11
(3) 90 3,5 0,1297 0,8703 78,33 5,22 3,332 15
(4) 81,5 4,66 0,1353 0,8647 70,47 4,40 2,514 16
(5) 50 2,16 0,0967 0,9033 45,17 4,52 2,627 10
(6) 38 1,16 0,0771 0,9229 35,07 4,38 2,494 8
(7) 40,25 0,87 0,0819 0,9181 36,95 4,11 2,216 9
(8) 38,5 1,04 0,0968 0,9032 34,77 3,86 1,974 9
(9) 36 0,29 0,1011 0,8989 32,36 4,04 2,155 8
(10) 50,75 0,79 0,1016 0,8984 45,59 3,51 1,617 13
(11) 19,50 0,29 0,0514 0,9486 18,50 3,70 1,809 5

OCL constraint configuration time (Column (b)), and the pattern documen-
tation time (Column (c)), when using SAQIM. Column 2 includes the time
spent in understanding each pattern as well as the time spent in manually
applying a pattern using the Netbeans BPEL editor (without using SAQIM).
The last column shows the specification time (OCL constraints and scripts)
for each pattern which is used in the simulation process when using SAQIM
with measures of Column 3 (Columns (a), (b), and (c)). The simulation
has been run in two different situations based on an assumption stating that
without SAQIM, the architect has at her/his disposal the same patterns used
by the architect that uses SAQIM and which she/he should apply manually
to integrate quality attributes. This simplification assumption does not bias
the results of the experiment. Rather, it ignores the time spent by architects
for searching appropriate patterns, which favors the situation of “not using
SAQIM”.

We conducted our simulation process on the TRS system according to
three different scenarios. The simulation has been iterated around 50 times
to maximize randomness.

Worst case: We simulated the application of SAQIM, using a random
generated order of 16 patterns, then we re-applied SAQIM using the same
order of patterns but without counting their specification time. We simulated
also the quality integration without using SAQIM. The aim in this case is to
observe the situation where SAQIM is less beneficial. Figure 17 shows the

38

Figure 15: Weights for script actions. Figure 16: Decision Matrix.

experiment result.
Best case: This case represents the parallel use of patterns. So, we used

the same pattern order of the worst case, then we simulated the application of
SAQIM by considering the parallel design of three (3) BPEL orchestrations.
That means, in the first time we took into account the pattern’s specification
time. In the remaining two applications we have not taken it into account.
We simulated the quality integration without using SAQIM with the same
pattern order. The aim in this case is to observe the situation where SAQIM
is the most beneficial. The result is given in Figure 18.

Random case: we simulated the application of SAQIM by adding each
time we want to integrate a quality, the pattern specification time (last col-
umn in Table 7) only if it is the first use of the applied pattern. In the second
step, we simulated the quality integration without using SAQIM. The exper-
iment result is shown in Figure 19.

4.4. Discussion

The worst case (Figure 17) shows that SAQIM begins to be cost effec-
tive starting from the 29-th iteration, which corresponds to (more or less)
approximatively 25.23 hours (three full-time working days of 8 hours). It is
worth noting that, according to our estimations, the pattern catalog spec-
ification (with 16 patterns) takes 24.51 hours. The difference between the
two measures, which equals 43.2 minutes, is the estimated time taken in this

39

Table 7: Measures used in the simulation process

Time (minutes)

Pattern
without using
SAQIM

using SAQIM
pattern specification
time

(a) (b) (c)
(1) 43,37 0,59 0,72 1,57 76,77
(2) 52,42 0,65 0,39 3,20 143,10
(3) 44,47 0,93 0,66 1,40 141,73
(4) 56,28 0,86 1,00 1,10 155,02
(5) 56,27 0,71 0,65 1,03 106,16
(6) 59,12 0,67 1,18 2,17 70,53
(7) 49,42 1,17 1,23 2,05 95,31
(8) 49,23 0,63 1,03 1,58 87,53
(9) 56,16 0,57 1,18 2,16 85,33
(10) 48,09 0,56 0,98 1,25 105,54
(11) 57,48 0,71 1,09 1,54 47,96

simulation for making profitable the approximate three working days of the
(16-pattern) catalog specification time, in the worst case.

The random case (Figure 19) shows that SAQIM begins to be cost-
effective starting from the 19-th iteration, which corresponds to (more or
less) approximatively 22.78 hours (2.84 working days of 8 hours). This period
of time corresponds to the time of learning and familiarizing the architect
with the method. Indeed, as in all engineering methods learning involves
an additional cost. We can also say that the use of the pattern catalog is
capitalized after the aforementioned period of time.

Note that in the TRS system which is a medium size project, we em-
bodied using SAQIM ten patterns (including pattern instances like for the
“Exception Shielding pattern”). Therefore, we can deduce that SAQIM be-
comes beneficial after the construction of the second BPEL process (when
referring to the random case). Furthermore, if the patterns catalog is used
with several BPEL processes in parallel (the best case in Figure 18), the cat-
alog specification time will be distributed over all these processes, and hence,
the use of SAQIM becomes more beneficial. If we consider that the pattern
catalog will be developed by three architects, the specification time (24.51
hours) will be divided by three, i.e. approximately 8.17 hours (one working
day).

40

Figure 17: Worst case time variation

We have tested SAQIM with a relatively small set of patterns (16 pat-
terns). We repeated the experience by increasing the number of patterns
to thirty (30). We kept the 11 real patterns and we created 19 imaginary
ones. Then, we generated different random orders of patterns (6 random
orders) and used them in the simulation process. The aim of the experiment
is to observe the behavior of SAQIM with a larger number of patterns in the
catalog. We found that SAQIM’s cost effectiveness (for the random case)
varies between the 8-th and 23-rd iteration. This variance is related to the
patterns order. Note that the result found with 16 patterns is in the range
found when using 30 patterns. We can deduce that the number of patterns
in the catalog does not affect SAQIM cost effectiveness. Moreover, to es-
timate the overhead of the quality impact analysis step (Section 3.4.1 and
Section 3.4.2) we have measured its execution average time. We found that,
it takes approximately one minute (including the context-suitability criterion
configuration time). This constitutes 25.08% (according to the Columns (a),
(b), (c) of Table 7) of the overall time for the “Passive Replication” Pattern.
This means that, in the worst case, it makes SAQIM beneficial after 25.72
hours instead of 25.23 hours, which represents a difference of a small period
of time of 29.4 minutes (0.49 hours).

4.5. Threats to validity

Wohlin et al. describe four areas where the validity of the results may
be threatened [19], we discuss threats in each of these areas.

Internal validity: We used a combination of real data and simulated

41

Figure 18: Best case time variation

data, which was generated from the real data to construct our dataset. The
assessment of SAQIM cost effectiveness may be biased by the person’s level
of expertise and experience participating in the patterns catalog specifica-
tion. The specification time assessment of the pattern scripts as well as the
OCL architectural constraints may differ from one person to another, which
may yield to different results. In our experiment to deal with the selection
threat [19] which concerns the effect of natural variation in human perfor-
mance, we selected a random group of Ph.D. students.

Construct validity: To increase construct validity, we avoided evalua-
tion apprehension by separating students and by ensuring the confidentiality
of the recorded results. Furthermore, the students were not told about the fi-
nal goal of the experiment to avoid the experimenter expectancies threat, for
example when measuring the time for document reading and comprehension
of patterns.

Conclusion validity: To increase conclusion validity, we used regres-
sion analysis to get reliable estimation of the imaginary patterns specifica-
tion time. Additionally, we selected students with relatively similar level
of knowledge and background to limit the threat of random heterogeneity
of subjects. Furthermore, we used an acceptable number of patterns in the
simulation and we compared the results of SAQIM with those obtained using
a well-known easy-to-use software tool (NetBeans BPEL designer).

External validity: An important threat to the external validity is the
use of students as subjects. However, to increase the validity we involved

42

Figure 19: Random case time variation

Ph.D. students which have some development experience, and can easily
play the role of architects in industry. Furthermore, despite the fact that the
context in which the patterns catalog was developed is not part of a software
development project it resembles to that of a real service-oriented software
development situation.

5. Related Work

Many works have been proposed in the literature to address quality re-
quirements integration in software architectures. Al-naeem et al [20] pro-
posed “ArchDesigner”, which uses optimization techniques to determine op-
timal combination of design alternatives. In our work we use a simulation
and feedback technique to help architects in the decision selection process
to meet their quality goals. Architectural design decisions in our work are
SOA Patterns which are applied in semi-automatic way, while in their work
they are high level architecture design decisions (the choice of Java EE, for
example).

Bass et al. [21] proposed the ADD method (Attribute-Driven Design)
that follows an architectural design process guided by quality requirements.
It uses the concept of attribute primitives, which are collections of compo-
nents and connectors collaborating to satisfy some quality attributes. These
attributes are documented as general scenarios. In [22], the authors proposed
architectural tactics which are reusable building blocks, in the same spirit as

43

the primitive attributes to guarantee quality characteristics in software ar-
chitectural design. These works are quite similar to our work in the sense
that they use reusable design decisions (attribute primitives and architec-
tural tactics, we use SOA patterns) to address issues pertaining to quality
attributes. However, they differ from our work in that they focus on the
design stage, while we focus on the design and evolution stages. In addition,
we give support to the architect to choose among several possible alternatives
of a design decision the one that satisfies the best a given quality goal. Be-
sides this, we help the architect in applying the selected design decision (the
choice of SOA Patterns) in a semi-automatic fashion, and we give her/him
assistance to make impact analysis.

In [23, 24, 8], the authors proposed a process which similarly to our work
is based on the use of a Pattern catalog to document patterns as identified
design decisions. However, their work differs in the way pattern selection and
validation is performed. Indeed, in [23, 24] the authors use questions to help
architects in choosing and validating the most appropriate patterns, whereas,
we use an MCDM method in a complementary way with a quality-related
impact analysis to select and validate patterns that best satisfy quality goals
in a quality integration step. Additionally, our method offers a support to
integrate patterns in a semi-automatic way.

In [25], the authors present an evaluation of the SOA patterns (except
for the enterprise architecture patterns) introduced in [7] and their impact
(positive or negative) on quality attributes defined in the S-Cube Quality
Reference Model (QRM) for service-based applications [26]. They focused
on architecture patterns from the catalog and distinguish between patterns
with and without impact on quality attributes. Similarly to our work, they
mapped some quality attributes addressed by SOA patterns (that could not
be related to any quality attribute in the S-Cube QRM) to quality attributes
from the ISO 9126 quality model. Their work is complementary to our work
and could be helpful to the architect especially while building the patterns
catalog. It could be used to deal with mapping between patterns and the
quality attributes they impact as well as filtering only patterns having impact
from those without impact on quality attributes.

Harrison et al [27] recommended the use of patterns and the integration
of their impact on quality attributes in their specification as valuable infor-
mation in order to increase their usefulness and help the architect satisfy
quality attributes. As in [25] the authors investigated a quantitative evalua-
tion of the impact of some architectural patterns (Layers, Pipes and Filters,

44

Blackboard, etc.) from [6] on quality attributes. In our work, we identify
automatically the impact through the solicitation of a quality-oriented as-
sistance service that helps in diagnosing the consequences of any applied
pattern on the other implemented qualities.

In [28], the authors presented a language named “QoSL4BP” and a tool
named “ORQOS” that enable the architect to specify QoS constraints and
some QoS injection mechanisms in Web Service orchestrations. This ap-
proach offers a way to integrate quality requirements as usable information
at a functional and runtime level, while our work is positioned at the ar-
chitectural level and incorporates quality requirements as reusable solutions
(SOA Patterns). This approach is complementary to our work, since our
work deals with quality requirements as architectural design decisions pro-
viding well known recurrent solutions which are used to generate designs
encompassing quality requirements, and not as extra information which are
exploited at a post-deployment time.

In [29] the authors presented an approach to Web service (WS) modeling,
discovery and selection. They use an Intentional Service Model (ISM) which
they enhance with quality aspects to configure the WS discovery and selection
process. The selected services satisfy some quality requirements. In our work
quality requirements are goals to be achieved in the service orchestration and
contribute in its construction. Their work is then complementary to our work.

In [30], the authors present an approach, called “AQUA”, to quality
achievement at architectural level based on design-decision making. They
used an evaluation contract (between users and software architects) for qual-
ity attributes identification, then a process to manually find high level ar-
chitectural design decisions achieving these quality attributes. In our work,
design decisions are identified and proposed to the architects in a catalog as
patterns (for SOA) which include in their specification the quality attributes
they concretize, the way they should be applied, and the way they can be
checked (constraints). The authors of this paper used a decision graph trans-
formation strategy to analyze the impact of applying a design decision alter-
native, whereas, we simulate the application of a selected collection of pat-
terns (design decision alternatives) and assist the selection (MCDM method)
of the most appropriate pattern (semi-automatically), then report its impact
(automatically) to the architect.

In [31] the authors proposed an approach to WS composition that sat-
isfy quality requirements. The result of the composition in their work is a
sequence of invocations to services that satisfy dynamic quality attributes

45

achieved at runtime (e.g., response time). In our work we produce service
orchestrations which embody more complex BPEL modeling elements (com-
pared to sequences). In addition, in our work we are interested more par-
ticulary in static quality attributes (e.g., portability) integrated at design
time.

6. Conclusion and Future Work

In a software development project, quality requirements are important
software artifacts that are mainly satisfied at software architecture design
time [22]. Architects are thus the software developers who are responsible
for taking design decisions in order to satisfy this kind of requirements. One
of the most common design decisions at this stage of a development process
is the choice of an architectural style or design pattern. As catalogs of these
well-known recurrent design decisions have been proposed in the literature
and practice of software engineering (provided mainly with informal descrip-
tions), we argue in this work that such catalogs can be documented in a
(more or less) structured, automatically checkable and semi-automatically
processable way. Such documentation is then operated in order to assist ar-
chitects in satisfying quality requirements by suggesting to them the “most”
appropriate patterns. By “most” appropriate pattern, we mean a pattern:
i) that satisfies the more the tackled quality attribute (the pattern that gives
the best scores for the evaluation criteria), and ii) that affects the less the
other quality requirements, already satisfied and documented in the software
architecture (through the use of the quality impact analysis). We consider in
our work a specific kind of software architectures, which are service-oriented
ones, and we deal with a particular specialization of this kind of architectures
which are Web service orchestrations concretely defined as BPEL processes.
In summary, the main contribution of this work is a method for quality in-
tegration in Web service orchestrations using a catalog of SOA patterns.

As perspectives to our work, we would like to define a simulation (de-
cision) system to study the effect that yields the application of all possible
initial combinations of selected patterns (that implement the required qual-
ity attributes specified in the NFRs). The aim is to generate all possible
patterns application sequences, simulate their application, and then record
their impact on the embodied qualities. Then, we look for the best appli-
cation sequence which gives a service orchestration with the minimum effect
on the qualities. We believe that the chosen sequence to embody the desired

46

quality attributes is important and yields to different results (i.e. a service
orchestration with different qualities or differently affected qualities and with
different design costs). Another future work we are considering is to evaluate
SAQIM as a quality integration micro-process by addressing each of its steps.
More particularly, we are investigating the validation of the pattern selection
step as well as the quality impact analysis step. For example, to evaluate
the weighted sum model for pattern ranking, a sensitivity analysis [?] on
the decision criteria weights and the criteria values could be introduced for
studying and increasing the trustworthiness about the provided decision on
patterns ranking.

7. References

[1] Web services business process execution language speci-
fication, version 2.0, OASIS Website: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (April 2007).

[2] O. M. Groupe, Business process model and nota-
tion (bpmn) specification, version 2.0, OMG Website:
http://www.omg.org/spec/BPMN/2.0/PDF (January 2011).

[3] T. Zernadji, C. Tibermacine, F. Cherif, Processing the evolution of
quality requirements of web service orchestrations: a pattern-based ap-
proach, in: Proc. of WICSA’14, IEEE CS, Sydney, Australia, 2014.

[4] T. Zernadji, C. Tibermacine, F. Cherif, Quality-driven design of web
service business processes, in: Proc. of WETICE/AROSA’14, IEEE CS,
Parme, Italie, 2014.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Sofware, Addison-Wesley Profes-
sional Computing Series, 1995.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern
Oriented Software Architecture: A System of Patterns, John Wiley &
Sons, 1996.

[7] T. Erl, SOA Design Patterns, Prentice Hall, 2009.

47

[8] T. M. Ton That, S. Sadou, F. Oquendo, Using Architectural Patterns to
Define Architectural Decisions, in: Proc. of WICSA/ECSA’12, Helsinki,
Finland, 2012, pp. 196–200.

[9] OMG, Object constraint language specification, version 2.2, doc-
ument formal/2010-02-01, Object Management Group Web Site:
http://www.omg.org/spec/OCL/2.2/PDF (2010).

[10] L. Briand, Y. Labiche, M. D. Penta, H. Yan-Bondoc, An experimental
investigation of formality in uml-based development., IEEE Transac-
tions on Software Engineering 31 (2005) 833–849.

[11] T. U. Dresden., Ocl compiler web site., http://dresden-
ocl.sourceforge.net/ (2009).

[12] E. Foundation, Model Development Tools website.,
http://www.eclipse.org/modeling/mdt/ (2009).

[13] P. C. Fishburn, Additive Utilities with Incomplete Product Sets: Appli-
cation to Priorities and Assignments, Vol. 15, INFORMS, 1967.

[14] C. Tibermacine, T. Zernadji, Supervising the evolution of web service or-
chestrations using quality requirements, in: Proc. of ECSA’11, Springer-
Verlag, Essen, Germany, 2011, pp. 1–16.

[15] C. Tibermacine, R. Fleurquin, S. Sadou, A family of languages for archi-
tecture constraint specification, In the Journal of Systems and Software
(JSS), Elsevier 83 (5) (2010) 815–831.

[16] E. Triantaphyllou, B. Shu, S. Nieto Sanchez, T. Ray, Multi-Criteria
Decision Making: An Operations Research Approach, Vol. 15, J. Wiley,
New York, 1999, pp. 175–186.

[17] T. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New york,
1980.

[18] N. Mead, White paper: Requirements prioritization case study using
ahp, Tech. rep., Software Engineering Institute, Carneige Mellon
University (2006).
URL http://resources.sei.cmu.edu/asset_files/WhitePaper/

2013_019_001_297260.pdf

48

http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_297260.pdf
http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_297260.pdf
http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_297260.pdf
http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_297260.pdf

[19] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, Experi-
mentation in Software Engineering, Springer, 2012.

[20] T. Al-naeem, I. Gorton, M. A. Babar, F. Rabhi, B. Benatallah, A
quality-driven systematic approach for architecting distributed software
applications, in: Proc. of ICSE’05, ACM Press, 2005, pp. 244–253.

[21] L. Bass, F. Bachmann, M. Klein, Quality attribute design primitives and
the attribute driven design method, in: Proc. of PFE-4 2001, Springer-
Verlag, Bilbao, Spain, 2001.

[22] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
3rd Ed., Addison-Wesley, 2012.

[23] Z. Durdik, Towards a process for architectural modelling in agile soft-
ware development, in: Proc. of QoSA’11, ACM, 2011, pp. 183–192.

[24] Z. Durdik, R. Reussner, Position paper: approach for architectural de-
sign and modelling with documented design decisions (admd3), in: Proc.
of QoSA ’12, New York, NY, USA, 2012, pp. 49–54.

[25] M. Galster, P. Avgeriou, Qualitative analysis of the impact of soa pat-
terns on quality attributes, in: Proc of QSIC’12, IEEE, 2012, pp. 167–
170.

[26] A. Gehlert, A. Metzger, Quality reference model for sba, Tech. rep.,
S-Cube Consortium (2009).

[27] N. B. Harrison, P. Avgeriou, Leveraging architecture patterns to sat-
isfy quality attributes, in: Proc. of ECSA’07, Springer-Verlag, Berlin,
Heidelberg, 2007, pp. 263–270.

[28] F. Baligand, D. Le Botlan, T. Ledoux, P. Combes, A language for quality
of service requirements specification in web services orchestrations, in:
Proc. of ICSOC’06, Springer-Verlag, 2006.

[29] M. Driss, N. Moha, Y. Jamoussi, J.-M. Jzquel, H. H. B. Ghzala, A
requirement-centric approach to web service modeling, discovery, and
selection, in: Proc. of ICSOC’10, Springer-Verlag, 2010, pp. 258–272.

[30] H. Choi, Y. Choi, K. Yeom, An integrated approach to quality achieve-
ment with architectural design decisions, JSW 1 (3) (2006) 40–49.

49

[31] Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha, C. Tibermacine,
Selection of composable web services driven by user requirements, in:
Proc. of ICWS’11, IEEE CS, Washington DC, 2011.

50

	Introduction
	Illustrative Example
	SAQIM: a Quality Attributes Integration Method for Service Oriented Architecture
	Quality Attribute Integration Intent Specification
	Quality Integration by Adding or Replacing a Pattern
	Quality Integration by Removing a Pattern

	Pattern Selection
	Pattern Application
	Quality Impact Analysis
	Quality-Oriented Assistance Service
	Weighted Sum Model for Pattern ranking
	SOA Patterns Architecture Constraint Specifications

	New Patterns Definition
	Pattern Cancellation
	Documentation of the New Architecture

	Experimentation
	Methodology
	Data Collection
	Simulation
	Discussion
	Threats to validity

	Related Work
	Conclusion and Future Work
	References

