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Abstract—A large component and service-based software sys-
tem exists in different forms, as different variants targeting
different business needs and users. This kind of systems is
provided as a set of “independent” products and not as a
“single whole”. Developers use ad hoc mechanisms to manage
variability. However, for deriving new product variants that
are built upon existing ones, the presence of a single model
describing the architecture of the whole system with an explicit
specification of commonality and variability is of great interest.
Indeed, this enables them to see the invariant part of the
whole, on top of which new functionality can be built, in
addition to the different options they can use. We investigate
in this work the use of software product line reverse engineering
approaches, and in particular the framework named But4Reuse,
for recovering an architecture model that enables us to build
a Software Architecture Product Line (SAPL), from a set of
software variants. We propose a generic process for recovering an
architecture model of such a product line. We have instantiated
this process for the OSGi Java framework and experimented it
for building the architecture model of Eclipse IDE SPL. The
results of this experimentation showed that this process can
effectively reconstruct such an architecture model.

I. INTRODUCTION

Software Product Line (SPL) Engineering (SPLE) considers
the existence of a single model describing all the variants
that implement each architecture element. The particularity of
this “single” architecture is that it includes what is refereed
as a variability model (also called feature model), in which
variability and commonality are explicitly specified using high
level characteristics of the so-called features [1]. These are
then mapped to components, which are organized according
to the identified features. Product variants can be derived
(generated) by choosing the desired features, then SPL tools
choose and assemble the appropriate components mapped to
the selected features [1]. During recent years, multiple ap-
proaches have been proposed addressing SPL implementation,
or product derivation [1], [2]. However, there are many systems
that exist as several “independent” variants and not as a
“single whole”. Indeed, large component and service-based
software systems exist in different forms, as different variants
targeting different business needs and users. For example,
IDEs like Eclipse, exist as several variants targeting different
kinds of software engineers. These systems often use ad

hoc mechanisms to manage variability and they do not take
complete benefits from the SPLE framework.

For developers of new product variants that are built upon
existing ones, the presence of a single model describing the
architecture of the whole system with an explicit specification
of commonality and variability is of great interest. Indeed,
this enables to see the common part of the whole, on top
of which new functionality can be built, in addition to the
different options they can use.

This paper considers the challenge of analysing the source
code of existing variants of component and service-based
software systems to reverse-engineer a software architecture
following the SPLE framework that is common to all the
existing variants. We call this constructed architecture Software
Architecture Product Line (SAPL) which is different from the
Software Product Line Architecture (SPLA)[3]. Indeed, the
SPLA is the unique software architecture that supports the
software product line and common to all the product variants
members of the SPL. In other words, the product variants do
not have any specific architecture and their source code is only
built from the SPLA.

We defend a new vision by considering SAPL as a ref-
erence architecture starting from which the architecture of
each product variants can be derived. Indeed, each derived
software variant can have its own life. This life is regulated
by evolution needs whose origin often depends on the context
which is specific to each product. From the point of view of the
responsible on the maintenance of the product, the architecture
is a crucial document for two reasons: i) understand the
product before making the changes, and ii) notify changes
made on the product to keep its documentation compliant
with its implementation. But, SPLA raises problems during the
maintenance stage of a product on the two points mentioned
above: i) referring to a generic architecture to understand a
given product is a very difficult task. Knowing that understand-
ing is the most costly activity during maintenance, this will
generate considerable additional costs. ii) Modifying a generic
architecture, to take into account the modifications made on
one of its products, is a task that is not only difficult and error
prone, but also with unforeseeable consequences on the other
products.

We propose in this paper a process for SAPL-reverse-



engineering. This process extends the BUT4Reuse framework,
which is one of the most effective methods for SPL-reverse-
engineering [4], [5]. This framework was proposed as a generic
and extensible framework for SPL reverse-engineering. We ex-
tend BUT4Reuse to SAPL reverse-engineer large component
and service-based software systems starting from a collection
of their existing variants. The remaining of the paper is
organized as follows. In Section II, we expose our SAPL-
RE process. In Section III, we present an instantiation of the
process for the OSGi component model. We show the results
of our experiments in Section IV. We finally discuss the related
work in Section V, before concluding the paper in Section VI.

II. A GENERIC PROCESS FOR SAPL-REVERSE
ENGINEERING

Before presenting the proposed process for SAPL Reverse
Engineering and variant derivation, we first describe the meta-
model supported by our approach.

A. SAPL Metamodel for Component-Based Software Variants

Figure 1 depicts the defined SAPL meta-model which is
used for creating an architecture for a set of component-based
software variants. We have been inspired in the definition
of this meta-model by the feature meta-model in [6]. We
enriched it by adding component-based architecture elements.
An instance of this meta-model serves as a feature model that
represents the variability in a family of software product vari-
ants and a comprehensive architecture (modules / components)
that helps the developer to understand the structure of the SPL
features and the relations between them.

As our meta-model is used for representing the component-
based systems, it has been defined based on an abstract syntax
of a software component model. It is used to represent any
kind of component-based system such as OSGI, Spring, etc.
A generally accepted view of a software component is that it
is a software unit with provided capabilities and a set of re-
quirements. The provided capabilities (ProvidedElement
in our meta-model) can be operations performed by the com-
ponent. The requirements (RequireElement in our meta-
model) are needed by the component to produce the provided
capabilities.

B. SAPL-RE and Component-based Application derivation
process

Our objective in this paper is to analyze existing product
variants to extract an SAPL Architecture with an explicit
specification of commonality and variability. This architecture
can be used to generate new variants using the principles of
SPLE. This extraction is one of the most challenging research
directions identified in the SPL community. Many SPL extrac-
tion approaches have been proposed in the last years. Wesley
et al. [7] present a complete survey on these existing works. In
this paper, we propose to revisit this problem from the software
architecture (SA) perspective.

In this context, we identified five main challenges: 1) How
to extract a software architecture from the source code; 2) How

to compare the architecture variants to identify the common
part and find and name different features; 3) How to construct
the SAPL with an explicit specification of the variability at
an architectural level; 4) The software architecture can be
described using many views. The extraction should be generic
and extensible to support all these different views; 5) Once the
SAPL is constructed, one remaining challenge is related to the
derivation process. How the SAPL can be used to derive new
SA variants?

The overall process of our approach to tackle the identified
challenges is illustrated in Figure 2. This process is defined in
three main activities: 1) Reverse-Engineering of SA variants;
2) SAPL Reconstruction; and 3) Variants Derivation. In the
following, we describe each activity.

1) Reverse-Engineering of SA Variants: The first activity
in our approach is to use reverse-engineering techniques to
extract a software architecture variant from the source code of
each software variant. As we will see in the next section, the
reverse-engineering of SAs from eclipse variants is based on
the analysis of the configuration files and the source code of
the different plugins.

2) SAPL Construction: In this activity, the different SA
variants are analyzed and compared to identify the common
part and the different features. As illustrated in Figure 2, this
activity extends the BUT4Reuse framework to support archi-
tectural artefacts. Indeed, BUT4Reuse [4], [5] was proposed as
a generic and extensible framework to identify features from a
set of similar artifacts. It is extensible by enabling to add dif-
ferent concrete techniques or algorithms for the relevant steps
of feature identification, mining feature constraints, extracting
reusable assets, synthesizing and visualizing feature models.

To support the different types of artifacts, and enabling
extensibility, BUT4Reuse relies on adapters for the different
artifact types. These adapters are implemented as the main
components of the framework. An adapter is responsible for
decomposing each artifact type into the constituting elements,
and for defining how a set of elements should be constructed
to create a reusable asset. Designing an adapter for a given
artifact type requires three main tasks:

• Element identification. The first step is to identify the
Elements that compose an artifact. This will define the
granularity of the elements in a given artifact type. For
the same artifact type, we can select from coarse to fine
granularity (e.g., package level versus statement level for
source code).

• Similarity metrics definition. This task defines a simi-
larity metric between any pair of Elements. An element
should be able to compare its definition with the one of
another element and return as output a value ranging from
zero (completely different) to one (identical).

• Structural dependencies definition. The purpose of this
task is to identify Structural Dependencies for the Ele-
ments. When the artifact type is structured, the elements
will have containment relations. In the case of architec-
ture artifacts, relations between interfaces, components
and plugins usually capture this information.



Fig. 1. SAPL Metamodel for Component-Based Software Variants

In this paper, we extend BUT4Reuse by proposing a new
adapter related to software architectures. In addition to allow
comparing software architectures, this new adapter is designed
with a set of parameters to consider different architectural
views (services, interfaces, packages, extensions, etc).

Once the adapter is implemented, SAPL construction fol-
lows four sub-activities as illustrated in Figure 2.

a) Decomposition in Architectural Elements: The first
step takes as input a collection of architecture variants that are
obtained from the reverse-engineering activity. It decomposes
each variant as a set of Architectural Elements (AEs). The
computed AEs can be of different types depending on the
considered view.

b) Block Identification and Feature Naming: This step
reuses algorithms implemented in BUT4Reuse which auto-
matically identify sets of AEs that correspond to the dis-
tinguishable features from the SA variants. These sets of
AEs are named Blocks. In this paper, we reused especially
the algorithm, called Interdependent Elements that formalize
block identification using class equivalences. Once blocks are
identified, the next step is a semi-automatic process where
domain experts manually review the elements from the identi-
fied blocks to map them with the functionalities (i.e., features)
of the system. BUT4Reuse integrates what is called Vari-
Cloud [8], an approach that analyzes the elements inside each
block and extracts words that help domain experts to identify
features. VariCloud uses information retrieval techniques, such
as TF-IDF, to analyze the text describing elements inside
blocks. The descriptions used by BUT4Reuse to build word
clouds are thus provided by the specific adapter. As we will
see in the next section, for our adapter, words correspond to
the names of packages, interfaces and plugins.

c) Dependencies Identification: During this step, the
approach identifies the dependencies between the different
blocks. BUT4Reuse uses the dependencies defined within the
adapter to identify dependencies between blocks.

d) Multi-View SAPL Constrcution: A software architec-
ture of a large system is a complex entity; it cannot be
presented in a single view. One of the most important concepts
associated with software architectures are views. A view is
the result of applying a viewpoint to a particular system
of interest (for instance, service-, interface-, and extension-
oriented views). In this step of our process, we enable the
developer to construct a muti-view SAPL. These views can
help and assist the developer to understand progressively the
SPL.

3) Variants Derivation: In this step, the developer can
select starting from the recovered SAPL a set of features
that meet her/his requirements for deriving the architecture
of the new variant. We provide a graphical tool to visualize
the derived architecture. Once the developer analyzed and
understood this architecture, she/he can derive the new product
as a new variant.

III. INSTANTIATION OF THE PROCESS FOR OSGI
COMPONENT/SERVICE MODEL

We have instantiated the previous process for the OSGi
Java framework, in order to analyze applications like Eclipse.
The OSGi specification defines a component model and a
framework for creating highly modular Java systems [9].
Eclipse-based applications run on top of Equinox which is
the reference implementation of the OSGi specification. It
is a collection of similar software products that share a set
of software assets. It offers a set of “releases” where each
one is a large-sized Java application composed of hundreds to
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Fig. 2. Proposed SAPL-Reverse Engineering Process

thousands of components, registering and consuming hundreds
of services. This complex structure requires a considerable
effort to understand all dependencies when building a new
product. The default Eclipse releases are predefined for target-
ing specific developer needs. Currently, if a developer wants
to create a customized release, she/he has to select one of the
default releases1 (for instance, IDE for C/C++ Developers)
and than manually install new software which meets her/his
requirements. In this paper, we consider Eclipse releases as
product variants and we aim to adopt the SAPL approach
in order to be able to develop efficiently a personalized
Eclipse variant. Before presenting the implementation details,
we introduce the OSGi Meta-Model.

A. OSGi Meta-model

Figure 3 presents our metamodel for the OSGi SAPL. It
is an adaptation of the meta-model in Figure 1 for the OSGi
component model. A component in OSGi is known as a bundle
or a plugin (PluginElement in this metamodel) which
packages a set of Java types, resources and a manifest file.
Plugin dependencies are expressed as manifest headers that
declare requirements and capabilities. The “import-package”
header is used to express a plugin’s dependency upon packages
that are exported by other plugins. The “require-bundle” is
used when a plugin requires another plugin. The first plugin
has access to all the exported packages of the second. The
manifest file declares also what are the packages that are
externally visible using “export-package” (the remaining pack-
ages are all encapsulated). Furthermore, the Java interfaces

1In https://www.eclipse.org/downloads/packages/release

that are present in the exported and imported packages are
considered respectively as the plugin’s provided and required
interfaces (represented by ProvidedInterfaceElement
and RequiredInterfaceElement).

Besides, the OSGi framework introduces a service-oriented
programming model which is a publish, find and bind model.
The registered services with the OSGi Service Registry
are represented by the RegisteredServiceElement,
while a consumed service by a plugin are represented by a
ConsumedServiceElement.

Services are not the only collaboration way between plugins.
Equinox provides a means of facilitating inter-plugin collab-
oration via Extension Registry. Plugins open them-
selves for extension or configuration by declaring extension
points (ExtensionPointElement in this metamodel) and
defining contracts. Other plugins contribute by developing
extensions (ExtensionElement in this metamodel) using
existing extension points.

Our OSGi meta-model allows to produce several SA views
that represent different kinds of plug-in’s capabilities and
requirements. The supported architecture views in this meta-
model are: interface, service, package, and extension views. Of
course these views are not orthogonal, there are intersections
between each other. But, nobody would be able to understand
the whole system by analyzing all the views together. Thanks
to this meta-model, developers can progressively understand
the system by analyzing each architecture view separately.

https://www.eclipse.org/downloads/packages/release


Fig. 3. An OSGi Meta-Model

B. Reverse Engineering of the Eclipse Variants

For recovering the SA variants, we analyze the Eclipse
artifacts as follows: i) for each variant, we create a
compositeElement with the name of the variant. ii)
for each plug-in, we create a PluginElement with the
plug-in’s characteristics. iii) we parse the manifest file of
each plug-in to identify the exported and imported pack-
age elements. iv) the provided and required interface el-
ements are identified by analyzing the Java source code
and Bytecode in the exported and imported package folders.
iv) the extension and extension-point elements are identified
by parsing the “plugin.xml” files of each plug-in. v)
Finally, the programmatically registered and consumed ser-
vices are identified by parsing the source code and byte-
code of each class in the plug-in. We parse here the fol-
lowing statements: <context>.registerService(..)
and <context>.getServiceReference(..) to cap-
ture the type of classes that are instantiated and registered.
In addition, the services that are declared with DS framework
are identified by parsing the “OSGI-INF/component.xml” files.
Before saving the architecture, we create the connectors to link
the created elements.

C. But4Reuse Adapter for Eclipse-Software Architecture Vari-
ants

In this section, we present our adapter for Eclipse-SA
variants2.

We have followed the generic activities which are defined
in [5] to implement this adapter :

i) Elements identification: to compare and
analyze several product variants, But4Reuse divides

2For more details see: http://tiny.cc/wuwv7y

each variant into a set of elements. Our elements
are: PluginElement, ServiceElement,
PackageElement, InterfaceElement,
ExtensionElement, and ExtensionPointElement.
To identify them, our adapter loads and parses the input
Eclipse SA variants and performs a mapping of the elements
in the input SAs with these elements.

ii) Similarity strategy: It consists of comparing all pairs
of elements of the same kind. Two elements are similar if
they have the same name and exactly the same sub-elements.
For example, i) two plugin elements are similar, if they have
the same symbolic names, and their extension elements and
interface elements are also similar. ii) Two interface elements
are similar, if they have the same qualified names and contain
exactly the same operations (method signatures).

iii) Structural dependencies identification: A plugin ele-
ment structurally depends on the its required plugins. These
dependencies are identified starting from the different outgoing
connectors (service, interface, extension, or package connec-
tors) of this plugin element.

iv) Block identification and feature naming: We used
the interdependent elements algorithm in the identification
process. Once the blocks are identified they have names like
block 0, block 1, etc. They are then automatically renamed
using VariClouds [8], in order to give them more representative
names.

D. Multi-views SAPL Construction for Eclipse SA Variants

The generation of the SAPL is implemented as a separate
plug-in. This plug-in provides an extension-point for other
developers to contribute by developing extensions for gen-
erating SAPL for other kinds of component-based software
product lines, such as applications built with Java 9+ module

http://tiny.cc/wuwv7y


Fig. 4. Example of SAPL for three Eclipse Variants

system. This plug-in provides an editor that allows to visualize
graphically the SAPL. First, the SAPL can be visualized as
a compact representation of all the assets of the SAPL in
terms of “features”. Second, we enable the developer to click
twice on a given feature in order to visualize its architecture,
which can be opened in another editor. In this way, instead of
visualizing the whole SAPL in one screen, we assist the de-
veloper to understand features progressively. Figure 4 depicts
the generated SAPL starting from three Eclipse variants which
are IDE for Java, IDE RCP and RAP, and IDE for Java and
Report Developers. The block “eclipse core equinox”
is common to the three variants. The edge with a dashed line
represents a discovered require dependency.

Besides, Figure 5 shows an excerpt of the architecture
of the block “eclipse birt jst”. As we can see, the
component “BIRT Emitter Conf. Plug-in” provides
an extension-point which is extended by several plugins. In this
architecture, the set of provided / required elements that are
not connected to others components, represent elements that
are connected to components located in other features. Our
tool enables the developers to merge two or several features
in a single architecture to visualize the structural dependencies
between them.

E. Architecture and Product Derivation

In order to create a new Eclipse variant, the developer can
use the featureIDE tool for configuring manually the SAPL
and select a set of desired features among the identified list.
Before deriving the variant, we offer to the developer a way
for mapping this configuration into an architecture model for
this variant. This architecture model represents the structure
of selected features and their relationships without variability
information, which is useful for the understanding purpose.
At the end, the new variant can be derived by collecting the
extracted software assets which correspond to the selected
features.

IV. EVALUATION OF THE PROCESS

In order to evaluate the performance of our approach, we
have conducted a set of experiments on set of Eclipse releases
(product variants). The selected variants are the 12 Eclipse
IDE Kepler SR2 releases 3. The size of these variants varies
from 110 to 323 MB and the number of components varies
from 213 to 892 components.

In this experiment, we have addressed the following re-
search questions:

• RQ1: What is the performance of our SAPL reverse
engineering process?

• RQ2: What is the additional cost induced by the proposed
Muti-Views SAPL construction?

• RQ3: What is the performance of block identification and
feature naming?

• RQ4: What is the additional cost induced by the variants
derivation using our approach?

A. Evaluation Protocol

a) : For answering RQ1, we have measured the accuracy
of SAPL recovery process and the SA / product derivation. We
have followed these steps:

1) We have used our approach to recover the SAPL
from the candidate variants. Next, we have used
FeatureIDE Framework4 for configuring a new vari-
ant in which we have selected Xtext feature and all
the features that are identified from Eclipse Modeling
variant.

2) After that, we have used our tool to derive the SA
corresponding to this configuration.

3) Without our approach, we installed manually the Xtext
in the Eclipse Modeling variant (click on Help->Install
Modeling Components->set Xtext...).

4) At the end, we have used the Architecture2Architecture
(a2a) [10] metric to measure the architectural change
between the derived SA and the SA of the variant

3downloaded from: https://bit.ly/2uylkT8
4FeatureIDE Framework: http://www.featureide.com/

https://bit.ly/2uylkT8
http://www.featureide.com/


Fig. 5. Excerpt of the SA of “eclipse birt jst” Block (Extension and Package view)

that is created manually (in step 3). The architectural
change refers to the addition, removal, and modification
of components and their elements.

a2a(Ai, Aj) = (1− mto(Ai, Aj)

aco(Ai) + aco(Aj)
∗ 100% (1)

where, mto(Ai, Aj) is the number of operations needed
to transform architecture Ai into Aj and aco(Ai) is the
number of operations needed to create architecture Ai

from a “null” architecture.

b) : For answering RQ2, we have used a set of measures
for comparing the size and complexity of the recovered SAPL
views using our process.

c) : For answering RQ3, we have measured the
precision and recall on the results of block identi-
fication process. Indeed, we have compared the content of
each identified block with the content of Eclipse features
(obtained from “features” folders of the input variants). The
evaluation is performed by comparing the plugins that belong
to an identified block with plugins that are present in the
“feature.xml” files of the common features folders of the
artifacts that contain this block. To evaluate block naming, we
have compared our block names with names that are manually
given by three domain experts with more than ten years of
experience working on Eclipse development (see [4]).

d) : For answering RQ4, we have compared the size and
the number of components in “Block 0” (which is considered
as the smallest variant that can be derived using our approach)
with the size and number of components of the smallest input
variant. This allows us to see to what extent is efficient the
variant derivation using our approach.

B. Results and Discussion

1) Experiment results for RQ1: : We have used the
LoongFMR implementation5 of the a2a metric for comparing
the architecture of the variant that is created manually with the
architecture that is derived using our approach. The obtained
value is a2a = 87%. This value can be considered as a good
result that indicates that the two architectures are almost the
same.

To understand why there is a little difference between
them, we compared the new added plugins after the man-
ual installation with the plugins in the architecture of the
identified feature “eclipse xtext”. We observed that 56
plugins (without computing plugin sources) are added to the
variant after the manual installation of Xtext, while only 43
plugins are found in the architecture of the identified feature
“eclipse xtext”. In fact, all these 43 plugins belong
to the manually added plugins. By analyzing the remaining
13 plugins, either they represent plugins with older versions
which already exist in the default variant, or they already exist
but they are located in another identified feature where they
must belong (for example, the plugin “com.google.guava” is
located in the feature “google common collect”). This
makes our variant more consistent than the variant that is
created manually.

In addition, we have compared the size of the two variants.
The size of the Eclipse variant that is created manually
is 256 MB, while the derived variant has a size of 268
MB. This is due to the fact that in the derived variant
there are some plugins (such as ch.qos.logback.slf4j) that
have been added for meeting the constraints that are dis-
covered using But4Reuse. Example of these constraints are:
“eclipse ecore implies eclipse Maven apache”

5Downloded from:https://github.com/csytang/LoongFMR

https://github.com/csytang/LoongFMR


and “Maven apache implies logback qos”, where the
feature “eclipse ecore” is required for installing Xtext.

2) Experiment results for RQ2: In Table I the recovered
SAPL views are compared in size with the whole SAPL (all
views together). First, we can see that the number of elements
(per block or per artifact) in each SAPL view is much less
than the number elements in the whole SAPL. This confirms
our intuition that focusing on a single view allows to reduce
the size and complexity of the SAPL. We can remark also
that the number of elements in the extension view is less
than the number of elements in the other views. This supports
our idea that the developer needs to start with an architecture
view that contains a few elements (only the plugins and their
extensions). After that, (s)he can pass to another view with
more information about other kinds of dependencies.

3) Experiment results for RQ3: We have found 971 “fea-
tures” folders in all the chosen variants which is larger than
the number of identified blocks. This is due to the fact that in
our adapter, several features are merged into a single block.
We depicted in Table II the obtained values of precision
and recall. As we can see, we have obtained good values of
recall and precision for Block 0. This means that, our tool
can create an operational and minimal variant with an error
rate almost equal to zero.

For the other blocks, we also obtained quite good scores,
especially when we recover the SAPL with the Interface view.
We can observe that the median scores are quite low compared
to the Block 0 scores, but, they are relatively good which
the effectiveness of our approach. This decrease compared
to Block 0 is explained by the fact that there are some
blocks contain a few number of plugins (sometimes one or
two plugins), and they are not present in the corresponding
Eclipse features. Hence, we obtained low scores of precision
and recall which decreases the median scores. But, we can
observe from the scores that the number of these blocks is
very low.

Besides, we present in Figure 6 the 62 identified blocks
(for the interface view). The common part between all the
variants (in blue color) represents the “Block 0” that is named
“eclipse core equinox”. This represents the core com-
ponents that must exist in each variant. We note that all block
names in this figure are assigned automatically. Comparing
them with names given by the experts, more than 70% of
names are the same, thanks to the word cloud that is used to
name these blocks starting from words that are extracted from
the elements names.

4) Experiment results for RQ4: After appying our SAPL
reverse engineering process on the input variants, we have
derived new variant with only the “Block 0”. We have found
that the size and the number of components in this block
is respectively 62.6 MB and 193 components. This is much
less than the size and the number of components of the
smallest input variant (IDE for Testers). This means that the
minimalist Eclipse variant that can be derived starting from
the input variants can have only this size. This demonstrates
the efficiency of our process.

V. RELATED WORK

Wesley et al. [7] present a complete survey on the existing
SPLE approaches. Three ways for adopting SPLE: (i) from
scratch, by applying a complete domain analysis and variabil-
ity management before application engineering (ii) by creating
and updating the SPL when every new product appears; and
(iii) by using an extractive approach, which takes existing
products as the basis for the core assets. But4Reuse is a
framework for extractive SPL adoption. Several extensions
of BUT4Reuse have already been developed and published
in [11], [12], [13]. Martinez et al. [11] proposed an approach
for automating the extraction of model-based SPL from model
variants. Once features identified and constraints among them
are detected the model variants are refactored to conform to
an SPL approach. [13] proposed a SPL extraction approach
from Bytecode based applications.

Besides, software architecture recovery (SAR) is a chal-
lenging problem, and several works in the literature have
already proposed contributions to solve it (e.g., works cited
in [14], [10], [15]). Most of these approaches are proposed
for a single software architecture recovery. Lutellier et al.
[10] present a comparative analysis of six SAR techniques.
Maqbool et al. [15] presented a review of the hierarchical
clustering techniques. In the last decade several works had
proposed approaches that aim to recover component-/service-
oriented architectures from existing systems. For example,
the works in [16] and [17] are based on the definition of
a correspondence model between the code elements and the
architectural concepts. In [18], [19] a component is considered
as a group of classes collaborating to provide a system
function. Seriai et al. in [20] used FCA to perform the
component interface identification. The authors in [21] recover
BPMN models starting from service oriented systems that
have been generated from web applications. Some works have
been proposed to recover software architecture at run-time. For
instance, [22] presented an approach for recovering at run-
time software architectures from component based systems
and changing the system via manipulating the recovered SA.
The authors in [23] have proposed an approach to recover
at run-time architectures of a large-sized component/service
oriented systems by considering some specific use cases in
order to reduce the size of the recovered architectures.

In our approach, we assume that the SAs of the product
variants can already exist and considered as inputs for our
SAPL-RE process. Otherwise, we can use one of the existing
approaches for recovering them. However, the organization
of features in the recovered SPLA is based on the result
of the blocks identification and constraints discovering. The
But4Reue framework allows to extend easily this activity by
implementing one of the existing approaches such as FCA.

Besides, few works were proposed in the literature that
aim to recover SPLA. [24] presented a mapping study of
the existing SPLA recovery approaches. Shatnawi et al. [25]
have proposed a process for recovering software product line
architectures of a family of object-oriented product variants.



TABLE I
VALUES OF SIZE FOR THE RECOVERED SAPL VIEWS vs WHOLE SAPL

SAPL # of
Blocks

Mean of Elem.
per Artifact

Median of Elem.
per Artifact

Mean of Elem.
per Block

Median of Elem.
per Block

Extension 67 3144 2848 51 7
Package 67 7942 7557 208 30
Service 61 54861 12174 29 8

Interface 62 8492 7896 376 57
Whole SAPL 77 74439 30475 664 102

TABLE II
PRECISION AND RECALL CALCULATION FOR THE BLOCK IDENTIFICATION STEP

Extension View Package View Service View Interface View

Precision Recall Precision Recall Precision Recall Precision Recall
Block 0 0.99 0.83 0.99 0.83 0.99 0.83 0.99 0.83
Median 0.76 0.68 0.76 0.68 0.91 0.75 0.94 0.69

Fig. 6. Blocks per Variant: Interface View

First, they used FCA to migrate the object-oriented systems
to a set of component variants. Each variant is a set of
similar components that share the majority of their classes and
dependencies. Second, they used FCA to identify mandatory
and optional components. At the end, they build the SPLA as
a feature model where the dependencies between component
variants are based on relations of type alternative, OR, AND,
require and exclude. The authors in [26] have proposed an
approach for recovering SPLA from software product variants.
They identify mandatory components and variation points of
components as a main step. They analyze commonality and
variability across product variants in terms of features.

Compared to our work, the recovered SAPL using our
approach is both a feature model and a complete architecture
that shows all the architectural connections between compo-
nents. In addition, our inputs can be system variants or SA
variants. The variability is identified starting from the elements
in the input architectures. Wille et al. [27] have proposed a

variability mining approach for Technical Architecture (TA)
variants. They eliminate from the input TAs the unnecessary
information. The components from the TAs are clustered by
filtering them based on their structural relations to eliminate
unrealistic variability. Unfortunately, their approach can not
recover an architecture describing all the variants. On the other
hand, our solution can derive new SAs and product variants
starting form the reconstructed SAPL. The proposed process is
generic and can be applied for many component based-systems
(or -software architectures).

VI. CONCLUSION

Recovering architecture models of large-sized software
products is an important activity in software maintenance and
evolution. These architecture models offer a good documenta-
tion to understand the software product before changing it. For
large software products with several product variants, these
models become of greater interest since they enable also to



choose the most appropriate variant. SPL Reverse Engineering
(SPL-RE) processes enable to recover models with a better
structure, since they factorize the variable part in the product
variants and enable to see the variability points.

In our work we focused on component- and service-based
systems and proposed in this paper: i) a (meta-)model for
architectures of component/service-based software product
lines, ii) the design of an adapter of a generic SPL-RE
process (But4Reuse) for building architecture models (SAPL
models) by analyzing product variants, iii) an implementation
of this adapter specific to OSGi-based applications, and iv) an
experimentation of this recovery process on a set of Eclipse
releases. The experimentation that we conducted enabled us
to evaluate the efficiency of the process in identifying correct
features, compared to those identified/built by experts. In
addition, it enabled us to measure the accuracy of architectures
of products derived from the recovered SAPL.

As perspectives to this work, we plan to study the enrich-
ment of SPL reverse engineering of large component/service-
based systems by including a learning module which exploits
existing SPLs and their variants/features. In addition, we
envisage the instantiation of the process for other compo-
nent/service frameworks, or just investigate its use with Java
modules for exploring variability in Java SE, EE, ME, TV,
etc. From a tool-support point of view, we intend to enrich
our implementation by capabilities such as software product
configuration and derivation to complete the “loop”.
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