
Service Oriented Computing and Applications
(will be inserted by the editor)

A deep learning approach for collaborative prediction of Web Service
QoS

Mohammed Ismail SMAHI*,1,2 · Fethallah HADJILA1 · Chouki TIBERMACINE2 ·
Abdelkrim BENAMAR1

Received: 3 January 2020

Abstract Web services is the corner stone of many crucial
domains, such as cloud computing and the Internet of things.
In this context, QoS prediction for Web services is a highly
important and challenging issue. In fact, it allows for build-
ing value-added processes as compositions and workflows
of services. Current QoS prediction approaches, such as col-
laborative filtering methods, mainly suffer from the prob-
lems of data sparsity and cold-start obstacles. In addition,
previous studies have not explored in depth the impact of
geographical characteristics of services/users and QoS rat-
ing on the prediction problem. To address these difficulties,
we propose a deep learning-based approach for QoS pre-
diction. The main idea consists of combining a matrix fac-
torization model based on a deep auto-encoder (DAE) and
a clustering technique based on the geographical character-
istics to improve the prediction effectiveness. The overall
method proceeds as follows: First, we cluster the QoS data
using a self-organizing map that incorporates the knowledge
of geographical neighborhoods; by doing so, we allow for
the reduction of the data sparsity while preserving the topol-
ogy of input data. Besides that, the clustering step effectively
handles the cold start problem. Second, for each cluster, we
train a DAE that minimizes the squared loss between the
ground truth QoS and the predicted one. Third, the missing

Mohammed Ismail SMAHI*

E-mail: mohamedismail.smahi@univ-tlemcen.dz*

Fethallah HADJILA
E-mail: f hadjila@univ-tlemcen.dz

Chouki TIBERMACINE
E-mail: chouki.tibermacine@lirmm.fr

Abdelkrim BENAMAR
E-mail: a benamar@univ-tlemcen.dz

1LRIT, Computer Science Department, University of Tlemcen,
Algeria
2LIRMM, University of Montpellier and CNRS, France

QoS of a new service is predicted using the trained DAE re-
lated to the closest cluster. To evaluate the effectiveness and
robustness of our approach, we conducted a comprehensive
set of experiments based on a real-world Web service QoS
data set. The experimental results showed that our method
achieves a better prediction performance compared to sev-
eral state-of-the-art methods.

Keywords Web Service · QoS Prediction · Deep Autoen-
coder · Self-Organizing Map.

1 Introduction

Quality of service (QoS) is an important factor for perform-
ing Web service selection and recommendation over the in-
ternet [19,48,53]. In this context, QoS prediction consti-
tutes a crucial step in building a recommendation system.
In practice, QoS values of services constantly change due
to environmental constraints (e.g., IT infrastructure and net-
work load), and this fact makes QoS prediction a challeng-
ing task [7]. In addition, we observe that end users may have
invoked only a small number of web services; consequently,
the user-service QoS data are likely to be sparse [20], which
may have a significant impact on the accuracy of QoS pre-
diction.

To address the QoS prediction issue, many existing works
have leveraged Collaborative Filtering (CF) [1] to infer the
missing data. These approaches are based on the exploration
of the historical QoS data of Web services recorded from
previous interactions. They typically utilize a user-service
QoS matrix to model all historical QoS records. The cur-
rent CF methods can be divided into two classes: memory-
based [6,12,52] and model-based [53,26]. Memory-based
approaches consist of two stages: the first one computes the
similarity between services (or users) through the use of
QoS data, while the second stage computes the missing QoS

2 M, I. Smahi et al.

using average weighting of the known values of similar ser-
vices (or users). Model-based approaches learn a set of la-
tent factors from the QoS matrix and make predictions. Ma-
trix Factorization (MF) techniques are the most represen-
tative approaches of this class. Despite the advantages and
the ease of use of CF methods, most of them do not han-
dle contextual attributes (e.g., geographical information of
users/services) to enhance the accuracy of prediction; ad-
ditionally, they suffer from the cold-start problem [42]. The
cold-start problem rises when we want to predict the QoS for
new services that have no past QoS records or only few QoS
data. The sparsity of the QoS matrix also limits the effective-
ness of CF methods and results in a poor accuracy perfor-
mance. To address the above mentioned issues, we propose
an extended CF-based approach that uses both Matrix Fac-
torization (MF) and clustering to handle data sparsity and
QoS fluctuations.

This paper is an extension and enhancement of a work
originally presented in the European Conference on Service-
Oriented and Cloud Computing [36]. The proposed approach
extends our previous work through the use of both a DAE
and clustering. The contributions of this paper are summa-
rized as follows:

(A) To consolidate the related works, we added new approaches
that involve deep learning methods, matrix factorization
techniques, and contextual recommendation.

(B) To face the QoS sparsity issue, we perform a cluster-
ing of the original QoS matrix and yield a set of sub-
matrices that share a subset of contextual characteristics
(such as geographic information or service providers).
After that, each DAE is trained on a single sub-matrix.
The clustering step is realized using a Self-Organizing
Map (SOM) [25]. This choice is motivated by the ability
of SOM to preserve the topological properties of QoS
data (see the motivation Section for more details). The
learned neurons of the map are grouped using K-means
to create more representative clusters. We notice that the
use of SOM allows us to address the cold-start problem
(i.e., estimation of QoS for new services or new users).
More precisely, we initialize the new service (or new
user) with the QoS data of the closest cluster-heads (that
share the same contextual attributes or the nearest ones).

(C) To improve the optimization results, the different hyper-
parameters of DAEs are fine-tuned through the use of
k-fold cross-validation [32].

(D) To reduce the model sensitivity to over-fitting which can
harm the final performances, we add a random noise to
the input data during the training phase (i.e., we use a de-
noising autoencoder [39] which is a variant of the stan-
dard autoencoder).

(E) To evaluate the effectiveness and the accuracy of the pro-
posed DAE, we perform several experiments by adopt-
ing different densities and different hyper-parameters.

The remainder of the paper is structured as follows. We
first introduce in Section 2 some background material on
both autoencoders and Self Organizing Maps. In Section 3,
we present the proposed method for Web service QoS pre-
diction. After that, we show in Section 4 the experiment de-
sign, the results and the analysis. In Section 5, we present
the related works. Finally in Section 6, we summarize the
contribution of the paper and put forward our future work.

2 Background

We introduce the basic background material on both autoen-
coders and Self Organizing Maps.

2.1 Autoencoders

The autoencoder [33,18] is an unsupervised neural network.
It allows to reproduce the original data from the input layer
to the output layer through one or several hidden layers. This
unsupervised neural network learns a representation of the
inputs that yields the least deformation. Typically, the mech-
anism consists of the encoding data from the input layer un-
til a central hidden layer, called latent factors layer, through
one or more hidden layers. After that, the decoding of the
central layer data is performed by a set of decoding layers
(having the same size as in the encoding layers).

x0

x1

x2

xD

...

x̂0

x̂1

x̂2

x̂D

...

...
...in

pu
t output

Encoder Decoder

Latent
Factors

Fig. 1 Deep Autoencoder architecture.

As can be seen in Figure 1, the autoencoder’s architec-
ture consists of three parts: the encoder, code (or latent fac-
tors) and decoder. The latent factors part represents a sin-
gle layer of artificial neural network (ANN) where the size
should be less than the input layer (which is denoted by K).
This hidden layer must be compact and meaningful. The en-
coder part is represented by a fully connected feed-forward
non recurrent ANN. It can be viewed as an encoding func-
tion Fe that takes a vector x∈RD as input data and maps it to
a hidden representation z ∈ RK (z = Fe(x)). Finally, the de-
coder part is the reverse mapping of the encoder operation.
It is a fully connected feed-forward non recurrent ANN. It is
considered as a decoding function Fd that takes the resulting
latent representation z then maps it back to a reconstructed
vector x̂ ∈ RD (x̂ = Fd(z)). Thus, the output will be:

x̂ = Fd(Fe(x)) (1)

A deep learning approach for collaborative prediction of Web Service QoS 3

If we assume a basic version of the autoencoder (which
uses one hidden layer), the encoding decoding functions will
be defined as:

x̂ = σ
′(W ′z+b′) with z = σ(Wx+b) (2)

such that: σ and σ ′ are transfer functions which can be linear
or non-linear1. W and W ′ are two weight matrices having the
dimensions (K,D) and (D,K) respectively. b and b′ are the
offset vectors with K and D dimensions respectively.

In terms of learning, the autoencoder is trained to mini-
mize the dissimilarity function (or the reconstruction error)

argmin
W,W ′,b,b′

n

∑
i=1

δ (xi,Fd(Fe(xi))) (3)

where δ is a dissimilarity function, such as the square loss
or the cross entropy loss, xi is an example that belongs to the
learning dataset and n is the size of the dataset.

2.2 Denoising Autoencoders

The denoising autoencoder [39,15] is a variant version of
the basic autoencoder presented above. This kind of autoen-
coder aims to tackle the noise problem. The goal is to recon-
struct the original input data using a corrupted version of
it. Note that several corruption types can be applied on the
input data, such as: (a) Gaussian noise: where an isotropic
Gaussian noise is added to a subset of the input x. (b) Mask-
ing noise: A fraction v of the original input x is randomly
forced to zero. (c) Salt-and-pepper noise: A fraction v of x is
randomly set to their minimum or maximum possible value.

In terms of learning, the denoising autoencoder is still
trained to minimize the same reconstruction error between
the cleaned input and its reconstruction:

argmin
W,W ′,b,b′

n

∑
i=1

δ (xi,Fd(Fe(x′i))) (4)

where x′ is a copy of x that has been corrupted by some
kind of noise cited above. In this case, the denoising training
forces the encoding function Fe and decoding function Fd to
implicitly learn the structure of the original input data [3].

2.3 Self-Organizing Map

Self-Organizing Map (SOM) or Kohonen feature map [25]
is a kind of unsupervised neural network based on a com-
petitive learning paradigm. This method is usually used in
performing tasks such as clustering, outlier detection and
dimensionality reduction [24]. The objective of this network
is to reduce a high-dimensional input data space into a low-
dimensional map of neurons (usually two dimensions) through
the use of self-organizing neural networks while preserving
their topological structure.

1 The autoencoder is called linear if the transfer functions are linear,
otherwise it is non-linear.

xdim

ydim

. . .

neuroni

input layer

x1

xn

Fig. 2 Kohonen feature map network. (The connections between the
input and output layers indicate the relationships between the input
and output vectors.)

2.3.1 Self-Organizing Map principles

In terms of architecture (see Figure 2), the network is com-
posed of two layers: the input layer and the map layer; the
layers are fully connected. The map layer comprises a set of
neurons M = {n1, . . . ,nk} arranged in a two l-dimensional
map of neurons (the map is usually represented graphically
as a rectangle with k neurons (k = xdim×ydim)). Each neuron
has an associated weight vector W known as the code-book.
The code-book describes the typical data profile at a given
training step t, where T is the number of training time step
instances2: W (t) = {−→w 1(t), . . . ,−→w k(t)} t ∈ {1, . . . ,T}.

The competitive learning process attempts to construct
a nonlinear topology that ensures the mapping of the input
vectors X = {−→x (t)|t ∈ {1, . . . ,T}}, into a set of neurons M on the
map.
In terms of learning, the SOM Algorithm consists of two
steps, a competitive and an update step. In the first one,
each data vector −→x (t), for a particular training instance t, is
mapped to its best matching neuron on the map : bm(−→x (t))=
ni ∈M. The winning neuron is denoted as:

ni(
−→x (t)) = argmin

j∈1,...,k

∥∥−→x (t)−−→w j(t)
∥∥ (5)

where each neuron ni codes the subset of input data space,
whose elements are closer to ni.
In the update step, the weight vectors of both the best match
neuron ni and its whole neighborhood neurons Γ (ni) are ad-
justed toward the presented input vector −→x (t) using the fol-
lowing equation: w j(t +1) = w j(t)+η(t) ·hi, j(t) · (x(t)−w j(t)) where
j∈Γ (ni), 0<η < 1 is the learning rate, and hi, j is the neigh-
borhood function. It is important to mention that the neigh-
borhood of the wining neuron (ni) is progressively reduced
until it reaches a set of size one.
A frequently used neighborhood function is the Gaussian:

hi, j(t) = exp
(
−d(i, j)2

2σ2(t)
)

)
(6)

2 SOM training stops when the weight vectors are stabilized or the
maximum number of iterations is reached.

4 M, I. Smahi et al.

where d(i, j) is the distance between the neuron ni and neu-
ron n j on the map and the radius σ(t) = σ0 · exp

(
t

Tmax

)
de-

creases after each iteration to restrict the area of the neigh-
borhood.

2.3.2 Batch learning

A batch algorithm is a useful variant of SOM learning pro-
cess presented above, which is widely used in parallel im-
plementations [43]. If the whole training data is available
beforehand, SOM has a batch formulation of update of all
weights:

w j(T) =
∑

T
t ′=1 hi, j(t ′)x(t ′)

∑
T
t ′=1 hi, j(t ′)

(7)

It means that the best matching neurons for all input vectors
are selected and hereafter their weights and the weights of
their respective neighbors are updated (according to Equa-
tion 6).

2.3.3 Initialization Methods

The results and the performances of SOM method are strongly
influenced by the initialization of neurons’ weights. To this
end, two types of initializations can be used. The first one
consists of a random initialization of the code-book. In this
method, random weight vectors are selected from the data
points. Technically this method is easy to implement, but
its main weakness lies in its high running time and its non
deterministic side-effects on results. To tackle the previous
problem, a linear initialization technique can be used. The
initial values of code-book are selected from the subspace
spanned by the Principal Component Analysis (PCA) algo-
rithm [22]. The behavior of SOM method using PCA initial-
ization converges more rapidly towards a better clustering
and ensures a deterministic clustering result [2].

3 Proposed Method

First, we introduce the architecture model of the proposed
approach. Then, we motivate the choices made in the design
of this architecture model. At last, we present in depth how
QoS prediction is made thanks to this model.

3.1 Architecture model

Figure 3 illustrates the architecture model of the proposed
approach. First, we assume that there are m users and n Web
services in our system. QoS values are collected from user’s
invocation of Web services. We use various sources to get
this data (such as social networks, a monitoring system, or
direct feedbacks). The collected values constitute a m× n

Users services con-
structing matrices

Collected QoS data

Data Clustering Cold-Start Han-
dling Problem

New User/Service

Latent factors Learning Autoencoder Building

Predicting
missing values

Selecting Built
Autoencoder

SOM Clustering stage

Modeling stage

Predicting stage

Fig. 3 Overview of the prediction system architecture

rating matrix M = {ru,s}m×n. We assume that QoS matrix
contains missing values because it is impossible to invoke all
services by all users. In order to predict the missing values
(first challenge), we propose an approach that is composed
of the following three stages:

1. First, we cluster the initial QoS rating matrix according
to the geographical characteristics. More specifically, we
will perform a clustering based on SOM Algorithm. As
mentioned previously, this method allows us to create
clusters whose members are closer in terms of contex-
tual attributes. This step aims to produce a set of clusters
that share the same contextual characteristics. Addition-
ally, it allows to decrease the sparsity of the QoS ma-
trix (i.e., the QoS matrix of each cluster is less sparse in
comparison to the initial QoS matrix) by considering the
top-k clusters.

2. Second, we perform the learning of latent factors for
each cluster by leveraging a deep denoising autoencoder.
During our experiments, we used a deep autoencoder
with three hidden layers (this choice is explained in the
experimental study). We assume that all the clusters are
trained with the same number of hidden layers.

3. Third, the learned deep autoencoder predicts missing QoS
values and stores them in the initial dataset.

The second challenge that interests us is the cold-start prob-
lem. Based on the results of the Data Clustering and Autoen-
coder Building phases, this task describes the arrangements
to ensure the best solution for this problem (later in this sec-
tion, we will describe the detailed mechanism).

3.2 Motivations behind architecture design choices

3.2.1 Autoencoder

Our proposition uses a DAE that allows for predicting QoS
values of services. This choice is mainly motivated by the

A deep learning approach for collaborative prediction of Web Service QoS 5

high accuracy achieved by matrix factorization methods, such
as autoencoders [27]. According to [26,47], matrix factor-
ization techniques are more accurate (in terms of prediction
performance) than the remaining CF methods. In addition,
the flexibility of DAE (e.g., the number of layers and the
activation functions) is leveraged to ensure the best perfor-
mance.
Indeed, it is possible to vary the activation functions of each
layer (e.g, relu, so f t plus, leaky-relu, ELU) in order to max-
imize the prediction accuracy.

3.2.2 SOM

To boost the accuracy of our prediction model, we have
to address the sparsity issue of the QoS matrix. A higher
sparsity results in a lower quality of prediction. To handle
this situation, we cluster the QoS data into groups using the
SOM method.
We have chosen this method for different reasons, including
the following:

– The SOM method has the ability to preserve the density
and the topological structure (the form) of the original
data;

– SOM-based clustering allows us to address the cold-start
problem. More specifically, if we handle a new service
(or user) (without QoS values), we first compare its con-
textual attributes with the context of the cluster-heads;
then we initialize the QoS of the new service (or user)
with the QoS values of the closest cluster-head;

– SOM network ensures a more faithful representation (in
terms of contextual attributes such as country, provider
and autonomous systems) of the services (or users), that
is, the services (or users) having similar contextual at-
tributes are more likely to belong to the same cluster;

– Their ability to preserve the neighborhood relationships
(i.e, two adjacent services/users are represented by two
adjacent cluster-heads, and two neighboring cluster-heads
share a part of their geographical characteristics while
the other properties are different).

According to [5,8,38], QoS values are directly influenced
by users and services geographical characteristics. The more
the services share the same geographical characteristics the
more the QoS values are similar.
In practice, the geographical characteristics of Web services
can be categorized into three different groups: Provider group
(P), AS3 group (A) and Country group (C). One group
is a subset of another (i.e, P(i) ⊆ A (i) ⊆ (i), where i ∈
{service,user}). This implies that the more the group is re-
stricted, the more the QoS values are likely to be similar.

3 An AS is either a single network or a group of networks that is
controlled by a common network administrator (or group of adminis-
trators) on behalf of a single administrative entity (university, a busi-
ness enterprise, etc.)

As we will see in the experimental evaluation Section, an
empirical analysis is conducted to demonstrate the influence
of geographical characteristics on the clustering results of
SOM.

3.3 Collaborative QoS prediction

The first algorithm (Algorithm 1) enables us to cluster the
input data (services S or users U) according to the batch
version of SOM principle. Firstly (line 1), we initialize the
weight vector for all neurons on the map (code-book ini-
tialization). To this end, we use a personalized initialization
mechanism to ensure a deterministic behavior and to pre-
serve the neighborhood relationships (more details are given
in Section 4.3.3). After that (from line 3 to 5), we determine
for each input its winner neuron (BMU) on the map. In next
steps (from line 6 to 12), we adjust the weight vectors of
all BMUs and their neighborhoods according to Equation 7.
The process is repeated as many times as necessary (epoch
times as specified in line 2). At the end, we create the final
clusters by processing the code-book with a k-means Algo-
rithm [16].

Algorithm 1: Data Clustering According to Batch
SOM Algorithm

Inputs : S = {s1, · · · ,sn} , . set of n service vectors
Data : W = {w1, · · · ,wk} . set of services weight vectors

1 Initialize all w ∈W
2 for epoch : 1→ Nepochs do
3 foreach s ∈ S do
4 compute winning node n(s) = argmin

j∈1,...,k
‖s−w j‖

5 end
6 for j : 1→ k do
7 accumulate numerator and denominator in equation 7
8 end
9 foreach w ∈W do

10 update w according to equation 7
11 end
12 end
13 max = 8
14 <C1, · · · ,Cmax >= KmeansCluster(W,max) . postprocess the code-books

with k-means algorithm
15 return <C1, · · · ,Cmax > . list of services clusters

In the second algorithm (Algorithm 2), we learn a model
that achieves the highest QoS prediction performance. The
goal is to infer the best learning model for our deep autoen-
coder. This algorithm builds a deep autoencoder for each
cluster Ci. In line 3, we split the current cluster Ci data into
k- f old folders. Each folder represents a given percentage
(density%) of the available cluster data. This parameter rep-
resents the ratio between the training dataset and the entire
dataset. For example, if density = 20% then the training set
represents 20% of all cluster data and the validation set rep-
resents the remaining 80% of QoS data. After that in line 7,
we learn a deep autoencoder for each folder and with respect

6 M, I. Smahi et al.

to all training sets (∀S ∈ T). The goal of this step is to mini-
mize the squared error between the model prediction and the
desired values. It is important to mention that the training is
controlled by the noise parameter. If this parameter is null
(i.e, no noise), we use the deep autoencoder architecture.
Otherwise, the selected architecture of the model is a de-
noising autoencoder. In line 8, we calculate the deep autoen-
coder error achieved on the validation dataset. In line 11, the
k- f older results are averaged to produce a single validation
error (mve). Finally, we return the best training model as
well as the mean validation error.

Algorithm 2: Autoencoder k-fold cross-validation
Inputs : C = {C1, · · · ,Cmax} ,density, noise, k- f old

1 for i→ max do
2 T =Ci . training set
3 < f older1, ..., f olderk- f old >= Partition(Ci, density, k- f old)
4 for k : 1→ k- f old do
5 T = T − f olderk
6 V = f olderk . validation set

7 Modelk = argmin
∀Sm∈T

√ 1
|T |

|T |
∑

m=1
|DAE(Sm,noise, |Ci|)−Sm|2

8 errk =

√
1
|V |

|V |
∑

m=1
|Modelk(Sm)−Sm|2

9 end
10 Modelk? = argmin

∀k∈k- f old
(errk) . get the k-th best model in term of errk

11 mve =
1

k- f old

k- f old
∑

k=1
errk

12 Θ [i] =< Modelk? ,mve >
13 end
14 return Θ

In the last algorithm (Algorithm 3), we address the cold-
start problem. To solve that, and taking into consideration
that QoS values are highly influenced by geographical char-
acteristics (as discussed in the end of Section 3.2.2), we
compute the initial QoS values V (s) = {qos1, · · · ,qosm} for
each new service according to its geographical characteris-
tics. Technically, we check if the actual provider of the new
service (P(s)) belongs to the initial set of providers (of our
dataset) (line 1). If so, in line 2, we compute the represen-
tativeness rate of the actual provider for each service cluster
(αc,s, ∀c ∈ CS). Afterward, we average that with respect to
all cluster-heads (H (c), ∀c∈CS). If not, we check if the AS
number of the new service (A (s)) is in our initial set of AS
numbers (line 3). If this is the case, we calculate the repre-
sentativeness rate of the actual AS number for each services
cluster, and we average the initial QoS values V (s) with re-
spect to all cluster-heads.
Otherwise, we proceed to compute the representativeness
rate of the service country (C (s)) and we average its initial
QoS values. In case where the geographical characteristics
of the new service are not available, we search the provider
having the nearest service (as mentioned in line 8), where
D denotes a geodesic distance function, and we compute its

QoS values as mentioned in line 9. This vector (V (s)) is
then provided as an input to all the trained DAEs. Finally,
we average the prediction results of the initial QoS value
for the new service (line 11). Note that the same algorithm
is used for a new user (V (u) = {qos1, · · · ,qosn}), with the
appropriate changes as well.

Algorithm 3: cold-start Algorithm
Inputs : s . new Service

C = {C1, · · · ,Cmax} . list of services clusters
H (C) = {H (C1), · · · ,H (Cmax)} . list of cluster-heads

Θ . best training models
Data : P, A , C . List of Providers, ASNs and Countries from dataset

1 if (P(s) ∈P) then

2 V (s) =
1

∑
c∈C

αc,s
∑

c∈C
αc,sH (c) with

αc,s =
1
|c|

|c|
∑
j=1

{
1, if P(s) = P(s j)

0, otherwise
3 else if (A (s) ∈A) then

4 V (s) =
1

∑
c∈C

αc,s
∑

c∈C
αc,sH (c) with

αc,s =
1
|c|

|c|
∑
j=1

{
1, if A (s) = A (s j)

0, otherwise
5 else if (C (s) ∈ C) then

6 V (s) =
1

∑
c∈C

αc,s
∑

c∈C
αc,sH (c) with

αc,s =
1
|c|

|c|
∑
j=1

{
1, if C (s) = C (s j)

0, otherwise
7 else
8 P(s) = P(argmin

∀si∈S
(D(s,si))) . compute the provider of nearest

service
9 V (s) =

1
∑

c∈C
αc,s

∑
c∈C

αc,sH (c) with

αc,s =
1
|c|

|c|
∑
j=1

{
1, if P(s) = P(s j)

0, otherwise
10 end

11 V (s) =
1
|Θ | ∑

Model?∈Θ

Model?(V (s)) . average prediction of the initial QoS

values
12 return V (s) . service initial vector

Figure 4 shows an example that explains the principles
of the proposed approach: The subplot (A) shows a l by k
grid that covers the different clusters of the SOM map; Each
line of the map represents a country and involves k neurons,
and each neuron is a subset of services. The subplot (B)
shows the initialization process of the neurons’ weights of
a given country, the neurons are assigned in a self-organized
mode. The subplot (C) shows the training phase of the differ-
ent DAEs that are related to the learned clusters. The subplot
(D) details the cold start scenario.

4 Experimental Evaluation

In this section, we conduct experiments to evaluate the per-
formance of the proposed approach and its different variants
(deep autoencoder, clustered deep autoencoder and Top-k

A deep learning approach for collaborative prediction of Web Service QoS 7

(B) SOM Initialization process
Web services for selected country Ci

S1 S2

S3 S4

S5
18 km

5 km

15 km

7 km

6 km
25 km

6 km

7 km

6 km

4 km

−→n 1 · · · · · · · · · −→n i · · · · · · · · · −→n k

Compute the maximal
geodesic distance:
D(S2,S4) = 25 km

1

Update the 1st and
kth neurons:

−→n 1 =
−→
S 2‖−→n k =

−→
S 4

2

Compute the index of S5:
die= D(S2,S5)×k

D(S2,S5)+D(S4,S5)

3

Update the dieth neuron: −→n die =
−→
S 54

(A) Grid of l× k neurons
each line represents a country

C1
.
.
.

.

.

.

.

.

.

Ci

.

.

.

Cl

−→n 1 · · · · · · · · · −→n i · · · · · · · · · −→n k

CLUSTER1 CLUSTER2 · · · · · · · · · CLUSTERn

(C) QoS prediction performance
Training the best model for each cluster

2

build model
for cluster1

1 Optimize the
squared error loss

for model1

3

x1 ENCODER1 DECODER1 x̂1

build model
for cluster2

1 Optimize the
squared error loss

for model2

3

x2 ENCODER2 DECODER2 x̂2

.

.

.

.

.

.

build model
for clustern

1 Optimize the
squared error loss

for modeln

3

xn ENCODERn DECODERn x̂n

(D) Cold-start process
Compute the initial QoS values for

the new service SP1
new =?

CLUSTER1

SP1
1

SP1
2

SP2
3

SP2
4

H (cl1)

...
SP1

new =?

CLUSTERn
SP2

5 SP1
6

SP2
7

H (cl1)

Compute the clusters heads:
H (cl1) = (

−→
S P1

1 +
−→
S P1

2 +
−→
S P2

3 +
−→
S P2

4)/4
...

H (cln) = (
−→
S P2

5 +
−→
S P2

6 +
−→
S P1

7)/3

1

The representativeness rate of the ptovider P1:
αcl1 = 1+1+0+0 = 2

...
αcln = 0+1+0 = 1

2

Average initial vector for the new service:
V (Snew) =

1
(αcl1+···+αcln)

(
αcl1H (cl1)+ · · ·+αclnH (cln)

)3

Average initial vector for the new service:
V (Snew) =

1
n (Model1(V (Snew))+ · · ·+Modeln(V (Snew)))

4

In this example, we assumed that the provider of SP1
new

belongs to the initial set of our providers. Otherwise, we
will follow the other steps mentionned in algorithm 3.

NB

Fig. 4 Illustrative example describing the principles of the proposed
approach

clustered deep autoencoder). The objective is to answer the
following questions: (1) How sensible are our proposed mod-
els to the hyper-parameters? (2) What is the impact of the ge-
ographical characteristics on the SOM clustering? (3) How
do our approach compare to the state-of-the-art methods un-
der different scenarios?

4.1 Experimental setup

The experiments were conducted on the MESO@LR-Platform
of the University of Montpelier, France. To this end, we used
4 nodes (14 cores) with 128 GB of RAM. All the learn-
ing programs were implemented in Tensorflow Python. Note
that, for the training of the SOM algorithm, we turn to a
high-performance implementation called Somoclu4, which
is considered as a massively parallel tool for training a batch
formulation of self-organizing maps on large datasets [43].

4.1.1 Data collection

To evaluate the proposed approach, we conducted experi-
ments on a large-scale real-world Web service QoS repos-
itory named WS-Dream, released by [54]. This repository
contains two datasets. The first one contains 1 974 675 in-
vocations from 339 users on 5825 Web services. The sec-
ond one contains about 30 million Web service invocation
records collected from invocation of 4500 services by 142
users at 64-time intervals. Each time interval t takes 15 min-
utes. The innovation, on both datasets, considers response

4 https://github.com/peterwittek/somoclu

time and throughput criteria (c ∈ {rt, th}). Table 1 summa-
rizes some characteristics of WS-Dream repository data.

Table 1 Information details of ws-dream repository (RT : response
Time, TP: Throughput Time)

Statistics First Dataset Second Dataset

RT TP RT TP

Scale 0-20 s 0-20 s 0-20 s 0-20 s
Mean values 0.908 s 47.561 s 3.165 s 9.608 s
Users 339 339 142 142
Web services 5826 5826 4500 4500
Times slices 1 1 64 64
All values 1 874 177 1 831 592 30 286 687 30 286 687
Mis. values 100 837 143 422 10 609 313 10 609 313
% mis. values 5.10% 7.26% 25.94% 25.94%

Note that the dataset contains about 26% of missing values,
which is a quite high date sparsity rate. This problem spe-
cific to this dataset may pose the risk to having an invalid
clustering (a cluster with services with null values). In order
to reduce this risk, we considered the following two rules for
a given service invocation QoS matrix Mc,t = {QoSu,s}m×n
(for a selected criterion c and at given time slot t):

1. For each QoSc,t
s,u value for a given invocation matrix Mc,t ,

if this value is invalid, then we replace it by the average
of the valid QoSc,t ′

s,u values on all the previous matrices

time slot: QoSc,t
s,u =

1
t−1

t−1
∑

t ′=1
QoSc,t ′

s,u

2. For each QoSc,t
s,u value for a given matrix invocation Mc,t ,

if this value is invalid and all its previous values (regard-
ing time slots) are invalid, then QoSc,t

s,u = 0.

Table 2 The results of different improvements on dataset

Attributes % of missing % of messing
values (before) value (after)

QoS values 26% 23%
AS number 21% 15%
IP Address 24% 13%

Latitude/Longitude 22% 15%

Other changes are made on the first dataset, in order to re-
duce the missing values on the services attributes in terms of
geolocational information (AS number, IP address, latitude
and longitude). To do this, we used the geolocational infor-
mation derived from GeoIP25, and IP2Location6 databases.
Table 2 shows the different improvements operated on the
initial dataset.

5 Maxmind GeoIP2 Geolocational Databases. Retrieved on May
2019 from http://dev.maxmind.com/geoip/geoip2/geolite2/

6 IP2Location LITE Databases. Retrieved on May 2019 from
http://lite.ip2location.com

8 M, I. Smahi et al.

4.1.2 Evaluation metrics

To evaluate the performance of the method, we use two well-
known metrics frequently used in collaborative filtering: mean

absolute error: MAEV =
1
|V | ∑

(u,s)∈V
|ru,s− r̂u,s| and root mean squared

error: RMSEV =

√
1
|V | ∑

(u,s)∈V
|ru,s− r̂u,s|2, where V represents the

validation dataset. ru,s is the actual QoS score for service s
given by user u, and r̂u,s the predicted one.
Since we used k-fold cross-validation, we assess the predic-
tion on the average of MAE and RMSE too. The average
MAE is defined as follows:

MAEAV G =
1∣∣∣∣∣ ⋃

allVk- f old

∣∣∣∣∣
∑

allVk- f old

(|Vk- f old |×MAEVk- f old) (8)

The average RMSE (which is also denoted as mve in step 11
of Algorithm 2) is defined as:

RMSEAV G =
1∣∣∣∣∣ ⋃

allVk- f old

∣∣∣∣∣
∑

allVk- f old

(|Vk- f old |×RMSEVk- f old) (9)

where Vk- f old represents a validation set in both previous
equations.

4.2 Effects of training parameters

Autoencoder models are full of hyper-parameters and set-
ting a proper parameter initialization is a great challenge.
This requires expertise and extensive trial and error. In our
work, we focused on two important hyper-parameters: the
size of each layer in the autoencoder and the choice of the
activation function on these layers. In the following, we present
a series of comparative experiments conducted in order to
obtain the optimal parameters of our model.

4.2.1 Impact of autoencoder layer sizes

The size of the common layer (latent factor layer) is a hyper-
parameter that we must set before training the autoencoder.
Like any feed-forward networks, it has been proven that
deep autoencoders yield much better compression than cor-
responding shallow or linear autoencoders [18]. So, addi-
tional layers can learn complex representations by approxi-
mating any mapping from input to code arbitrarily well. For
this reason, and aside from the latent factor layer, we used
a three layer net for both encoding and decoding networks.
This choice is based on the power of three-layer neural net-
work experimentally proven in [17]. The final architecture
of our autoencoder is composed of four fully connected lay-
ers (three layers + latent factor layer) for both encoding and
decoding networks.

In order to determine the ideal number of neurons for each
layer, many rules-of-thumb have been taken into account [31].
The code size should be: (1) between the size of the in-
put layer and the size of the output layer; (2) two-thirds
the size of the input layer, plus the size of the output layer;
(3) less than twice the size of the input layer. We considered
these three rules as a starting point for determining the upper
bound on this parameter.
Figure 5(A) shows the results of four different values that
operate on the layers sizes of the autoencoder. As we can
see, the configuration that performs best on our 4-layer-model
is 1024, 512, 256 and 128. Note that this configuration de-
pends on the dimension of our input (with 4500 input ser-
vices) for the autoencoder model. For the clustered autoen-
coder, this configuration is updated by the rule of three on
the input size (which represents the cluster size).

4.2.2 Impact of activation functions

The second important hyper-parameter used in the training
of our autoencoder is the target activation. To examine the
influence of this parameter, we empirically used some of
the most popular choices in deep learning. So, we used a
sigmoid such as standard activation function and exponen-
tial linear units [11] (ELU), standard rectified linear unit
(ReLU) [37] and finally, a leaky rectified linear unit (Leaky
ReLU) [46] known as non-standard activation functions.
The effect of the different activation functions on RMSE
training metric is shown in Figure 5(B). In order to accel-
erate the convergence speed we opted for a non-saturated
activation function: Leaky ReLU.

4.3 Results and discussion

In deep learning, it has been experimentally proven that the
classical model of autoencoders degenerate into identity net-
works and they fail to learn the latent relationship between
data [13]. To tackle this issue, we used a variant model of

D=20% D=50% D=80%

4

5

6

7

5.
23

1

4.
34

8

4.
07

2

5.
90

8

5.
10

0

4.
22

4

6.
88

2

6.
00

6

5.
89

0

6.
90

4

6.
91

8

6.
90

6

R
M

SE

(A)

1024,512,256,128 512,256,128,64
256,128,64,32 128,64,32,16

D=20% D=50% D=80%

3

4

5

6

6.
72

3

6.
40

1

5.
98

9

5.
29

0

4.
36

2

4.
23

1

6.
11

9

5.
03

0

4.
40

2

5.
23

1

4.
34

8

4.
07

2

R
M

SE

(B)

sigmoid elu
relu leaky relu

Fig. 5 Training RMSE per mini− batch on the second dataset, with
learningrate = 0.05, epoch = 20, for an optimal parameters selection.
(A) Influence of layers size, (B) influence of activation functions.

A deep learning approach for collaborative prediction of Web Service QoS 9

deep autoencoder by corrupting the inputs, training the model
to denoise the final outputs.

To enhance the robustness of the model, we adopted a
masking noise technique to set a random fraction of the in-
put to zero. For this reason, we explore four rates of noise:
0% (i.e., no noise), 20%, 50% and 80%, applied on these
models with the whole dataset in its input. Note that the
same training process is applied on experiments for each
clustered deep autoencoder after SOM clustering phase on
all input data.

4.3.1 Deep autoencoder

To extract the latent factor from the dataset, we used a 4-
layer encoder network with the following configuration on
the layers sizes: 1024-512-256-128. The same symmetric
configuration is used for the decoder network to reconstruct
the input data.

To ensure more robust prediction results, we lead our
experiments with a multiple folders according to the k-fold
cross-validation principle. Indeed, the experiments are per-
formed using five partitions (folders) with different density
values. Each partition represents a given percentage (density%)
of the available dataset. The density represents the ratio be-
tween the training and the validation datasets. To this end,
we explore three possibilities for density ratio: 20%, 50%
and 80%. Finally, the validation results are averaged over
the 5-folders through the application of equations 8 and 9.
In Figure 6 (A), we illustrate the average RMSE/MAE af-
ter five runs operated on three different data densities. For

0% 20% 50% 80%

2.5

3

3.5

4

noise

R
M

SE

(A) Average RMSE/MAE variations

Density 20%.
Density 50%
Density 80%

0% 20% 50% 80%
1.2

1.4

1.6

1.8

2

2.2

2.4

noise

M
A

E

(B) Training RMSE/MAE variations

0 200 400

4

6
0% noise

0 200 400

4

6
20% noise

0 200 400

2

3

0% noise

0 200 400

2

3

20% noise

0 200 400

4

6
50% noise

0 200 400
3

4

5

6

7
80% noise

0 200 400

2

3

50% noise

0 200 400

2

2.5

3

3.5 80% noise

Fig. 6 The results with a training/testing set of (density%)/(100−
density%) for a deep autoencoder prediction (on various noises and
densities). (A) The average RMSE and MAE results, and (B) The train-
ing performance graph.

each density value, we applied four noise variations on the
input data. Note that the QoS prediction accuracy increases
continuously when the matrix density increases (due to the
increase of the noise rate).
In Figure 6 (B), we can see that the training converged for
all the possibilities, after fewer than 100 epochs. Also, we
can easily observe that there is a stability (no increase after
converging), and no overshoot (no increase before converg-
ing).

4.3.2 Clustered deep autoencoder

In order to provide yet a better prediction accuracy, we used
a Clustered Autoencoder. This autoencoder variant is de-
signed after the partition of all services into eight clusters
that are homogeneous with regard to their geographical char-
acteristics. As mentioned above, we used the same architec-
ture of our deep autoencoder (4-layer-model configuration:
4-layer sizes, and the activation functions are Leaky ReLU).
The main difference is that the size of the four layers that
make up each clustered autoencoder is depending on the size
of the inputs (number of services in the cluster). The layer
sizes are updated by the rule of three on the initial configu-
ration (1024-512-256-128) according to the cluster size (in-
put size). To do so, we performed eight trainings for each
cluster. We applied the same process on each cluster under
various input data densities (20%, 50% and 80%). For each
density case, we applied a set of noise variations (0%, 20%,
50% and 80%). Thereafter, we average the validation over
those clusters. As shown in the results from Figure 7(A) the

0% 20% 50% 80%

2.4

2.6

2.8

3

3.2

noise

R
M

SE

(A) Average RMSE/MAE variations

Density 20%.
Density 50%
Density 80%

0% 20% 50% 80%

1.2

1.4

1.6

noise

M
A

E

(B) Training RMSE/MAE variations

0 200 400

3

4

5 0% noise

0 200 400

3

4

5 20% noise

0 200 400

2

3 0% noise

0 200 400

2

3 20% noise

0 200 400

3

4

5 50% noise

0 200 400

3

4

5 80% noise

0 200 400

1.5

2

2.5

3 50% noise

0 200 400
1.5

2

2.5

3 80% noise

Fig. 7 The results with a training/testing set of (density%)/(100−
density%) for a clustered deep autoencoder prediction (on various
noises and densities). (A) The average RMSE and MAE results, and
(B) The training performance graph.

10 M, I. Smahi et al.

average RMSE/MAE for different densities increases con-
tinuously when the rate of corrupted input data increases
(except for the case when density is 20%). In Figure 7 (B),
we notice that the training converges a little slower than the
deep autoencoder model.

4.3.3 SOM Initialization

This subsection demonstrates the performance of SOM as
a method for geographical clustering instead of using other
alternative methods like k-means with Euclidean distance,
Hierarchical clustering, etc.
As already noted, the final results of clustered autoencoder
(see Figure 7 (A)), are the average result for the training of
eight different autoencoders. Each autoencoder is built ac-
cording to its input vector size (number of services). The
histogram depicted in Figure 8 (A) shows the detailed results
of training autoencoders for each cluster separately. In fact,
this graph represents the results in terms of RMSE and MAE
metrics of eight autoencoders. The average RMSE and av-
erage MAE are plotted with blue and red lines respectively.
Note that the x-axis corresponds to the size of input data for
those autoencoders.

1803 1749 60 73 196 356 99 164

1.19

2.33

3

4

5

u

1.
57

7

1.
81

9

3.
69

7

3.
78

1 4.
40

9

4.
56

7 5.
10

1 5.
76

2

0.
59

0

0.
75

6

2.
06

0 2.
66

5 3.
05

6

2.
75

2

3.
61

9 4.
30

3

(A)

RMSE MAE

1557 1382 144 420 50 552 91 304

1.78

3.23

4

5

u

2.
21

7

2.
54

3

3.
69

7

3.
88

1 4.
50

0

4.
80

3

6.
20

4

6.
50

0

0.
91

3

1.
10

4

2.
11

5 2.
63

5 3.
12

0

2.
90

3

4.
49

2

4.
86

6

(B)

RMSE MAE

Fig. 8 Detailed results of clustered autoencoder with density = 80%
and noise = 0%. SOM clustering results: (A) based on Geographical
characteristics initialization. (B) with random initialization

As we can see, the best results are for the clusters with the
highest number of services (clusters with 1803 and 1749 ser-
vices). Their results are far less than the average result. How-
ever, the third and the fourth ranked autoencoders are for the
clusters with the smallest number of services (60 and 73 re-
spectively). For the remaining clusters, despite the fact that
they contain a considerable number of services, we note that
their results are significantly higher then the average result.

The major significance of these results is on the man-
ner that we operate for the initialization of the code-book.
In fact, we opted for a Kohonen feature map network with
80×80 neurons to perform the clustering of 4500 services.
Each line on this map contains 80 neurons and represents
one country from our dataset. Note that, in ws-dream dataset
we detected 81 different countries (we merged two coun-
tries). The size of each neuron vector is equal to the number
of users available in our dataset (i.e., 142 users). So, each

line for a selected countryi on the map represents seman-
tically the maximal geodesic distance (according to their
longitude/latitude values) between all services pairs which
compose this countryi (i.e., argmax(D(s1,s2)), ∀s1,s2 ∈Countryi),
where D denotes a geodesic distance function. This means
that the first neuron is initialized with the vector of s1 di-
vided by the size of all services which compose the selected
country. The same thing is operated for the last neuron with
the vector s2. The rest of services are distributed on the rest
of neurons according to their geodesic distance. Note that,
if there are several services with the same geographic co-
ordinates, we put on the corresponding neuron the average
vector of those services. Finally, the services which do not
have the geographical information (i.e., latitude/longitude)
are randomly dispatched throughout the whole neurons of
their corresponding country line.

In support of our initialization outcomes (Figure 8 (A)),
other experiments were performed with a random initializa-
tion of the code-book in SOM algorithm. As we can see in
Figure 8 (B)), the average results in terms of RMSE and
MAE are less than the results of experiments operated on
SOM clustering results based on Geographical characteris-
tics initialization.

Other interesting observations on our proposed initial-
ization method are:

Table 3 Information details of ws-dream repository

Cluster size % of sparsity % missing geoloc. info.

1803 22,34% 13,81%
1749 23,10% 9,43%

60 19,30% 20,00%
73 24,44% 13,70%
196 28,06% 32,14%
356 26,63% 33,99%
99 22,53% 15,15%
164 26,69% 24,39%

– Firstly, in terms of RMSE and MAE, we observe that
about 80% of all services are clustered in the top-3 clus-
ters for clustering based on Geographical characteristics
initialization (figure 8 (A)), and only 69% for a random
initialization (figure 8 (B)).

– Secondly, we observe that there is a directly proportional
relationship between the training results and the spar-
sity on data of each cluster. The more the density of in-
put data is the better the results are. Table 3 summarizes
the sparsity (column two) ratio on each cluster (column
one), knowing that the sparsity of all data is about 23%.

– The third important observation is about the percentage
of missing geolocational information. We observed that
most of services without geographical characteristics are
clustered in the latest clusters. The third column in Ta-

A deep learning approach for collaborative prediction of Web Service QoS 11

ble 3 shows the missing rate according to the clusters
size.

– Finally, with our proposed initialization mechanism, we
ensured a deterministic behavior of clustering result.

Based on this analysis, and in order to preserve the topo-
logical properties of the dataset and reduce the effect of
QoS sparsity, we take the advantage of SOM algorithm to
create the appropriate clusters with our proposed initializa-
tion mechanism. Table 4 summarizes the results in terms of
RMSE, MAE and TIME for the three architectures: A deep
autoencoder, a clustered autoencoder and clustered* autoen-
coder with only top-3 clusters.
As already mentioned, the results represent the comparison
between the three different approaches that we have imple-
mented, so, the results are grouped according to those meth-
ods. The Deep AE group concerns the results on test data
after training the deep autoencoder without using any clus-
tering. The Clustered AE group concerns the average results
for eight clusters of the deep autoencoder. The third group
(Clustered* AE) presents the average testing results on the
top-3 best clusters (about 80% of all services are clustered in
the top-3 clusters). All the experiments are conducted with
three different data density values, and by adding a random
noise to the input data for each of them. Note that the tech-
nique of adding the noise, as specified in [30], not only helps
us to avoid over-fitting, but also can result in lower training
loss (especially when density is about 20%).
This clearly demonstrates the interest of using the clustering
phase before. Indeed, the results show that the method with
SOM clustering behaves better than the first method where
the prediction of QoS values is performed on the whole dataset.
Consequently, using deep-autoencoder on the top-3 clusters
outperforms the other methods. We also note that along with
the data densities increasing, the prediction metrics become
smaller.

A detailed version of experiments operated on the whole
dataset according to k-fold cross-validation principle can be
found at the following links:

– Deep Autoencoder: http://bit.ly/2JrIGSs
– Clustered deep autoencoder: http://bit.ly/2XKRMxO

We additionally observe, that not only the prediction accu-
racy decreases on the clustered AE, but the training time
improves significantly from the deep autoencoder method to
the clusterd AE method.

4.3.4 Performance Comparison

With the aim of evaluating the advantages of our method
and its variants, we compare them with the following state-
of-art baseline QoS prediction methods. UPCC [50]: User-
based CF using PCC. This method is a user-based model us-
ing Pearson Correlation Coefficient for recommendation and

prediction of Web services. IPCC [34]: Item-based CF using
PCC. This method uses similar services for the QoS predic-
tion using Pearson Correlation Coefficient method. ARIMA [14]:
this method is often considered as the baseline method. It
is a statistical method adapted to QoS web service predic-
tion. WSRec [51]: It is a hybrid CF algorithm that combines
a user-based prediction [50] model with item-based predic-
tion model [34]. Lasso [41]: this approach optimizes the rec-
ommendation problem by adapting the lasso penalty func-
tion. Country-clustered Autoencoder [36]: this is our first
approach to predict QoS of Web services based on historical
data. We used a simple (not deep) autoencoder architecture
(with only one hidden layer) to predict the QoS values on
sets of clusters based on the country ID. For that, all the ex-
periments for our previous approach have been reconducted
in line with the actual execution parameters (number of clus-
ters7 and number of folders).

We note that our work is not compared with QoS Pre-
diction methods that use a Topk based model (since they do
not consider the entire dataset).

Table 5 presents the MAE and RMSE results of dif-
ferent prediction methods on response-time criterion when
the training set densities take two different values: 80% and
50%. From these results, we notice the following observa-
tions:

1. The prediction accuracy of Lasso is better then Country
AE, WSRec and ARIMA methods;

2. The Deep AE method is slightly better then Lasso method
for the two density values. However, when the rate of
corruption data increases the performance of our Deep
AE decreases, compared to Lasso method;

3. Compared with Lasso method, the Clustred AE (when
no noise) can obtain as high as 9.6% and 11% improve-
ments in prediction accuracy when data density is 80%
and 50% respectively. Furthermore, the performances are
almost identical when the input noise is about 50%.

4. We clearly remark that the top-3 clustering deep autoen-
coders outperform the others methods in all cases (den-
sity and noise variations) even when the noise rate is
around 80%.

5. Globally, when the noise is lower or equal to 20%, we
observed that the results of the three variants of our pro-
posed method outperform other prediction approaches in
prediction accuracy in all cases in terms of RMSE met-
ric (except for Deep AE when density is about 80% and
noise is equal to 20%), and in the most cases from MAE
metric.

7 For this work, the clustering is performed on country ID. In order
to have only eight clusters we grouped some of countries in the same
cluster

12 M, I. Smahi et al.

Table 4 Users accuracy comparison methods on RT criterion (training time is specified in minutes)

Method Noise Density=20% Density=50% Density=80%
RMSE MAE TIME RMSE MAE TIME RMSE MAE TIME

Deep AE

0% 3,318 1,819 121,2 2,761 1,407 144,5 2,562 1,270 194,2
20% 3,229 1,717 97,98 2,819 1,501 128,9 2,616 1,367 167,6
50% 3,554 1,972 92,56 3,026 1,681 115,8 2,807 1,511 143,4
80% 4,090 2,337 94,92 3,575 2,057 108,4 3,310 1,894 131,1

Clustered AE

0% 2,852 1,571 53,74 2,558 1,383 69,29 2,325 1,188 85,34
20% 2,765 1,514 54,16 2,581 1,398 70,20 2,379 1,236 86,26
50% 2,977 1,647 54,34 2,743 1,501 70,30 2,577 1,380 86,12
80% 3,173 1,724 53,97 2,981 1,612 69,68 2,862 1,527 85,40

Clustered* AE

0% 1,908 0,840 42,20 1,762 0,771 54,70 1,700 0,748 66,90
20% 1,997 0,907 42,25 1,806 0,802 55,10 1,731 0,771 67,90
50% 2,087 0,936 42,32 1,917 0,858 55,20 1,829 0,822 68,00
80% 2,224 0,956 42,31 2,128 0,945 55,10 2,071 0,930 67,50

Table 5 Performance Comparisons of Prediction methods on RT with
two data density values

Method Density=50% Density=80%
RMSE MAE RMSE MAE

UPCC 3,034 1,470 3,032 1,467
IPCC 2,951 1,396 2.925 1.372
ARIMA 3,401 1,236 2,986 1,028
WSRec 2,945 1,380 2,925 1,372
Lasso 2,872 1,021 2,572 0,893
Country AE 3,825 1.892 2,803 1,250

Deep AE

noise = 0% 2,761 1,407 2,562 1,270
noise = 20% 2,819 1,501 2,616 1,367
noise = 50% 3,026 1,681 2,807 1,511
noise = 80% 3,575 2,057 3,310 1,894

Cluster AE

noise = 0% 2,558 1,383 2,325 1,188
noise = 20% 2,581 1,398 2,379 1,236
noise = 50% 2,743 1,501 2,577 1,380
noise = 80% 2,981 1,612 2,862 1,527

Cluster* AE

noise = 0% 1,762 0,771 1,700 0,748
noise = 20% 1,806 0,802 1,731 0,771
noise = 50% 1,917 0,858 1,829 0.822
noise = 80% 2,128 0,945 2,071 0,930

4.4 Cold-start situation

To handle the cold-start problem, we adopt the strategy de-
scribed in algorithm 3. More specifically, we estimate the
initial QoS values of a new service (or new user) as follows:
First, we use the geographical characteristics of a service to
determine the most representative cluster (in terms of coun-
try, autonomous system, or provider); this step is performed
by using the first part of Algorithm 3 (from line 1 to line 9).
Then, we use the new QoS values (given by the first step)
as an input of all trained DAEs and take the average of the
returned results (line 11).

Note that, in the learning phase, we use about 60% of
entire dataset as examples to fit the parameters of the SOM
classifier. In the testing phase, we use about 40% of exam-
ples to assess the performance of our fully-specified classi-
fier.

As depicted in Table 6, the RMSE, MAE, and testing
TIME, show the postive impact of the contextual character-
istics on the resolution of the cold-start problem. For that, we
are not only focused on the checking of the most represen-

Table 6 Cold-start problem (time is specified in seconds)

Cold-Start Steps RMSE MAE TIME
Step 1 3.877 1.951 1.201
Step 2 3.010 1.420 2.194

tative cluster in terms of geographical characteristics (step
1), but we also use already the trained DAE (after using Al-
gorithm 2) to average the returned results. We show that the
application of DAE (step 2), can significantly improve the
results.

4.5 Threats to validity

Regarding the recommendations in [44], there are several
elements to discuss about the validity of the experiment. For
that, we consider the threats to internal and external validity
of our study:

– Internal Validity threats are intrinsically tied to exper-
imental realism. To select the different parameters for
our models, we have tried to be as objective as possi-
ble. However, despite the fact that we conduct several
pre-trainings for selecting the best configuration of those
parameters, other different values may conduct to differ-
ent results. For the deep autoencoder model, since we
split the dataset into training and testing sets with vary-
ing proportions and use the k-fold cross-validation, this
can alleviate the actual threat. For the clustered deep au-
toencoder model, and in addition to previous remarks,
internal validity threats are mitigated since the number
of neurons is proportional with the size of clusters.

– External Validity threats are about the ability to gener-
alize our proper findings and conclusions to other con-
texts. In this study, we performed our experiments on a
large dataset (ws-dream), which enables us to train cor-
rectly our prediction method. To the best of our knowl-
edge, this is the only large Web service QoS dataset pub-
licly available. Although we used only one dataset, we
are quite confident that the impact of using another dataset

A deep learning approach for collaborative prediction of Web Service QoS 13

is reduced with the use of k-fold cross-validation which
operates on multiple data densities. On the other side,
the fact of using a denoising autoencoders by corrupting
the data by randomly forcing some of the input values to
zero, decreases the risk of external validity.

5 Related Works

In [49,35,21], the authors draw up a detailed survey and new
perspectives on “deep learning”-based recommendation sys-
tems. For the two first articles, the authors treat all categories
of recommendation systems. However in the third article,
the authors focus only on the Collaborative Filtering recom-
mendation algorithms.

In this paper, we focused on the Collaborative Filtering
methods using a deep learning mechanism and/or exploiting
the context information (and more particularly geographical
information) for clustering Web services. For this reason, we
present recent related works according to these two different
aspects:

5.1 Clustering-based Methods in Collaborative Filtering

In the literature, several clustering-based works have been
carried out [38,10,8,9,29,28]. Those studies are trying to
discover a set of clusters based on the neighborhood charac-
teristics of data.

In [29], the authors focus on Cloud Services Selection
according to users’ non-functional requirements. Their method
is based on time series QoS data. In order to identify the
user clusters, they use the double Mahalanobis distances to
improve the similarity measurement of QoS cloud models
during multiple periods. They assume two challenges: Chal-
lenge in exactly identifying the neighboring users for a cur-
rent user and Challenge in selecting the appropriate cloud
service with optimal QoS meeting user’s period preferences.

In the work presented in [28], the authors assume that
most existing CF approaches ignore the influence of task
similarity among different users on QoS prediction results
and vice versa (i.e. the influence of similar users on differ-
ent tasks). To address this problem, the authors proposed a
novel clustering-based and trust-aware method for personal-
ized and reliable QoS values prediction. For that, they com-
bine two contributions to make a more personalized QoS
prediction. For the first one, they develop a clustering-based
algorithm to identify a set of similar users from the point of
view of task similarity. The tasks similarities are computed
by incorporating both explicit textual information and rat-
ing information as well as implicit context information. For
the second one, they made assumptions that the QoS values
may be contributed by unreliable users. For that, they design
a trust-aware CF approach by merging local and global trust

values, to reconstruct trust network of the clustered users. A
series of experiments on two real-world datasets were con-
ducted to evaluate the proposed approach.

The work presented in [8] aims to improve QoS predic-
tion accuracy. To this end, the authors have considered the
factor of geographical neighborhood to perform both matrix
factorization and service clustering. The authors built a set
of service clusters based on geo-neighbors similarity. The
clusters are identified using both a bottom-up hierarchical
neighbor-hood and the contextual attributes (like the country
and service provider). Accordingly, the authors leveraged a
neighborhood-based term to decompose the QoS matrix and
predict the missing values.

5.2 Deep Learning Methods in Collaborative Filtering

Recently, deep learning-based models are rapidly developed
in the era of recommendation. A wide range of Collaborative
Filtering approaches have been proposed like in [23,45,4,
40]. We focus next on two works that we consider as very
related to our work.

In [45], the authors proposed a hybrid deep learning ap-
proach by combining Matrix Factorization with Content fil-
tering to improve Web service recommendation. To predict
the probability of a particular service to be invoked by a par-
ticular web application or mashup (user in our case), they
used two feed-forward neural networks for both Collabora-
tive filtering and Content filtering components. After that,
these two components are combined by concatenating their
last hidden layers to compose a third multi-layer perceptron
to learn the interaction between them as well as their func-
tionalities (it is well known that the interaction treated with
Collaborative filtering and Content filtering is about multi-
ple factors such as invocation history and functionalities). In
order to evaluate their method, the authors conducted several
experiments using a real-world Web service dataset. How-
ever, despite the fact that for those experiments the train-
ing data is randomly selected under different percentages of
training data (20% to 80% with a step of size 10%), they kept
only 20% in test data for each experiment round. The second
remark is about the lack of information on their choices of
the number of layers and the size of each of them and how
those choices can affect the final results. A final remark is
about the learning time, which is relatively high due to the
fact that they try to learn three different neural networks.

In [4], the authors used an autoencoder architecture to
learn low-dimensional representations and perform feature
extraction. To this end, they build a deep learning frame-
work to recommend long-tail Web services. To tackle the
problem of the unsatisfactory quality of the low-quality of
the content description, they used a stacked denoising au-
toencoder to perform feature extraction for long-tail Web

14 M, I. Smahi et al.

services with severe sparsity on both their content descrip-
tion and their historical usage data. The proposed approach
is tested on a real-world dataset and compared with sev-
eral state-of-art baselines. In summary, this framework can
be considered as a content-based recommendation system.
However, from the viewpoint of matrix factorization and
collaborative filtering paradigm, the interaction between the
applications (mashups) and services is not addressed here.

5.3 Positioning of the approach

In contrast to the aforementioned works, our contribution
leverages both contextual attributes and QoS data to per-
form clustering. By doing so, we limit the chances of having
sparse or small-sized clusters. More specifically, the initial-
ization of the cluster-heads (or weights of neurons) is per-
formed using contextual attributes; in addition, this initial-
ization is accomplished in a self-organized manner (i.e., the
neighboring neurons of the map are also neighbors in the
physical network). Besides that, the training of the SOM
model exploits the QoS data (instead of contextual attributes)
to update the weights of the cluster-heads.

To the best of our knowledge, our contribution is the first
work that designs a deep autoencoder architecture (and its
variant denoising autoencoder) for QoS prediction Web ser-
vices.

6 Conclusion

QoS is a key factor for building successful service-oriented
applications. Most existing QoS-predicting works do not han-
dle data sparsity, the cold-start problems, and the contextual
information of services and thus are likely to perform worse
in real scenarios.

In this paper, we tackled the aforementioned issues by
adopting a DAE architecture. To optimize prediction capa-
bilities, the hyper-parameters of the DAE are tuned through
cross-validation. We also introduced a SOM-based cluster-
ing step as a pre-processing to the DAE learning. This step
aims to reduce QoS matrix sparsity and improve predic-
tion accuracy. We conducted a set of experiments to evalu-
ate the performance of this prediction method. We explored
many variants of this method and compared their perfor-
mance with the state-of-the-art methods. These experiments
showed that our method outperforms the existing methods
in terms of accuracy.

As perspectives to this work, we would like to investi-
gate first the use of alternative architectures of deep learning
models like stacked autoencoders or deep belief networks.
These architectures may ensure more accurate prediction re-
sults than the autoencoders used in this work. Second, we
plan to use deep learning in predicting Web service Quality

of Experience (QoE). We intend to use some powerful text
mining tools to analyse the users’ feedbacks in order to esti-
mate QoE scores for Web services. We argue that the com-
bination of QoS and QoE will contribute to improve Web
service recommendation systems.

Acknowledgment

This work has been performed with the support of the High
Performance Computing Platform MESO@LR, financed by
the Occitanie / Pyrénées-Méditerranée Region, Montpellier
Mediterranean Metropole and the University of Montpellier,
France.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge & Data Engineering
17(6), 734–749 (2005)

2. Akinduko, A.A., Mirkes, E.M., Gorban, A.N.: Som: Stochastic
initialization versus principal components. Information Sciences
364, 213–221 (2016)

3. Alain, G., Bengio, Y.: What regularized auto-encoders learn from
the data-generating distribution. The Journal of Machine Learning
Research 15(1), 3563–3593 (2014)

4. Bai, B., Fan, Y., Tan, W., Zhang, J.: Dltsr: A deep learning frame-
work for recommendations of long-tail web services. IEEE Trans-
actions on Services Computing 13(01), 73–85 (2020). DOI
10.1109/TSC.2017.2681666

5. Chen, S., Fan, Y., Tan, W., Zhang, J., Bai, B., Gao, Z.: Service rec-
ommendation based on separated time-aware collaborative pois-
son factorization. J. Web Eng. 16(7&8), 595–618 (2017)

6. Chen, W.Y., Chu, J.C., Luan, J., Bai, H., Wang, Y., Chang, E.Y.:
Collaborative filtering for orkut communities: discovery of user la-
tent behavior. In: Proceedings of the 18th international conference
on World wide web, pp. 681–690. ACM (2009)

7. Chen, X., Zheng, Z., Yu, Q., Lyu, M.R.: Web service recommen-
dation via exploiting location and qos information. IEEE Trans-
actions on Parallel and Distributed Systems 25(7), 1913–1924
(2013)

8. Chen, Z., Shen, L., Li, F.: Exploiting web service geographical
neighborhood for collaborative qos prediction. Future Generation
Computer Systems 68, 248–259 (2017)

9. Chen, Z., Shen, L., Li, F.: Your neighbors are misunderstood: On
modeling accurate similarity driven by data range to collaborative
web service qos prediction. Future Generation Computer Systems
95, 404–419 (2019)

10. Chen, Z., Shen, L., Li, F., You, D.: Your neighbors alleviate cold-
start: On geographical neighborhood influence to collaborative
web service qos prediction. Knowledge-Based Systems 138, 188–
201 (2017)

11. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate
deep network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289 (2015)

12. Deshpande, M., Karypis, G.: Item-based top-n recommendation
algorithms. ACM Transactions on Information Systems (TOIS)
22(1), 143–177 (2004)

13. Glorot, X., Bengio, Y.: Understanding the difficulty of training
deep feedforward neural networks. In: Proceedings of the thir-
teenth international conference on artificial intelligence and statis-
tics, pp. 249–256 (2010)

A deep learning approach for collaborative prediction of Web Service QoS 15

14. Godse, M., Bellur, U., Sonar, R.: Automating qos based service se-
lection. In: 2010 IEEE International Conference on Web Services,
pp. 534–541. IEEE (2010)

15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press (2016). http://www.deeplearningbook.org

16. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clus-
tering algorithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics) 28(1), 100–108 (1979)

17. Hecht-Nielsen, R.: Theory of the backpropagation neural network.
In: H. Wechsler (ed.) Neural Networks for Perception, pp. 65–93.
Academic Press (1992)

18. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality
of data with neural networks. science 313(5786), 504–507 (2006)

19. Huang, A.F., Lan, C.W., Yang, S.J.: An optimal qos-based web
service selection scheme. Information Sciences 179(19), 3309–
3322 (2009)

20. Huang, Z., Chen, H., Zeng, D.: Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative fil-
tering. ACM Transactions on Information Systems (TOIS) 22(1),
116–142 (2004)

21. Jalili, M., Ahmadian, S., Izadi, M., Moradi, P., Salehi, M.: Eval-
uating collaborative filtering recommender algorithms: A survey.
IEEE Access 6, 74003–74024 (2018)

22. Jolliffe, I.: Principal component analysis. Springer (2011)
23. Kanagawa, H., Kobayashi, H., Shimizu, N., Tagami, Y., Suzuki,

T.: Cross-domain recommendation via deep domain adaptation.
In: European Conference on Information Retrieval, pp. 20–29.
Springer (2019)

24. Kiang, M.Y., Kulkarni, U.R., Tam, K.Y.: Self-organizing map net-
work as an interactive clustering tool-an application to group tech-
nology. Decision Support Systems 15(4), 351–374 (1995)

25. Kohonen, T.: Self-organization and associative memory, vol. 8.
Springer Science & Business Media (2012)

26. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques
for recommender systems. Computer 42(8), 30–37 (2009)

27. Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginal-
ized denoising auto-encoder. In: Proceedings of the 24th ACM
International on Conference on Information and Knowledge Man-
agement, pp. 811–820. ACM (2015)

28. Liu, J., Chen, Y.: A personalized clustering-based and reliable
trust-aware qos prediction approach for cloud service recommen-
dation in cloud manufacturing. Knowledge-Based Systems 174,
43–56 (2019)

29. Ma, H., Hu, Z., Li, K., Zhu, H.: Variation-aware cloud service
selection via collaborative qos prediction. IEEE Transactions on
Services Computing (2019)

30. Neelakantan, A., Vilnis, L., Le, Q.V., Sutskever, I., Kaiser, L., Ku-
rach, K., Martens, J.: Adding gradient noise improves learning for
very deep networks. arXiv preprint arXiv:1511.06807 (2015)

31. Panchal, G., Ganatra, A., Kosta, Y., Panchal, D.: Behaviour anal-
ysis of multilayer perceptrons with multiple hidden neurons and
hidden layers. International Journal of Computer Theory and En-
gineering 3(2), 332–337 (2011)

32. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. Encyclopedia
of database systems 5, 532–538 (2009)

33. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal
representations by error propagation. Tech. rep., California Univ
San Diego La Jolla Inst for Cognitive Science (1985)

34. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J., et al.: Item-
based collaborative filtering recommendation algorithms. Www
1, 285–295 (2001)

35. Singhal, A., Sinha, P., Pant, R.: Use of deep learning in mod-
ern recommendation system: A summary of recent works. arXiv
preprint arXiv:1712.07525 (2017)

36. Smahi, M.I., Hadjila, F., Tibermacine, C., Merzoug, M., Benamar,
A.: An encoder-decoder architecture for the prediction of web ser-
vice qos. In: European Conference on Service-Oriented and Cloud
Computing, pp. 74–89. Springer (2018)

37. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations
are sparse, selective, and robust. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2892–
2900 (2015)

38. Tang, M., Zheng, Z., Kang, G., Liu, J., Yang, Y., Zhang, T.: Col-
laborative web service quality prediction via exploiting matrix fac-
torization and network map. IEEE Transactions on Network and
Service Management 13(1), 126–137 (2016)

39. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.:
Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion. Journal of
machine learning research 11(Dec), 3371–3408 (2010)

40. Wang, H., Wang, L., Yu, Q., Zheng, Z., Bouguettaya, A., Lyu,
M.R.: Online reliability prediction via motifs-based dynamic
bayesian networks for service-oriented systems. IEEE Transac-
tions on Software Engineering 43(6), 556–579 (2016)

41. Wang, X., Zhu, J., Zheng, Z., Song, W., Shen, Y., Lyu, M.R.: A
spatial-temporal qos prediction approach for time-aware web ser-
vice recommendation. ACM Transactions on the Web (TWEB)
10(1), 7 (2016)

42. Wei, J., He, J., Chen, K., Zhou, Y., Tang, Z.: Collaborative filter-
ing and deep learning based recommendation system for cold start
items. Expert Systems with Applications 69, 29–39 (2017)

43. Wittek, P., Gao, S., Lim, I., Zhao, L.: somoclu: An efficient parallel
library for self-organizing maps. Journal of Statistical Software,
Articles 78(9), 1–21 (2017). DOI 10.18637/jss.v078.i09. URL
https://www.jstatsoft.org/v078/i09

44. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.,
Wesslén, A.: Experimentation in software engineering. Springer
Science & Business Media (2012)

45. Xiong, R., Wang, J., Zhang, N., Ma, Y.: Deep hybrid collaborative
filtering for web service recommendation. Expert Systems with
Applications 110, 191–205 (2018)

46. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of
rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853 (2015)

47. Xu, Y., Yin, J., Deng, S., Xiong, N.N., Huang, J.: Context-aware
qos prediction for web service recommendation and selection. Ex-
pert Systems with Applications 53, 75–86 (2016)

48. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services
selection with end-to-end qos constraints. ACM Transactions on
the Web (TWEB) 1(1), 6 (2007)

49. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recom-
mender system: A survey and new perspectives. ACM Computing
Surveys (CSUR) 52(1), 5 (2019)

50. Zhao, Z.D., Shang, M.S.: User-based collaborative-filtering rec-
ommendation algorithms on hadoop. In: 2010 Third International
Conference on Knowledge Discovery and Data Mining, pp. 478–
481. IEEE (2010)

51. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Wsrec: A collaborative fil-
tering based web service recommender system. In: 2009 IEEE
International Conference on Web Services, pp. 437–444. IEEE
(2009)

52. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Qos-aware web service
recommendation by collaborative filtering. IEEE Transactions on
services computing 4(2), 140–152 (2010)

53. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service
qos prediction via neighborhood integrated matrix factorization.
IEEE Transactions on Services Computing 6(3), 289–299 (2012)

54. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating qos of real-world
web services. IEEE transactions on services computing 7(1), 32–
39 (2014)

