
Estimating the Reputation of Newcomer Web Services

Using a Regression-Based Method

Okba Tibermacinea, Chouki Tibermacineb, Foudil Cherifa

aBiskra University, LESIA, P.B. 145 R.P, Biskra 07000, Algeria
bLIRMM, CNRS and Montpellier University, France

Abstract

In this paper, we propose a novel method to estimate the initial reputation
values of newcomer web services. In fact, the reputation of web services is one
of the criteria used for recommending services in service-oriented computing
environments. The lack of evaluating the initial reputation values can subvert
the performance of a service recommendation system making it vulnerable
to different threats like whitewashing and Sybil attacks, which negatively
affect its quality of recommendation. The proposed method uses Quality
of Service (QoS) attributes from a side, and reputation values of similar
services from the second side, to estimate the reputation values of newcomer
services. Basically, it employs regression models, including Support Vector
Regression, in the estimation process of the unknown reputation values of
newcomers from their known QoS values. We demonstrate the efficiency
of the method in estimating the reputation of newcomer services through
statistical evidences gathered from experimentations conducted on a set of
real-world web services.

Keywords: Web services recommendation, reputation measurement,
support vector regression, feedback rating, honest and malicious service
raters.

Email addresses: o.tibermacine@univ-biskra.dz (Okba Tibermacine),
Chouki.Tibermacine@lirmm.fr (Chouki Tibermacine), foud_cherif@yahoo.fr (Foudil
Cherif)

Preprint submitted to Journal of Systems and Software June 26, 2018

1. Introduction

Web Service recommendation systems (WSRSs) provide a precious assis-
tance to users in selecting the best available Web Services (WS) to implement
their business processes. To recommend services, WSRSs manage different
kinds of metrics related to services, among which reputation. This sub-
jective quality metric is an aggregation of feedback ratings gathered from
service users. It reflects how users perceive this service, which is a good in-
dicator of its Quality of Experience (QoE). The management of reputation
plays a significant role in such systems. Recently, many reputation man-
agement models have been proposed to accurately evaluate the reputation
of services [1–8]. Although these models have addressed many aspects in
reputation evaluation such as user credibility, time sensitivity, personalized
preferences, majority ratings, the evaluation of newcomer services with the
absence of feedback ratings is still an important aspect that it has not been
tackled thoroughly.

Indeed, assigning reputation values to newcomer (newly published and/or
never used) services that have an empty rating history is an important and
challenging issue due to the following reasons:

• WSRSs have to assign fair reputation values to newcomer services in
order to enhance their visibility to users and to give these services a
chance to compete with longstanding similar services during service
selection phases. Thereby, the system provides a solution to the “cold
start” problem, which describes the situation in which a recommender
system is unable to make a meaningful recommendation due to an
initial lack of users feedback-ratings [9].

• Initial reputation value, attributed by a WSRS, has to reflect the non-
functional characteristics (QoS values) of a particular service. This
value should not be general values related to the state of the recom-
mender system itself, such as the average reputation value assessed in
the system to all newcomer services [10], or assigning a fixed reputation
value based on the rate of maliciousness in the system such as proposed
in [11] as an elegant solution to the aforementioned problem.

• The lack of a correct estimation of initial reputation values of newcomer
services may subvert the performance of the WSRS itself, making it
vulnerable to different threats [12] (e.g., the Sybil attack [13]).

2

• WSRSs have to provide a solution to the Whitewashing problem too [14].
Whitewashing (i.e. changing the identity of a malicious user/service in
the system) occurs when an entity leaves the recommendation system,
then it reintegrates itself in the system with a new identity in order to
erase its poor reputation acquired with its previous identity [11].

Though some notable solutions have been proposed in the literature for
evaluating the reputation of newcomer services (e.g. [10, 11, 15–17]), most
of these solutions assign the same initial reputation value to every newcomer
service. Or, they do not offer a complete solution that addresses all the
previous challenges.

In this paper, we propose a new model that refines and completes our
initial proposition [18] to estimate initial reputation values of newcomer ser-
vices in WSRSs. A correct estimation of these values allows better recom-
mendations, thus a better help in selecting web services that satisfy clients’
requirements.

Even though reputation is a subjective measure, it reflects users’ satisfac-
tion about a service’s offered functionality and Quality of Service. It has been
observed that fair feedback ratings provided by the majority of honest users
are correlated, even with a slight deviation (due to differences between raters’
opinions), with the QoS of used services [19]. Hence, we use QoS and repu-
tation data of longstanding services to build a reputation estimation model
for bootstrapping the reputation of newcomer services. We mean by “long-
standing services” the services that have long feedback records constructed
from collected user feedback ratings.

In fact, QoS and reputation values could have a linear or nonlinear cor-
relations. Thus, we employ in our propositions both (i) a Linear Regression
Model as a reputation estimator to deal with linear relationships, and (ii) a
Support Vector Regression (SVR) model as a general reputation estimator to
deal with general cases (that is, cases with linear or nonlinear relationships
between reputation values and QoS).

Though the model that we propose considers Web services as the “first-
class citizens” of the recommendation system, it can be safely used with any
kind of SaaS (Software as a Service), whether it is a Cloud, REST/REST-
ful/WSDL or mobile service, among others. The word service can also be
treated as an API in its general sense. We focused in this work on Web ser-
vices, because we are convinced that a lot of software systems are deployed in
the Web, and these still need the use of Web services or Web APIs for manag-

3

ing machine-to-machine interactions, whether these are WSDL/SOAP-based,
which at the time of this writing are receiving less and less attention, REST-
based, WebSocket-based, or any other protocol or architecture style usable
over HTTP, which is currently the standard protocol for the Web. The most
important aspect in our work is that a service has a set of functionalities
(described by its iterface, which can be WSDL-based, JSON-based, or any
other processable/parsable interface), and a set of Qualities (QoS) which are
measurable. A service can compete with other services and it can be rec-
ommended based on its reputation which is evaluated by aggregating user
feedbacks.

Basically, our reputation estimation method is built on three main phases:

1. Provider reputation evaluation: The system assesses the reputa-
tion of the new service’s provider from reputation values of its previ-
ously published web services. Then, provider’s reputation is employed
in bootstrapping the reputation of the newcomer service.

2. Similarity-based estimation of newcomer’s reputation: In this
phase, the system selects among long-standing web services those which
are functionally similar to the newcomer service. Then, the system
selects top-K neighbor services that have high QoS value correlation.
Finally, the system evaluates the reputation of the newcomer service
based on its neighbors’ reputation values (Technique 1), or using a
multiple regression model (Technique 2) that is built from i) reputation
values and ii) QoS values of the service’s similar neighbors.

3. Support Vector Regression-based estimation of newcomers
reputation: In this phase, the system deals with general cases (e.g.
new services published by a new provider with no similar long-standing
services in the system). The system uses a Support Vector Regression
(SVR-) model [20, 21] which is largely employed for forecasting data in
both linear and nonlinear problems. The system trains the SVR-model
using the normalized QoS and reputation values of all services in the
system. Initial QoS values of newcomer services are then used by the
SVR-model to estimate their initial reputation values.

The main goal of this work is two-fold:

– First, it provides a solution to evaluate the reputation of newcomer web
services that correctly reflects their quality. This enhances their visibil-
ity to end users and improve the overall quality of the recommendation
system, by providing a solution to the cold-start problem.

4

– Second, it provides a solution to the whitewashing problem by looking
to functionally similar services (including services that have left the
system) which are recorded in the system registries.

We evaluated the proposed reputation estimation method on a set of
real-world web services. We compared the obtained results with competing
approaches from the state of the art.

The remaining of the paper is organized as follows. Section 2 presents
the related work. Section 3, provides the reputation estimation algorithm.
Phases one, two and three of the method are detailed respectively in Sec-
tions 4, 5, and 6. Section 7 discusses results of the experiment and Section 8
concludes the paper.

2. Related Work

Reputation management has been successfully studied in different com-
puter science domains such as in e-commerce and online information systems
(e.g. [22–26]), multi-agent systems (e.g. [27–30]), peer to peer (P2P) and so-
cial networks (e.g. [31–33]), and mobile and ad-hoc networking (e.g. [34–36]).

Leveraging reputation have being also explored in Network Functions
Virtualization (NFV), Software-Defined Network (SDN), Fog and cloud com-
puting technologies that enhance the flexibility of network function provision
and update. Security, reputation and trust become crucial issues in practical
deployment of the aforementioned technologies [37–41]. More precisely, rep-
utation is proposed as a mechanism to control malicious SDN Applications,
SDN Controllers and VNFs use cases (i.e. NFVI-as-a-service, VNF-as-a-
service, Virtual-network-platform-as-a-service, etc.) For instance, Dynamic
and multidimensional trust and reputation access controls mechanisms have
been suggested in [42]. Challenges of incorporating trust in FNV are dis-
cussed in [43]. Authors in [44] highlighted the set of possible attacks in a
cloud environment as they had provided a reflection on the need for a trusted
NFV and management and orchestration components. In [37], the authors
identify the problem of the lack of trust architecture for NFV and they pro-
vide the necessary requirements for establishing trust in it.

Authors in [45] proposed a reputation-based scheme to identify rogue/-
malicious controllers in a distributed environment. The scheme is based on
trust and reputation which is centrally managed. Authors in [46] proposed a
collaborative scheme formed amongst SDN domains in the path of attacks.

5

The scheme is capable of cutting off malicious flows via (i) reputation-based
cooperation amongst SDN domains that may be managed as disparate Au-
tonomous Systems, and (ii) distribution of the mitigation process through
transit SDN domains, aiming at dropping malicious flows near their origin.

The subject is still challenging and important in this field and the most
of the established trust and reputation models lack of providing rigorous
methods to estimate the initial reputation/trust values of SDN/FNV services.

For cloud and service-oriented computing systems, many reputation man-
agement methods have been proposed (e.g. [1–7, 12, 47–50]). However, little
efforts have been dedicated to the study of newcomer reputation estimation.

In fact, most of the proposed reputation approaches do not consider thor-
oughly this aspect, and a few of them provide default bootstrapping tech-
niques [15, 16, 51–53], i.e. they assign a default constant reputation score,
such as a low (0), a neutral (0.5), a high (the maximum) or no reputation
value, to all newcomers. For instance, Zacharia et al. [51] give the minimum
possible trust value, and [53] assigns a neutral value (0.5). However, in such
situation, newcomers may never have a chance to get selected. Even in the
case of assigning high trust values, the problem of “whitewashers” (i.e. mali-
cious participants that leave the system and come back with new identities)
could raise.

The framework proposed by Jin-Dian et al. [54] assigns the provider rep-
utation to its newly posted services. The authors suggest assessing the rep-
utation of the provider based on its past experiences. However, the problem
appears if the provider is a newcomer in the recommendation system.

Feldman and Chuang [17] propose a solution for bootstrapping the rep-
utation of newcomer services based on its probability of deceiving. This
probability is computed by collecting all transaction information of the new-
comer’s first-time interaction. This approach is community-based, and new-
comer reputation is adjusted to the reputation of others. However, initial
reputation scores are still not fair and they do not reflect the actual reputa-
tion of newcomers.

Malik and Bouguettaya [11] propose two bootstrapping techniques for es-
tablishing the reputation of newcomer web services. The first is an adaptive
technique that assigns the initial reputation value based on the rate of ma-
liciousness in the system. The second approach assigns a default reputation
score to a newcomer service, where the initial reputation is purchased from
the community provider. Or, the community requests some evaluators (elder
service with high reputation) to evaluate the newcomer service in a short

6

period of time. In the first technique, the reputation of a specific web service
is related to the maliciousness rate in the community, which seems penalizing
or rewarding based on a factor that is unrelated to the service itself. In the
second technique, the contribution and the impact of requesters on the rep-
utation of web services are very high, which raises the problem of the trust
of evaluators themselves.

Huang et al. [10] propose an equitable trustworthy mechanism that en-
ables new services to startup and grow in an ecosystem environment. The
mechanism distinguishes between novice and mature services during service
recommendation. The approach considers two trust bootstrapping strate-
gies: i) default strategy where they assign to the newcomer a default initial
trust value, and ii) an adaptive bootstrapping strategy where they assign to
the newcomer the average trust value in the system. The first strategy does
not provide a solution for the cold-start problem and for the whitewashing
problem in the case of assigning a high value. Moreover, the second tech-
nique assigns the average trust in the system to newcomer services, which is
not always an accurate solution (e.g. the case where the average is high and
the service is bad or the inverse).

Wu et al. [15] introduce a neural network based approach for bootstrap-
ping the reputation of web services. The approach builds a model that learns
possible correlations between features and performances of existing services
using Artificial Neural Networks. Then, it generalizes findings to establish
tentative reputation values when it evaluates new and unknown services.
This approach depends on features that are gathered from service providers
by filling a specific form without taking into consideration the whitewashing
cases.

The main differences between the proposed solution and the previous so-
lutions can be summarized as follows. First, instead of assigning the same
reputation value to all newcomer web services, we propose to estimate the
initial reputation value of a newcomer service based on its provider’s repu-
tation, reputation values of its similar long-standing services, and its initial
QoS values. When all the previous values are not present, we make an es-
timation using a Support vector regression model built from the reputation
and QoS values of long-standing services. In addition, we propose a solution
to overcome the whitewashing problem based on similarity of the newcomer
service with registered services that have left the system.

7

Input: Si // Newcomer service

Output: R̂i // Estimated Reputation

Begin

1: λ = 0.3 ; TopkBool = false;
2: if (Provider(Si) ∈ ProviderList) then
3: prReputation = providerReputation(Provider(Si)) ; // compute providers reputation

4: simServiceSet = getSimilarServices(Si,ServiceList); // get functionnaly similar services

5: if (simServiceSet 6= ∅) then
6: for all (Sj ∈ simServiceSet) do
7: QoSim [Sj .index] = ρ(normalize(Qos(Si)),normalize(Qos(Sj))); // using Eq. 4

8: if (QoSim [Sj .index] > 0) then
9: TopKset.add(Sj) ; // TopK neighbors selection

10: end if
11: end for
12: if (TopKset ==∅) then
13: TopkBool = true ; // To continue from line 33

14: else
15: RMin = MinReputation(TopKset) ;
16: RMax = MaxReputation(TopKset) ;
17: if (RMax −RMin < λ) then
18: num = denom = 0 ; // Technique 1, Using Eq. 6

19: for all (Sj ∈ TopKset) do
20: num += QoSim [Sj .index] × getReputation(Sj) ;
21: denom += QoSim [Sj .index] ;
22: end for
23: R̂i=

num
denom

;
24: else
25: MLRmodel =buildMLRegressionModel(topKset) ; //Tech. 2 - linear regression

26: R̂i= estimateReputation(Qos(Si),MLRmodel) ;
27: end if
28: end if
29: else
30: R̂i= prReputation ; // Assign provider reputation

31: end if
32: end if
33: if (!(Provider(Si) ∈ ProviderList) ‖ TopkBool) then
34: simServiceSet = getSimilarServices(Si,ServiceList);
35: if (simServiceSet 6= ∅) then
36: SimVector = Similarities(Si, simServiceSet);
37: aService =HighestScoreService(SimVector);
38: if (Max(simVector)==1 && hasLeft(aService)) then

39: R̂i =getReputation(aService);
40: else
41: MLRmodel =buildMLRegressionModel(simServiceSet) ; //Apply tech.2 for SimServSet

42: R̂i= estimateReputation(Qos(Si),MLRmodel) ;
43: end if
44: else
45: SVRModel = BuildSVRModel(serviceList); // Build Support Vector Regression model

46: R̂i = estimateSVRReputation(Qos(Si),SVRModel);
47: end if
48: end if

End
Algorithm 1: Reputation estimation algorithm

8

3. Reputation estimation method

We suppose that we have a Service Recommendation System (SRS) that
offers useful suggestions to its clients, helping them in the selection of appro-
priate services that fulfill their business needs. The SRS recommends services
based on their QoS and reputation values. The architecture of the SRS is
composed from many modules that are responsible for:

1. Registering service providers and their services.

2. Registering clients.

3. Storing and updating service related QoS and information. Eventually,
with a monitoring component, or by allowing providers to update their
service QoS.

4. Collecting feedback rating from clients.

5. Evaluating reputation values of services from their user feedback rat-
ings.

6. Indexing/Archiving service description, QoS, reputation, and informa-
tion for services and providers including those which tend to leave the
system.

7. Recommending services using Recommendation algorithms based on
QoS and Reputation.

8. Bootstrapping newcomers reputation; i.e. estimating the reputation of
new services in the System.

In this work, we focus only on the estimation of newcomer services (point 8).
Other modules are supposed implemented and working properly.

When a newcomer service Si arrives to the system, we assume that it
comes with an initial QoS vector Qinit

Si
=< qi,1, qi,2, ..., qi,k >. These QoS

values (Qi,j) are provided during registration time by the service provider
(Pr(Si)) as advertised QoS data. These data can also be updated by the
system after a period of service monitoring and testing (for that propose, the
system can use one of the approaches proposed in this survey [55].)

Algorithm 1 presents the process that covers three phases for estimat-
ing the reputation of a newcomer web service Si. First, the system checks
whether the service provider is recorded by the system, that is, the service
provider belongs to the list of providers ProviderList that have published
services in the system. In the positive case, the system calculates the reputa-
tion of this provider, denoted prReputation, based on the reputation values

9

of its long-standing services (Line 3 in Algorithm 1). Section 4 gives more
details on how provider’s reputation is calculated.

Afterwards, the system looks for long-standing services which provide
similar functionalities to those provided by the newcomer service (Line 4).
To evaluate the functional similarity between services, we use the approach
proposed in [56]. If simServiceSet, which denotes the set of similar service, is
not empty, the system selects, using positive Spearman’s Coefficient values
(ρ), a subset of top-K neighbors with close QoS vectors to the newcomer’s
QoS vector (Lines 6-11). Both Spearman’s coefficient and top-K are effec-
tively used in recommender systems for the selection of similar elements[57].

When the maximum distance between reputation values of neighbor ser-
vices in Top-K is relatively small (less than λ = 0.3 for instance), which
means all reputation values of neighbors are close to each other, the sys-
tem estimates the reputation of the newcomer service as the mean weighted
reputation values of its neighbors, where weights are their Spearman’s coeffi-
cient values (Lines 15-23). Otherwise, the system builds a multiple regression
model (see Section 5.4.2 for details) using QoS vectors and reputation values
of top-K neighbors, and therefore estimates the reputation value of Si using
this model (Lines 25-26).

In the case where simServiceSet is empty, the system assigns to the rep-
utation of Si the reputation values of its provider “prProvider” (Line 30).
This is motivated by the fact that if the provider has a good reputation, it
is likely that its new web service will have a good starting reputation too.

Besides, when the provider of the service is also new in the system, the
system checks if it is a whitewashing situation (lines 33-38 in Algorithm 1).
The system retrieves all similar long-standing services, including archived
service, and then compares their similarity scores with the newcomer service
(similarity scores range between 0 and 1, where 1 means that services are
totally similar and 0 otherwise). If the highest similarity score equates to
one, and the similar service has left the system, then, the provider of the
newcomer service becomes suspicious, and we assign the (old) reputation
value of the left service to the reputation values of the newcomer service
(line 38 in the algorithm). Otherwise, we use Technique 2, where the system
builds a multiple linear regression model from QoS and reputation values of
similar services (simServiceSet). The system estimates the reputation of Si
using this model (Lines 41-42).

When the newcomer service and its provider are both new, and there is
no similar services in the system, we go to Phase 3 (detailed in Section 6).

10

The system builds a Support Vector Regression model from QoS vectors and
reputation values of all long-standing services in the system (line 44 in the
algorithm). Similarly to Phase 2, the model gives also an estimation of service
reputation based on service’s initial QoS. The estimated value is assigned to
the reputation of the newcomer service Si.

4. Provider reputation

The reputation of a provider mainly depends on the quality of its offered
services, thus on their reputation values. In this phase, we calculate the
reputation of a given provider as the weighted arithmetic mean of reputation
values of its services. Given a provider Prx, let Services(Prx) = {Si}, i =
1, ..., n denote the set of n services provided by Prx, and Ω(Si) be the number
of users who rated service Si. The reputation of a provider Prx is calculated
as follows:

RP (Prx) =

{
(
∑n

i=1 Ω(Si)∗Ri)∑n
i=1 Ω(Si)

if Services(Prx) 6= ∅
0 Otherwise

(1)

where,

• Ri is the reputation of service Si that belongs to the provider’s service
set (Si ∈ services(Prx)).

• ∅ denotes the empty set.

The new providers reputation when it introduces its first service, is equiv-
alent to its service reputation that the system estimates using one of the
following estimation phases.

5. Reputation estimation from similar services

Since users rate functionally-similar web services (i.e. services that pro-
vides same functionalities) based on the same criteria, we consider that it is
possible to estimate the reputation of newcomer web services using reputa-
tion scores of its similar services, which are calculated by aggregating users’
ratings. In this phase, a four-step technique is proposed to estimate this rep-
utation based on QoS values of the newcomer service Si and the existing long-
standing similar services (see Figure 1). As mentioned above, the initial QoS
values of Si are represented by the QoS vector Qinit

Si
=< qi,1, qi,2, ..., qi,k >.

11

Reputation estimation

Functionally-similar

services selection

1
QoS

Normalization

2
Top-K Neighborhood

selection (Eq.4-5)

3

Neighborhood-based

estimation (Eq. 6)

A

Linear regression Based

estimation

B

Model construction

(Eq.8)

Estimation

(Eq.9)

Ȓ𝒊

𝑺𝒊
𝑹

𝑴
𝒂

𝒙 (𝑻
𝒐

𝒑
𝒌

(𝑺
𝒊))

 −
 𝑹

𝑴
𝒊𝒏 (𝑻

𝒐
𝒑

𝒌
(𝑺

𝒊))

< λ

Otherwise

4

Figure 1: The second phase for estimating the reputation of a newcomer service Si.

The method for estimating the initial reputation of Si denoted R̂i is de-
tailed in the following sub-sections.

5.1. Step 1 - Functionally-similar service selection

First, the system selects from its databases long-standing services that
offer the same functionalities (e.g. Weather forecasting services, currency
services, transportation services, etc.) to the service Si. In the literature
many approaches that compute the similarity between web services are pro-
posed (e.g. [58–60]). In this work, we choose to use the approach proposed
in [60] to calculate the similarity between a newcomer web services and the
existing services. The approach assesses the similarity between two web ser-
vices by comparing their WSDL definitions using several lexical and seman-
tic metrics. The similarity value is a score that indicates to what level two
compared services are close to each other (i.e. how much these services are
similar). Similarity value could range between 0 and 1, where 0 means that
the compared services are totally different, and 1 means that these services
are totally similar. The similarity threshold is a starting value to consider
two compared services as similar. In fact, five classes of similarity can be
defined, (very high, high, medium, low, and very low). A similarity value

12

that ranges in [0.6, 0.8[is considered as a high similarity value, while a value
that ranges in [0, 0.2[is a very low similarity value. In this work, we have
fixed the similarity thresholds to 0.75 (based on [60] experiments), which
means that the system accepts services with high similarity values to ensure
that these services are offering close functionalities to the newcomer one.
We recommend thresholds be-longing to the first two classes (High and very
high). The selection of more relaxed threshold values leads to the selection
of a larger set of services, and hence a larger bias between their QoS (and
reputation) occurs. This influences negatively the accuracy of estimating the
new-comers reputation. The result of this step is a set of similar services
denoted by simServiceSet.

5.2. Step 2 - QoS normalization
Second, the system retrieves and normalizes QoS and reputation values of

each service in the simServiceSet. Let simServiceSet = {Sj}, (j = 1, ..,m)
be the set of m similar services to the newcomer service Si. Each similar
service Sj in this set has a QoS vector QSj

=< qj,1, qj,2, ..., qj,k > and a
reputation value Rj calculated by the system from user feedback ratings.
Besides, the newcomer service Si is defined by the vector Qinit

Si
that represents

its initial known QoS values, and R̂i that represents the unknown reputation
value (to be estimated).

Afterwards, the system normalizes all QoS values in the range [0, 1].
Thus, each QoS value, QosV al ∈ {qj,l, (j = 1, ..,m; l = 1, .., k)} is

replaced in its vector by its normalized value NewQosV al which is calculated
as follows:

NewQosV al =
QosV al −MinV al

MaxV al −MinV al
(2)

Where MinV al and MaxV al are respectively the minimum and maximum
recorded values in the system for that QoS metric (with the index l). Note
that some of QoS metrics have values that are interpreted inversely, i.e. the
higher is the value, the lower is the quality. This includes execution time and
price. Thus, the scaled value NewQosV al is calculated as follows:

NewQosV al = 1− (
QosV al −MinV al

MaxV al −MinV al
) (3)

5.3. Step 3 - QoS-similar neighborhood selection
The more the QoS values of the newcomer services are close to the QoS

values of other services, the more its reputation value is close to their rep-
utation values. Thus, the system in the third step selects the QoS-Similar

13

neighbors from the simServiceSet by calculating similarities between the
QoS Vectors of Web services. These similarities could be calculated using
PCC (Pearson Correlation Coefficient), Spearman’s rank correlation coeffi-
cient (The Spearman coefficient in short) or VSS (Vector Space Model Sim-
ilarity) estimates, which are used in recommendation systems [57, 61–63].
PCC can generally achieve higher performance than VSS [64] and Spearman
coefficient achieves more reliable results in finding QoS-based similar ser-
vices Than PCC [57]. Therefore, we employ ρ (Spearmanś rank correlation
coefficient) for the similarity computation between normalized QoS vectors
QSj

, (j = 1..m) and Qinit
Si

, the QoS vector of the newcomer Si.
The Spearman correlation evaluates the monotonic relationship between

two continuous or ordinal variables. In a monotonic relationship, the vari-
ables tend to change together, but not necessarily at a constant rate. The
Spearman correlation coefficient is based on the ranked values for each vari-
able (Rank of the QoS among others in the same vector) rather than the
raw data (QoS values themselves). This coefficient calculates the similarity
between two service vectors by considering the difference of the two rankings
for each quality in the vectors. Spearman coefficient is calculated as follows
(Equation 4):

ρ(Si, Sj) = 1− 6
∑
d2

m(m2 − 1)
(4)

where, m is the number of qualities in each vector, and d is the difference of
the two ranking for each quality (i.e. for each item in the vector).

From Eq. 4, ρ(Si, Sj) values belong to the interval [−1, 1], where a larger
ρ value indicates higher QoS-similarity between services Si and Sj. After
calculating QoS-Similarities between the newcomer service and services in the
simServiceSet, a set of top-K neighbors is identified based on ρ values. In
this work we ignore negative ρ values because negative values could represent
a dissimilarity between compared services, which influences greatly on the
accuracy of the estimation of reputation in next steps. Thus, the top-K
neighbor set of the newcomer service Si is defined as follows:

TopK(Si) = {Sj | ρ(Si, Sj) >> 0;

Sj ∈ simServiceSet}
(5)

where, ρ(Si, Sj) is computed using Eq. 4. In case TopK(Si) equates the
empty set (∅), then the system moves to Phase 3 of the method, and the

14

estimation of the reputation of the newcomer service R̂i is calculated using
the SVR-based model. Otherwise, its reputation is estimated in the next
step.

5.4. Step 4 - Reputation estimation

We propose two techniques to estimate the reputation of a newcomer
service based on the data about the services in the top-K neighbor set
(TopK(Si)). The first consists in calculating the weighted mean of neighbors
reputations (Section 5.4.1), and the second is based on the construction of a
multiple linear regression model (Section 5.4.2) from QoS vectors and their
corresponding reputation values.

The system uses the first technique when the difference between the max-
imum and the minimum reputation values of services in the Top-k set is less
or equal than a threshold λ (e.g. λ = 0.3).

RMax(TopK(Si))−RMin(TopK(Si)) < λ

In fact, Reputation is a value that ranges between 0 and 1. The higher
is the value, the more trusted is the service. λ is the upper boundary of
acceptable variation between reputation values in the Top-K neighbor set.
A deviation up to λ = 0.3 between reputation of two elements is considered
natural based on variation of user preferences (i.e., two honest persons can
give different but close rates to the same service). We selected the upper
boundary (λ = 0.3) to apply the neighbor based estimation because these
neighbors are similar to the newcomer services and they have close QoS.
However, if more relaxed boundaries are selected, then the difference between
neighbors reputation values is larger, and hence attributing the mean of these
values may result in a significant bias when estimating newcomers reputation.

In case the difference between the minimum and maximum reputation
in the top-k neighbor set is greater than λ, the system selects the second
technique to estimate R̂i.

5.4.1. Neighborhood-based estimation

The estimation of R̂i is calculated using Eq. 6.

R̂i =

∑
j∈TopK(Si)

(ρ(Si, Sj) ∗Rj)∑
j∈TopK(Si)

ρ(Si, Sj)
(6)

where TopK(Si) is the set of neighbors that are functionally and qualitatively
(based on their QoS values) similar to the newcomer service Si, and ρ(Si, Sj)

15

is the similarity between Si’s and Sj’s QoS vectors. Using ρ as a weight in
Eq. 6 means that reputation scores of services, whose QoS values are highly
correlated with the QoS values of the newcomer service, are assigned with
higher weights (i.e ρ values close to 1).

5.4.2. Linear regression-based estimation

The second technique to estimate R̂i is achieved by constructing a mul-
tiple regression model, using QoS and reputation values of top-K service
neighbors.

Multiple regressions are statistical techniques used for predicting un-
known Y values (a dependent variable) corresponding to a set of X values
(independent variables). In our study, the multiple regression is expected to
give a model that could relate the reputation values of long-standing services
to their QoS values, that is, we consider the dependent variable Y to represent
the reputation of services as a function of multiple QoS attributes (indepen-
dent variables) such as response time, availability, throughput, latency, price,
etc. Thus, if we have m services in the TopK(Si) (Sj , j = 1, 2, ...,m), and
each service Sj has a QoS vector QSj

=< qj,1, qj,2, ..., qj,k > that holds k QoS
metrics, and each service Sj has a reputation value R(Sj) denoted Rj, the
relationships between reputation (the dependent variable) and QoS metrics
(independent variables) can be expressed by the following equation:

q1,1 q1,2 · · · q1,k

q2,1 q2,2 · · · q2,k
...

...
. . .

...
qm,1 qm,2 · · · qm,k


︸ ︷︷ ︸

X


β1

β2
...
βk


︸ ︷︷ ︸

β

+


ε1

ε2
...
εm


︸ ︷︷ ︸

ε

=


R1

R2
...
Rm


︸ ︷︷ ︸

Y

(7)

where :

• X is the design matrix that packs all regressors (predictors) ql,j, l =
1, ...,m and j = 1, ..., k.

• β is the regression coefficient vector (called also slop vector).

• ε is the error vector. Error terms εl, i = 1, ..,m capture all the factors
which influence the dependent variable (Rl, l = 1, ...,m) other than
regressors (Xl,j, l = 1, ...,m and j = 1, ..., k).

16

The multiple regression of the model can be simplified to:

Rl = β1ql,1 + β2ql,2 + ...+ βkql,k + εl, l = 1, ...,m (8)

where,

• Rl is the response (estimated reputation) of the linear combination of
the model terms.

• βl (l = 1, ..., k) represents the unknown coefficients.

• εl is the error term.

After model construction, the system uses solved values of the unknown
coefficients (βl (l = 1, ..., k), and the error term (ε), to estimate the reputation
of the newcomer service based on its initial QoS vector using Eq 9.

R̂i = β1qi,1 + β2qi,2 + ...+ βkqi,k + εi. (9)

6. SVR-based reputation estimation

In this phase, the system deals with general cases, where it is unable
to recognize the service provider but not similar services. This phase relies
on the use of a Support Vector Regression model [20, 21] to estimate the
reputation of newcomer services. The system trains an SVR model using
QoS data and reputation values of all long-standing services. The output
model is used by the system for reputation estimation. The essence of the
application of this algorithm in our context is to map QoS and reputation
values of long-standing services into a higher dimensional space via a non-
linear mapping using RBF Kernel, and then to do linear regression in this
space. The definition and motivation of using SVR are presenting bellow.

6.1. Formal definition

The main idea in an SVR can be formalized as a problem of inferring a
function y = f(x) based on the training set set D = (xi, yi); i = 1, 2, ..., N ,
yi ∈ R, xi ∈ RN , where xi is the ith input in the N-dimension space, and
yi is the output value corresponding to xi. Furthermore, learning an SVR is
equivalent to finding a regression function of the form of Eq.10 :

f(x) =
N∑
i=1

(αi − α∗i)k(x, xi) + b (10)

17

where :

• k(x, xi) = Φ(x).Φ(xi) is a kernel function that maps input data xi
to a high dimension feature space that can describe the relationships
between inputs xi and outputs yi.

• α = (α1, α2, ..., αN)T and α∗ = (α∗1, α
∗
2, ..., α

∗
N)T and b are the parameter

of the model.

The parameters αi and α∗i (i = 1, ..., N) can be calculated by minimizing
the following objective function (Eq.11)

1

2

∑
i,j=1

(αi − α∗i)(αj − α∗j)k(xi, xj) + ε
N∑
i=1

(αi + α∗i)− y
N∑
i=1

(αi − α∗i) (11)

which is subject to the following constraint (Eq.12):

N∑
i=1

(αi − α∗i) = 0 and αi, α
∗
i ∈ [0, C] (12)

Different SVR models can be elaborated by selecting different kernel func-
tions. In this work, we use the Gaussian Radial Basis Function (RBF) which
performs a nonlinear mapping between the input space and a high dimen-
sional space, and which is easy to implement at the same time [65]. Under
the assumption that reputation is non-linear with QoS data, we choose the
RBF Kernel to develop our reputation estimation model. The model can be
rewritten as follows:

f(x) =
N∑
i=1

(αi − α∗i) exp

(
−‖xi − x‖2

2σ2

)
+ b (13)

where σ, the kernel parameter, is the width of the RBF kernel function. xi
is the input vector of the training data, i.e. the QoS vector of long-standing
services in our case. x is the vector of testing data, i.e. the initial QoS vector
of the newcomer service. The reputation of the newcomer service R̂i equates
to f(x).

18

6.2. Motivation for using SVR

Theoretically, SVR has many advantages over other regression and ma-
chine learning techniques due to many technical characteristics well-know
in the literature [20]. Practically, SVR has been proven to be an effective
tool in real-value function estimation (e.g. [65–70]), as it has been shown
experimentally by evaluating its performance over other machine learning
technique including Neural networks, multiple regression, LASSO regression,
Naradaya-Watson Kernel estimators, K-NN, regression tree, boosting, bag-
ging or random forests, etc. All these advantages strongly motivated us to
apply this technique on the estimation of newcomers’ reputation, exploiting
the relationship between QoS and reputation of other services.

7. Experiments and Evaluation

To evaluate the proposed reputation estimation method, we conducted
an experiment on a set of real web services collected from WSDream [71]
and QWS [72] datasets. Our experiment has been conducted through three
steps, in which we evaluated the three proposed estimation phases. Different
accuracy metrics are used to compare the results obtained by our estimation
method against results obtained by related state-of-the-art methods.

7.1. Data description and preparation

WSDream dataset holds 5825 web service QoS data evaluated by 339
users in different geographical locations (we have chosen the dataset 2 in
WSDream). This dataset holds 339*5825*2 (2 QoS characteristics: response
time and throughput). QWS dataset holds 365 web services with 9 QoS
characteristics listed in Table 1.

To use a maximum number of QoS metrics with different monitored values
of response time and throughput, we selected the services that belong to the
two datasets. We matched web services based on their URIs, Names, and
WSDL file size. We obtained 409 WSDL files for 356 services, where 53 files
from the 409 are redundant WSDL with different endpoint and QoS metrics.
Each service in this set has 7 fixed QoS metrics from QWS, and 2 QoS metrics
(response time and throughput) that vary based on the observation of 339
users from WSDream.

It is important to note that we consider QoS from QWS as the providers
advertised QoS. And, we use the two other QoS metrics (response time and
throughput) from WSDream when simulating user feedback ratings for the

19

Number Quality Description Unit

1 Response time Time taken to send a request and receive a response ms
2 Availability Number of successful invocations / total invocations %
3 Throughput Total Number of invocations for a given period of time invocations/second
4 Successability Number of response messages / number of request messages %
5 Reliability Number of error messages / total number of messages %
6 Compliance The extent to which a WSDL document follows WSDL specification %
7 Best Practices The extent to which a Web service follows WS-I Basic Profile %
8 Latency Time taken for the server to process a given request ms
9 Documentation Measure of documentation (i.e. description tags) in WSDL %

Table 1: QoS metrics selected from QWS dataset

long-standing services, considering by the variation between these QoS dif-
ferent perceptions on these services. Generally, there is always a variation
in the delivered QoS based on location, networking overload, server status,
etc. Hence, different feedback ratings come from users based on these per-
ceptions. This deviation between users is natural and we think that it helps
in collecting correct feedbacks from users viewpoint.

7.2. Evaluation metrics

Statistical accuracy metrics are performance metrics that are used for
the evaluation of recommender systems. In this experiment, we use Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root-
Mean-Squared-Error (RMSE) metrics to measure the quality of the estima-
tion provided by our method in comparison with similar methods.

MAE is a quantity that measures how close are the estimations (predic-
tions) to the eventual outcomes. MAE is defined as follows:

MAE =

∑n
i=1|Ri − R̂i|

n
(14)

MAPE expresses the accuracy as a percentage of the error (e.g. if MAPE
is 5, the estimation is off by 5 %). MAPE is defined as follows:

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Ri − R̂i

Ri

∣∣∣∣∣× 100 (15)

RMSE is a quantity to measure the difference between predictions and
eventual outcomes. RMSE gives a relatively high weight to larger errors. It

20

is defined as follows:

RMSE =

√∑n
i=1(R̂i −Ri)2

n
(16)

In Eqs. 14 and 16, Ri denotes the actual reputation (Reputation which
is calculated by aggregating simulated feedback ratings), and R̂i denotes
the estimated (predicted) reputation calculated by the proposed method (or
similar methods), and n is the number of tested services.

In addition, we use the correlation coefficient (R) that measures the
strength and the direction of a linear relationship between variables (Rep-
utaion and Qos metrics in this case), and the coefficient of determination (R2)
that gives the proportion of the variance of reputation variable predictable
from QoS variables.

7.3. Comparison

To show the efficiency of the proposed method, we compare our Reputa-
tion Estimation Method (labeled REM) with the following two competing
methods (1 and 2) and the three baseline methods (3 to 5):

1. The method based on Malicious user Density (labeled MDBM) pro-
posed by Malik et al. [11]: this adaptive bootstrapping approach cal-
culates the initial trust value based on the rate of maliciousness in the
system. It assigns a high initial reputation value when R, the mali-
ciousness rate, is low, and a low reputation value when R is high.

2. “Artificial Neural Network”-based method (labeled ANN) proposed by
Wu et al. [15]. This machine learning method estimates the reputation
of newcomer Web services using an artificial neural network model built
from Quality of Service values.

3. Minimum Value Method (labeled MVM): this approach is used by
Zacharia et al. [51], it assigns the minimum possible reputation value
to all newcomers.

4. Neutral Method (labeled NM) used by Wang et al. [53]. This method
assigns the neutral value (0.5) to the reputation of newcomers.

5. Average Reputation Method (labeled ARM) used by Huang et al. [10].
This method assigns the average reputation in the system (i.e. the mean
reputation value of longstanding services)

21

7.4. Feedback rating simulation

Unfortunately, the unavailability of reputation datasets for web services
drives many researchers (e.g. [11, 19, 58, 73, 74]) to simulate feedback rat-
ing. The automated rating process provides feedback that corresponds to
the level of satisfaction/dissatisfaction with service quality [74]. Fortunately,
this is the essence of the expectancy-disconfirmation theory from market sci-
ence [75], which provides a conceptual framework for the study of consumer
satisfaction versus service quality. According to this theory, consumer satis-
faction is the outcome of the comparison between consumers preconsumption
expectation and postconsumption disconfirmation, where confirmed expec-
tations lead to moderate satisfaction, positively disconfirmed (i.e., exceeded)
expectations lead to high satisfaction, and negatively disconfirmed (i.e., un-
derachieved) expectations affect satisfaction more strongly than positive dis-
confirmation and lead to dissatisfaction. User expectations in our context
are the quality (QoS) ensured by the service. User satisfaction, which is
manifested by her/his feedback ratings, is hence depending on service QoS
based on the expectancy-disconfirmation theory.

The generation/simulation of reputation scores considers the assumption
that there is a correlation between QoS and reputation scores. Thereby the
goal of this experimentation is not to show that the proposed model gives
results that are good regarding this assumption. The goal is however to
evaluate the influence of maliciousness in the estimation of reputation scores
and the comparison of the proposed model with existing models from the
literature, in presence of the aforementioned assumption.

Likewise, we have built a Java program that simulates interactions be-
tween a set of 409 web services and a set of 339 users. Each service has
an actual performance level (i.e., overall quality), denoted by PerfVal. This
performance level represent how good is the overall quality provided by the
service on a scale of 10. PerfVal is calculated based on a utility function, i.e.,
a single scalar metric to quantify quality perception of the delivered service,
as suggested in [74]. However, in our work, we propose to calculate the utility
function with the root mean square, which is a measure of the magnitude of
the scaled QoS metrics.

22

Thus, PerfVal of service Si is assessed as follows:

PerfV al(Si) = 10×

√√√√√ k∑
j=1

Scal(Qi,j)2

k
(17)

where, k is the number of used QoS metrics (Qj, j = 1, .., k). And, Scal(Qi,j)
is the scaling function, which is defined by Eq. 18, if the quality is positive
(i.e., the higher is the value the higher is the quality), and by 1 - the same
formula otherwise.

Scal(Qi,j) =
Qi,j −Min(Qj)

Max(Qi)−Min(Qj)
(18)

Min(Qj) and Max(Qj) are respectively the minimum and maximum
recorded values of the quality Qj.

The program simulates two kinds of users: honest and malicious users.
Honest users randomly rate a service based on its PerfVal within the interval
[Max(0,PerfVal− 2),Min(PerfVal + 2, 10)]. For example, if PerfVal=7, fair
feedback ratings could be 5, 6, 7, 8, and 9. The deviation with ±2 from
PerfVal represents a natural variation between user opinions.

Three types of malicious users with different behaviors are simulated:

1. Pure malicious users that gives unfair feedback rating in all interactions
(i.e., rates outsides the expected interval).

2. Gray users that start by providing fair feedback ratings in half of the
interactions and then provides unfair ratings in the remaining interac-
tions.

3. Malicious users with an oscillating behavior, which provide fair and
unfair ratings in an oscillating manner.

The malicious density used in each run of the experiment holds one third
(1/3) from each type of malicious users. Even though Whitby et al. [76] and
Malik et al. [19] claim that high maliciousness densities are unrealistic in
real world applications, we variating maliciousness densities in the interval
[10%-70%] to analyze how well the model performs in such conditions and
consequently could drive a safe conclusion about the models performances.
In this simulation, we are considering up to 339 reviews for each service in
the experiment. Obtained data are gathered from 10 execution runs. The
results are the mean of these 10-round data

23

Figure 2: MEA results of our provider-based estimation and other methods with variation
of maliciousness rates.

7.5. Provider-based reputation

In this section, we evaluate the accuracy of the reputation estimation of
newcomers using the reputation of their providers. We have selected a list
of providers that have more than one service in the working dataset. For
each provider, the program takes randomly one or more services, depending
on the number of its published services and the rate of test, to construct
the test-set (i.e. the set of services that are considered as newcomers to the
system). The program does the following:

1. Calculate the reputation from simulated feedbacks for all services.

2. Randomly select services to construct the test-set based on a given
ratio. This ratio indicates how many services will be considered as
a newcomer. Note that each service in the test-set has a calculated
reputation.

3. For each element in the test-set, calculate its provider reputation and
assign it to the newcomer’s estimated reputation.

4. Evaluate the reputation of the tested service using other methods.

5. For each method, compute the MAE, MAPE and MRSE based on the
calculated (from simulated feedbacks) and the estimated reputation
(evaluated by the method).

6. Print results.

24

7. Repeat steps (1-6) for different test-set rates.

The program identified 55 providers that publish more than one service
from a total of 251 providers in the working dataset.

We have performed several runs, varying the maliciousness density (i.e,
the number of malicious users) from 10% to 70%, and using a test set of
30% of services. Figure 2 shows the obtained MAE for our method (REM)
and other methods. Similar results are obtained with MAPE and RMSE. As
we can see, the MAE values given by our method are very close to 0, when
malicious density varies between 10% and 50%, which means that there is a
very slight variation between the calculated reputation from simulation and
the estimated reputation from newcomers’ providers. Starting from 50% to
70% of malicious users, the MEA obtained by our method increases. How-
ever, the estimation of newcomers is still acceptable and better than all other
methods. Both, the Artificial Neural Network based method (ANN) and the
assignment of the average reputation in the system (ARM) to newcomers,
give a good reputation estimation when maliciousness density varies up to
30%. ANN keeps giving good reputation estimation represented by lower
MEA values. The other methods are influenced by the maliciousness rates
in the system. Even that REM gives better reputation estimation results, It
is obvious that the system could not apply this method, especially when the
provider of the newcomer service is new to the system too.

7.6. Similarity-based reputation

This section presents the results of the experiment conducted to evaluate
the performance of Phase 2: similarity-based reputation estimation.

Only services that have similar services are evaluated during this phase.
Hence, the program eliminates from the working dataset, all services that
have none, one or two similar services. That is, we need at least 3 services
(i.e. one for test and two at least to apply Eq. 6) to evaluate one of them
using Technique 1 (Section 5.4.1). We need at least 10 similar services (i.e.
one service for a test, and at least 9 services data to build the linear regression
model with 9 known QoS attributes) to evaluate newcomer reputation using
Technique 2.

First, the program analyzed the initial service dataset. It identified 17
groups (clusters) of services with 173 services, as it is shown in Table 2.
Elements of each group are functionally similar to each other. Column ”Nbr

25

Group
Nbr

Services
Nbr
Tests

MAE MAPE% RMSE

Booking 3 1 0.032 0.504 0.045
Calendar 11 4 0.036 0.567 0.056
Currency 7 3 0.162 2.716 0.201
Email 5 1 0.044 0.714 0.087
Financial 3 1 0.067 1.089 0.095
Game 4 1 0.002 0.031 0.003
Geolocation 36 10 0.063 0.970 0.135
Languages 4 1 0.063 1.063 0.108
Login and security 15 5 0.024 0.394 0.042
Lookup 12 4 0.065 1.017 0.136
Math 15 5 0.107 1.850 0.200
News 18 5 0.034 0.539 0.081
Phone and SMS 17 6 0.057 0.901 0.093
Religion 3 1 0.012 0.190 0.017
Trade 10 3 0.044 0.677 0.096
Versioning 4 1 0.015 0.244 0.026
Weather 6 1 0.034 0.538 0.077

MEAN 0.051 0.824 0.088

Table 2: MEA, MAPE and RMSE results using the Neighborhood-based estimation

Category MAE MAPE(%) RMSE R R2

News 0.4427 7.0962 0.4677 0.9211 0.8484
Currency 0.0755 0.7257 0.0057 0.9820 0.8633
Trade 0.8646 13.6597 0.9120 1.0000 1.0000
Math 0.1815 2.8735 0.2090 0.9364 0.8768
Login and security 0.7195 11.5262 1.1858 0.9152 0.8377
Geolocation 0.0751 1.2063 0.0991 0.7845 0.5741

Table 3: MEA, MAPE, RMSE, R and R2 results using linear multiple regression

26

Services” shows the total number of services in the group, and column ”Nbr
tests” depicts the number of services considered as newcomers.

After several runs, we found that the program, with this working dataset,
always finds Top-K elements for each service, with a small distance be-
tween reputation values of these Top-K elements. Thus, it always uses the
neighborhood-based estimation technique (1). The obtained MEA, MAPE
and RMSE are given in Table 2. We note that these values are the mean
values of 10 execution rounds. We can see that the estimated reputations
are very close to the actual values with MEA = 0.51 in average. In addition,
Technique 1 estimates accurately the initial reputation with a percentage
error of 0.824%, which is a very good score.

Besides, we applied the “Multiple Linear Regression”-based estimation
technique (2) on some groups to test their estimation accuracy. To construct
the multiple linear model we need a dataset of at least 9 services. Thus, we
limited the use of this technique on groups with a high number of services.
Test services were selected randomly, and the construction of the multiple
linear model was with 80% of services.

Table 3 provides the obtained MAE, MAPE, RMSE, R and R2. As we
can see, there is a deviation between the estimated reputation values and the
calculated values represented by MAE value (0.8464 for example in group
“Trade”). This deviation is caused by the size of the trained data. All these
groups hold basically a small number of services. However, these values are
still close to the estimated values, and the percentage error does not exceed
14% in the worst case. The correlation coefficient (Multiple R) for all groups
ranges in [0.78 - 1] which indicates a positive relationship between reputation
values and QoS data (where 1 indicates a perfect positive relationship). We
see also from R2 that most of the trained values fit the model (e.g., for Math
group 0.87% of the values fit the model). From this experiment, we can say
that the largest is the data we use for training, the best accuracy could be
achieved during the estimation of newcomers’ reputation. We conclude that
we may safely use this technique too to estimate the reputation of newcomers
from their functionally-similar services.

7.7. SVR-based reputation

To construct the Support Vector Regression model, we used the LibSVM
API [77] in our Java program. Since we want to construct a model that
covers both linear and non-linear relationships between QoS and reputation
values in the system, we choose to use the Gaussian Radial Basis function

27

Service number

0 20 40 60 80

R
e

p
u
ta

ti
o

n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Service Number

0 10 20 30 40

R
e

p
u
ta

ti
o

n

0.3

0.4

0.5

0.6

0.7

0.8

Estimated Reputation

Calculated Reputation

Test-set Ratio = 20 %Test-set Ratio = 10 %

Figure 3: Comparison samples between calculated and estimated reputation with different
test-set rates

(a)

(b)

Figure 4: Effects of γ (gamma) and C on the performance of the SVR Model

28

(RBF). RBF is chosen because it is working well in practice, very easy to
tune, and it is recommended by the machine learning community to use it
as a default SVR kernel. In addition, linear kernels and polynomial kernels
are a special case of Gaussian RBF kernel.

7.8. Tuning

In this section, we focus on selecting the best parameters for ε−SVR (i.e.
the best parameters that output the lower MEA). In fact, ε−SVR with RBF
Kernel has one hyper-parameter (σ) and two open parameters C (Cost or
regularization parameter) and ε (epsilon or the insensitive coefficient), where:

• σ corresponds to the width or the scale of this Kernel.

• C: Cost [0 → ∞] represents the penalty associated with errors larger
than epsilon. Increasing cost value causes closer fitting to the calibra-
tion/training data.

• ε: epsilon represents the minimal required precision.

LIBSVM allows the tuning of σ through γ, where γ = 1/(2 ∗ σ2) which
means a bigger gamma means smaller sigma in the formula and therefore
smaller influence of a data point such that only those support vectors very
close to the decision boundary are considered and therefore a bigger chance
for overfitting the training data.

We have variated the γ parameter between 0.001 to 1000, and C between
1 and 1000, and ε is set to 0.0001 which is the minimal precision found after
variating Epsilon from (0.0001 to 1). Figure 4 shows a heatmap that presents
the performance of the model using different γ and C parameters. Only a
part from the data is plotted in the maps (a and b). From this procedure,
we found that the models performs well when γ ranges in the interval [13 →
15] and C ranges in the interval [0.5 → 08]. Finally, γ = 13.2, C= 0.6, and
ε = 0.0001, are selected as the best parameter for building the SVR model.

7.9. Evaluation

To avoid losing important patterns in the dataset, which in turn increases
error induced by bias, we use in this experiment a 10-fold cross validation;
that is, the dataset is divided into 10 subsets, the evaluation is repeated 10
times such that in each time, one of the 10 subsets is used as the test set and
the 9 remaining subsets are put together to train the SVR model. The MEA

29

Maliciousness
Density (%)

Method
MDBM NM MVM ARM REM ANN

10 1.0132 2.0503 1.0555 0.2061 0.1066 0.2211
20 0.2462 1.8053 1.0030 0.1504 0.1378 0.1785
30 0.5557 1.5522 0.6482 0.2436 0.1482 0.2167
40 1.7576 2.2996 1.4167 0.3702 0.1582 0.2512
50 1.3253 1.3160 0.6803 0.3815 0.1876 0.2307
60 2.8844 0.8443 1.7422 1.5413 0.2532 0.6324
70 3.8457 1.0757 2.0571 1.6836 0.6539 0.7673

Table 4: MEA comparison between different methods using various malicious and test-set
densities

estimation is averaged over the 10 trials. Many runs have been performed
varying the maliciousness rate performing for each variation a 10-fold cross
validation as described above. A comparison between results obtained by
our SVR-model and other methods are summarized in Table 4.

Before analyzing results in this table, we present in Figure 3, a sample
of newcomers estimated reputation values versus the calculated reputation
values for two test-sets (10% and 20% without cross-validation). As we can
see, there is a small variation (less than 0.2 in the worst cases) between the
SVR-estimated value and the actual value calculated by feedback ratings for
a different number of services.

Besides, for the comparison results obtained by variating maliciousness
density with 10-fold cross validation (depicted in Table 4), we can observe
that our method (REM) gave the smaller MAE values (indicating a better
accuracy) consistently. The ANN method gives results relatively close to
REM. The ARM method gives also a good result with a MEA less than 0.25
when malicious density is less than 30In addition, we observe that when the
malicious density exceeds 50% the accuracy of all methods decreases due to
the high number of malicious users.

From these results, we may safely conclude that the proposed estimation
method is more effective in assigning newcomers’ reputation.

8. Conclusion

In this work, we proposed a method that estimates reputation values
of newcomer web services. Initial reputation values assigned to newcomer

30

web services have an impact on the performance of web service recommen-
dation systems. Our proposed method uses (i) provider reputation values,
(ii) neighbor services’ reputation values, and (iii) SVR-based reputation es-
timation model, trained by QoS and reputation values of long-standing web
services, to correctly estimate reputation values of newcomer web services.
This method addresses both the cold start and the whitewashing problems
often encountered in online recommendation systems.

We conducted several experiments on real Web services to evaluate the ef-
ficiency of the proposed method. Through experimental evidence, we showed
that the proposed method outperforms existing methods and may be safely
applied to estimate the reputation of newcomers in Web service recommen-
dation systems.

Although the proposed method and the conducted experiments considers
only Web services, the proposed work can be used with any kind of service or
API in general, Cloud, mobile, or Web (REST, WebSocket, SOAP, ...) ones,
provided that we select a similarity assessment algorithm between service
or API interface descriptions. This algorithm is responsible for comparing
services and collecting the set of functionally-similar ones. The rest of the
method is not impacted.

Our future research work includes the proposition of a complete service
recommendation system with a unified reputation management and security
model for both single, composite, and community-based Web services. These
models target more online attacks such as the request drop, denial of service,
outage, and eavesdropping attacks.

[1] Y. Wang, C. Guo, T. Li, Q. Xu, Secure Two-Party Computation in So-
cial Cloud Based on Reputation, in: Advanced Information Networking
and Applications Workshops (WAINA), 2015 IEEE 29th International
Conference on, IEEE, 242–245, 2015.

[2] Z. Maamar, G. Costantino, M. Petrocchi, F. Martinelli, Business Repu-
tation of Social Networks of Web Services, Procedia Computer Science
56 (2015) 18 – 25, ISSN 1877-0509, the 10th International Conference
on Future Networks and Communications (FNC 2015) / The 12th In-
ternational Conference on Mobile Systems and Pervasive Computing
(MobiSPC 2015) Affiliated Workshops.

[3] F. Moyano, C. Fernandez-Gago, J. Lopez, A Model-driven Approach

31

for Engineering Trust and Reputation into Software Services, Journal of
Network and Computer Applications (2016) –ISSN 1084-8045.

[4] M. Mehdi, N. Bouguila, J. Bentahar, Trust and Reputation of Web
services Through QoS Correlation Lens, IEEE Transactions on Services
Computing PP (99) (2015) 1–1.

[5] S. Wang, Z. Zheng, Z. Wu, M. R. Lyu, F. Yang, Reputation Measure-
ment and Malicious Feedback Rating Prevention in Web Service Rec-
ommendation Systems, IEEE Transactions on Services Computing 8 (5)
(2015) 755–767, ISSN 1939-1374.

[6] T. H. Noor, Q. Z. Sheng, S. Zeadally, J. Yu, Trust management of
services in cloud environments: Obstacles and solutions, ACM Comp.
Surveys 46 (1) (2013) 12.

[7] F. Hendrikx, K. Bubendorfer, R. Chard, Reputation systems: A survey
and taxonomy, Journal of Parallel and Distributed Computing 75 (2015)
184–197.

[8] O. A. Wahab, J. Bentahar, H. Otrok, A. Mourad, A survey on trust and
reputation models for Web services: Single, composite, and communi-
ties, Decision Support Systems 74 (2015) 121–134.

[9] J. B. Schafer, D. Frankowski, J. Herlocker, S. Sen, Collaborative filtering
recommender systems, in: The adaptive web, Springer, 291–324, 2007.

[10] K. Huang, Y. Liu, S. Nepal, Y. Fan, S. Chen, W. Tan, A Novel Equitable
Trustworthy Mechanism for Service Recommendation in the Evolving
Service Ecosystem, in: Service-Oriented Computing, Springer, 510–517,
2014.

[11] Z. Malik, A. Bouguettaya, Reputation bootstrapping for trust estab-
lishment among web services, Internet Computing, IEEE 13 (1) (2009)
40–47.

[12] F. G. Mármol, M. Q. Kuhnen, Reputation-based Web service orches-
tration in cloud computing: A survey, Concurrency and Computation:
Practice and Experience 27 (9) (2015) 2390–2412.

32

[13] J. R. Douceur, The sybil attack, in: Peer-to-peer Systems, Springer,
251–260, 2002.

[14] Z. M. Aljazzaf, Trust-based service selection, Ph.D. thesis, The Univer-
sity of Western Ontario, 2011.

[15] Q. Wu, Q. Zhu, P. Li, A neural network based reputation bootstrap-
ping approach for service selection, Enterprise Information Systems 9 (7)
(2015) 768–784.

[16] M. Chen, L. He, X. Cai, W. Xia, Trust evaluation model for composite
service based on subjective logic, in: Proc. of IIHMSP’08, IEEE, 1482–
1485, 2008.

[17] M. Feldman, J. Chuang, The evolution of cooperation under cheap
pseudonyms, in: Proc. of CEC’05, IEEE, 284–291, 2005.

[18] O. Tibermacine, C. Tibermacine, F. Cherif, Regression-Based Boot-
strapping of Web Service Reputation Measurement, in: Web Services
(ICWS), 2015 IEEE International Conference on, IEEE, 377–384, 2015.

[19] Z. Malik, A. Bouguettaya, Rateweb: Reputation assessment for trust
establishment among web services, VLDB Journal 18 (4) (2009) 885–
911.

[20] A. J. Smola, B. Schölkopf, A tutorial on support vector regression,
Statistics and computing 14 (3) (2004) 199–222.

[21] M. Awad, R. Khanna, Support Vector Regression, in: Efficient Learning
Machines, Springer, 67–80, 2015.

[22] B. Tian, J. Han, K. Liu, Closed-Loop Feedback Computation Model of
Dynamical Reputation Based on the Local Trust Evaluation in Business-
to-Consumer E-Commerce, Information 7 (1) (2016) 4.

[23] D. Isherwood, M. Coetzee, Trust CV: Reputation-based trust for collec-
tivist digital business ecosystems, in: Privacy, Security and Trust (PST),
2014 Twelfth Annual International Conference on, IEEE, 420–424, 2014.

[24] M.-H. Peetz, M. de Rijke, R. Kaptein, Estimating Reputation Polar-
ity on Microblog Posts, Information Processing & Management 52 (2)
(2016) 193 – 216, ISSN 0306-4573.

33

[25] J. Hu, Y. Zhang, Research patterns and trends of Recommendation Sys-
tem in China using co-word analysis, Information Processing & Man-
agement 51 (4) (2015) 329 – 339, ISSN 0306-4573.

[26] A. J. Bidgoly, B. T. Ladani, Benchmarking reputation systems: A quan-
titative verification approach, Computers in Human Behavior 57 (2016)
274–291.

[27] A. Comi, L. Fotia, F. Messina, G. Pappalardo, D. Rosaci, G. M. Sarné,
A Distributed Reputation-Based Framework to Support Communication
Resources Sharing, in: Intelligent Distributed Computing IX, Springer,
211–221, 2016.

[28] L. Barakat, S. Mahmoud, P. Taylor, N. Griffiths, S. Miles, Reputation-
based provider incentivisation for provenance provision, in: Proceedings
of the 14th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2016), 2016.

[29] W. Itani, C. Ghali, A. Kayssi, A. Chehab, Reputation as a Service: A
System for Ranking Service Providers in Cloud Systems, in: Security,
Privacy and Trust in Cloud Systems, Springer, 375–406, 2014.

[30] E. Majd, V. Balakrishnan, A trust model for recommender agent sys-
tems, Soft Computing (2016) 1–17.

[31] H. Zhao, X. Li, VectorTrust: trust vector aggregation scheme for trust
management in peer-to-peer networks, The Journal of Supercomputing
64 (3) (2013) 805–829.

[32] A. Louati, J. El Haddad, S. Pinson, A Multi-Agent Approach for Trust-
based Service Discovery and Selection in Social Networks, Scalable Com-
puting: Practice and Experience 16 (4) (2016) 381–402.

[33] B. Zhang, Q. Song, T. Yang, Z. Zheng, H. Zhang, A Fuzzy Collusive At-
tack Detection Mechanism for Reputation Aggregation in Mobile Social
Networks: A Trust Relationship Based Perspective, Mobile Information
Systems 2016.

[34] J.-H. Cho, A. Swami, R. Chen, A survey on trust management for mobile
ad hoc networks, Communications Surveys & Tutorials, IEEE 13 (4)
(2011) 562–583.

34

[35] S. Sutariya, P. Modi, A Review of Different Reputation Schemes to
Thwart the Misbehaving Nodes in Mobile Ad Hoc Network., Interna-
tional Journal of Computer Science & Information Technologies 5 (3).

[36] W. Zheng, L. Jin, A Consumer Decision-Making Model in M-Commerce:
The Role of Reputation Systems in Mobile App Purchases, Information
Resources Management Journal (IRMJ) 29 (2) (2016) 37–58.

[37] Z. Yan, P. Zhang, A. V. Vasilakos, A security and trust framework
for virtualized networks and software-defined networking, Security and
communication networks 9 (16) (2016) 3059–3069.

[38] L. M. Vaquero, F. Cuadrado, Y. Elkhatib, J. Bernal-Bernabe, S. N.
Srirama, M. F. Zhani, Research Challenges in Nextgen Service Orches-
tration, arXiv preprint arXiv:1806.00764 .

[39] M. Kablan, C. Joe-Won, S. Ha, H. Jamjoom, E. Keller, The cloud needs
a reputation system, arXiv preprint arXiv:1509.09057 .

[40] G. Sun, Y. Li, Y. Li, D. Liao, V. Chang, Low-latency orchestration
for workflow-oriented service function chain in edge computing, Future
Generation Computer Systems 85 (2018) 116–128.

[41] S. Betge-Brezetz, G.-B. Kamga, M. Tazi, Trust support for SDN con-
trollers and virtualized network applications, in: Network Softwarization
(NetSoft), 2015 1st IEEE Conference on, IEEE, 1–5, 2015.

[42] J. B. Bernabe, J. L. H. Ramos, A. F. S. Gomez, TACIoT: multidimen-
sional trust-aware access control system for the Internet of Things, Soft
Computing 20 (5) (2016) 1763–1779.

[43] S. Ravidas, S. Lal, I. Oliver, L. Hippelainen, Incorporating trust in
NFV: Addressing the challenges, in: Innovations in Clouds, Internet
and Networks (ICIN), 2017 20th Conference on, IEEE, 87–91, 2017.

[44] F. Rocha, M. Correia, Lucy in the sky without diamonds: Stealing
confidential data in the cloud, in: Dependable Systems and Networks
Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference
on, IEEE, 129–134, 2011.

35

[45] B. K. Mughal, S. Hameed, G. M. Shaikh, A Centralized Reputa-
tion Management Scheme for Isolating Malicious Controller (s) in Dis-
tributed Software-Defined Networks, arXiv preprint arXiv:1711.11005
.

[46] K. Giotis, M. Apostolaki, V. Maglaris, A reputation-based collabora-
tive schema for the mitigation of distributed attacks in sdn domains,
in: Network Operations and Management Symposium (NOMS), 2016
IEEE/IFIP, IEEE, 495–501, 2016.

[47] Z. Liu, J. Ma, Z. Jiang, Y. Miao, C. Gao, IRLT: Integrating Reputation
and Local Trust for Trustworthy Service Recommendation in Service-
Oriented Social Networks, PloS one 11 (3) (2016) e0151438.

[48] J. Yao, W. Tan, S. Nepal, S. Chen, J. Zhang, D. D. Roure, C. Goble,
ReputationNet: Reputation-Based Service Recommendation for e-
Science, IEEE Transactions on Services Computing 8 (3) (2015) 439–
452, ISSN 1939-1374.

[49] Z. Yan, X. Li, R. Kantola, Controlling Cloud Data Access Based on
Reputation, Mobile Networks and Applications 20 (6) (2015) 828–839.

[50] C. Zhu, H. Nicanfar, V. Leung, L. T. Yang, An authenticated trust and
reputation calculation and management system for cloud and sensor
networks integration, Information Forensics and Security, IEEE Trans-
actions on 10 (1) (2015) 118–131.

[51] G. Zacharia, A. Moukas, P. Maes, Collaborative reputation mechanisms
for electronic marketplaces, Decision Support Systems 29 (4) (2000) 371–
388.

[52] T. D. Huynh, N. R. Jennings, N. R. Shadbolt, Certified reputation: how
an agent can trust a stranger, in: Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems, ACM,
1217–1224, 2006.

[53] X. Wang, K. Govindan, P. Mohapatra, Provenance-based information
trustworthiness evaluation in multi-hop networks, in: Global Telecom-
munications Conference (GLOBECOM 2010), 2010 IEEE, IEEE, 1–5,
2010.

36

[54] S. Jin-dian, G. He-qing, G. Yin, An adaptive trust model of Web ser-
vices, Wuhan University Journal of Natural Sciences 10 (1) (2005) 21–25.

[55] M. H. Hasan, J. Jaafar, M. F. Hassan, Monitoring web services quality of
service: a literature review, Artificial Intelligence Review 42 (4) (2014)
835–850.

[56] O. Tibermacine, C. Tibermacine, F. Cherif, A Practical Approach to
the Measurement of Similarity between WSDL-based Web Services, Re-
vue des Nouvelles Technologies de l’Information 6th French-speaking
Conference on Software Architectures, RNTI-L-7 (2014) 03–18.

[57] X. Zheng, L. Da Xu, S. Chai, QoS Recommendation in Cloud Services,
IEEE Access 5 (2017) 5171–5177.

[58] M. Garriga, A. Flores, C. Mateos, A. Zunino, A. Cechich, Service se-
lection based on a practical interface assessment scheme, International
Journal of Web and Grid Services 9 (4) (2013) 369–393, ISSN 1741-1106.

[59] N. Kokash, A comparison of web service interface similarity measures,
Frontiers in Artificial Intelligence and Applications 142 (2006) 220, ISSN
0922-6389.

[60] O. Tibermacine, C. Tibermacine, F. Cherif, WSSim: a Tool for the
Measurement of Web Service Interface Similarity, in: French-speaking
Conference on Software Architectures (CAL’13), 2013.

[61] D. Jannach, M. Zanker, A. Felfernig, G. Friedrich, Recommender Sys-
tems: An Introduction–Cambridge University Press, New York, 2010.–
352 P .

[62] M. Deshpande, G. Karypis, Item-based top-n recommendation algo-
rithms, ACM Transactions on Information Systems (TOIS) 22 (1) (2004)
143–177.

[63] Z. Zheng, H. Ma, M. R. Lyu, I. King, Collaborative web service qos
prediction via neighborhood integrated matrix factorization, Services
Computing, IEEE Transactions on 6 (3) (2013) 289–299.

[64] H. Ma, I. King, M. R. Lyu, Effective missing data prediction for collab-
orative filtering, in: Proceedings of the 30th annual international ACM

37

SIGIR conference on Research and development in information retrieval,
ACM, 39–46, 2007.

[65] R. Chen, C.-Y. Liang, W.-C. Hong, D.-X. Gu, Forecasting holiday daily
tourist flow based on seasonal support vector regression with adaptive
genetic algorithm, Applied Soft Computing 26 (2015) 435–443.

[66] C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte,
A. Fouilloy, Machine learning methods for solar radiation forecasting: A
review, Renewable Energy 105 (2017) 569–582.

[67] R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiech,
N. Zerhouni, Direct remaining useful life estimation based on support
vector regression, IEEE Transactions on Industrial Electronics 64 (3)
(2017) 2276–2285.

[68] W. Zhao, T. Tao, E. Zio, System reliability prediction by support vec-
tor regression with analytic selection and genetic algorithm parameters
selection, Applied Soft Computing 30 (2015) 792–802.

[69] J. Hu, J. Qi, Y. Peng, Q. Ren, Predicting electrical evoked potential
in optic nerve visual prostheses by using support vector regression and
case-based prediction, Information Sciences 290 (2015) 7–21.

[70] A. Kavousi-Fard, H. Samet, F. Marzbani, A new hybrid modified firefly
algorithm and support vector regression model for accurate short term
load forecasting, Expert systems with applications 41 (13) (2014) 6047–
6056.

[71] Z. Zheng, Y. Zhang, M. R. Lyu, Distributed qos evaluation for real-world
web services, in: Proc. of ICWS’10, IEEE, 83–90, 2010.

[72] E. Al-Masri, Q. H. Mahmoud, Qos-based discovery and ranking of web
services, in: Computer Communications and Networks, 2007. ICCCN
2007. Proceedings of 16th International Conference on, IEEE, 529–534,
2007.

[73] H. T. Nguyen, J. Yang, W. Zhao, Bootstrapping trust and reputation
for Web services, in: Commerce and Enterprise Computing (CEC), 2012
IEEE 14th International Conference on, IEEE, 41–48, 2012.

38

[74] N. Limam, R. Boutaba, Assessing software service quality and trustwor-
thiness at selection time, IEEE Transactions on Software Engineering,
36 (4) (2010) 559–574.

[75] R. L. Oliver, A cognitive model of the antecedents and consequences of
satisfaction decisions, Journal of marketing research (1980) 460–469.

[76] A. Whitby, A. Jøsang, J. Indulska, Filtering out unfair ratings in
bayesian reputation systems, in: Proc. 7th Int. Workshop on Trust in
Agent Societies, vol. 6, 2004.

[77] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines,
ACM Transactions on Intelligent Systems and Technology (TIST) 2 (3)
(2011) 27.

39

Author Biographies

Okba Tibermacine is an assistant professor in computer
science at Biskra University, Algeria. He graduated from
Biskra university with a B.Eng. degree. He received his
M.Sc. degree in computer science from Batna University,
Algeria and Ph.D. degree from Biskra University, Algeria

in 2015. His current research interests include Service selection and recom-
mendation, reliability analysis, error-handling and self-healing Web service
compositions.

Chouki Tibermacine is an associate professor at Montpel-
lier University (France) since fall 2007. He received his Ph.D.
from the University of South Brittany (France) in 2006 and
M.Sc in Distributed Systems from the University of Paris VI
(France) in 2003. His current research focuses on the spec-
ification, evolution and transformation of object-oriented,
component-based and service-oriented software architectures

and programs. He participated to several research projects with industrial
(IBM among others) and international academic partners. He co-authored
about thirty peer-reviewed articles. He was the publicity chair of ECOOP’13,
ECSA’13 and ECMFA’13 organized jointly in Montpellier in 2013. Since
2010, he is co-responsible for the French work group on software reverse-
engineering, maintenance and evolution (GTRIMEL) of the french CNRS
research group on Programming and Software Engineering (GDR GPL). He
received the ACM SIGSOFT Distinguished Paper Awards in CBSE’11 and
CBSE’14. He is holding the Scientic Excellence Fellowship from Montpellier
University for the period 2012-2016.

Foudil Cherif is an Associate Professor of computer science
at Computer Science Department, Biskra University, Alge-
ria. Dr. Cherif holds PhD degree in computer Science. The
topic of his doctoral dissertation is Behavioral Animation:
simulation of a crowd of virtual humans. He also possesses
B. Sc. (engineer) in computer science from Constantine Uni-
versity 1985, and an M.Sc. in computer science from Bristol

University, UK 1989. He is currently the head of LESIA Laboratory. His
current research interest is in artificial intelligence, artificial life, crowd sim-
ulation and software engineering.

40

	Introduction
	Related Work
	Reputation estimation method
	Provider reputation
	Reputation estimation from similar services
	Step 1 - Functionally-similar service selection
	Step 2 - QoS normalization
	Step 3 - QoS-similar neighborhood selection
	Step 4 - Reputation estimation
	Neighborhood-based estimation
	Linear regression-based estimation

	SVR-based reputation estimation
	Formal definition
	Motivation for using SVR

	Experiments and Evaluation
	Data description and preparation
	Evaluation metrics
	Comparison
	Feedback rating simulation
	Provider-based reputation
	Similarity-based reputation
	SVR-based reputation
	Tuning
	Evaluation

	Conclusion

