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Abstract

Context: Architecture constraints are specifications of conditions to which
an architecture model must adhere in order to satisfy an architecture decision
imposed by a given design principle. These constraints can be specified with
predicate languages like OCL at design time and checked on design artifacts.

Objective: Many works in the literature studied the importance of checking
these constraints at source code level to guarantee quality at that level of the
software life-cycle, and to prevent technical debt and maintenance difficul-
ties. That’s why we propose a process to check these constraints at that level.

Method: The proposed process takes as input a textual specification of an
architecture constraint and enables its static and dynamic checking. It trans-
lates architecture constraints into meta-programs and then it uses them with
aspect-oriented programming to check the constraints at the implementation
stage and at run-time on object-oriented programs.

Results: We experimented an implementation of this process on a set of 12 ar-
chitecture constraints. The results of this experimentation indicate that our
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process is able to detect statically and dynamically architecture constraint
violations on basic Object-oriented applications and even on real projects.

Conclusion: The automatic checking of architecture constraints is impor-
tant at source code level and at runtime. It avoids architecture decisions
knowledge vaporization and then facilitates later the maintenance of the ap-
plication on which these constraints are specified.

Keywords: Architecture Constraint, Object Constraint Language,
Meta-program, Java Reflect, AOP, AspectJ

1. Introduction: Context and Problem Statement

Documenting architecture decisions is an important activity in software
development processes [1]. Indeed, this documentation allows for, among
other benefits, limiting the evaporation of architectural knowledge. Sev-
eral models for defining this type of documentation exist [2]. These mod-5

els include both textual (informal) and formal specifications. These mod-
els include, among other elements, the description of the decision itself, its
state and its alternative decisions. One of the most important elements that
compose this documentation of an architecture decision, are architecture

constraints.10

This kind of constraints should not be confused with functional con-
straints, which are checked by analyzing the state of the running elements
constituting the modeled system and which navigate in models like UML
class models. An architecture constraint represents the specification of a
condition to which an architecture description must adhere, in order to sat-15

isfy an architecture decision [3]. For example, an architect may make the
decision to use the Layered pattern [4]. An architecture constraint allowing
the verification of the adherence to this pattern in an architecture descrip-
tion consists of checking, among other things, that elements of a layer must
depend only on elements on the same layer or of lower layers. Architecture20

constraints navigate in meta-models and not in models. They are frequently
specified with predicate languages, like OCL (Object Constraint Language) 1.

Functional constraints are used in Design by Contract for ensuring the
definition of accurate and checkable interfaces for software components [5].

1http://www.omg.org/spec/OCL/2.3.1/PDF/
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Architecture constraints are used during the evolution of a software archi-25

tecture for guaranteeing that changes do not have bad side effects on the
applied architecture patterns or styles, and thus on quality [6].

In contrast to constraints in mathematics or in constraint programming,
architecture constraints are not conditions that should be satisfied by a so-
lution in a combinatorial problem, where we search for an optimal solution30

among a lot of possible ones. They are conditions that are evaluated to see
whether a given single “fixed” solution (our architecture description) satisfies
the conditions or not. If the conditions are not satisfied, we are not led to
find another possible solution. We should change the current solution (ar-
chitecture description), by undoing previous changes for example, and then35

re-evaluate the conditions.
In the literature and practice of software engineering there exists a large

catalog of formalized architecture constraints [7, 8, 9]. But unfortunately,
currently architecture constraints can be checked mainly at design time on
design artifacts. Checking the conformance of software artifacts, with re-40

gard to these constraints, downstream in the software life-cycle (during the
implementation stage or at runtime) is equally important. What if the archi-
tecture evolves in the implementation artifacts (the application’s programs)?
Or, what if the architecture evolves at runtime (through dynamic adapta-
tion, for example)? We argue in this work that it is important to check45

architecture constraints not only at design time but also later in the software
life-cycle in order to preserve and make persistent the software’s quality.

To be able to check architecture constraints in the implementation stage
and at run-time, it is interesting first to see how to specify architecture
constraints at that levels. In this case, two solutions are possible. The first50

one consists in writing a new interpreter, used at implementation phase, for
the language used for constraint specifications at design time (like OCL).
But this solution can be quickly discarded because it is time-consuming,
and it obliges programmers to learn another language (the language used
to specify constraints in the design phase, like OCL) to specify their new55

architecture constraints, in the implementation phase. The second solution is
to rewrite the architecture constraints (specified at design time) entirely with
programming languages. This task of rewriting manually all these constraints
is tedious, time consuming and error prone. In addition, constraints on the
design and implementation stages of development are syntactically different60

but they are semantically equivalent (conditions on architecture descriptions
that are present, even implicitly, in the two stages). Indeed, constraints deal
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with architectural aspects which are orthogonal. So why not generate ones
from the others, like skeletons of code can be generated from UML models?

In the practice of software development, most of existing tools for model-65

to-text (code) generation do not consider the generation of code for con-
straints associated to models. For those which exist, they only translate
functional constraints, and not architectural ones.

In this paper, we propose an automated multi-step process for translating
OCL architecture constraints into code. We are using Java as a target lan-70

guage, but a similar approach may be safely used with other programming
languages. The obtained Java code uses the introspection mechanism pro-
vided by the standard library of the programming language (Java Reflect) to
analyze the structure of the application. This choice is motivated by our wish
to use a standard mechanism without falling back on external libraries. The75

generated code is a ”meta-program” which uses the introspection mechanism
of the programming language for implementing an architecture constraint.
In addition, we propose in this paper a complementary automated micro
process, which combines static and dynamic constraint checking, based on
the aforementioned generated meta-programs. This checking is fully auto-80

matic and seamless for users. This process notifies developers on the possible
violations of constraints.

The remaining of this paper is organized as follows. In Section 2, we
present the general approach indicating the steps for checking architecture
constraints using the generated meta-programs. Sections 3 and 4 describe85

these steps in detail. Section 5 presents the experimentation we have con-
ducted to evaluate the process. Before concluding and presenting some per-
spectives, we discuss the related works in Section 6.

2. General Approach

Fig. 1 depicts the general steps of our process, which can be seen as a90

two-phase process (meta-program generation and constraint checking), the
first phase being composed of three steps (after excluding “loading” steps).
The process tests first if the OCL constraint, specified in the UML meta-
model needs a refinement in order to make it more concrete. For example,
if a constraint has a navigation to Dependency meta-class (on a UML meta-95

model) then we need to refine this constraint by specifying the different kinds
of concrete dependencies (for instance, types of fields or parameters). Then,
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Figure 1: Approach Description

the OCL constraint is transformed to a constraint specified on a JAVA meta-
model. Finally, JAVA meta-programs are generated from it.

The constraint checking phase needs the generated meta-programs to100

check the corresponding architecture constraints at the source code level.
This step is based on aspect-oriented software development (AOSD) [10]
since the constraints are specified separately from the source code. It com-
bines static and dynamic checking of the constraints.

In the first phase, we did not perform a direct translation from OCL/UML105

to Java code because this translation includes at the same time several trans-
formations: shifting to a new meta-model, changing the syntax of constraints,
etc. Indeed, our approach requires first a mapping from abstractions of de-
sign level to abstractions of implementation level (mapping abstractions from
UML meta-model to the Java meta-model) and subsequently a translation110
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of the syntax.
OCL (version 2.3.1)/UML(version 2.4.1) was chosen among many lan-

guages enabling the specification of architecture constraints (see [3] for a
survey). This choice is motivated by the fact that UML is the de facto stan-
dard modeling language, and that OCL is its original constraint language.115

Even if a recent study [11] pointed that UML is not widely used by develop-
ers in industry, we all agree that it is a general-purpose modeling language,
easy to learn and known by a lot of developers.

We have intuitively chosen to transform constraints in the implementation
level into Java programs because it is a main-stream language in object-120

oriented programming. In addition it implements a small reflective meta-level
and provides in its standard library introspection capabilities.

3. Generation of Meta-programs from Constraint Specifications

Before detailing how meta-program generation is performed, we present
an example of an architecture constraint specification. This will serve as a125

running example to illustrate the steps of this first phase of the process.

3.1. Illustrative Example

We introduce an example of an architecture constraint that characterizes
the MVC (Model-View-Controller) architecture pattern [12]. This constraint
navigates in the UML meta-model shown in Fig 2. This meta-model was ob-130

tained from the UML language superstructure specification, version 2.4.1 2.
By ”navigating in the meta-model”, we refer to OCL navigation expressions
specified in the constraints, in which we move from a given meta-class to
another meta-class and/or to meta-attributes in order to analyze the archi-
tecture elements corresponding to these meta-level elements.135

This meta-model focuses on describing classes, packages, attributes, de-
pendencies and profiles. A package is composed of a number of types (left
of Fig. 2). A Class inherits from PackageableElement and NamedElement

meta-classes. This means that classes are able to participate in dependencies.
The bottom-right part of the figure shows that classes can declare attributes140

which are instances of Property. The left-most part of the figure illustrates
the fact that we can apply a profile to a package, and that a profile is com-
posed of a number of stereotypes.

2http://www.omg.org/spec/UML/2.4.1/
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Figure 2: An excerpt of the UML metamodel (Class modeling)

The MVC constraint specification is presented in Listing 1. We assume
that we have three stereotypes, enabling us to annotate the classes in an ap-145

plication which represent the different roles of the pattern: View, Model and
Controller. This constraint states that the classes stereotyped Model must
not declare dependencies with the classes stereotyped View nor Controller.
This makes it possible, among other things, to have several views for the
same model, and thus to uncouple these classes that play different roles in150

the pattern.

1 import uml : ’ http ://www. e c l i p s e . org /uml2 /4 . 0 . 0 /UML#/ ’
2 package uml
3 context Package inv :155

4 let Model :
5 Set ( Class )= s e l f . ownedType−>oclAsType ( Class )
6 −>s e l e c t ( c : Class | c . ge tApp l i edSte reotypes ( )
7 −>e x i s t s ( s : Ste reotype | s . name=’model ’ ) )
8 in160

9 let View :
10 Set ( Class )= s e l f . ownedType−>oclAsType ( Class )
11 −>s e l e c t ( c : Class | c . ge tApp l i edSte reotypes ( )
12 −>e x i s t s ( s : Ste reotype | s . name=’view ’ ) )
13 in165

14 let Cont r o l l e r :
15 Set ( Class )= s e l f . ownedType−>oclAsType ( Class )
16 −>s e l e c t ( c : Class | c . ge tApp l i edSte reotypes ( )
17 −>e x i s t s ( s : Ste reotype | s . name=’ c on t r o l l e r ’ ) )
18 in170
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19 −− No dependenc ies between Model and View or Con t r o l l e r
20 Model−>f o rA l l ( c : Class |
21 c . suppl ierDependency . c l i e n t−>f o rA l l ( c1 : Class |
22 View−>exc ludes ( c1 ) and Contro l l e r−>exc ludes ( c1 ) ) )
23 endpackage175

Listing 1: MVC constraint in OCL/UML

Line 3 in Listing 1 declares the context of the constraint. The meta-
class Package is the starting point for all navigations in the rest of the
constraint. To refer to the context, we use the keyword self. Note that
oclAsType(Class) operation is used in this constraint to allow navigation180

between Type and Class through the specialization indirect relation. Lines 4
to 18 serve to collect together the sets of classes representing the Model, the
View and the Controller. For example, we move from the package to look for
the types defined in it by ownedType. Then, we select only those which have
Model as an applied stereotype, using the operation getAppliedStereotypes().185

The remaining of the constraint checks that the classes stereotyped Model

should not have any dependencies with View or Controller classes by using
clientDependency.supplier navigation.

In the following subsections, we explain each step of meta-program gen-
eration process illustrated using this example.190

3.2. Constraint Refinement

The refinement mechanism is used whenever some abstractions in the
UML meta-model do not have a direct equivalence in the JAVA language
(like dependencies). There are some navigations in the UML meta-model
that do not enable to generate JAVA code. For example, in the previous195

specification of the MVC constraint on the UML meta-model, we have collected
all types (classes) which have dependencies with a specific type by using
clientDependency.supplier (Listing 1, Line 20). This expression has not
a direct equivalence in JAVA. As a result, we refine the constraint on the
UML meta-model to express the different kinds of dependencies.200

Often, a dependency between two classes A and B is translated as: i) the
declaration in A of at least one attribute having as a type B, ii) at least one
parameter in an operation of A has as type B, or iii) at least one operation
of A, has B as a return type or a thrown exception type.

Our constraint is automatically refined to what follows:205

1 package uml
2 . . . .
3 −− No dependenc ies between Model and View or Con t r o l l e r
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4 Model−>f o rA l l ( c : Class |210

5 c . ownedAttribute−>f o rA l l (p : Property |
6 View−>exc ludes (p . type ) and Contro l l e r−>exc ludes (p . type ) )
7 and
8 c . ownedOperation−>f o rA l l ( o : Operation |
9 View−>exc ludes ( o . type ) and Contro l l e r−>exc ludes ( o . type ) )215

10 and
11 c . ownedOperation−>f o rA l l ( o : Operation | o . ownedParameter
12 −>f o rA l l (p : Parameter | View−>exc ludes (p . type ) and
13 Contro l l e r−>exc ludes (p . type ) ) )
14 )220

15 . . .
16 endpackage

Listing 2: MVC refined constraint in OCL/UML

After refinement, our constraint (Listing 2) is composed of three sub-
constraints. Each sub-constraint matches one kind of dependency. In Lines 4225

to 6, the dependency is primarily verified on all attributes defined in classes.
In Lines 8 to 13, the dependency is related to the types of operation param-
eters and its returned value.

In Listing 2, we have shown that the Model’s classes do not have to declare
dependencies with the View classes, which makes it a constraint of a static230

nature, i.e. it is checkable on static types. However, according to the existing
implementations of the MVC, we may find ourselves with a reference to a View
object in a Model object at run-time, while statically the classes comply with
the constraint. In this case, the “dependency” between the Model and the
View can be implemented by the Observer pattern: a model object stores a235

collection of objects listening to changes on the model (the collection can be
statically typed by an interface). At runtime, however, this collection will
include view objects, whose classes implement the aforementioned interface.
In this case, the constraint should take into consideration relations between
objects and not only classes. The constraint needs therefore to be further240

refined by specifying it on the UML meta-model related to instances (Fig. 3)
in order to rely on objects rather than classes. This new specification allows
to check the values of object slots (slots can be seen as instances of attributes.
A class has an attribute and an object has a slot).

In Fig. 3, an instance specification has a Classifier which defines it. It245

includes a number of slots, which have a StructuralFeature (e.g. a Prop-
erty) that declares them. They have values of type ValueSpecification.
These can be of different types. We are interested in InstanceValue (a ref-
erence to an instance). This is a “pointer” to an InstanceSpecification.

This kind of refinement is applied automatically by our process, whenever250
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Figure 3: An excerpt of UML metamodel (Instances)

class attributes are introspected by a constraint. The result on the MVC

constraint is shown in Listing 3.

1 context I n s t a n c e Sp e c i f i c a t i o n inv :
2 let Model :255

3 Set ( C l a s s i f i e r )= s e l f . c l a s s i f i e r
4 −>s e l e c t ( c : C l a s s i f i e r | c . ge tApp l i edSte reotypes ( )
5 −>e x i s t s ( s : Ste reotype | s . name=’model ’ ) )
6 in
7 let View :260

8 Set ( C l a s s i f i e r )= s e l f . c l a s s i f i e r
9 −>s e l e c t ( c : C l a s s i f i e r | c . ge tApp l i edSte reotypes ( )

10 −>e x i s t s ( s : Ste reotype | s . name=’view ’ ) )
11 in
12 let Cont r o l l e r :265

13 Set ( C l a s s i f i e r )= s e l f . c l a s s i f i e r
14 −>s e l e c t ( c : C l a s s i f i e r | c . ge tApp l i edSte reotypes ( )
15 −>e x i s t s ( s : Ste reotype | s . name=’ c on t r o l l e r ’ ) )
16 in
17 −− No dependenc ies between Model and View or Con t r o l l e r270

18 Model−>f o rA l l ( c : C l a s s i f i e r | c . i n s t a n c e S p e c i f i c a t i o n . s l o t . va lue .
19 oclAsType ( InstanceValue ) . i n s t ance . c l a s s i f i e r
20 −>f o rA l l ( c : C l a s s i f i e r |View−>exc ludes ( c )
21 and Contro l l e r−>exc ludes ( c ) )
22 )275

23 . . .
24 endpackage

Listing 3: MVC refined constraint in OCL/UML (Instances)

In Listing 3, InstanceSpecification is the constraint context. We
therefore assume that the constraint must be verified on all instance spec-280

ifications making up the application. In the constraint, we navigate to the
classifier of the instance specification. We access then to the Classifier of
the value stored in the slot of the Model and we check if View and Controller

are not stereotypes applied on it.
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We have implemented the constraint refinement step using an XML map-285

ping between UML meta-model elements. We analyze the AST (Abstract
Syntax Tree) generated by a compiler from the text of the constraint. Ac-
cording to the AST node the appropriate refinement is applied. For doing
so, we have defined a list of possible refinements. For example, if a node
content is ”supplierDependency” or ”isComposite”, the process refines the290

constraint.
The refinement of a constraint implies a translation of an architecture

constraint from a relatively abstract level to a concrete one. In contrast to
the translation detailed in the following section, in this step, the translation
is an endogenous transformation, the constraints which are the source and295

the target of the transformation navigate both in the (UML) meta-model.

3.3. Constraint Transformation

We transform the OCL constraint specified on the UML meta-model into
an OCL constraint specified on the JAVA meta-model. We searched in the
literature for a JAVA meta-model for our process but unfortunately none300

of the existing ones satisfied our needs (producing a constraint in an inter-
mediate step towards code generation). We relied on JAVA Reflect library
to create a new simplified JAVA meta-model. In fact, we can define our
meta-model relying on JAVA specification but we deliberately chose JAVA
Reflect because it gives us access to the meta-level of the language which was305

implemented in the JDK and also because it reflects exactly what we can do
in the generated JAVA code. In this meta-model, we limited ourselves to the
elements necessary for architecture constraint specification. Fig. 4 depicts
the simplified JAVA meta-model that we have defined.

In Fig. 4, classes have fields, methods and constructors. A Class belongs310

to a package. In JAVA, from one package, we cannot know which types
are defined there. All these elements can be annotated and have modifiers
(except packages), which can have different values listed in the enumeration
named Modifier. An attribute can have a reference towards another object
as its value for a particular object. In constructing this meta-model, we re-315

lied on classes defined in the JAVA Reflect API whose methods enable the
introspection of JAVA objects. The get(...) method of the Field meta-
class returns the value stored in the field of an object which is passed as an
argument. In JAVA there is no equivalent of UML’s Slot meta-class. Actu-
ally, this is a more general problem. It is due to the fact that in JAVA, there320

is no true coupling between the objects and their meta-objects (instances of
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Figure 4: Simplified JAVA meta-model

Class). Once we invoke getClass() on an object, we obtain the meta-object,
but in this meta-object, there is no reference back to the object (we therefore
loose access to the values of its “fields”).

Constraint transformation consists in establishing a mapping between325

UML modeling elements and JAVA programming entities. Mappings are
classified in three categories depending on meta-model-level OCL expressions:
meta-classes, roles and navigation patterns. Table 1 presents an excerpt of
these mappings.

An abstract syntax tree (AST) is generated from the initial constraint330

(refined OCL constraint, if any). This AST includes the names and the
types of the nodes for each expression in the OCL constraint. The process
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Table 1: An excerpt of UML-JAVA mappings

UML JAVA

Metaclass Package
ApplicationClasses/
ApplicationObjects

Role

ownedAttribute field
ownedOperation method
superClass superClass
getImplementedInterfaces interface
ownedType class / object
isAbstract isInterface()

Nav.
getAppliedStereotypes()
->(s:Stereotype|s.name=’N’)

isAnnotationPresent(’N’)

c.ownedOperation
->(o:Operation|o.name=c.name)

c.declaredConstructor

visibility=VisiblityKind::public modifier(Modifier::public)
Metaclass Class Class/Object
Metaclass Operation Method

Role
type returnType
ownedParameter parameterType
raisedException exceptionType

Metaclass Property Field

Role
type type
value type
slot field

automatically parses this AST in depth and according to each matched node,
the corresponding part of the constraint is translated into the appropriate
part based on the predefined mapping between the two meta-models (Ta-335

ble 1). This translation starts by identifying the navigation patterns, then
the roles and finally the meta-classes in the same way as in [13]. After each
modification of the AST, a new constraint is generated from it and evaluated
with an OCL compiler that validates it on the JAVA meta-model.

In the case of navigation pattern transformation, we need to store some340

parameters and variables such as the name of the class annotation (Line 9 in
Table 1) to put them in the equivalent of this navigation pattern in JAVA.
These variables or parameters can be easily obtained from the AST.

We opted for the specification of the mappings in XML, and we have
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written an ad-hoc program for implementing the transformation instead of345

using an existing model transformation language like Kermeta 3 or ATL [14],
because we do not consider architecture constraints as models. We might
have generated models from constraints and then transform them. But this
process is tedious to implement. It requires to transform the text of the
constraint to models, then to use a transformation language for transforming350

these models, and after that to generate again the text of the new constraint
from the new model. We decided to follow a simple solution that consists in
exploiting simply an OCL compiler.

At the end of this step, two kinds of constraints, which navigate in the
JAVA meta-model, are provided: i) a constraint which deals with classes and355

which has as a context ApplicationsClasses (for instance, see Listing 4 as
the transformation output of Listing 2), and ii) a constraint which deals with
objects and which has as a context ApplicationsObjects (for instance, see
Listing 5 as the transformation output of Listing 3).

360
1 package JAVA
2 context App l i c a t i onC la s s e s inv :
3 let Model :
4 Set ( Class )= s e l f . c l a s s e s−>oclAsType ( Class )
5 −>s e l e c t ( c : Class | c . i sAnnotat ionPresent ( ’ model ’ ) )365

6 in
7 let View :
8 Set ( Class )= s e l f . c l a s s e s−>oclAsType ( Class )
9 −>s e l e c t ( c : Class | c . i sAnnotat ionPresent ( ’ view ’ ) )

10 in370

11 let Cont r o l l e r :
12 Set ( Class )= s e l f . c l a s s e s−>oclAsType ( Class )
13 −>s e l e c t ( c : Class | c . i sAnnotat ionPresent ( ’ c o n t r o l l e r ’ ) )
14 in
15 −− No dependenc ies between Model and View or Con t r o l l e r375

16 Model−>f o rA l l ( c : Class |
17 c . dec l a r edF i e ld−>f o rA l l ( f : F i e ld |
18 View−>exc ludes ( f . type ) and Contro l l e r−>exc ludes ( f . type ) )
19 and
20 c . declaredMethod−>f o rA l l (m:Method |View−>exc ludes (m. returnType )380

21 and Contro l l e r−>exc ludes (m. returnType ) )
22 and
23 c . declaredMethod−>f o rA l l (m:Method |m. parameterType
24 −>f o rA l l (p : Class |View−>exc ludes (p) and Contro l l e r−>exc ludes (p) ) )
25 )385

26 endpackage

Listing 4: MVC constraint in OCL/JAVA

In Listing 4, the context of the constraint is ApplicationClasses. It

3http://www.kermeta.org
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is a set of business classes that compose the user application. It excludes
classes related to libraries. As indicated in Listing 4, we replace, among oth-390

ers, ownedAttribute by field and ownedOperation by method. By pars-
ing the AST, we perform transformations for some complex navigations like
getAppliedStereotypes() ->exists (s:Stereotype | s.name=’model’).
This navigation is transformed to isAnnotationPresent(’model’).

395
1 package JAVA
2 context Appl i ca t ionObjec t s inv :
3 let Model :
4 Set ( Object ) = s e l f . ob j e c t
5 −>s e l e c t ( c : Object | c . c l a s s . i sAnnotat ionPresent ( ’ model ’ ) )400

6 in
7 let View :
8 Set ( Object ) = s e l f . ob j e c t
9 −>s e l e c t ( c : Object | c . c l a s s . i sAnnotat ionPresent ( ’ view ’ ) )

10 in405

11 let Cont r o l l e r :
12 Set ( Object ) = s e l f . ob j e c t
13 −>s e l e c t ( c : Object | c . c l a s s . i sAnnotat ionPresent ( ’ c o n t r o l l e r ’ ) )
14 in
15 Model−>f o rA l l ( o : Object | o . c l a s s . f i e l d410

16 −>f o rA l l ( f : F i e ld | Contro l l e r−>exc ludes ( f . get ( o ) )
17 and View−>exc ludes ( f . get ( o ) ) ) )
18 endpackage

Listing 5: MVC constraint in OCL/JAVA (Objects)

In Listing 5, the starting point is ApplicationObjects. It is a set of415

objects that compose the user application. The constraint analyzes object
relations. To access to a field reference, it uses the Field’s get() method.

The use of declarative mappings gives us the possibility when the meta-
models evolve to modify easily the changed elements. In addition, it allows us
to offer a generic method which does not depend on particular meta-models420

(languages).
After this transformation step, an architecture constraint is ready to be

translated into a meta-program.

3.4. Meta-program Generation

The meta-program generation step relies on String Templates 4. We use425

String Templates because of their flexibility (easy evolution), simplicity and
the existence of a good tool support.

This mechanism is based on the DepthFirstAdapter pattern proposed in
the DresdenOCL parser used in the implementation. The OCL parser 2.0

4String Template : http://www.stringtemplate.org/
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we have used is from Dresden OCL. The templates have been created using430

StringTemplate 4.0.8.
Three elements are responsible for generating the JAVA code from the

ASTs that are generated from the OCL constraints which navigate in the
JAVA meta-model:

• CodeGenerator: the role of this element is to traverse in depth the435

AST and generate code, which depends on the type of the node and its
content.

• Environment: this element saves all the variables generated and some
other information needed during code generation.

• CodeStacker: this element manages the code which is generated by the440

CodeGenerator. The code generated is saved under the StringTemplate
format.

The CodeGenerator reacts only to the node that it must process. For
every type of node (e,g. ArrowrightIteratorPostfixExp, FormalParameter, or
DotPropertyCallPostfixExp) we have defined a common default processing.445

There is a small set of nodes (comparatively with the large set of OCL node
types) for which we have defined a different processing. These are the leaves
in the AST.

The CodeGenerator reads the type of the node from the AST. Accord-
ing to its type (e,g. ArrowrightIteratorPostfixExp), it obtains the template450

associated to this node. It saves it in a list in the CodeStacker and re-
ceives its position. Then, it launches the same procedure for its descendant
nodes. This procedure is stopped when leaves are found. After the gen-
eration of its descendants, it can use every template positioned after the
position received above from the CodeStacker. The obtained templates are455

used to fill its own template. In the fulfillment of the template, it uses
the introspection methods according to the AST node. After that it re-
moves all the templates that it has used. The CodeGenerator has also a
map that contains for each used template the associated result. This serves
for the complex or the repetitive expressions. When it fills each template,460

it checks if it has an existing result (a variable) for the template which it
uses. If yes, it uses the existing variable, if not, it creates one and uses
it. For example, the constraint which contains navigations like the fol-
lowing one: a.method.returnType, the CodeGenerator creates a variable
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named m1 for example which corresponds to the template used for a.method.465

In the code, we have m1=a.getDeclaredMethod(). After that, we obtain
m1.getReturnType(). Every variable created to fill the template must be
registered in the Environment, as an InitializedVariable.

Listing 6 shows an excerpt of the implementation of CodeGenerator when
it processes the node whose type is InitializedVariable.470

1 public void ca s eA In i t i a l i z edVa r i ab l eC s ( AIn i t i a l i z edVar i ab l eCs node ) {
2 STGroup group = new STGroupDir (” templates ”) ;
3 // Template s e l e c t i o n
4 ST s t = group . get Ins tanceOf (” I n i t i a l i z e dV a r i a b l e ”) ;475

5 // Reg i s t e r the chosen Template in Code Stacker
6 int index = codeStacker . put ( s t ) ;
7 // Descendant s tep
8 super . c a s eA In i t i a l i z edVa r i ab l eCs ( node ) ;
9 // Recovery o f Descendant templates480

10 ArrayList<ST> generated = codeStacker . g e tAf t e r ( index ) ;
11 // FormalParameter /∗ Fu l f i l lmen t o f the template ∗/
12 ST tmp = generated . get (0 ) ;
13 s t . add (” var ” , tmp . render ( ) ) ;
14 // Equals : :> treatment not needed485

15 tmp = generated . get (1 ) ;
16 // Log ica lOc lExpres s ion
17 tmp = generated . get (2 ) ;
18 s t . add (” exprs ” , tmp . render ( ) ) ;
19 I n i t i a l i z e dV a r i a b l e var = variableByST . get (tmp) ;490

20 i f ( var != null ) {
21 s t . add (” value ” , var . getName ( ) ) ; }/∗ Fu l f i l lmen t End ∗/
22 // Suppress ion o f a l l used templates
23 codeStacker . removeAll ( generated ) ;
24 }495

Listing 6: An example of the generator for the InitializedVariable node type
(CodeGenerator.java)

At the end, our process provides two kinds of meta-programs. Each meta-
program is a JAVA class that has a public method called invariant(..)

which returns a Boolean value. The first meta-program is a JAVA class
generated from a constraint that has as context “ApplicationClasses”,500

such as Listing 4, while the second one is a JAVA class generated from
a constraint whose context is “ApplicationObjects”, such as Listing 5.
Listing 7 and Listing 8 present respectively two excerpts of these two meta-
programs:

505
1 public class MVCConstraint {
2 // . . .
3 public boolean i n va r i an t ( Class <?>[] s e l f ) {
4 ArrayList<Class<?>> k l a s s = new ArrayList<Class<?>>() ;
5 for ( Class c : s e l f ) {510

6 boolean bool = c . i sAnnotat ionPresent (Model . class ) ;
7 i f ( bool ) {
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8 k l a s s . add ( c ) ;
9 }

10 }515

11 Class <?>[] k l a s s 1 = new Class<?>[ k l a s s . s i z e ( ) ] ;
12 int s e l e c t i t e r a t o r = 0 ;
13 for ( Class c : k l a s s ) {
14 k l a s s 1 [ s e l e c t i t e r a t o r ] = c ;
15 s e l e c t i t e r a t o r++;520

16 }
17 Class [ ] model = k l a s s 1 ;
18 // same way f o r c o n t r o l l e r and view
19
20 boolean bool18 = true ;525

21 for ( Class c : model ) {
22 Fie ld [ ] f i e l d = c . g e tDec l a r edF i e ld s ( ) ;
23 for ( F i e ld i t e r a t o r : f i e l d ) {
24 i t e r a t o r . s e tA c c e s s i b l e ( true ) ;
25 }530

26 boolean bool6 = true ;
27 for ( F i e ld p : f i e l d ) {
28 Class<?> k l a s s 6 = null ;
29 i f (p . getGenericType ( ) i n s t an c e o f ParameterizedType ) {
30 k l a s s 6 = ( Class<?>) ( ( ParameterizedType ) (p . getGenericType ( ) ) )535

31 . getActualTypeArguments ( ) [ 0 ] ;
32 }
33 else {
34 k l a s s 6 = p . getType ( ) ;
35 }540

36 boolean bool3 = true ;
37 for ( Class i t e r a t o r : c o n t r o l l e r ) {
38 i f ( i t e r a t o r . equa l s ( k l a s s 6 ) ) {
39 bool3 = fa l se ;
40 }545

41 }
42 // . . . . .
43 boolean bool4 = true ;
44 for ( Class i t e r a t o r : view ) {
45 i f ( i t e r a t o r . equa l s ( k l a s s 7 ) ) {550

46 bool4 = fa l se ;
47 }
48 }
49 boolean bool5 = bool3 && bool4 ;
50 i f ( ! bool5 ) {555

51 bool6 = fa l se ;
52 }
53 }
54 // second con s t r a i n t
55 Method [ ] method = c . getDeclaredMethods ( ) ;560

56 boolean bool10 = true ;
57 for (Method o : method ) {
58 Class<?> k l a s s 8 = o . getReturnType ( ) ;
59 boolean bool7 = true ;
60 for ( Class i t e r a t o r : c o n t r o l l e r ) {565

61 i f ( i t e r a t o r . equa l s ( k l a s s 8 ) ) {
62 bool7 = fa l se ;
63 }
64 }
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65 // . . . .570

66 boolean bool9 = bool7 && bool8 ;
67 i f ( ! bool9 ) {
68 bool10 = fa l se ;
69 }
70 }575

71 boolean bool11 = bool6 && bool10 ;
72 //Remaining o f the c on s t r a i n t
73 // . . . .
74 boolean bool17 = bool11 && bool16 ;
75 i f ( ! bool17 ) {580

76 bool18 = fa l se ;}
77 }
78 return bool18 ;
79 }
80 }585

Listing 7: An excerpt of the MVC meta-program in JAVA

1 public class MVCConstraintObj {
2 public boolean i n va r i an t ( Object [ ] s e l f )
3 throws I l l ega lArgumentExcept ion , I l l e g a lAc c e s sExc ep t i on {590

4 ArrayList<Object> ob j e c t = new ArrayList<Object>() ;
5 for ( Object c : s e l f ) {
6 Class<?> k l a s s = c . ge tC la s s ( ) ;
7 boolean bool = k l a s s . i sAnnotat ionPresent (Model . class ) ;
8 i f ( bool ) {595

9 ob j e c t . add ( c ) ;
10 }
11 }
12 Object [ ] ob j e c t1 = new Object [ ob j e c t . s i z e ( ) ] ;
13 int s e l e c t i t e r a t o r = 0 ;600

14 for ( Object c : ob j e c t ) {
15 ob j e c t1 [ s e l e c t i t e r a t o r ] = c ;
16 s e l e c t i t e r a t o r++;
17 }
18 Object [ ] model = ob j e c t1 ;605

19 // f o r View and Cont r o l l e r
20
21 boolean bool7 = true ;
22 for ( Object o : model ) {
23 Class<?> k l a s s 3 = o . ge tC la s s ( ) ;610

24 Fie ld [ ] f i e l d = k l a s s 3 . g e tDec l a r edF i e ld s ( ) ;
25 for ( F i e ld i t e r a t o r : f i e l d ) {
26 i t e r a t o r . s e tA c c e s s i b l e ( true ) ;
27 }
28 boolean bool6 = true ;615

29 for ( F i e ld f : f i e l d ) {
30 Object obj = f . get ( o ) ;
31 boolean bool3 = true ;
32 for ( Object i t e r a t o r : c o n t r o l l e r ) {
33 i f ( i t e r a t o r . equa l s ( obj ) ) {620

34 bool3 = fa l se ;
35 }
36 }
37 // . . . .
38 }625
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Listing 8: An excerpt of the MVC meta-program in JAVA (Objects)

In Listing 7, Line 3 presents the invariant method signature. Lines 4
to 17 present the source code generated to select the classes annotated Model

(a code generated from the first let expression of Listing 4). Indeed, the
generator calls the string template associated to OCL select operation. In630

this template, an array list is created presenting the returned value of this
operation. A loop is generated to browse all the classes of the application (it
is a parameter of the invariant method). It tests for each class if it has an
annotation equal to Model. The same mechanism is followed to generate the
code for obtaining the classes annotated Controller and View.635

The constraint imposes conditions on fields of a class (Lines 17 to 18 in
Listing 4). The generator in this case tests if that field has a simple or a
generic type in order to get the appropriate type of this field. This is shown
in Lines 29 to 34 in the generated meta-program in Listing 7.

From the Line 55, the code generation process generates the source code640

of the second sub-constraint. This sub-constraint (Lines 20-21 in Listing 4)
contains the forAll quantifier. So, as we noted above, the process calls
the string template associated to this quantifier. This template requires as
parameters: i) a collection to iterate, i.e. an array is created to collect all
the declared methods of the Model class, ii) an iterator i,e a loop browses645

this array, iii) an expression i.e. the Java code that corresponds to the OCL
expression included in this quantifier: the generator tests if the types of
all the method return values are different from the Controller ones, and
iv) a Boolean variable, i.e. it stores the result of the test. The parameter
“expression” is the body of the iterator. It uses other filled string templates650

(the templates which correspond to the descendant nodes of the node that
contains this quantifier in the AST) of other quantifiers like excludes and
OCL variable initialization (see Listing 6). In this case, the generator stores
variables and parameters of the first quantifier in the map created by the
CodeStacker and then puts them in the parameters of the string template655

associated to the second one when it is called.
Since each sub-constraint is an OCL invariant, for each one, a Boolean

variable is initialized to store its result. At the end, all the created Boolean
variables are concatenated by the JAVA operator ”&&” to give the result of
the whole constraint.660

The code generation process followed to generate Listing 7 is similar to
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the one used for Listing 8. It deals with objects instead of classes. The major
difference is related to how to get object slot values. This occurs in Line 30
in Listing 8. This is preceded by several checks to ensure that the object
class attribute is not of a primitive type and is accessible (it has a public665

accessibility). It is the slot value type in question which is checked, to ensure
that it does not relate to an annotated Controller class.

Henceforth, architecture constraints are specified in the implementation
phase with JAVA language as meta-programs. These meta-programs are
executable to check statically and dynamically the initial constraints.670

4. Constraint Checking

The goal of this phase is to complete the object-oriented application en-
gineering process by providing a micro process to check architecture con-
straints on programs. This process exploits the generated meta-programs
and Aspect-Oriented Programming (AOP) in order to not be intrusive, since675

the constraints are specified separately from source code.

Figure 5: Constraint Checking Description

Fig. 5 presents an activity diagram that explains the micro-process of
automatic checking of architecture constraints.

We assume the availability of a catalog composed of a set of architecture
constraints written in OCL/UML with their Java meta-programs. First,680
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the user is asked to load her/his classes accompanied with a set of test cases.
Second, she/he is asked to load her/his architecture constraint as an OCL file
if this constraint did not belong to the catalog. Meta-programs are generated
from the loaded new architecture constraints. If the user chooses a constraint
from the catalog, then, the process uses the corresponding pre-generated685

meta-programs. Sometimes, to be checkable a constraint requires specific
annotations in the source code. In this case, the user is asked to indicate the
necessary class names in her/his source code, to automatically integrate the
annotations and to recompile the code. Then, a static checking is performed
using the appropriate meta-programs that analyze the user classes. The next690

step in our process consists in checking the constraint dynamically using
the meta-programs and some pre-defined aspects in our process. Finally, a
diagnosis report is provided.

4.1. Static Checking

The static checking consists in invoking the invariant method after load-695

ing the byte code of user programs in order to collect the classes. It provides
a result for each sub-constraint. If at least one sub-constraint is violated, the
full constraint is considered not respected.

It should be noted here that unlike approaches for static code analysis,
constraint checking and thus execution of the invariant method, necessi-700

tates loading of the entire application by the class loader, in order to obtain
the class objects reifying the different application classes, before passing them
as an argument (array) in the invariant method invocation.

Many constraints, beyond their static checking, require to be dynamically
checked. This concerns constraints that introspect the application’s objects705

(and not only classes). These constraints need to be valid at the application’s
runtime.

4.2. Dynamic Checking

In this step of the checking process, the first question being asked is how
we can collect all the objects that compose the user’s application without710

modifying the user application by inserting or deleting statements or using an
external tool. We found that aspect-oriented programming (AOP) responds
to our needs and is an optimal solution to collect the class objects of the user
application and then check dynamically the constraints.

AOP provides architectural abstractions and composition mechanisms in715

order to specify crosscutting concerns into separate functional units, called
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aspects. This separation of concerns improves modularity and reusability,
and allows having a clean code which is easy to understand.

1 aspect Constra int {720

2 po intcut Constra intChecking ( ) :
3 c a l l (∗ ∗ .new ( . . ) )
4 //Advice
5 be f o r e ( ) : Constra intChecking ( ) {
6 // execute i nva r i an t method725

7 . . . }
8 }

Listing 9: Example of AspectJ code

One possible language for writing aspect-oriented programs is AspectJ.
Listing 9 presents an example of an AspectJ code. A join point is a well-730

defined point in the program flow. In our example, the join point is “When a
constructor is called” (Line 3). An Advice defines a crosscutting behavior. It
is defined in terms of pointcuts. The code of a piece of advice runs at every
join point picked out by its pointcut (here a “pointcut” is represented
in Lines 2 and 3). Exactly how the code runs depends on the kind of the735

advice. In Listing 9, we wanted to execute the invariant method before each
constructor in the user application is called.

Listing 10 presents an excerpt of the aspect code to collect the class
objects making up the user application.

740
1 aspect Constra int {
2 // code
3 po intcut c o l l e c t ( ) :
4 execut ion ( ∗ .new ( . . ) ) ;
5 a f t e r ( ) : c o l l e c t ( ) {745

6 // c o l l e c t i o n i s the name o f the array that
7 // br ing s toge the r the ob j e c t s
8 c o l l e c t i o n . add ( th i s Jo inPo in t . getThis ( ) ) ; }
9 }750

Listing 10: AspectJ code used for collecting objects

When the new keyword is interpreted throughout the user source code,
an object is created. thisJoinPoint (Line 8) is a keyword used to obtain
information about the current join point. AOP offers a simple and a quick
way to collect an object of any object-oriented application with a few number
of statements and without requiring any information.755

After getting a collection of the objects of an OO application, the invariant
method of the second kind of the generated meta-programs can be invoked af-
ter passing this collection as parameter in order the check the corresponding
architecture constraints. We have tried to find the appropriate “pointcuts”
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offered by AOP; i.e. where in the business source code, the aforementioned760

invariant method should be invoked.
By combining aspects and meta-programs concepts, we profit with the

benefits of AOP (simple and dynamic way, easy to extend, maintain and
reuse aspects) and we obtain a checking result that details error localization
in the source code.765

In this process we offer the possibility to check architecture constraints
independently from the business source code. In other words, we do not
require any analysis of the source code (extracting elements, adding state-
ments, etc). Thus, the developed AspectJ code does not include “pointcuts”
that use for example a name of a method, or a field. In this case, because the770

meta-programs used in this step of the process deal with “objects”, we have
involved “pointcuts” that manage the places in the source code to identify
object states, object relations, object modifications and run-time attribute
assignment.

• Object pre-initialization : preinitialization(*. )775

• Object initialization : initialization(*. )

• Object creation : execution(*.new(..))

• Object suppression : set(* )

• Constructor call : call(*.new(..))

In some architecture constraint specifications, we need to seek the values780

of object slots (defined by the attributes declared in the classes of these ob-
jects), because we assume that the application has been loaded and launched.
Obtaining these object slot values is performed using the reflect API of the
programming language. For example, in the MVC pattern, we need to check
the slot value type in a class which is annotated Model, to ensure that it785

does not relate to a class annotated Controller. For doing so, we add the
following “pointcut”:

• Field set : set(* *)

We can reduce the execution time of the aspect code when we specify
exactly for which class of the user application we need to modify the value790

of the object (last “pointcut”) by using the predefined annotations for each
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constraint. For example, we defined the following AspectJ code in order to
execute the invariant method when a field value in the class annotated Model

is modified:
795

1 aspect Constra int {
2 po intcut Constra intChecking ( ) :
3 s e t (∗ ∗) && with in (@Model ∗) ;
4 be f o r e ( ) : Constra intChecking ( ) {
5 ve r i f yCon s t r a i n t ( ) ; }800

6 }

Listing 11: Constraint checking when model attribute assignment

With this optimization, we produce for each constraint a specific aspect
code in order to dynamically verify the source code which is supposed to
respect this constraint. If the user has her/his own architecture constraints, a805

meta-program will be generated and a generic aspect program will be used to
automatically reach the checking goal. At the end of our process, a diagnostic
report of the checking is provided. Our approach reveals where the constraint
is violated.

We take an example of an architecture constraint that formalizes the com-810

position relation at run-time between two classes ComplexShape and Shape.
An example of the checking of this constraint is shown in Fig. 6.

Figure 6: An example of dynamic checking output

Fig. 6 shows in each pointcut (for instance, Lines 2 and 4), the temporary
output of the dynamic checking of the constraint. At first, the constraint is
not respected for two times. This is explained by the fact that the annotated815

objects are not definitively created and the constraint requires that they
should not be null and they should realize the composition relation. Then, the
process continues to execute. At this level, the objects are created and they
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are not null. But we remark the presence of an error when ComplexShape()
method invocation is done because it makes a null reference of the Shape820

class object. The user is asked to examine her/his source code starting from
the pointcut corresponding to the first error output.

It is true that the dynamic checking is a crucial step in the process.
However, it uses one instance of the user application (one execution scenario).
We can obtain different results for other scenarios. In our solution, we apply825

the checking process on the set of user test cases and we provide for each
test case the corresponding report. Our checking process makes alerts on
constraint violation by printing log messages about anomalies. It does not
abort the execution of the application, but it gives the user all the checking
results. She/He can read the log messages and then change her/his code to830

respect the constraints.

5. Experimental Evaluation

This section reports on some experiments we have conducted to evaluate
our entire constraint specification and checking process.

5.1. Research Questions835

Our experiments have been conducted in order to answer the following
research questions:

• RQ1: Does the process allow to generate valid and efficient meta-
programs?

Our automated process generates JAVA meta-programs allowing the840

checking of architecture constraints. The aim of this research question
is to measure: i) the validity of the meta-programs on several object-
oriented case examples. These examples have been developed by stu-
dents. Patterns have been instantiated in these examples and in vari-
ants of them (other case examples), in which these patterns have been845

voluntarily “broken”; ii) the performance of our approach by measuring
the time required for generating and executing the meta-programs.

• RQ2: Does the constraint checking process provide precise results in
JAVA real projects?

The aim of this research question is to show that the process of con-850

straint checking provides results that are conform to the modifications
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made in large-sized JAVA projects (with several patterns in the same
project)

5.2. Experiment for RQ1

5.2.1. Data Collection855

We invited 6 students to manually accomplish the steps of meta-program
generation process. These students know JAVA, its reflection API, and have
followed an OCL lecture. We split this group of developers into two groups.

We asked the first one to identify textual constraints of some design pat-
terns and then to formalize their structural conditions with OCL. We chose860

architecture patterns as data, because they are widely used as a means to
characterize an architecture, and are considered as a suitable way to docu-
ment a part of design decisions. The students have chosen the most popular
design patterns which concern only the structural aspect of the architecture.
For the second group, we asked them to write a set of OCL constraints and865

their corresponding JAVA programs using JAVA reflect.
We have collected some descriptive measures (time and size) during the

textual identification of the constraints, their formalization with OCL, their
transformation in OCL/JAVA, the code generation and the execution of the
generated meta-programs. We compared the time spent in each step made870

manually and automatically. Finally, we have obtained 12 design patterns
characterized by their architectural constraints.

Each pattern is represented by its architecture constraint. Each con-
straint is usually composed of a set of sub-constraints. Each sub-constraint
is a formalization of a structural condition that the class diagram of an appli-875

cation in which the pattern is instantiated should respect. The same group
of developers have prepared for each pattern (included in our experiment)
a toy class model and its corresponding JAVA application. Moreover, they
have prepared for each pattern, a set of models each of which invalidates a
sub-constraint in the constraint of the pattern.880

We take for example a design pattern P characterized by its architecture
constraint C. This constraint is composed of two sub-constraints C1 and
C2. The developers prepared 4 models. The first one complies with P, the
second complies with C1 but not with C2. The third one complies with
C2 but not with C1, and the fourth model do not comply neither with C1885

nor with C2. Besides, the developers implemented for each model a simple
JAVA application. 4 JAVA applications were developed, each of which is the
implementation of one of the models previously mentioned.
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The experiment data is available online here: https://seafile.lirmm.
fr/f/5221db540b6348d9b9be/.890

We have used as tools in this evaluation, Eclipse Luna and the plugin
OCLinEcore to check the OCL architecture constraints on the pre-defined
models.

All the measures taken during this experimentation are presented in Ta-
bles 2 and 3.895

Table 2: Size of constraints and their meta-programs

Design Pattern
OCL Constraint Meta-program LOC
#tokens Manual Automatic

Adapter 348 160 381
Bridge 248 142 234
ChainOfResponsibility 225 155 250
Composite 306 120 306
Decorator 1 387 100 500
Decorator 2 387 100 500
Facade 186 135 292
Factory-method 234 167 210
Mediator 190 120 150
MVC 189 40 100
Observer 579 120 300
Proxy 238 117 200

Table 3: Time spent on each step of the process (in seconds)

Design Pattern Spec UML
UML–JAVA to Meta-program
Manual Automatic Manual Automatic

Adapter 16500 480 0.05 5400 6.21
Bridge 15240 480 0.05 3300 4.38
ChainOfResponsibility 6000 600 0.22 600 4.41
Composite 14100 720 0.11 9000 4.67
Decorator 1 10320 540 0.09 4380 5.91
Decorator 2 2400 120 0.01 4440 3.57
Facade 10620 420 0.18 6060 4.25
Factory-method 7440 540 0.18 4920 4.71
Mediator 10740 660 0.14 4260 3.70
MVC 5400 300 0.19 3900 4.98
Observer 8502 840 0.36 6180 6.88
Proxy 5820 720 0.27 4920 4.24

In Table 2, the first column presents the name of each architecture pat-
tern. The second column shows the size (in terms of number of tokens in
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the AST) of the architecture constraints that formalize the pattern. We have
chosen constraints with different sizes, ranging from 186 tokens for the small-
est to 579 for the largest one. The Third column presents the size (in terms900

of number of lines of code) of the manually written and the automatically
generated meta-programs. As we can observe, the automatically generated
meta-programs are larger than the manually created one. Indeed, as men-
tioned previously the automatically generated code is not optimal in terms
of complexity. It was built incrementally without any optimization.905

In Table 3, the OCL specification time includes the identification time
of the constraints. The developers have manually performed all the steps
of our process (constraint specification, constraint transformation and meta-
program generation). This work followed a precise order starting with the
Adapter pattern and finishing with the Proxy pattern. We have chosen910

a precise order for all the developers to examine the correlation, if exists,
between the size of the constraint, the time spent in process steps and the
acquisition degree of the OCL language.

We observe that in some cases, there is no correlation between the size of
the constraint and the time spent specifying it. For instance, the Observer915

pattern is larger than the Composite pattern but it took less time for its spec-
ification. Indeed, the developers have naturally acquired experience when
specifying each time a new constraint. The first constraint took more time
to be specified than the others. The average time decreases when specify-
ing more constraints despite of their size variance. Constraints were speci-920

fied with OCL which is a language easy to learn and to use (as empirically
demonstrated in [15]). The students need only to know for each constraint
the appropriate navigation in the UML meta-model and used frequently the
same “patterns” of OCL expressions.

We can see in Tables 2 and 3 two variants of the Decorator pattern. The925

constraints of these variants have the same size in terms of number of tokens.
They share some sub-constraints. This decreases the time spent specifying
the second variant.

It takes for a developer an average of 1.47 hours without considering the
time of constraint identification, to manually develop a JAVA source code930

that allows to check an architecture constraint. It is true that this time
may be decreased even more when the developer manually develop meta-
programs. But it is still significantly higher than the time spent by the
automatic generation process.
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5.2.2. Protocol and Results:935

The protocol followed in this experimentation consists in, on the one hand,
checking the OCL constraints on the corresponding pre-defined models. On
the other hand, checking the meta-programs generated from these constraints
on the different implementations of the aforementioned models.

If we take the same example (introduced in the previous subsection) we940

get the results presented in Table 4, where:

C: Architecture Constraint Mc: Meta-program generated from C
Mi: Model number i Ii: Implementation of Mi
C/Mi: Result of checking C on Mi Mc/Ii: Checking Mc on Ii
False: Constraint is violated True: Constraint is respected

Table 4: Expected results
C/M1 ->True ————-> Mc/I1 ->True
C/M2 ->False ————-> Mc/I2 ->False
C/M3 ->False ————-> Mc/I3 ->False
C/M4 ->False ————-> Mc/I4 ->False

The checking of the constraint on the first model must return “True”
and on the other models it must return “False”. Besides, we must also
obtain the same results when checking the meta-program, generated from
this constraint, on the implementations of these models. Following this first945

protocol, we test if each generated meta-program corresponds to the initial
constraint or not. These constraints and their meta-programs are checked
on several variants of models and programs to avoid any error during the
generation process.

We have 12 architecture patterns. We have created more than 250 test950

cases to check the OCL constraints on models and on source code. All the
expected results are obtained for the constraints which require only the static
checking. For the other constraints, we were not able to dynamically check
the OCL constraints on the static (class-based) models. We have then con-
sidered a second evaluation. It consists in applying our constraint checking955

process (Section 4) using, in one hand, manually written meta-programs and
in the other hand the automatically generated ones in the same pattern in-
stance implementation variants (Ii).

Considering the checking results, we noticed that the tool successfully
generated valid meta-programs. The two meta-programs notify the same960

errors (error and code localization) in the source code.
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Our approach worked well with the experiment data created by the devel-
opers. For improving the process validation, we have evaluated our generated
meta-programs and our constraint checking technique on real JAVA projects
in which many design patterns are instantiated. This evaluation is presented965

in Subsection 5.3.

Performance:. Our analysis was about performance. We measured the
time our technique required to implement and execute the manually written
and the automatically generated meta-programs of our patterns. The results
are summarized in Tables 3 and 5 (Table 5 is an extension of Table 3). As970

expected, the time is proportional to the size of the constraint formalizing the
pattern (see Table 2). We must mention that execution time was absolutely
within our expectations. The interesting part is when we compare the values
in the two columns of Table 5. We can notice that the execution time of
the generated source code is lightly higher than the execution time of the975

manually written one, in all cases. This is explained by the fact that the
generated code has a greater complexity than the manually written one. The
average overhead of the generated code is +16% (in milliseconds). But this
is negligible and does not affect much a process of architecture verification.
Indeed, for the moment, the software systems that we target in our work are980

not real-time ones and this performance overhead does not affect them too
much.

Table 5: Execution time of meta-programs (in seconds)

Design Pattern
Execution Time

Manual Automatic
Adapter 0.65 0.86
Bridge 0.54 0.66
ChainOfResponsability 0.57 0. 97
Composite 0.30 0.57
Decorator 1 0.52 0.66
Decorator 2 0.54 0.69
Facade 0.77 0.93
Factory-method 0.69 0.87
Mediator 0.68 0.87
MVC 1.00 1.23
Observer 1.40 1.73
Proxy 1.12 1.69

If we consider the time needed to execute the entire JAVA application, an
example of an application reaction time increases to 2,43s instead of 1,99s.
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This difference is negligible even if we consider the dynamic aspect of the985

checking. After considering all the JAVA applications used in our evalua-
tion, we can say that we are quite confident that the overhead of constraint
checking at execution time is marginal.

5.3. Experiments of RQ2

We would like here to evaluate our approach on large-sized JAVA projects.990

The source code of these projects should contain at least two different design
pattern instances.

5.3.1. Data Collection

We have conducted our checking process on several JAVA projects: Ap-
plied JAVA Patterns (AJP) [16], the Eclipse Pattern Box (EPB) [17], Find-995

bugs [18] and MapperXML [19]. Based on their documentation, we have
identified the design patterns that are instantiated in the projects.

5.3.2. Protocol

As a first experimentation, we have applied our checking method on all
the source codes (the results are shown in Table 6). Meta-programs were1000

generated form the architecture constraints which formalize the patterns in-
stantiated in each source code. Aspect codes are prepared to check these
architecture constraints using their generated meta-programs. The aspect
codes include all the pointcuts defined in Section 4.

In the second experimentation, we have invited 3 other persons (1 Phd1005

and 2 Master students) who have enough experience with design patterns.
We asked them to introduce some modifications on the source codes of these
applications. They have written scripts that describe each pattern architec-
ture as textual items. A master student who was not involved in the last task
try to modify the sources by altering at least one item in the script. There-1010

fore, the patterns’ source code became not conform to their architecture
model, and their constraints became violated. These modifications are made
by using the reflective API of Java. The students use the reflective methods
especially those responsible for modifying the behavior of the objects, like
invoke() and newInstance(). Then, we have reapplied our process on the1015

altered sources to see whether the patterns are respected or not. Finally, we
analyzed the output of the checking to verify its correctness compared to the
modifications.
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5.3.3. Results and Discussion

To present our results, we use the following notations:1020

•
√

+ : the pattern is well implemented and the result is “pattern re-
spected”

•
√

- : the pattern is well implemented but the result is “pattern not
respected”

• x+ : the pattern is not well implemented and the result is “pattern not1025

respected”

• x- : the pattern is not well implemented and the result is “pattern
respected”

Table 6: Checking Results (before altering the sources)
Patterns AJP EPB Findbugs MapperXML
Abstract-factory

√
+

√
+

Factory-method
√

+
√

+
√

+
Adapter

√
-

√
-

Proxy
√

+
√

+
Bridge

√
+

Composite
√

-
√

+
Decorator

√
-

MVC
√

+
Facade

√
-

√
+ shows the cases where our method succeeded. Most of the design

patterns are correctly verified. We found 10 from 15 pattern occurrences that1030

are well verified, with a success rate of 66.66% (in the first experimentation).
Our tool does not detect the conformance of the sources to the Adapter

and Decorator pattern architectures. Indeed, the Adapter and Decorator

intercept method invocations between the caller and the delegation class.
However this relation is neither well defined, nor definable [8]. This point1035

may influence the specification of the constraint and then produces an error
in our process validation.

The Decorator pattern implementation in the AJP project is not well
verified by our tool. This is explained by the fact that there are many variants
of this pattern and unfortunately the one implemented in the AJP source is1040

not taken into consideration in our data collection.
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The Composite pattern is usually tightly related to other patterns. This
relation can affect some lightweight modifications on its implementation to be
composed with other patterns to answer the user needs. These modifications
probably concern composite object states.1045

In Findbugs project, in the Facade pattern occurrence, our tool cor-
rectly pointed out that class edu.umd.cs.findbugs.Lookup directly uses class
edu.umd.cs.findbugs.ba.XClass without accessing it through the Facade which
is called edu.umd.cs.findbugs.ba.Hierarchy as documented in the Findbugs
API. With this relation, the Facade implementation actually does not strictly1050

satisfy the requirements for the Facade design pattern. If the strict interpre-
tation of the Facade pattern is to be used, then the fact pointed by the tool
is a design flaw.

In the second experimentation, the source code of all the projects is al-
ready altered. There were no x- found in the results, shown in this table. All1055

checking results produce “pattern not respected”. But, among the x+ are
consequences of the first experimentation. Indeed, the

√
- showed in Table 6

is automatically changed to x+, considering the errors produced during the
first experimentation.

It is true that the Abstract-factory pattern implementation in EPB un-1060

dergoes some modifications and the experimentation result produces “pattern
is not well implemented”, but the experimentation output and the modifi-
cations made are not suitable. The obtained output displays “pattern is
currently not respected” throughout the execution but in some of the cases
we found that the pattern is respected.1065

Concerning the Proxy pattern, the modifications made in its implemen-
tation in AJP source code are performed using reflective methods that affect
the pattern architecture. Our constraint and its generated meta-program
does not take into consideration this way of modification.

5.4. Threats to validity1070

We discuss two kinds of threats: to the internal validity and to the ex-
ternal one.

5.4.1. Internal validity

In our experimentation, we have used architecture patterns that are spec-
ified from several sources. The constraints that formalize our patterns are1075

specified by participants who have a short experience with OCL language.
Besides, in our selected architecture patterns, we can find variants for a
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given pattern like the Decorator. This increases reuse of the decomposed
constraints as well as their relevance. But, we have mitigated this threat by
choosing patterns of different sizes and by involving different persons in their1080

specification and transformation.
Besides, we have developed for the evaluation code in AspectJ language

that contains all the possible pointcuts to check the constraint. The execution
of some large and complex applications under our constraint checking process
may produce errors like endless loop especially with generic AspectJ code1085

(without optimization). In this case, we decompose the AspectJ code in
several codes and we repeat the execution many times.

5.4.2. External validity

The architecture patterns used in our experimentation have been col-
lected from the literature. We can obviously think that the proposed process1090

works only for this kind of object-oriented architecture patterns or that only
constraints written in OCL can be evaluated as input and Java as output.
The inputs of the process can be any kind of predicates analyzing archi-
tecture descriptions (a parser must exist for their specification language).
Besides, the produced output can be a source code written in any language1095

that provides a reflective API. Any kind of architecture constraints can be
considered, including component based design patterns or SOA patterns.
Constraint transformation step is applicable with any meta-models because
it uses external mappings in XML and the AST as output of the parser. The
code generation step takes into consideration each node of the AST and uses1100

the corresponding String Template. The Templates can be written in any
language that provides a reflective API. The reflective methods provided by
this language are mandatory during the use of String Templates.

We have involved many groups of students in the different experiments.
In Experiment 1 (Section 5.2), they have manually performed the identifica-1105

tion of architecture constraints and prepared examples of models to statically
check the OCL constraints. These students may have designed models that
are nearly conform to the constraints. To mitigate this threat, we have
proposed the second evaluation (Section 5.3) that consists in checking the
constraints on external projects. The students have also manually developed1110

the meta-programs. To reduce the implementation error, each student im-
plemented the 12 meta-programs (we have 12 architecture constraints) and
the most appropriate meta-program for each pattern was selected.

Two other groups have participated in Experiment 2. A group has ana-
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lyzed the Java projects to extract the design pattern architectures and the1115

second has developed scripts allowing the modification of the pattern imple-
mentation which has been done by the third group. All the experiments were
conducted by involving these groups under the same conditions. Each work
is done by one group and validated by the two others in order to reduce the
error rate.1120

6. Related Works

In this section we present works related to i) languages and tools for
the specification of architecture constraints, ii) techniques for predicate/con-
straint transformations, iii) techniques/tools for code generation from OCL,
and iv) architecture constraint checking approaches.1125

A state of the art on languages used for the specification of architecture
constraints at design and implementation stages is presented in [3]. Some lan-
guages are considered as notations in existing ADLs, like Armani for Acme,
FScript for Fractal ADL or REAL for AADL. Others are embedded notations
with a logic programming style, like Alloy, LogEn or Spine, or notations with1130

an object-oriented programming (OOP) style or DSLs for OOP languages,
like CDL or SCL. There exist in practice some static code quality analy-
sis tools like Sonar, Lattix and Architexa that authorize the specification of
architecture constraints. These languages and tools, cited above, do not en-
able transformation or code generation of specifications in OCL or any other1135

predicate language.
Hassam et al. [20] use a model transformation method to transform OCL

constraints during UML model refactoring. The others use a mapping table,
created under the UML model transformation for transforming OCL con-
straints of the initial model into OCL constraints of the target one. Their1140

solution of constraint transformation cannot be used straightforwardly be-
cause it needs some knowledge about model transformation languages and
tools. In our work, constraint transformation is performed in a simple and
ad-hoc way without using additional modeling and transformation languages.

Works in [21, 22] focus on UML/OCL transformation into CSP (Con-1145

straint Satisfaction Problem). The authors in [21] proposed an approach
for instantiating models from meta-models taking into account OCL con-
straints. Based on CSP, they defined some formal rules to transform models
and constraints associated to them. These approaches are similar to our
transformation process since the transformed/handled artifacts are the same1150
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(OCL specifications and meta-models). They use the same OCL compiler as
us (DresdenOCL [23]) to analyze constraints. In contrast to CSP, our pro-
cess does not require an external tool for the interpretation of constraints.
Besides, in their approaches, everything should be transformed into a CSP to
be solved (the constraints + the models/meta-models) while in our approach,1155

we transform only constraints
All these works considered only functional and not architectural con-

straints. They allow constraint checking only on design phase and they do not
provide a way to generate code from them to be specified at the implementa-
tion phase. However, in [24] the authors propose to transform constraints into1160

HOL representations before generating Test Data. Thus, the OCL constraint
undergoes major modifications. Some features of OCL will be evaporated as
confirmed in [25]. Our approach transforms the architecture constraints from
OCL/UML to OCL/JAVA before generating code. This transformation con-
siders only the change of the meta-model. The constraints are still written1165

in OCL. In addition, in our case, architecture constraints are specified after
transformation in the meta-model of the programming language used later
for implementation. This has the benefit that architecture constraints can
be documented in a language that all designers and developers understand.

Eclipse OCL 5 and DresdenOCL [23] which provide OCL constraint trans-1170

lation to JAVA, transform constraints which are functional and not architec-
tural. The generated code by Dresden OCL is difficult to understand. In
fact, it is true that Dresden OCL is the first tool implemented in this do-
main, but it extensively uses a vocabulary proposed only by its APIs. This
code is normally intended to developers who master, and will continue to use,1175

Dresden OCL, contrary to our work, where code is intended to be used by
any JAVA developer. Besides, with these tools, we need to create beforehand
the classes of the model before generating constraints.

In [26],the authors integrate constraints translated on JML assertions at
compilation time. Jass [27] integrate constraints translated into JAVA com-1180

ments through source code instrumentation. These works generate skeletons
of code in user source code and then use external tools to validate the con-
straints. In our work, our constraints need to be verified at run-time because
they impose conditions on object dependencies which can be obtained only
at that level. Our approach allows to generate source code and check the1185

5http://www.eclipse.org/modeling/mdt/?project=ocl
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constraints without altering the user source code and it uses a standard
mechanism, the introspection mechanism offered by the language used for
programming the source code.

In [28], the authors translate functional constraints into AspectJ specifi-
cations which are checked the at runtime. One disadvantage of this approach1190

is the strong coupling of the aspects to the base code. Pointcut definitions
specify the interception points for constraint validation. The definitions are
exactly specified with method signatures, class of field names. Any change in
the underlying base code undergoes modifications to these definitions. How-
ever, in our work, with architecture constraints, this strong coupling between1195

the aspects and the source code does not exist since we need only a collection
of the classes or of the objects of the user application which is obtained by
using a code separately developed from the source code. Sometimes, this
code requires only the class annotations.

Despite the existence of several approaches, as noted above, to check1200

design constraints on code, the gap between the state of the art and the
state of the practice has become apparent. In deed, these approaches gener-
ally require learning a language different from the programming language to
specify design constraints. This increases the learning curve and put at risk
the adoption of these approaches. We believe that an approach that allows1205

specification of design constraints in the same language as that of the soft-
ware can increase the adoption of conformance checking by both designers
and programmers.

In this context, an approach that admits this affirmation is presented
in [29]. The authors of this approach generate design rules into design tests1210

which are specified in the programming language (Java). These design tests
allow to automatically check the conformance of the design rules in the im-
plementation. These design tests are written as JUnit tests. Two frameworks
are implemented : a code structure analysis API and a testing framework.
The first one is responsible for analyzing the source code and for specifying1215

the design rules through methods offered by this API. The second framework
provides assertion routines and an automatic way to execute the generated
tests. It is true that the authors in this work rely on the utilization of the
language used for implementation to specify design constraints but these
constraints are manually specified and the authors use an external frame-1220

work for the checking instead of using an API provided by the programming
language (like Java.reflect) and an extended language (like AspectJ). In this
way, the whole process will be more adopted by the designers and the Java
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programmers, knowing that in our approach, the developers do not develop
entirely AspectJ code and at the most case, they use pre-defined aspects.1225

Besides, the authors in this work, noticed that they do not consider dynamic
constraints.

A work presented in [30] presents a comparative study between code anal-
ysis tools about their capabilities for architectural conformance checking.
The authors proved that: i) The tools the authors investigated do not al-1230

low dependency constraint conformance checking at run-time, especially on
object-oriented source code and ii) Most of the tools do not succeed to lo-
calize where the constraint violation takes place in the source code. In this
case, the user should manually inspect the source code in order to deter-
mine error location. In contrast, our developed tool allows the static and1235

the dynamic checking of architecture constraints. It is capable to check au-
tomatically and dynamically constraints that formalize objects dependencies
in object-oriented application. Besides, our checking process, basing on the
AOP technique, notifies the user with the traces of constraint violation with
a log result.1240

The authors in [31] introduced a new form of architecture model called
Design Rule Space. This model represent the software architecture as an
ensemble (a DRSpace) of design rules (e,g, dependency, inheritance, aggre-
gation) and independent modules. This work identifies structural and evolu-
tionary problems between these modules by clustering the code source and1245

visualizes them is structure matrices. The algorithm of clustering provides a
hierarchy of the files which are embedded in these modules. The authors, by
applying Baldwin and Clark’s design rule theory features [32], identify the
error prone DRSpace which lead error files. This work considers that soft-
ware architectures are as multi-layered modules. These later may or may not1250

be equivalent to the abstractions used to express the system’s architecture.
In deed, this new proposed representation can restrict custom architecture
entities representation and thus their architecture constraint specifications.
In our work, the source code is considered as one layer and with the intro-
spection mechanism provided by the programming language, we can examine1255

all problems inside this layer.

7. Conclusion

Architecture constraints bring a valuable help for preserving architecture
styles, patterns or general design principles in a given application after hav-
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ing evolved its architecture model [6]. These architecture constraints are1260

checked at design time. They need also to be checked if the architecture
evolves in the implementation artifacts or at runtime. For that purpose,
we proposed an automatic process which allows to check these constraints
in that development stage and at run-time. This verification process uses
the meta-programs that are generated from these constraints and uses the1265

reflection mechanism provided by the programming language.
The proposed automatic process is composed of two phases. The first

phase consists in transforming architecture constraints into meta-programs,
towards the implementation phase. The second phase is to check these con-
straints statically by loading the application and executing the appropriate1270

meta-programs, and then to check them dynamically (if necessary) using
aspect-oriented programming.

Expressing architecture constraints with the same language as the one
used in the implementation phase provides an executable documentation.
With this documentation, architecture constraints are more likely to keep1275

in synchronization with the actual implementation. We believe this is espe-
cially useful in development teams in which developers change often and can
easily miss or misunderstand the previously made design decisions. In our
implementation (JAVA code generation), our approach uses Java.reflect API
and an other programming language (AspectJ) which are likely known by1280

JAVA developers. The standard introspection mechanism is enough to make
this kind of architecture constraints executable at the implementation phase.
Besides, for checking them, we require only the user annotated source code.
This later is not altered during the process. The checking is fully automatic,
seamless for users, flexible and provides a diagnostic result that identifies1285

where the constraints in the code are violated.
One of the limitations of our approach is the fact that it does not cover

all OCL language. Some operations, like OCLIsNew, OclAny, OclVoid and
OclInvalid, are not considered. But these are mainly used in OCL post
conditions and not in OCL invariants adopted by our approach. Besides, our1290

tool is flexible, in order to integrate new OCL expressions. We just need to
write specific string templates and to implement a method that initializes
them.

After working in checking dynamically architecture constraints on ob-
ject oriented programs and component-based and service-oriented applica-1295

tions [33], we plan as future work to generalize the proposed approach, by
specifying architecture constraints in a paradigm-independent way: using
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predicates on graphs and operations on them and then making automatic
transformations towards a particular object-oriented, component-based or
service-oriented programming language.1300
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[30] J. Van Eyck, N. Boucké, A. Helleboogh, T. Holvoet, Using code analysis
tools for architectural conformance checking, in: Proceedings of the 6th
International Workshop on SHAring and Reusing Architectural Knowl-
edge, ACM, 2011, pp. 53–54.

[31] L. Xiao, Y. Cai, R. Kazman, Design rule spaces: A new form of archi-1385

tecture insight, in: Proceedings of the 36th International Conference on
Software Engineering, ACM, 2014, pp. 967–977.

[32] C. Y. Baldwin, K. B. Clark, Design rules: The power of modularity,
Vol. 1, MIT press, 2000.

43



[33] S. Kallel, B. Tramoni, C. Tibermacine, C. Dony, A. Hadj Kacem, Gen-1390

erating reusable, searchable and executable ”architecture constraints as
services”, Journal of Systems and Software 127 (2017) 91–108.

44


	Introduction: Context and Problem Statement
	General Approach
	Generation of Meta-programs from Constraint Specifications
	Illustrative Example
	Constraint Refinement
	Constraint Transformation
	Meta-program Generation

	Constraint Checking
	Static Checking
	Dynamic Checking

	Experimental Evaluation
	Research Questions
	Experiment for RQ1
	Data Collection
	Protocol and Results:

	Experiments of RQ2
	Data Collection
	Protocol
	Results and Discussion

	Threats to validity
	Internal validity
	External validity


	Related Works
	Conclusion

