
Multi-Paradigm Architecture Constraint
Specification and Configuration Based on

Graphs and Feature Models

Sahar Kallel1,2, Chouki Tibermacine1, Ahmed Hadj Kacem2, and Christophe
Dony1

LIRMM, CNRS and University of Montpellier, France?

ReDCAD, University of Sfax, Tunisia??

Abstract. Currently, architecture constraints can be specified and checked
in different paradigms of software development, the object-oriented, component-
based and service-based one. But the current state of the art and prac-
tice do not consider their specification at a high level of abstraction,
independently from any paradigm vocabulary. We propose in this pa-
per a process combining graphs and feature modeling to specify multi-
paradigm architecture constraints. These constraints are expressed with
OCL on a particular meta-model of graphs. Then these constraints can
be transformed to any chosen paradigm, after their configuration using
a feature/variability model. This transformation allows later to handle
these constraints in that (chosen) paradigm: to refine them, to generate
source code from them, and to check them on models and on source
code. A case study is presented in this paper; it concerns architecture
constraint specification and configuration under software migration from
the object-oriented to the component-based paradigm.

1 Introduction

Documenting software architectures provides a preliminary comprehensive view
of the structure and the behavior of the software. This documentation includes
the definition of architecture decisions which provide an important element: Ar-
chitecture constraints.

Architecture constraints [11], which are meta-level specifications of invari-
ants on the structure of the entities, constituting a user application (objects
for instance), enable to ”formalize” the topological/structural conditions im-
posed by design patterns, architectural styles or any design principle. They
are involved throughout the software development life-cycle (from design to
implementation stages and in maintenance). Currently, these artifacts can be
specified and checked in different programming paradigms: the object-oriented,
component-based and service-based one, among others. But constraint specifi-
cations in the different paradigms are defined completely separately from each

? {sahar.kallel,tibermacin,dony}@lirmm.fr
?? ahmed.hadjkacem@fsegs.rnu.tn

other, while these share a major part of their specification. This part concerns
the formalized structural conditions. The variable part between them is the set
of architectural entities on which these conditions are checked (objects, object
dependencies, components, ports, connectors, services, and so on). For example,
in the Façade pattern, the façade entity is an object in an object-oriented ap-
plication, and what it hides to client entities are the internal methods of the
application. In a component-based application, the façade entity is a component
which provides a unique port to client entities; it hides the provided services by
the other components of the application. The structural conditions here are the
same (presence of a unique entity – object or component – which serves client
entities).

In our previous works [6,7], we have studied the use of OCL/UML 1 for
architecture constraint specification and their checking at the design and imple-
mentation stages in different development paradigms. Our first work presented a
process which enables to generate meta-programs that make possible constraint
checking on object-oriented applications. The second work proposed another
process which enables to generate reusable and executable components deployed
in component-based applications, in addition to architecture constraints as ser-
vices which are reusable, searchable, executable and checkable in service-based
applications. We propose in this paper an approach (a language and a process)
in which architecture constraints are specified in an abstract way, with a neu-
tral structural constraint vocabulary. They are expressed in ocl and navigate in
a meta-model of graphs. Then these constraints can be transformed towards a
given paradigm (in our case, the object-oriented, component-based and service-
based ones) by configuring a feature model. This feature model expresses the
commonality and variability between development paradigms. Once constraints
are transformed to a given paradigm, they can be checked on models defined in
that paradigm, or be refined and transformed into meta-programs (particular
classes or component/service descriptors) to be checked on the code of applica-
tions.

The remaining of this paper is organized as follows. In the following section,
we present the graph meta-model and the feature model used in our approach.
Section 3 explains the process of architecture constraint configuration and trans-
formation. A case study is exposed in Section 4. Before concluding, we discuss
the related work in Section 5.

2 Architecture Constraint Specification and
Configuration

We define in the first subsection a meta-model of graphs on which an example
of an architecture constraint is specified. In the second subsection, we present
the feature model used for the configuration of constraints.

1 OCL/UML means that the constraints are specified with OCL and navigate in the
UML meta-model.

2.1 A Meta-model of Graphs

As an underlying software representation we use graphs because they can cap-
ture the basic structure in a straightforward and generic way: nodes represent
software entities and edges represent relationships between those entities. More
precisely, we have used typed, directed and labeled graphs. We have used a
typed graph to specify that nodes can be nested in other nodes. We have used
directed graphs, implying that each edge has a source and a target node (di-
rected dependencies between software entities) and labeled graphs to attach
any number of domain-specific properties to the nodes and edges.

Fig. 1. Meta-model of graphs

Fig. 1 shows the meta-model of graphs used in our approach. A graph is
composed of edges and nodes. A node has at least one outgoing and ingoing
edge. Each edge has exactly one source node and one target node. A node can
be composite or simple. The composite node can be composed of simple and also
composite nodes. Each node and edge can be labeled in order to refine the graph.
According to this meta-model, we can obtain a model (a graph) that contains
edges going from inside a composite node to a simple one.

Listing 1.1 presents an architecture constraint characterizing the Façade pat-
tern. This constraint is formalized with OCL navigating in the meta-model shown
in Fig. 1. It consists of several sub-constraints. We suppose that there exist a
set of nodes that represent clients, another set represents systems and a node
represents a facade.

1 context Graph inv :
2 −−Cl i en t s have only outgoing edges
3 c l i e n t s−>f o rA l l (n : Node | n . ingoing−>isEmpty ())
4 and
5 −−Systems have only ingo ing edges
6 systems−>f o rA l l (n : Node | n . outgoing−>isEmpty ())
7 and
8 −−No edges between c l i e n t s and systems
9 c l i e n t s−>f o rA l l (n : Node | n . outgoing−>f o rA l l (e : Edge |

10 systems−>exc ludes (e . t a r g e t)))

11 and
12 −−Al l the edges whose source s are the c l i e n t s should go to the facade
13 c l i e n t s−>f o rA l l (n : Node | n . outgoing−>f o rA l l (e : Edge | e . t a r g e t=facade))
14 and
15 −−The facade should be l i nked to at l e a s t one system
16 facade . outgoing−>e x i s t s (e : Edge | systems−>i n c l ude s (e . t a r g e t))

Listing 1.1. Facade constraint specification in the graph meta-model

These node labeled Client, System, Facade may give a hint about constraint
semantic but it is not clear that these nodes represent objects, components or
classes. At this level, we can say that the constraint is formalized in an abstract
way, i.e. independently from any paradigm. To translate the constraints into a
specific paradigm, we have to configure a feature model which is presented in
the following section.

2.2 Feature models

Feature models [8] are simple and hierarchical models that capture the com-
monality and variability of a set of products in a software product line. In our
approach, a feature model is used to express the variability between software
development paradigms.

A feature diagram is a representation of a feature model. We have used the
notation of Czarnecki et al. [5] in the feature diagram developed for our approach
because it is a practical way to integrate labels for the nodes and the edges.
It is a useful way to configure the constraint which navigates, among others,
in Label, Node and Edge meta-classes of the graph meta-model. Moreover, an
architecture constraint is generally composed of sub-constraints assembled by the
logic operator “and” (see Listing 1.1). In each sub-constraint, we find several (0-
n) nodes and/or edges. Each node or edge can be translated to the appropriate
element in the chosen paradigm (class, method, connector, port, object, etc).
For doing so, we added a cardinality to the feature diagram in order to be able
to do all the required transformation for each sub-constraint and configure each
node and each edge.

Since this work is a continuation of our previous works (introduced in the
previous section), we have chosen to translate ocl architecture constraints from
a graph meta-model to UML 2 meta-model based on feature models. Therefore,
the features (without considering the leaves) represent, among others, the meta-
classes (Ex: Graph, Node, Edge) and the meta-roles (ex: source and target) of
the meta-model of graphs, while the leaves of the feature diagram are elements
of the UML meta-model (Fig. 23).

The root feature of the diagram is the graph representing the architecture on
which the constraint is formalized. The feature Node is a sub-feature of EltGraph
(i.e.,Node is a child of EltGraph in the feature tree) and has an attribute for
specifying its label, if any. Every feature is qualified by a feature cardinality. It

2 UML http://www.omg.org/spec/UML/2.4.1 is an OMG standard and covers both
class/object and component modeling

3 For space limitation, the constraints accompanied the feature diagram are not showed

http://www.omg.org/spec/UML/2.4.1

Fig. 2. An excerpt of the feature diagram for constraint transformation from graphs

specifies how often the entire sub-tree rooted in the solitary feature can be copied
(with the roots of the replicated sub-trees becoming siblings). For example, the
features Node and Edge have the feature cardinality [0..n]. This means that an
EltGraph can be formed by 0 or n Nodes and Edges.

3 Multi-paradigm Architecture Constraints

In this section, we present the different steps of the constraint transformation.
We use the Façade architecture constraint shown in Listing 1.1 as a running
example.

3.1 Constraint Configuration

Constraint configuration consists in selecting, in the feature diagram, the suitable
features to build a new constraint in the chosen paradigm. This step is started
by configuring first the context of the constraint, then configuring the OCL
definitions 4 and OCL let expressions, if any, and finally the sub-constraints by
respecting their appearance order in the constraint. A step called feature model
specialization [5] is performed before the configuration. It consists in choosing the
precise values of cardinalities presented in the feature diagram. This facilitates
the configuration of the constraint by reserving the exact number of features in
the configuration interface.

Each sub-constraint, including the OCL let expression, is represented by
EltGraph. In our constraint, we have 8 EltGraphs. We can configure all these
EltGraphs thanks to the cardinality of this feature. We follow the order of the
sub-constraints to configure them. Fig. 3 presents a possible configuration of the
sub-constraint 5 (in Listing 1.1 without considering the let expressions) in the
object-oriented development paradigm.

4 OCL queries characterized by the keyword def:. They allow to declare and define
attribute values (like let expression) and/or to return internal OCL operation values.

Fig. 3. A possible configuration of Facade constraint in OO paradigm

The constraint configuration is performed using the feature IDE plugin. It
shows an interface to configure a feature diagram. We can see all the possible
configurations and it produces exceptions if the configuration does not respect
the requirements of the feature diagram.

3.2 Constraint Transformation

The implementation of the constraint transformation is performed using the
editor of the feature model. The first step is a direct transformation of the
constraint. It uses the configured feature model. The second step is based on
the abstract syntax tree (AST) generated from the obtained constraint and the
XMI document representing the UML meta-model. It has as a goal to make the
constraint valid. The tool-set used for configuring the feature diagram provides a
document that includes the inputs and the outputs of the configuration (names of
features). Our process uses this document and automatically applies the mapping
to the constraint. An abstract syntax tree is generated from the constraint (which
is specified in the graph meta-model). The AST node names and their types
(the meta-class names) are then modified by their corresponding features and
are regenerated in order to obtain an architecture constraint written in the UML
meta-model.

Listing 1.2 presents the façade constraint after the direct transformation.
The meta-role outgoing in Line 9 in Listing 1.1 is replaced by clientDependency
and in Line 16 by ownedAttribute as the configuration is defined (see Fig. 3).

1 context Package inv :
2 −−
3 c l i e n t s−>f o rA l l (n : Class | n.−>isEmpty ()) and
4 systems−>f o rA l l (n : Class | n.−>isEmpty ()) and
5 c l i e n t s−>f o rA l l (n : Class | n . cl ientDependency−>f o rA l l (e : Edge |
6 systems−>exc ludes (e . s upp l i e r))) and and
7 facade . ownedAttribute−>e x i s t s (e : Edge | systems
8 −>i n c l ude s (e . type))

Listing 1.2. An excerpt from a Facade constraint after a direct transformation

In Listing 1.2, the constraint is specified in UML meta-model, but this trans-
formation does not necessarily produce a valid OCL constraint. OCL exceptions

are provided when compiling the constraint in an OCL compiler. For example
Edge in Line 5 is undefined in UML meta-model. The two following sub-steps
are implemented to solve these errors.

1. Removing unnecessary sub-constraints : This is the case of the sub-
constraints 1 and 2 in Listing 1.2. The user does not completely configure the
sub-constraints. They do not have any equivalence in the target paradigm: the
object-oriented paradigm. These sub-constraints are safely removed from the
constraint.

2. Adding OCL expressions : There are two cases where we should add OCL
expressions. The process here examines the constraint in each case and try to
add OCL expressions to make it valid and accurate.

The process in the first case consists first in replacing all the roles and meta-
classes that are still written in the graph meta-model by their corresponding
modeling elements in the UML meta-model. This transformation is complemen-
tary to the direct one. It is based on the AST generated from the constraint. The
AST parser, taking into consideration the UML meta-model, indicates the AST
nodes which whose types do not belong to the UML meta-model. We take the
example presented in Line 5, in Listing 1.2 in which the meta-class Edge is not
translated yet. According to the UML meta-model, clientDependency is a naviga-
tion that produces Set(Dependency). So, Edge will be replaced by Dependency.
The same processing is performed for the error located in Line 8 in the same
Listing: Edge is replaced by Property.

The process in the second case consists in adding navigation patterns 5 in
the constraint. Indeed, after the direct transformation, we can obtain in a sub-
constraint an ocl inequality exception. Suppose that we take an example of
a constraint that has, in its specification in the graph meta-model, a naviga-
tion towards the Node meta-class via target, to get the target node (one node
[1..1]) (see Listing 1.3). The user configures target by end in the component-
based development paradigm. end is a meta-role in the UML meta-model. It
provides a set [0..*] of component connectors. So, we face an OCL exception
(Set(Connectors)= a component). Here, the process adds, among others, an
appropriate quantifier that takes only one of the sets to complete the constraint
transformation. More details are given in the following Listings.

In the first line of Listing 1.3, X and Y are nodes composing the graph
of the model. The constraint imposes that the node X should have at least one
outgoing edge towards the node Y. To transform this constraint in the component
paradigm, the user configured outgoing by ownedPort and target by end. The
process checks if the constraint has again errors of the first case. The second line
represents the constraint specification under the transformation. We observe that
the specification of this constraint is wrong. It is violated when evaluating it in
the UML meta-model. To solve this problem, we integrate first some meta-roles

5 A navigation pattern is a set of navigations. It includes more roles and ocl opera-
tions/quantifiers.

such as ownedConnector and role (an application of the first case) and then
pattern navigations as presented in Listing 1.4. This Listing shows a possible
result.

1 X. outgoing−>e x i s t s (e : Edge | e . t a r g e t=Y)
2 X. ownedPort−>e x i s t s (e : Port | e . end = Y)

Listing 1.3. OCL AC before and after direst transformation

1 X. ownedPort−>e x i s t s (e : Port | e . ownedConnector . end−>
2 exists(ee:ConnectorEnd | ee.role−> includes(Y.role)))

Listing 1.4. OCL AC specified in the UML meta-model

As we noticed above, the implementation of the process that consists in
making the architecture constraint independent to any paradigm uses an Eclipse
tool-set. This tool-set generates the abstract syntax tree (AST) and analyzes the
UML meta-model. Each output (sub-constraint) provided by this process should
be validated by the user.

4 Case Study

We have applied the proposed approach on a particular engineering activity:
the automatic software migration from the object-oriented paradigm to the
component-based one one. In this kind of activities, it is too difficult to directly
specify the architecture constraint in the transformed application (component-
based application) because many constraints imposed by the initial application
(like, inheritance and instantiation) may generate other constraints (new archi-
tectural patterns are added under the migration, which are not known by the
user, especially if the migration is automatic) and new architectural elements
(connectors and ports) which can impose new architecture constraints.

We take the example of an object-oriented application which is designed
with UML and implemented with java, and which represents an information
screen [2]. This application simulates the behavior of an information screen, a
software system which displays in a public transportation’s embedded screen, the
names of stations, the expected time at each station, etc. The ContentProvider
class implements methods which send text messages (instances of the Message
class), and time information obtained through Clock instances based on the data
returned by TimeZone instances. The DisplayManager is responsible for view-
ing the provided information through a Screen. The design of this application
imposed a set of architecture constraints that should be valid on the code. Some
of these constraints are presented in the following list.

– ContentProvider class should be a singleton class.
– Clock and Message classes should be kept in relation with the Content abstract

class (which is an inheritance relation in the OO application).
– The Observer pattern is instantiated in this application. We focus in this case study

on a part of this pattern, in which DisplayManager class should be in association
with ContentProvider to invoke methods returning the content.

When migrating an application, major changes of the architecture and then
the source code are performed. Some elements are removed, others are added, e.g.
dependencies between some elements are changed, etc. In fact, each paradigm
imposes its own architecture design principles. For example, in the component-
based paradigm, each component must hide its internal structure. It should
provide its services without exposing the classes that implement them. These
conditions should be taken into consideration. In addition, the works cited pre-
viously proposed an automatic migration of the applications, which generally
produces additional intermediate classes, methods and components in addition
to dependencies between them, which are seamless to developers. In this case,
rewriting the constraints in the target paradigm is difficult because architectural
elements constituting the target application can be unknown.

Our intuition is that our approach can allow to simplify the migration of
the architecture constraints of information screen object-oriented application
in component-based paradigm. To apply our approach, we have used software
migration works that are composed of two steps: architecture recovery then
code transformation. These works generate automatically a graph describing
the architecture of the target application. This graph contains labeled nodes
that may represent the classes, the methods, the attributes and the compo-
nents representing clusters of cohesive classes, in addition to edges that link
between nodes (method invocations, connectors between required/provided in-
terfaces, etc.). Besides, to make component interfaces operational, the graph is
extended by other nodes and edges that represent new classes, interfaces and at-
tributes that are generated to transform inheritance into the component-based
paradigm [2]. Fig 4. shows an excerpt of this graph.

Fig. 4. An excerpt of a graph representing the architecture recovered from the Infor-
mation Screen application

Based on this graph which contains architecture elements of the source ap-
plication and also new elements added by the migration, we have rewritten the
architecture constraints of the application. It is specified in the meta-model of
graphs shown in Fig. 1. For reasons of space limitation, Listing 1.5 presents only
an excerpt of this constraint.

1 context Graph inv :
2 l e t compo1 : Set (CompositeNode)=s e l f . nodes−>s e l e c t (n : Node | n . l a b e l s
3 −>e x i s t s (a : Label | a . name=’Component1 ’)) in
4 −− the same f o r compo2 , compo3 , compo4 and compo5
5 l e t content : Node= compo2 . simpleNodes−>s e l e c t (n : Node | n . l a b e l s
6 −>e x i s t s (a : Label | a . name=’Content ’))−>asOrderedSet ()−> f i r s t () in
7 −− other l e t exp r e s s i on s . . .
8 in
9 compo1 . outgoing−>one (e : Edge | e . t a r g e t=compo2) and

10 compo2 . ingoing−>f o rA l l (e1 , e2 | e1 . source=compo3 and e2 . source=compo4)
11 and . . . and
12 content . outgoing−>e x i s t s (e : Edge | e . t a r g e t=iContent) and
13 f a c t o ry . ingoing−>one (e : Edge | e . source=content) and
14 content . simpleNodes−>s e l e c t (n | n . outgoing−>e x i s t s (e | e . t a r g e t=iContent))
15 and . . . and
16 message . simpleNodes−>s e l e c t (n : Node | n . outgoing
17 −>e x i s t s (e : Edge | e . t a r g e t=iContent))

Listing 1.5. An excerpt of AC specification in graph meta-model

In this constraint, the let expressions search for the elements composing the
application, and which can be classes or components. compo1 is an example of
a variable which references the node named Component1. This component was
identified in the architecture recovery step; it is considered in this constraint as
a graph’s node.

4.1 Configuring the constraint by the feature model

There are nodes that represent classes (annotated by CP, Factory, Content and
TimeZone), attributes (dashed nodes in Fig 4), components (annotated by Com-
ponenti, i=[1..5]), etc. There are edges that represent connectors (thick dashed
edges), others represent inheritance (between classes inside components). There
are other nodes which are generated due to solutions kept to transform the in-
stantiation and inheritance. Some of these nodes are annotated with IContent,
Factory, this, super, ITimeZone. There are also edges which link them. These el-
ements did not exist in the architecture of the source application (object-oriented
information screen application). They imposed a new condition that consists in
respecting the factory pattern (which is instantiated in the architecture when
transforming an inheritance relation in the chosen migration solution in this case
study). The constraint will be configured in our feature model starting by the
first sub-constraint and so on as described in Section 3. We indicate for each
element its equivalent in the new architecture.

4.2 Transforming the constraint

Following the process explained in Section 3 by using the configured feature
model of our constraint and after making the constraint well specified in the
UML meta-model, we obtain as an excerpt of a result the following Listing.

1 context Component inv :
2 l e t internalCompo : Set (Component) . . . in
3 l e t compo1 : Component=internalCompo−>s e l e c t (n : Component |
4 c . name=’Component1 ’)−>asOrderedSet ()−> f i r s t () in
5 −− the other l e t exp r e s s i on s . . . in
6 compo1 . ownedPort−>one (e : Port | e . ownedConnector . end
7 −>f o rA l l (ee : ConnectorEnd | ee . ro l e−>i n c l ude s (compo2 . r o l e))) and
8 compo2 . ownedPort . ownedConnector−>f o rA l l (e1 , e2 |
9 compo3 . ro l e−>i n c l ude s (e1 . end . r o l e) and compo4 . r o l e

10 −>i n c l ude s (e2 . end . r o l e)) and
11 content . i n t e r f a c e−>e x i s t s (e : I n t e r f a c e | e . name=iContent) and
12 f a c t o ry . ownedAttribute−>one (e : Property | e . type=content)

Listing 1.6. An excerpt of AC specification in UML meta-model (Component
modeling)

This constraint declares first the internal component which composes the
target application. This implies modifications in the let expressions like in Line 3.
According to the configured feature diagram, the sub-constraints 1 and 2 (Lines 6
to 10) handle the relations between the generated components, and the remaining
of the constraint deals with classes. Indeed, the migration solution used in this
case study produces a component-based application in which components are
clusters of classes (a hybrid object/component target model). This is the reason
why the end of the architecture constraint in the Listing still treats classes. This
makes this example a multi-paradigm architecture constraint.

Discussion: The migration of the object-oriented information screen applica-
tion has produced new architecture elements and new architecture relations. This
is observable (in Fig. 4) by the production of 5 components, 6 classes and several
attributes. Therefore, a direct transformation of the application’s constraints is
obviously very complex because they do not treat the newly created architec-
tural elements. After specifying the constraints of the target application in the
graph meta-model, based on the generated graph from the architecture recovery
step, which should be done only once, the user can transform the constraints
after a simple configuration of the feature model. To migrate the application to
another paradigm, such as the service-oriented one, with the proposed approach
the developer can just configure again the feature model to transform her/his
constraints.

In addition, the usage of the graph meta-modeling and the feature model
facilitate constraint specification at an abstract level. In the long term, we imag-
ine the development of a catalog of architecture constraints written in the graph
meta-model. This catalog can be used in different scenarios. Suppose that we
use another software migration solution, like [1], which transforms inheritance
and instantiation from object-oriented to component-based paradigm by using
the Adapter and Facade patterns, in contrast to the one used in this case study
that is based on the Factory pattern. The architecture constraints formalizing
these two patterns (Adapter and Facade) can be checked out from the catalog,
then configured (by adding the necessary labels) and at last integrated in the
architecture constraint specification of the application.

5 Related Work

Vranic et al. proposed a method of multi-paradigm software development called
multi-paradigm design with feature modeling (MPDFM) [13]. Feature modeling
is used to model both an application and the solution domain. Solution domain
concepts (paradigms) are represented as features. These later (called paradigms)
are being selected in the feature model in order to obtain code skeleton. This
method is evaluated on the AspectJ paradigm as a solution domain. Like our
approach, this method uses feature modeling to express variabilities between
paradigm instances. But the term paradigm denotes a solution domain concept,
which corresponds to a programming language mechanism/extension. In our
approach, we used the common definition of a paradigm – a way of development.
This covers a larger spectrum.

Balarin et al. proposed a formalism for constraint specification at higher
levels of abstraction [3]. This formalism use mathematical theorems to remove
any ambiguity in its interpretation, and yet it allows quite simple and natural
specification of many typical constraints. In our work, we have proposed an ab-
stract specification level of constraints based on graphs. With graphs, we can
benefit from a visualization that simplifies the comprehensibility of any kind
of constraints. Constraint specification with graphs allows later transformation,
refinement and code generation which is very complex when using a pure math-
ematical formalism.

ACL [12] is a family of languages which allows the specification of constraints
associated to architecture decisions, at any stage of the component-based soft-
ware development process. Independently to any component-based model, archi-
tecture constraints can be specified with this language. The authors proposed a
generic meta-model that includes the common concepts found in existing com-
ponent models. This meta-model can be used to specify these constraints, which
are independent from component models. Then, through XML transformations,
constraints can be checked on a precise component model, like Corba. In contrast
to our work, this work deals with the component-based software development
paradigm only, and not the other paradigms. Their generic meta-model includes
common concepts in component-models and not variable concepts. In our work,
thanks to feature modeling, we specified common and variable concepts in de-
velopment paradigms and used this in constraint transformation.

Many works [4,10,9] handle the specification of constraints with graphs. These
works share the same context as our approach but their goal is different from
ours. They focus on, among authors, formalizing semantics in UML models and
transformations using ocl, verifying them on models. But no one considers ocl
architecture constraint specification. To the best of our knowledge, there is no
work that enables to make architecture constraints specified independently to
the paradigm used in the application development.

6 Conclusion

We presented in this paper an approach that enables the specification of multi-
paradigm architecture constraints. These constraints are written in an abstract
way independently from any paradigm. The key idea is to combine the usage of
OCL with a graph metamodel, and a feature model to implement our method.
The meta-model of graphs is used to specify the constraints and the feature
model is exploited to express paradigm variabilities. The constraints can be
translated to any specific paradigm, simply through the configuration of the
feature model.

As a future work, we plan to provide a way to express architecture constraints
at (yet) a more abstract level, with a natural language syntax, and then combine
it with this work and our previous approaches to provide a complete process.
A transformation method should be developed to transform the architecture
constraint specification from natural language into graph-based specification and
then into UML-based one, until source code generation according to a specific
paradigm. This will make the architecture constraint specification simpler, yet
keep it operational (checkable on source code and at runtime).

References

1. Allier, S., et al.: From object-oriented applications to component-oriented applica-
tions via component-oriented architecture. In: WICSA. pp. 214–223. IEEE (2011)

2. Alshara, Z., et al.: Migrating large object-oriented applications into component-
based ones. In: ACM SIGPLAN Notices. pp. 55–64. No. 3, ACM (2015)

3. Balarin, F., et al.: Constraints specification at higher levels of abstraction. In:
HLDVT Workshop. pp. 129–133. IEEE (2001)

4. BAUER, E.: Enhancing the dynamic meta modeling formalism and its eclipse-
based tool support with attributes, bachelor thesis. University of Paderborn (2008)

5. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-
tion and multilevel configuration of feature models. Software Process: Improvement
and Practice 10(2), 143–169 (2005)

6. Kallel, S., et al.: Automatic translation of ocl meta-level constraints into java meta-
programs. In: Proc. of SERA, Hammamet, Tunisia. Springer (May 2015)

7. Kallel, S., et al.: Generating reusable, searchable and executable ”architecture con-
straints as services”. Journal of Systems and Software 127, 91–108 (2017)

8. Pohl, K., et al.: Software product line engineering: foundations, principles and
techniques. Springer Science & Business Media (2005)

9. Radke, H., et al.: Translating essential ocl invariants to nested graph constraints
focusing on set operations: Long version. ICGT (2015)

10. Rutle, A., et al.: A formal approach to the specification and transformation of
constraints in mde. The Journal of Logic and Algebraic Programming 81(4), 422–
457 (2012)

11. Tibermacine, C.: Architecture constraints. Software Architecture 2 pp. 37–90
(2014)

12. Tibermacine, C., et al.: A family of languages for architecture constraint specifi-
cation. Journal of Systems and Softwre 83(5), 815–831 (2010)

13. Vranić, V.: Multi-paradigm design with feature modeling. Computer Science and
Information Systems 2(1), 79–102 (2005)

	Multi-Paradigm Architecture Constraint Specification and Configuration Based on Graphs and Feature Models
	Introduction
	Architecture Constraint Specification and Configuration
	A Meta-model of Graphs
	Feature models

	Multi-paradigm Architecture Constraints
	Constraint Configuration
	Constraint Transformation

	Case Study
	Configuring the constraint by the feature model
	Transforming the constraint

	Related Work
	Conclusion

