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Abstract. Most of the time a large software system implies a com-
plex architecture. However, at some point of the system’s execution,
its components are not necessarily all running. Indeed, some compo-
nents may not be concerned by a given use case, and therefore they do
not consume/use or register the declared services. Thus, these architec-
tural elements (components and their services) represent a “noise” in the
architecture model of the system. Their elimination from the architec-
ture model may greatly reduce its complexity, and consequently helps
developers in their maintenance tasks. In our work, we argue that a
large service-oriented system has, not only one, but several architectures,
which are specific to its runtime use cases. Indeed, each architecture re-
flects the services, and thereby the components, which are really useful
for a given use case. In this paper, we present an approach for recovering
such use case specific architectures of service-oriented systems. Architec-
tures are recovered both through a source code analysis and by querying
the runtime environment and the service registry. The first built archi-
tecture (the core architecture) is composed of the components that are
present in all the use cases. Then, depending on a particular use case,
this core architecture will be enriched with only the needed components.

1 Introduction

The context of this work is the architecture of large-sized service-oriented soft-
ware systems. By large-sized systems, we mean systems that are composed of
hundreds to thousands of components, registering and consuming hundreds of
services. Architectures of systems in general are important to be explicitly mod-
eled, and this is particularly critical for large systems. When such architecture
models are not explicit, it becomes important to recover them from the system’s
artifacts (e.g., source code). Architecture recovery is a challenging problem, and
several works in the literature have already proposed contributions to solve it
(e.g., works cited in [9, 16, 18]). Architectures recovered from large systems are
however complex and difficult to “grasp”. Indeed, architectures of large systems
model a lot of components, their contracts (required and provided interfaces) and
their numerous and tangled interconnections. If we add, to these architecture el-
ements, services that are registered and consumed by components (which enrich
their contracts), these architectures can be easily assimilated to “spaghetti” code.



We noticed that at some point in the execution of such large software systems,
not all their components are running/active. Components that are not running
and their properties (provided, published or consumed services and their con-
nections) represent a “noise” in a recovered (complex –“spaghetti”) architecture.
Their elimination reduces thereby the complexity of this architecture and helps
the developers in their maintenance tasks.

In this work, we argue that large systems do not have a single large and com-
plex architecture, but rather several architectures depending on the use context.
In this paper, we present an approach (Section 2) which enables to recover the
architecture of a service-oriented system, depending on a particular use case that
reflects the use context. This approach contributes with a multi-step process that
analyzes the source code of the system and interacts with the runtime environ-
ment, including the service registry, to build a first core architecture modeling
the components of the system that always run. Then, this core architecture is en-
riched with new elements that reify the runtime entities involved in a particular
use case, of interest for the developer (in which a bug occured, for instance).

Simplifying architecture models in this way enables developers to make like
a quick “inventory” of what is concretely running, among all what composes
their system, at a particular execution time (e.g., bug occurrence). They can
easily identify which component is consuming a particular failing service, for in-
stance. In the literature and practice of service-oriented computing and software
engineering, there is no efficient process for recovering these dynamic use case
architectures from running systems (see related works in Section 5).

We implemented the proposed process for the OSGi platform, which provides
a well-know service-based framework for Java applications. This implementation
is discussed in Section 3. We experimented the process on a set of real-world
Eclipse-based applications. The results of this experimentation demonstrated
the efficiency of the proposed process (see Section 4). At the end of the paper,
we highlight the interests and limitations of the proposed process, as well as
some future directions of this work (Section 6).

2 General Approach

The problem with traditional architectural models of a software system is that
they describe all involved components and their potential dependencies. The
approach we propose aims at recovering from the system the architecture model
corresponding to a given use case. In such an architecture model, elements that
are not necessary to the use case are not represented and therefore facilitate the
understanding of the architecture.

Thus, the proposed process to implement our approach (see Figure 1) en-
ables to produce an architecture model that can be used by the developer to
understand the architecture of a large software system for solving a given main-
tenance problem related to a particular use case. In the first step of the process,
we create the core architecture of the system, which represents only the needed
components, and their dependencies, to start the system. These components ex-



Fig. 1: Proposed Approach

ist in the system architecture whatever the executed application’s use case. In
the second step, we use traces obtained by executing scenarios corresponding to
the application’s use cases to identify what we call “use case”-specific architec-
tures. The latter are built around the core architecture with variants (adding new
components, services, interfaces, etc) concerning the executed use case. Below
we give further details about these two constituent steps of our approach.

2.1 Recovering the Core Architecture

In any software system, there are components and some of their dependencies
that are necessary for all use cases. As pointed above, we call the core archi-
tecture the architecture representing only these elements. Recovering the core
architecture of the system is not only necessary to facilitate the construction of
architectures corresponding to the different use cases, but also necessary to facil-
itate the identification of similarities and differences between the use cases. Some
of the elements of the core architecture are statically identified while others are
dynamically obtained. The formers require an analysis of the source code (static
analysis), while the latters require an analysis of the execution traces (dynamic
analysis).

By using a static analysis we aim first to collect all the components involved
at the system’s starting time. Components interact with each other through
provided and required interfaces that represent the dependencies between them.
We can identify the provided and required interfaces by parsing the description
files and the meta-data (e.g. IDL files for CORBA components, Manifest files
for OSGi components, or module descriptors for Java 9). However, the required
interfaces that are declared in these files are not necessarily all effectively used
by the component. Thus, we perform a static code analysis on each component
to identify the unused required interfaces in order to hide them. Actually, there
are two kinds of code dependencies: include dependencies and symbol depen-
dencies [16]. The include dependencies established when one file declares that
it includes another file (e.g. “#include <foo.h>” in C or “import java.io.File;”
in Java), but does not use any function or variable declared in the included file.
Using include dependencies, has no actual code dependency. In our approach,
we use symbol dependency, which is more accurate. A symbol can be a function



or a variable name. For example, if a method mA (declared in Component A)
invokes a method mB (declared in Component B), then component A depends
on Component B.

In addition to the identified provided/required interfaces, the components
can also publish services in the Service Registry. Other components running in
the same environment can then find and use those services. This relationship
between components is considered as another kind of component dependencies.
We identify these services by the static parsing of the component code.

The core architecture will be comprehensive once the dynamic elements are
identified. Indeed, some dependencies exist only through requests for services
made during execution time. To identify these dependencies, we launch the ap-
plication without applying a use case. In Figure 1, we characterized this by
the “Use Case 0”. Thus, we capture the dependencies that become effective at
runtime. In addition to these dependencies, through them we can identify new
components that will be added to the already constructed architecture.

2.2 Recovering Use Case Architectures

During a maintenance activity, the developer focuses on a given context of use of
the application, which corresponds to one of its use cases. A use case describes
the interaction of a user with a sequence of functionalities provided by the system
and which gives a visible result for her/him. During the execution of a given use
case, we capture all traces produced by the involved components (those already
active and those that have just been activated). After that, we parse the source
code of the newly activated components in order to identify their required and
provided interfaces. We also take into account all static dependencies identified,
during the first step, related to these newly activated components. The collected
information is used to enrich the core architecture in order to build what we
called the “use case”-specific (or use-case) architecture.

3 Implementation of the Approach: Case of OSGi

We implemented our approach for OSGi-based systems. OSGi is a specification
that defines a component model and a framework for creating highly modular
Java systems [12]. A component in OSGi is known as a bundle that packages
a subset of the Java classes of the system, and a manifest file. The latter de-
clares which of the packages are externally visible using “export-package”. It
also declares explicitly the bundles it depends on, using “import-package” or
“require-bundle”. The OSGi framework introduces a service-oriented program-
ming model. Indeed, a bundle (service provider) can publish its services into a
Service Registry, while a service client (another bundle) searches the registry to
find available services to use. This bundle receives from the Service Registry a
reference of a service implementation instance.

We take as a running example an Eclipse-based application that runs on top
of Equinox, which is the reference implementation of the OSGi specification. We



used the following release: Eclipse JEE for Web Developers, Oxygen.2 Release
(4.7.2 –2017) 4. This release contains 1040 bundles. The static architecture that
we obtained by a static code analysis of all the components (active and inactive)
of this Eclipse application is very complex and not helpful for a maintenance
developer. This architecture should be more complex if it is reconstructed from
a larger Eclipse application (more then thousands bundles) which is frequently
the case in real development settings. We show in the next sections how to
apply our optimizations in order to simplify and reduce the complexity of this
architecture.

3.1 Recovering the Eclipse Core Architecture

We show here how the core architecture of Eclipse-based applications is obtained
using the proposed process. In the first step we perform a static analysis of the
source code and the manifest files of the OSGi components that are needed to
start the Eclipse application. These bundles refer to the OSGi bundles that have
the state “ACTIVE” during the Eclipse starting. They are recognized by query-
ing the runtime environment. Indeed, we have added listeners in the Eclipse
plugin which implements the proposed process. We rely on SCA5 for the model-
ing of the obtained architecture. SCA has been chosen because of its simplicity
and the existence of good tools support for the graphical visualization of the
architectures. First, each component (bundle) is modeled as an SCA component
which has as a name the bundle’s symbolic name6. Then, by parsing the manifest
files of these components, we identify the dependencies between them. Indeed,
we consider each declared interface in the exported package as a provided in-
terface (modeled by an SCA Component Service, while its name corresponds to
the qualified name of this interface) and the declared interfaces in the imported
packages (and in the exported packages of the required bundles) are considered
as required interfaces (modeled by SCA Component References). The SCA Wires
are used to represent the connections between required and provided interfaces.
After that, we hide the required interfaces that are not concretely used in code.

Once all interfaces and wires are created, we abstract away detailed con-
nections between components in order to simplify the visualized dependencies
between components. Indeed, there can be multiple dependencies between two
components. Thus, if a component A requires several interfaces of the same
component B, we will have one SCA Wire between the two components, and the
names of the corresponding interfaces are hidden as documentation elements
added to this SCA Wire element.

Besides, in the context of OSGi components, services are defined
by dedicated classes that are instantiated and registered with the
OSGi Service Registry either programmatically or declaratively (i.e.,

4 Downloaded from repository: https://lc.cx/P2Qw
5 SCA is a set of specifications which describe a model for building systems having a

Service Oriented-Architecture : https://lc.cx/AEP3.
6 It is a unique name which serves as an identity of the bundle in the whole system.



using the OSGi Declarative Services (DS) framework). Services de-
clared with DS framework are identified by parsing the “OSGI −
INF/component.xml” files. For the programmatically registered services, we
parse the following two statements: <context>.registerService(...) and
<context>.getServiceReference(...), in order to identify the registered ser-
vice class name and its corresponding interface. The identified provided and con-
sumed services are modeled respectively by SCA Component Service and SCA
Component Reference. The SCA Wires are used to represent the connections
between components consuming and providing these services.

In order to distinguish the representation of the required/provided in-
terfaces and the services that are consumed/provided via the Service Reg-
istry, we use in the current implementation a specific naming convention for
the services. The naming of the provided/consumed services follows the syn-
tax: “ServiceName SR”. The ServiceName is obtained by parsing the param-
eters of the context.registerService(...) statements. Their types are de-
duced from the parsed code. For instance, in the Apache Felix Gogo bun-
dles, the service org.apache.felix.service.command.Converter is provided
by component: org.eclipse.equinox.console. This service is consumed by the
org.apache.felix.gogo.runtime component, while this latter provides also an
interface with the same name. The name of provided service via Service Registry
(by the equinox.console component) is suffixed by “ SR”.

After the construction of the core architecture based on the static analysis
of the active components, the core architecture is enriched by dynamic service-
oriented features. To do so, we query at runtime the execution environment
and the Service Registry to identify what are the concretely registered dynamic
services and consumed services. Therefore, the static information is then hidden
from this architecture.

The recovered core architecture from the chosen Eclipse application enables
us to model the components that always run in this system. This core archi-
tecture contains only 163 components which are needed to start this version
of Eclipse. This makes it simple and may be very helpful for a maintenance
developer compared to the whole static Eclipse architecture.

3.2 Recovering Eclipse Use Case Architectures

Once the core architecture is recovered, we ask the developer to execute a set
of scenarios corresponding to use cases. New components related to each sce-
nario can be activated and new services can be registered. These components
and services, are identified by querying at runtime the execution environment
and the Service Registry (event listeners of the implementation are executed,
which generate traces). As consequence, for each executed scenario, we gener-
ate a runtime “use case”-specific architecture by adding to the core architecture
the newly activated components, interfaces, and services. For instance, we have
executed the following two use cases:

1. Accessing the Toolbar Menu, opening Help− >Install New Software...



2. Creating a BPEL Project, creating a BPEL Process Model and adding ac-
tivities.

After executing the first use case, 11 new components are activated and added
to the core architecture. Figure 2 shows an excerpt of the recovered use case ar-
chitecture for this scenario. We show in this figure the new activated components
(surrounded by bold lines) which are connected to the core architecture compo-
nents. For reasons of readability, we show only some core architecture elements
that are directly connected to the newly activated components.

Fig. 2: A “Use Case”-specific Architecture

For the second use case, 67 new components are activated which is much
greater than the number of activated components in the first use case. This is
because the second use case is more complex and requires executing a higher
number of actions. Still, the number of components in the two use cases is
negligible compared to the total number of components in this system.

Besides, in this step, we offer to the developers a way to refine the recov-
ered use case architecture and spotlight the runtime implicit service-oriented
architecture, which contains only services (without interfaces) and the active
components that register or consume services. In this way, we enable them to fo-
cus only on services-based dependencies, which simplify greatly the architecture
model.

4 Empirical Evaluation

We conducted several experiments to evaluate our approach starting from two
Eclipse-based applications of different sizes. The aim of these experiments is to
measure the gain in the reduction of complexity of the recovered runtime “use
case”-specific architectures using our approach. Therefore, we have addressed
the following research question:



RQ: To what extent the complexity of “use case”-specific architectures recov-
ered using our approach is less than the complexity of the static architecture?

For answering the research question, we measured first the complexity of
the architecture obtained by a static code analysis of the candidate systems.
Second, we used our approach to recover the core architecture and the runtime
“use case”-specific architectures corresponding to a set of use cases. After that,
we measured the complexity values of the obtained use case architectures, which
are then compared with the complexity of the static architecture.

We choose Eclipse in our experiment because it is one of the largest and
mostly used service/component-based Java system. A whole Eclipse release is
considered as a component which is composed of several other components. This
architectural vision makes it a modular and a scalable framework. The compo-
nents are open for extension and configuration by third party developers.

Table 1 describes the chosen Eclipse-based systems7. In this table, we show
the name of the system releases (in column 2) and the installed projects (in
column 3), the number of bundles (in columns 4), the number of classes (in
columns 5), and the application size in terms of number of source lines of code
(in columns 6). For each eclipse release, we installed different projects such as,
ArchStudio, Papyrus, and BPEL Project. This allows us to select different use
cases related to the installed projects and compare the complexity of the use
case architectures that are recovered from different kinds of applications.

Table 1: Selected Eclipse-Based Applications
S.
Id

description installed projects # of bundles # of classes SLOC

1
Eclipse JEE for Web
Developers Oxygen.2

R. (4.7.2)(2017)

Web Tools Platform,
BPEL Project,
Axis Tools.

1040 131282 4.11M

2
Eclipse Modeling
Tools Oxygen.2
R. (4.7.2) (2017)

ArchStudio 5.0.2,
Papyrus 3.3.0,

BPMN2 Modeler.
1502 151471 4.9M

Here we describe the selected use cases that are executed in our evaluation:

– System 1:
• UC 1: Accessing the Toolbar Menu and opening Help− >Install new

Software...
• UC 2: Creating a BPEL Project, creating a new BPEL Process by com-

posing the created services and adding BPEL activities (Pick, Assign,...)
• UC 3: Importing an existing Dynamic Web Project, adding the Apache

Tomcat as a new Server Runtime, and running the Web project on Server
• UC 4: Creating a new Dynamic Web Project, creating and editing new

Java classes, creating and editing new HTML and JSP files
• UC 5: Adding the Apache Axis2 as a Web service Runtime and the

Apache Tomcat as a Server Runtime, importing an existing Web Project,
creating bottom-up Web services, deploying and testing the Web services

7 They have been downloaded from the following repository:
https://www.eclipse.org/downloads/packages/



– System 2:
• UC 1: Accessing the Toolbar Menu, opening Search− >File Search, and

filling the file name and clicking on the search button
• UC 2: Creating an Empty EMF Project, creating and editing an Ecore

Model
• UC 3: Creating BPMN2 Models, adding different BPMN elements

(Lanes, Tasks, Gateways, ...)
• UC 4: Creating a new ArchStudio Architecture Description, new State-

charts, add different States and Transitions, opening the models in the
Archipelago graphical Editor

• UC 5: Creating Papyrus Project and creating Papyrus Models (compo-
nent, activity, class diagrams)

As we can see, we have selected simple and complex use cases, which allowed
us to recover “use case”-specific architectures of different sizes and complexities.
In fact, the same use case can be executed in different ways, by performing
different sequence of actions. Thus, we performed several runs per use case in
order to ensure that all the runs have activated the same components. This allows
to avoid errors (e.g., clicking on the wrong buttons) that can be made by the
developer during the use case execution. We keep only the use case architecture
that contains the activated components that are common to all the runs.

4.1 Complexity Measurement

In order to measure the complexity of the recovered software architectures, we
have used a complexity metric based on SCA specification which is proposed
in [13]. This metric is composed of three parts that are employed to measure the
complexity of a component, a dependency, and a composite. The architectures
recovered in our work are SCA composites. Thus, the following complexity metric
(CM) is used for a composite:

CM =
AC

ACw
(1)

– AC is Absolute Complexity of a composite
– ACw is the worst architecture complexity value,

In our experimentation, the ACw corresponds to the absolute complexity
AC of the recovered architecture by static analysis, which is considered as the
“worst” case. Now, if CM = 1 for a runtime “use case”-specific architecture,
this means that this architecture is very complex, like the worst architecture.

An SCA composite contains components and dependencies which can be
modeled using a Weighted Dependency Graph (WDG). To calculate the absolute
complexity (AC) of this composite, we proceed as follows:

1. First, we create the adjacency matrix A Matrixn×n from WDG. Each ele-
ment dij is specified as:

dij =

d(ci), i = j
d(eij), i 6= j ∧ ∃eij ∈ E
0, i 6= j ∧ 6 ∃eij ∈ E



where,
– i, j are respectively the row and the column numbers,
– eij is the dependency of component ci to component cj . We consider eij

as the directed SCA wire from ci to cj and E the set of all wires,
– dij represents the complexity measure of the element eij , described as

follows:

• if i = j, then dij represents the measure value d(ci) of component
ci. In our experimentation, we considered by default d(ci) = 1;

• if i 6= j then dij represents the number of eij in E;

2. Second, we calculate the Influence Degree ID(cj) of component cj to
the whole system. It represents the sum of all elements on column j in
A Matrixn×n. This is defined as:

ID(cj) =

n∑
i=1

dij (2)

3. Third, the absolute complexity AC represents the sum of the influence degree
of all components. This is defined as:

AC =

n∑
i=1

ID(ci) (3)

4.2 Complexity Measurement Results

The obtained results are presented in Table 2. Column 2 in this table shows
the worst architecture complexity values (ACw) that are obtained by a static
code analysis of each candidate system. As we can see, the static architectures
of the two candidate systems are very complex and this is particularly true
for the largest application. In column 4, we present the number of actions on
the graphical user interface in order to describe quantitatively each use case.
Columns 5 and 6 present the obtained complexity values and metrics for the
recovered use case architectures (UC0 to UC5). We show in column 7 the number
of components that are concretely involved in each of the executed use cases.

“Use Case” Architecture Complexity: We can see (in Column 5) that the
complexity of all the obtained use case architectures is greatly less than the
complexity of the static architectures (ACw in column 2). This confirms our
intuition that focusing on the runtime “use case”-specific architectures greatly
reduces the complexity of the architecture compared to the static one.

Second, column 6 in the table presents the calculated complexity metric
(CM) values for all the use case architectures. These values are good for all the
recovered use case architectures. However, we noticed that these values decrease
when we increase the size of the system. For instance, if we take UCs 3 in the
two systems, which have almost equal number of GUI actions, we can see that
CM value in the second system is less than in the first system (0.25 vs. 0.31).
Besides this, we have executed the same UC (UC 1) on the two systems (which is



Table 2: Experiment Results
S.
Id.

ACw Use Case # of GUI Actions AC CM
# of Active
Components

1 5637

UC 0 0 1076 0.19 163
UC 1 11 1195 0.21 174
UC 2 22 1659 0.29 230
UC 3 28 1777 0.31 242
UC 4 35 1907 0.33 248
UC 5 55 1941 0.34 259

2 9014

UC 0 0 2153 0.23 392
UC 1 4 2197 0.24 394
UC 2 26 2398 0.26 425
UC 3 27 2330 0.25 413
UC 4 30 2429 0.26 425
UC 5 49 2885 0.32 473

possible, because this UC implies basic functionality in Eclipse), CM in System
2 is less than in System 1 (0.19 vs. 0.21). This is explained by the fact that
the complexity (ACw) of the static architecture increases when we augment the
system size, while the complexity values of the use case architectures vary in a
stable interval.

Third, we can observe in column 7 that the average number of newly activated
components (number of components in the core architecture minus number of
components in the UCi architecture) is equal to 50 components per use case.
This can be considered as a good value for a system that contains more than a
thousand components. Developers recover and understand the core architecture
once (it is common to all use case architectures), which is considered as the
initial overhead of our approach. After that, they can focus only on the newly
activated components for a specific use case.

By analyzing the recovered use case architectures, we have observed that,
in addition to the components of the core architecture there are 44 additional
components, which are also common in UC2 to UC5 of System 1, and 9 additional
components are common in UC2 to UC5 of System 2. This is explained by the
fact that these use cases start with the same actions (creating or importing
projects), while UC 1 of the two systems are different (installing a software and
file searching).

The last observation that we can make on these results is the high correlation
between the number of GUI actions and CM values (correlation coefficient equal
to 0.86 for the first system and 0.88 for the second). Though there are only a few
measures that are made (5 UCs for each system), there is a general quasi-linear
tendency. The more the actions we do on the GUI (the more the UC is complex),
the greater CM values we obtain. But CM values remain very low, AC is thereby
kept far below ACw. We experimented a full day working (about 7 hours) on
different kinds of projects (12 in total), CM value at the end was equal to 0.54



(the architecture specific to this large UC was almost half less complex than the
static one, which is quite a good score).

“Use Case” Service Oriented Architecture Complexity: In the same
way, we have evaluated all the spotlighted “use case”-specific Service Oriented
Architectures (SOAs). The obtained results are presented in Table 3. This table
shows the complexity and number of components in each use case SOA for
the two candidate systems, as well as the total number of registered/consumed
services by these components. As we can see, the complexity and the number
of components is greatly reduced compared to the previous architectures. As
consequence, we have eliminated all the noise in these architectures by providing
simplified SOA views which may be very helpful for developers who are seeking
to make changes only to services.

Table 3: Experiment Results for UC SOAs
UC SOAs of System 1 UC SOAs of System 2

UC0 UC1 UC2 UC3 UC4 UC5 UC0 UC1 UC2 UC3 UC4 UC5

AC 293 295 299 307 305 307 328 328 340 330 332 340

#of Components 99 100 102 106 105 106 119 119 125 120 121 126

# of Registered Services 86 87 89 90 92 92 89 89 94 89 90 93

# of Consumed Services 305 309 308 309 311 312 321 321 329 322 323 326

4.3 Performance Measurement

In order to evaluate the performance of our approach, we have estimated the
time for recovering each architecture. Indeed, to run our experiments, we have
used a machine with a CPU 4.20GHz Intel Core i7-7700K, with 8 logical cores, 4
physical cores, and 32 GB of memory. The recovering of the static architectures
takes 4 hours for the first System and 9 hours for the second System. Besides,
the average time for recovering a use case architecture is 45 minutes for the first
System and 2 hours for the second System. Therefore, this results demonstrate
the efficiency of recovering “use case”- specific architectures using our approach.

4.4 Threats to Validity

This experiment may suffer from some threats to the validity of its results:

Internal validity In order to evaluate the accuracy of our approach, we need to
compare the recovered use case architectures with “ground-truth” use case archi-
tectures which correspond to the chosen use cases. A “ground-truth” architecture
is the architecture of a software system that has been verified as accurate by the
system’s architects [11]. Obtaining the “ground-truth” use case architectures is
challenging. To mitigate this threat, we have verified manually the component
dependencies and the provided/required interfaces (and services) of large parts
of the recovered use case architectures by analyzing and checking source code
and the meta-data files of the candidate components.

External validity We have implemented and evaluated our recovery approach
on set of OSGi based systems which limits our study’s generalizability to other
kind of systems. To mitigate this threat, we selected systems providing different
functionalities (ArchStudio, BPMN2 Designer, BPEL project,...) and sizes.



5 Related Work

A framework comprising a set of principles and processes for recovering systems’
ground-truth architectures has been proposed in [11]. The authors of this work
have used a set of eight architectures that have been recovered from open source
systems and verified as ground-truth architectures by performing a comparative
analysis of six software architecture recovery techniques. The authors in [16] have
updated these ground-truth architectures to newer versions in order to perform
the evaluation. Their results showed that symbol dependencies generally produce
architectures with higher accuracies than include dependencies. Their evaluation
showed also that the overall accuracy is low for all recovery techniques. In our
work, in order to obtain accurate architectures, we base our recovery process
not only on static analysis, but also on dynamic information obtained from
execution traces. The dynamic information is then used to enrich the obtained
static dependencies, and so enhancing the accuracy.

Most of existing software architecture recovery techniques are based on hi-
erarchical clustering, which seeks to build a hierarchy of clusters starting from
implementation level entities. The authors in [18] provide a review of hierarchical
clustering techniques in the context of software architecture recovery and mod-
ularization. They assert that to employ clustering meaningfully, it is important
to understand the particularities of the software domain, as well as the behav-
ior of clustering measures and algorithms in this domain. They provide also an
analysis of the behavior of various similarity and distance measures that may
be employed for software clustering. In our work, we focus on runtime use case
architectures, instead of recovering whole static architectures. However, if the re-
covered use case architectures using our approach remain complex for a human
analysis, the use of one of the existing clustring methods for abstracting those
architectures may be helpful to the architect in this case. We organized in three
different categories the works that are the closest to what we have proposed in
this paper.

5.1 Component-Based Architecture Recovery

In the last two decades there were several works which proposed approaches that
aim to recover component-based architectures from different kinds of systems.
For instance, the works in [6, 23, 5, 4] focused on extracting component-based
architectures from existing object-oriented systems. The works in [6] and [23] are
based on the definition of a correspondence model between the code elements
and the architectural concepts. In [4] a component is considered as a group of
classes collaborating to provide a system function. The interfaces provided and
required by a component are the method definitions and calls respectively from
and to classes belonging to other components. The identification of components
and their interfaces is based on the analysis of traces which are obtained by
executing scenarios corresponding to the system use cases. The same authors
in [3] proposed the implementation of the recovered architecture in the OSGi
framework. Seriai et al. in [22] used Formal Concept Analysis to perform the
component interface identification.



Like these works, in our approach we recover architectures of large systems.
However, we start from a code that is already based on components. Unlike the
works described above, our goal is to recover an architecture of a large-sized
system, in which: i) we consider some specific use cases in order to focus on
a particular use context and reduce the size of the recovered architecture, and
ii) we include dynamic service-oriented features in this architecture

5.2 Service-Oriented Architecture Recovery

Several Service-Oriented Architecture recovery approaches have been proposed
in the literature as part of the process of migrating systems to SOA solutions [20].
Most of these approaches are based on static code analysis of the target system.
The aim of these approaches is recovering the abstractions and eliciting the
legacy fragments that are suitable for migration to SOA. For example, the au-
thors in [19] showed how architecture reconstruction is used as a decision-making
tool in the SOA migration process. They enable organizations to understand
legacy applications and identify what components can be migrated. The work
in [2] proposes to recover UML activity diagrams from legacy system, which are
then transformed into BPMN behavior models representing graphically the in-
teractions and collaborations among participants. The authors in [14] proposed
to recover behavioral models starting from Web service oriented system, which
is a result of migrating existing Web-based applications to SOA solutions. The
recovered BPMN models are used to understand the behavior of the new service-
oriented application.

Besides, a number of works such as [8, 24, 15] have been proposed to detect
SOA patterns [10] from service oriented applications. The authors of [24] pro-
posed to identify service composition patterns by analyzing the execution logs.
Demange et al. in [8] have proposed to detect five newly defined SOA patterns
specified using a set of rules that combine various static and dynamic metrics.
The similarity property between services to detect SOA patterns is used in [15].

Our approach focused on the recovery of pure SOAs. Using SOA design pat-
terns may be a good complement to our approach for a better understanding of
the recovered architecture. More particularly, this helps in better understanding
the design decisions made during the modeling of the analyzed system.

5.3 Reducing the Complexity of Architectures

Managing and studying complex architectures of large software systems became
a topic of interest of several research works. Some authors proposed to organize
architectural information using a Dependency Structure Matrix [21]. This ma-
trix is an adjacency matrix which represent module dependencies in a software
system. These dependencies are extracted by a conventional static code analy-
sis. The matrix is transformed by eliminating cycles and forming subsystems. In
this transformation modules are grouped into composites based on their mutual
dependencies. Furthermore, MacCormack et al. in [17] calculate metrics from
a DSM in order to measure the degree of modularity of in the architectures of
Mozilla and Linux. The authors in [7] have proposed an architectural slicing and
abstraction approach for reducing the model complexity. They used the property



to check on the software architecture as a slicing criterion. Abi-Antoun et al. [1]
proposed a technique to statically extract a hierarchical runtime architecture
from object-oriented code. They also analyzed the conformance of an existing
architecture with the code. To achieve hierarchy in an object diagram (runtime
architecture), they used annotations that developers add to the code in order to
assign each object to a single ownership domain that does not change at runtime.

Our approach do not require any annotations to add in the code by developers
and we can apply our approach to code that was not specifically designed for
this type of processing. In addition, we deal with architectures at a higher level
of granularity (component- and service-based ones) and not low level ones (at
object-oriented program level).

6 Conclusion and Future Work

Architecture models are important artifacts for understanding the structure and
behavior of a given system during maintenance. This kind of artifacts is unfortu-
nately rarely available and if they exist, they are most of the time not up-to-date
and do not reflect the system in-hand. This is where architecture recovery plays
an important role and provides a precious help for developers. We noticed how-
ever that recovering the whole architecture of a large system produces models
that are not tractable for developers due to their size and complexity.

In this paper we proposed a process for recovering the architecture of large
component-/service-oriented systems. Since services in these systems are not
provided and consumed all together, in a given use case, and components are
not all active in the same time, we defined in this process a method to reduce
the size and the complexity of the architecture. Thanks to a runtime analysis
and taking into consideration only specific use cases of interest for the devel-
oper (related to a bug occurrence, for instance), we spotlight the active elements
(components and services) in the recovered architecture. We benefited from the
OSGi framework capabilities to implement such a process, and we experimented
it on a set of Eclipse applications. The results showed the potential of the ap-
proach in recovering the architectures of these large systems, while reducing their
complexity by spotlighting essential elements.

Today, there is a need to help the developer to monitor and evolve her/his
system directly via its architecture. As a future work, we plan to make the
recovered architecture models dynamic: they evolve (elements are shown and
hidden) while the system is running by following debugger-like behaviors. In
addition, we want to make them interactive, by enabling developers to start and
stop components, and to publish and consume services just by clicking, dragging
and dropping the visualized architecture elements.
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